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Set theory is an autonomous and sophisticated field of mathematics, enormously success-
ful not only at its continuing development of its historical heritage but also at analyzing
mathematical propositions and gauging their consistency strength. But set theory is also
distinguished by having begun intertwined with pronounced metaphysical attitudes, and
these have even been regarded as crucial by some of its great developers. This has encour-
aged the exaggeration of crises in foundations and of metaphysical doctrines in general.
However, set theory has proceeded in the opposite direction, from a web of intensions to
a theory of extension par excellence, and like other fields of mathematics its vitality and
progress have depended on a steadily growing core of mathematical proofs and methods,
problems and results. There is also the stronger contention that from the beginning set
theory actually developed through a progression of mathematical moves, whatever and
sometimes in spite of what has been claimed on its behalf.

What follows is an account of the development of set theory from its beginnings
through the creation of forcing based on these contentions, with an avowedly Whiggish
emphasis on the heritage that has been retained and developed by the current theory. The
whole transfinite landscape can be viewed as having been articulated by Cantor in sig-
nificant part to solve the Continuum Problem. Zermelo’s axioms can be construed as
clarifying the set existence commitments of a single proof, of his Well-Ordering Theo-
rem. Set theory is a particular case of a field of mathematics in which seminal proofs and
pivotal problems actually shaped the basic concepts and forged axiomatizations, these
transmuting the very notion of set. There were two main junctures, the first being when
Zermelo through his axiomatization shifted the notion of set from Cantor’s range of inher-
ently structured sets to sets solely structured by membership and governed and generated
by axioms. The second juncture was when the Replacement and Foundation Axioms were
adjoined and a first-order setting was established; thus transfinite recursion was incorpo-
rated and results about all sets could established through these means, including results
about definability and inner models. With the emergence of the cumulative hierarchy pic-
ture, set theory can be regarded as becoming a theory of well-foundedness, later to expand
to a study of consistency strength. Throughout, the subject has not only been sustained
by the axiomatic tradition through Gödel and Cohen but also fueled by Cantor’s two lega-
cies, the extension of number into the transfinite as transmuted into the theory of large
cardinals and the investigation of definable sets of reals as transmuted into descriptive set
theory. All this can be regarded as having a historical and mathematical logic internal to
set theory, one that is often misrepresented at critical junctures in textbooks (as will be
pointed out). This view, from inside set theory and about itself, serves to shift the focus to
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those tensions and strategies familiar to mathematicians as well as to those moves, often
made without much fanfare and sometimes merely linguistic, that have led to the crucial
advances.

1 CANTOR

1.1 Real Numbers and Countability

Set theory had its beginnings in the great 19th Century transformation of mathematics,
a transformation beginning in analysis. Since the creation of the calculus by Newton
and Leibniz the function concept had been steadily extended from analytic expressions
toward arbitrary correspondences. The first major expansion had been inspired by the ex-
plorations of Euler in the 18th Century and featured the infusion of infinite series methods
and the analysis of physical phenomena, like the vibrating string. In the 19th Century the
stress brought on by the unbridled use of series of functions led first Cauchy and then
Weierstrass to articulate convergence and continuity. With infinitesimals replaced by the
limit concept and that cast in the ε-δ language, a level of deductive rigor was incorporated
into mathematics that had been absent for two millenia. Sense for the new functions given
in terms of infinite series could only be developed through carefully specified deductive
procedures, and proof reemerged as an extension of algebraic calculation and became
basic to mathematics in general, promoting new abstractions and generalizations.

