
The mbeddr Documentation Language

Markus Voelter

March 18, 2013

Abstract

This document explains how to use the documentation language of
mbeddr. It supports writing prose text with sections, figures etc. It
also supports embedding program nodes into the prose text. For exam-
ple, references to other sections or figures are actural (refactoring-safe)
references. Using a separate extension language, it is also possible to
reference mbeddr code and even to embed mbeddr code as images or
as text. mbeddr visualizations can also be rendered in real-time and
embedded into the document. Documents can be output to HTML
and Latex. The document you are currently reading is is itself written
with the documentation language: another extension module can be
used to document itself by embedding documentation language code
into documentation documents.

1

Contents

1 Introduction 4

2 Writing Regular Documents 4
2.1 Simple Text . 4
2.2 Formatting Text . 4
2.3 Embedding Figures . 5
2.4 Embedding Other Things . 6
2.5 Exporting Documents . 6
2.6 Embedding Documents . 8
2.7 Tables . 8

3 Embedding mbeddr Artifacts 9
3.1 Referencing Code . 9
3.2 Embedding Code . 11
3.3 Embedding Visualizations . 11

4 Extending the Documentation Language 13
4.1 New Paragraphs . 13
4.2 New Embeddable Nodes . 13

2

List of Figures

1 An example section from a document. It is embedded as an
image. 5

2 This paragraph shows how to format text. 5
3 An ASH 26E glider. 6
4 The code that embeds an image 7
5 An example document configuration with path definitions. . . 8
6 A root document that includes other documents in a specific

order. 8
7 The export configuration for this document. 9
8 The code for writing tables. 10
9 An interface with a marker on a precondition, so it can be

referenced. 11
10 Example code for referencing C code from documents. 12
11 An example of how to embed only a part of a module content

as an image. 13
12 An example of how to embed only the addoperation as an image. 14
13 The TrafficLightsstate machine as a graph. 15
14 Example document code to embed a visualization. 15

3

1 Introduction

When writing prose documents that integrate with code, it is tough to ac-
tually create this integration between the prose text and the code. You can
either put the prose in JavaDoc-like comments, but then it is hard to tell a
story. Alternatively, you can write a Word or Latex document, but then the
integration with the code artifacts is tough, boiling down essentially to copy
and paste and screenshots.

The mbeddr documentation language provdides a better alternative. It
supports writing prose inside of MPS, supporting a tight integration between
the prose and the code. In this document we explain how this works. Of
course, this document is itself written in the documentation language.

As you can see from the document you are reading, the documentation
language supports rendering to Latex. It also supports rendering to HTML.

The documentation language supports several different extensions, each
supporting the integration with differnet code artifacts. We will explain all
of this in this document. The languages that support these features are all
named com.mbeddr.doc.* , the devkit you may want to include is called
com.mbeddr.documentation .

2 Writing Regular Documents

2.1 Simple Text

The most fundamental concept is the document . It has a name and references
a configuration , about which we will take some more later.

Inside a document, the basic document structure consists of sections and
various kinds of paragraphs. The simplest kind of paragraph is the text
paragraph (entered by typing a p). It has vertical brackets on both sides
to denote its boundary. Below in fig Fig. 1 is an example, that also embeds
this same paragraph as an image.

2.2 Formatting Text

Of course, it is possible to format words as emphasized as well as as code , and
more formatting options will show up over time. You can press Ctrl-Space in
the text paragraph to see which formatting options are available. Formatting
options all start with a backslash. Fig. 2 shows the paragraph you’re reading
here as a screenshot so you can see the way to format words.

4

Figure 1: An example section from a document. It is embedded as an image.

Figure 2: This paragraph shows how to format text.

2.3 Embedding Figures

You can also embed images that are not rendered from within MPS, but are
supplied externally. Below, im Fig. 3 , is an example. The code to embed
an image is shown in Fig. 4 .

When embedding an image, you have to specify a name (so the image can
be referenced from within the document), a path (defined via a path definition
in the document configuration), the actual image file (code completion is
available in the editor), as well as a size specification (among others, a scaling
factor or a specification relative to page size).

The path definitions are made in the document configuration, and include
a path that is valid while the document is edited; MPS path variables can
be used. When the document is exported (see below), these are mapped to

5

Figure 3: An ASH 26E glider.

paths relative to the location at which the document is located. Fig. 5 shows
the document config for this document. Note that you can also define size
specifications there that can be referenced from images within the document
(to reuse the size specs).