Working out of this tradition Georg Cantor1(1845–1918) in 1870 established a basic
uniqueness theorem for trigonometric series: If such a series converges to zero every-
where, then all of its coefficients are zero. To generalize Cantor [1872] started to allow
points at which convergence fails, getting to the following formulation: For a collection
P of real numbers, let P′ be the collection of limit points of P, and P(n) the result of n
iterations of this operation. If a trigonometric series converges to zero everywhere except
on a P where P(n) is empty for some n, then all of its coefficients are zero.2

It was in [1872] that Cantor provided his formulation of the real numbers in terms of
fundamental sequences of rational numbers, and significantly, this was for the specific
purpose of articulating his proof. With the new results of analysis to be secured by proof
and proof in turn to be based on prior principles the regress led in the early 1870s to
the appearance of several independent formulations of the real numbers in terms of the
rational numbers. It is at first quite striking that the real numbers came to be developed
so late, but this can be viewed as part of the expansion of the function concept which
shifted the emphasis from the continuum taken as a whole to its extensional construal as a
collection of objects. In mathematics objects have been traditionally introduced only with
reluctance, but a more arithmetical rather than geometrical approach to the continuum
became necessary for the articulation of proofs.

The other well-known formulation of the real numbers is due to Richard Dedekind
[1872], through his cuts. Cantor and Dedekind maintained a fruitful correspondence,

1Dauben [1979], Meschkowski [1983], and Purkert-Ilgauds [1987] are mathematical biographies of Cantor.
2See Kechris-Louveau [1987] for recent developments in the Cantorian spirit about uniqueness for trigono-

metric series converging on definable sets of reals.
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especially during the 1870s, in which Cantor aired many of his results and speculations.3

The formulations of the real numbers advanced three important predispositions for set
theory: the consideration of infinite collections, their construal as unitary objects, and
the encompassing of arbitrary such possibilities. Dedekind [1871] had in fact made these
moves in his creation of ideals, infinite collections of algebraic numbers,4 and there is an
evident similarity between ideals and cuts in the creation of new numbers out of old.5 The
algebraic numbers would soon be the focus of a major breakthrough by Cantor. Although
both Cantor and Dedekind carried out an arithmetical reduction of the continuum, they
each accommodated its antecedent geometric sense by asserting that each of their real
numbers actually corresponds to a point on the line. Neither theft nor honest toil sufficed;
Cantor [1872: 128] and Dedekind [1872: III] recognized the need for an axiom to this
effect, a sort of Church’s Thesis of adequacy for the new construal of the continuum as a
collection of objects.

Cantor recalled6 that around this time he was already considering infinite iterations of
his P′ operation using “symbols of infinity”:

P(∞)
=

∞⋂

n

P(n), P(∞+1)
= P(∞)′, P(∞+2), . . .P(∞·2), . . .P(∞2), . . .P(∞∞), . . .P(∞∞∞ ), . . .

In a crucial conceptual move he began to investigate infinite collections of real numbers
and infinitary enumerations for their own sake, and this led first to a basic articulation of
size for the continuum and then to a new, encompassing theory of counting. Set theory
was born on that December 1873 day when Cantor established that the real numbers are
uncountable.7 In the next decades the subject was to blossom through the prodigious
progress made by him in the theory of transfinite and cardinal numbers.

The uncountability of the reals was established, of course, via reductio ad absurdum
as with the irrationality of

√
2. Both impossibility results epitomize how a reductio can

compel a larger mathematical context allowing for the deniability of hitherto implicit
properties. Be that as it may, Cantor the mathematician addressed a specific problem, em-
bedded in the mathematics of the time, in his seminal [1874] entitled “On a property of
the totality of all real algebraic numbers”. After first establishing this property, the count-
ability of the algebraic numbers, Cantor then established: For any (countable) sequence

3The most complete edition of Cantor’s correspondence is Meschkowski-Nilson [1991]. Excerpts from
the Cantor-Dedekind correspondence from 1872 through 1882 were published in Noether-Cavaillès [1937], and
excerpts from the 1899 correspondence were published by Zermelo in the collected works of Cantor [1932]. En-
glish translations of the Noether-Cavaillès excerpts were published in Ewald [1996: 843ff.]. An English transla-
tion of a Zermelo excerpt (retaining his several errors of transcription) appeared in van Heijenoort [1967: 113ff.].
English translations of Cantor’s 1899 correspondence with both Dedekind and Hilbert were published in Ewald
[1996: 926ff.].

4The algebraic numbers are those real numbers that are the roots of polynomials with integer coefficients.
5Dedekind [1872] dated his conception of cuts to 1858, and antecedents to ideals in his work were also

entertained around then. For Dedekind and the foundation of mathematics see Dugac [1976] and Ferreirós
[2007], who both accord him a crucial role in the development of the framework of set theory.

6See his [1880: 358].
7A set is countable if there is a bijective correspondence between it and the natural numbers {0, 1, 2, . . .}.

The exact date of birth can be ascertained as December 7. Cantor first gave a proof of the uncountability of the
reals in a letter to Dedekind of 7 December 1873 (Ewald [1996: 845ff]), professing that “. . . only today do I
believe myself to have finished with the thing . . .”.
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of reals, every interval contains a real not in the sequence. Cantor appealed to the order
completeness of the reals:

Suppose that s is a sequence of reals and I an interval. Let a < b be the first two reals
of s, if any, in I. Then let a′ < b′ be the first two reals of s, if any, in the open interval
(a, b); a′′ < b′′ the first two reals of s, if any, in (a′, b′); and so forth. Then however
long this process continues, the (non-empty) intersection of these nested intervals cannot
contain any member of s.

By this means Cantor provided a new proof of Joseph Liouville’s result [1844, 1851]
that there are transcendental numbers (real non-algebraic numbers) and only afterward did
Cantor point out the uncountability of the reals altogether. This presentation is suggestive
of Cantor’s natural caution in overstepping mathematical sense at the time.8

Accounts of Cantor’s work have mostly reversed the order for deducing the existence
of transcendental numbers, establishing first the uncountability of the reals and only then
drawing the existence conclusion from the countability of the algebraic numbers.9 In
textbooks the inversion may be inevitable, but this has promoted the misconception that
Cantor’s arguments are non-constructive.10 It depends how one takes a proof, and Can-
tor’s arguments have been implemented as algorithms to generate the successive digits of
new reals.11

1.2 Continuum Hypothesis and Transfinite Numbers

By his next publication [1878] Cantor had shifted the weight to getting bijective corre-
spondences, stipulating that two sets have the same power [Mächtigkeit] iff there is such
a correspondence between them, and established that the reals IR and the n-dimensional
spaces IRn all have the same power. Having made the initial breach in [1874] with a neg-
ative result about the lack of a bijective correspondence, Cantor secured the new ground

8Dauben [1979: 68ff] suggests that the title and presentation of Cantor [1874] were deliberately chosen to
avoid censure by Kronecker, one of the journal editors.

9Indeed, this is where Wittgenstein [1956: I,Appendix II,1-3] located what he took to be the problematic
aspects of the talk of uncountability.

10A non-constructive proof typically deduces the existence of a mathematical object without providing a
means for specifying it. Kac-Ulam [1968: 13] wrote: “The contrast between the methods of Liouville and
Cantor is striking, and these methods provide excellent illustrations of two vastly different approaches toward
proving the existence of mathematical objects. Liouville’s is purely constructive; Cantor’s is purely existential.”
See also Moore [1982: 39]. One exception to the misleading trend is Fraenkel [1930: 237][1953: 75], who from
the beginning emphasized the constructive aspect of diagonalization.

The first non-constructive proof widely acknowledged as such was Hilbert’s [1890] of his basis theorem.
Earlier, Dedekind [1888: §159] had established the equivalence of two notions of being finite with a non-
constructive proof that made an implicit use of the Axiom of Choice.