2.4 Embedding Other Things

Other artifacts can also be embedded, not just images. The approach is
always the same, in particular, you typically specify a path and a size, as well
as a name so it can be referenced. The embeddings of the document sources
(as screenshots) are examples. In many cases, the artifacts are actually only
created during the creation of the document. For example, the screenshots
that represent the document source code are created from the live code during
the generation of the document. This way, they are always up to date. Other
extensions to the basic documentation language can contribute their own
embedded resources. We will see examples below.

2.5 Exporting Documents

Exporting the document (as HTML, PDF, or possibly in other formats) in-
volves two steps. First, you likely wrote the overall text in several actual
documents. To create a big, contiguous HTML or Latex document you prob-
ably want to join them. You can do this by creating another document and
including others. Fig. 6 shows an example how to do that. Note that you can
only include documents for which you specify a dependency in the document
header.

The second ingredient is the actual export configuration, as shown in
Fig. 7 . There, you specify a document title, optionally an abstract, a root
document, as well as a renderer. You also specify path mappings: the path
definitions from the configuration (Fig. 5) now have to be mapped to paths
relative to the output folder of the generated document (most likely you have
to manually create a script that copies these resources into this directory).

6

Figure 4: The code that embeds an image

To create the document, you simply generate the respective MPS model.
The HTML or Latex file(s) will be generated.

• For Latex, you specify a document class as well as a prolog file. The
prolog file is included at the beginning of the document, and it can
define all the style customizations you want.

• For HTML, you specify a style sheet. This style sheet can format the
HTML code in any way you want. Take a look at the generated HTML
to learn about the style classes used in the generated HTML.

7

Figure 5: An example document configuration with path definitions.

Figure 6: A root document that includes other documents in a specific order.

2.6 Embedding Documents

The documentation language is extensible. It can embed all kinds of other
things. In the previous section Section 2 we have already implictly seen how
to embed screenshots of documentation artifacts. This is probably a bit weird
and meta, but it is useful for documenting the documentation language. It
also shows off the flexibility of the approach itself.

2.7 Tables

The documentation language supports tables. The table below shows an
example. This is an inline table , there are also floating table , that
can be referenced with the @fig reference. The code for tables is shown in
Fig. 8 .

Name Alter Adresse
Markus 38 voelter@acm.org
Bernd 30 kolb@itemis.de
Peter 30 peter@friese.de

In a table, you specify the number of columns (and a name for floating tables).
You then add rows and cells. Currently we support only text cells (denoted

8

Figure 7: The export configuration for this document.

by the parens) and text block cells (denoted by the angle bracket, just as in
text paragaphs in general). Additional cell types will be supported in the
future.

For each cell, you set if it is a header using a setting in the inspector.
For each row, you can specify whether there should be lines above or below
the line. Currently, there is always a line between the columns; this may be
changed in the future.

3 Embedding mbeddr Artifacts

A more interesting use case is the ability to work with mbeddr code. In fact,
the ability to tightly integrate with mebddr code was the reason for building
this documentation language, as we have said in Section 1 . In this section
we explain how it works.

3.1 Referencing Code

The simplest way of integrating documentation prose is to use references to
mbeddr code. Why would you do this? Of course to be refactoring-safe: as
you rename the referenced element, the text in the documentation changes
with it. If you delete the element, the reference breaks, and you know you
have to change something.

9

Figure 8: The code for writing tables.

For example, you reference the interface Calculator using the @cc em-
bedded node. You can also refer to any named child of a top level content
by selecting that child after the slash in the @cc element. For example, you
can refer to an argument x . If you want to reference things that do not
have a name, you can attach a name label to an element (using the Attach
Name intention; you need to use the com.mbeddr.doc.c language in the re-
spective mbeddr model to get the intention. For example, we can refer to a
precondition . Fig. 9 shows how this looks in the code.

In addition, you can also refer to modules using the @cm node. For exam-
ple, here we refer to the ExampleCode module.

Fig. 10 shows the source for the referencing examples.

10

Figure 9: An interface with a marker on a precondition, so it can be refer-
enced.