11Gray [1994] shows that Cantor’s original [1874] argument can be implemented by an algorithm that gener-

ates the first n digits of a transcendental number with time complexity O(2n1/3
), and his later diagonal argument,

with a tractable algorithm of complexity O(n2 log2 n log log n). The original Liouville argument depended on a
simple observation about fast convergence, and the digits of the Liouville numbers can be generated much faster.
In terms of 2.3 below, the later Baire Category Theorem can be viewed as a direct generalization of Cantor’s
[1874] result, and the collection of Liouville numbers provides an explicit example of a co-meager yet measure
zero set of reals (see Oxtoby [1971: §2]). On the other hand, Gray [1994] shows that every transcendental real
is the result of diagonalization applied to some enumeration of the algebraic reals.
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with a positive investigation of the possibilities for having such correspondences.12 With
“sequence” tied traditionally to countability through the indexing, Cantor used “corre-
spondence [Beziehung]”. Just as the discovery of the irrational numbers had led to one of
the great achievements of Greek mathematics, Eudoxus’s theory of geometrical propor-
tions presented in Book V of Euclid’s Elements and thematically antecedent to Dedekind’s
[1872] cuts, Cantor began his move toward a full-blown mathematical theory of the infi-
nite.

Although holding the promise of a rewarding investigation Cantor did not come to any
powers for infinite sets other than the two as set out in his [1874] proof. Cantor claimed
at the end of [1878: 257]:

Every infinite set of reals either is countable or has the power of the continuum .

This was the Continuum Hypothesis (CH) in the nascent context. The conjecture viewed
as a primordial question would stimulate Cantor not only to approach the reals qua ex-
tensionalized continuum in an increasingly arithmetical fashion but also to grapple with
fundamental questions of set existence. His triumphs across a new mathematical context
would be like a brilliant light to entice others into the study of the infinite, but his inability
to establish CH would also cast a long shadow. Set theory had its beginnings not as some
abstract foundation for mathematics but rather as a setting for the articulation and solu-
tion of the Continuum Problem: to determine whether there are more than two powers
embedded in the continuum.

In his magisterial Grundlagen [1883] Cantor developed the transfinite numbers [An-
zahlen] and the key concept of well-ordering. A well-ordering of a set is a linear ordering
of it according to which every non-empty subset has a least element. No longer was
the infinitary indexing of his trigonometric series investigations mere contrivance. The
“symbols of infinity” became autonomous and extended as the transfinite numbers, the
emergence signified by the notational switch from the∞ of potentiality to the ω of com-
pletion as the last letter of the Greek alphabet. With this the progression of transfinite
numbers could be depicted:

0, 1, 2, . . .ω, ω + 1, ω + 2, . . . , ω + ω(= ω·2), . . . , ω2, . . . , ωω, . . . , ωω
ω

, . . .

A corresponding transition from subsets of IRn to a broader concept of set was signaled by
the shift in terminology from “point-manifold [Punktmannigfaltigkeit]” to “set [Menge]”.
In this new setting well-orderings conveyed the sense of sequential counting and transfi-
nite numbers served as standards for gauging well-orderings.

12Cantor developed a bijective correspondence between IR2 and IR by essentially interweaving the decimal
expansions of a pair of reals to define the associated real, taking care of the countably many exceptional points
like .100 . . . = .099 . . . by an ad hoc shuffling procedure. Such an argument now seems straightforward, but
to have bijectively identified the plane with the line was a stunning accomplishment at the time. In a letter to
Dedekind of 29 June 1877 Cantor (Ewald [1996: 860]) wrote, in French in the text, “I see it, but I don’t believe
it.”

Cantor’s work inspired a push to establish the “invariance of dimension”, that there can be no continuous
bijection of any IRn onto IRm for m < n, with Cantor [1879] himself providing an argument. As topology
developed, the stress brought on by the lack of firm ground led Brouwer [1911] to definitively establish the
invariance of dimension in a seminal paper for algebraic topology.
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As Cantor pointed out, every linear ordering of a finite set is already a well-ordering
and all such orderings are isomorphic, so that the general sense is only brought out by
infinite sets, for which there are non-isomorphic well-orderings. Cantor called the set of
natural numbers the first number class (I) and the set of numbers whose predecessors are
countable the second number class (II). Cantor conceived of (II) as being bounded above
according to a limitation principle and showed that (II) itself is not countable. Proceeding
upward, Cantor called the set of numbers whose predecessors are in bijective correspon-
dence with (II) the third number class (III), and so forth. Cantor took a set to be of a
higher power than another if they are not of the same power yet the latter is of the same
power as a subset of the former. Cantor thus conceived of ever higher powers as repre-
sented by number classes and moreover took every power to be so represented. With this
“free creation” of numbers, Cantor [1883: 550] propounded a basic principle that was to
drive the analysis of sets:

“It is always possible to bring any well-defined set into the form of a well-
ordered set.”