3.2 Embedding Code

Embed as Image You have already seen in the previous paragraph how to
embed mbeddr code as an image into the document. In that example, Fig. 9
embedded a complete top level construct, an interface in this case. But what
if you wanted to embed only a smaller section, such as a state in a state
machine or a single operation in an interface? Fig. 11 shows an example
of embedding only an operation. The code to do that is shown in Fig. 12 ;
essentially you mention the add operation after the slash in the embed image
tag.

Embedding as Text You can also embed mbeddr code as text. This is in-
teresting in particular for Latex export, since you can configure the listings
package to provide syntax highlighting for your code. The following para-
graph shows how to embed the interface as text; not that this is not a floating
entity and cannot be referenced, it is inlined with the text. Also note that in
the inspector for the embed as text tag you can specify the language name
used for highlighting. By default, it is mbeddr .

1 exported cs interface Calculator {
2 int8 add(int8 x, int8 y)
3 post(0) result == x + y
4 int8 divide(int8 x, int8 y)
5 pre(0) y != 0 // ^aPreCondition
6 post(1) result == x / y
7 }
8

9

3.3 Embedding Visualizations

Some elements in mbeddr implement the IVisualizable interface, so they
can provide one or more visualizations. You can see these visualizations by
selecting the Visualize menu item from the context menu. Alternatively
you can also embed such visualizations into a generated document; the visu-

11

Figure 10: Example code for referencing C code from documents.

alization is rendered on the fly (like the code screenshots discussed in Section
3.2 .

An example for such a visualization is shown in Fig. 14 . As with other
images, you have to specify the size/scaling, and the location of the tempo-
rary files. Obviously, you have to reference the visualizable element, and you
also have to select which of its visualizations you want to render. You can
select them via code completion after the slash in the visualize element.

Note that (at least as of now) you have to manually render the images
with plantuml . The following listing shows how we render the images using
plantuml and how we copy them into a an images folder. This folder is the
one from which the images are read by the generated Latex file.

1 echo ===== Rendering Visualizations using plantuml
2 cd temp
3 java -jar ../plantuml.jar *.puml
4 cd ..
5

6 echo ===== Copying Rendered Images and Screenshots

12

Figure 11: An example of how to embed only a part of a module content as
an image.

7 cd source_gen/main
8 mkdir doc_images
9 cd ../..

10 cp temp/*.png source_gen/main/doc_images
11

The above example also shows how to embed a listing as text. You can add
a listing paragraph and paste the actual textual code into a text area in
the inspector.

4 Extending the Documentation Language

Just as any other mbeddr language, the documentation language is extensi-
ble. There are two main extension points: enw kinds of paragraphs and new
embedded nodes.

4.1 New Paragraphs

To create new paragraphs, you should extend the AbstractParagraph con-
cept from the com.mbeddr.doc language. For example, the regular text para-
graphs as well as the sections and images are subconcepts of AbstractParagraph
.

4.2 New Embeddable Nodes

Concepts that should be embeddable in ”regular”text paragraphs (such as the
one your are reading right now) must implement the IWord concept interface.
This way they can be embedded in any text paragraph. Of course, this is not
what you might want; if you want to restrict their usability to within actual
Document , you have to write a can be child constraint, or, alternatively,
extend the DocumentWord abstract concept.

In addition to extending the respective interface or concept, embeddable
concepts must also define a transformationKey property. It is the text that
is used to instantite the node from the code completion menu.

As an example, take a look at the following paragraph. It uses an exten-
sion that can be used for embedding variables and equations.

13

Figure 12: An example of how to embed only the add operation as an image.

The Drake Equation The Drake equation calculates the number of civi-
lizations N in the galaxy. As input, it uses the average rate of star formation
SF , the fractios of those stars that have planets fp and the average number
of planets that can potentially support life ne . The number of civilizations
can be calculated as N = SF ∗ fp ∗ ne

Note that the variables are typed, the equations are type checked and you
can directly use the variables and equations from mbeddr code if you want to.
To learn how this works, take a look at the com.mbeddr.doc.expressions
language.

14

Figure 13: The TrafficLights state machine as a graph.

Figure 14: Example document code to embed a visualization.

15

	Introduction
	Writing Regular Documents
	Simple Text
	Formatting Text
	Embedding Figures
	Embedding Other Things
	Exporting Documents
	Embedding Documents
	Tables

	Embedding mbeddr Artifacts
	Referencing Code
	Embedding Code
	Embedding Visualizations

	Extending the Documentation Language
	New Paragraphs
	New Embeddable Nodes