He regarded this as a “an especially remarkable law of thought which through its gen-
eral validity is fundamental and rich in consequences.” Sets are to be well-ordered, and
thus they and their powers are to be gauged via the transfinite numbers of his structured
conception of the infinite.

The well-ordering principle was consistent with Cantor’s basic view in the Grundla-
gen that the finite and the transfinite are all of a piece and uniformly comprehendable in
mathematics,13 a view bolstered by his systematic development of the arithmetic of trans-
finite numbers seamlessly encompassing the finite numbers. Cantor also devoted several
sections of the Grundlagen to a justificatory philosophy of the infinite, and while this
metaphysics can be separated from the mathematical development, one concept was to
suggest ultimate delimitations for set theory: Beyond the transfinite was the “Absolute”,
which Cantor eventually associated mathematically with the collection of all ordinal num-
bers and metaphysically with the transcendence of God.14

The Continuum Problem was never far from this development and could in fact be seen
as an underlying motivation. The transfinite numbers were to provide the framework for
Cantor’s two approaches to the problem, the approach through power and the more direct
approach through definable sets of reals, these each to initiate vast research programs.

As for the approach through power, Cantor in the Grundlagen established that the
second number class (II) is uncountable, yet any infinite subset of (II) is either countable
or has the same power as (II). Hence, (II) has exactly the property that Cantor sought for
the reals, and he had reduced CH to the positive assertion that the reals and (II) have the
same power. The following in brief is Cantor’s argument that (II) is uncountable:

Suppose that s is a (countable) sequence of members of (II), say with initial element a.
Let a′ be a member of s, if any, such that a < a′; let a′′ be a member of s, if any, such that
a′ < a′′; and so forth. Then however long this process continues, the supremum of these
numbers, or its successor, is not a member of s.

13This is emphasized by Hallett [1984] as Cantor’s “finitism”.
14The “absolute infinite” is a varying but recurring explanatory concept in Cantor’s work; see Jané [1995].
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This argument was reminiscent of his [1874] argument that the reals are uncountable
and suggested a correlation of the reals through their fundamental sequence representation
with the members of (II) through associated cofinal sequences.15 However, despite several
announcements Cantor could never develop a workable correlation, an emerging problem
in retrospect being that he could not define a well-ordering of the reals.

As for the approach through definable sets of reals, this evolved directly from Cantor’s
work on trigonometric series, the “symbols of infinity” used in the analysis of the P′

operation transmuting to the transfinite numbers of the second number class (II).16 In
the Grundlagen Cantor studied P′ for uncountable P and defined the key concept of a
perfect set of reals (non-empty, closed, and containing no isolated points). Incorporating
an observation of Ivar Bendixson [1883], Cantor showed in the succeeding [1884] that
any uncountable closed set of reals is the union of a perfect set and a countable set. For a
set A of reals, A has the perfect set property iff A is countable or else has a perfect subset.
Cantor had shown in particular that closed sets have the perfect set property.

Since Cantor [1884,1884a] had been able to show that any perfect set has the power
of the continuum, he had established that “CH holds for closed sets”: every closed set
either is countable or has the power of the continuum. Or from his new vantage point, he
had reduced the Continuum Problem to determining whether there is a closed set of reals
of the power of the second number class. He was unable to do so, but he had initiated a
program for attacking the Continuum Problem that was to be vigorously pursued (cf. 2.3
and 2.5).

1.3 Diagonalization and Cardinal Numbers

In the ensuing years, unable to resolve the Continuum Problem through direct correla-
tions with transfinite numbers Cantor approached size and order from a broader perspec-
tive that would incorporate the continuum. He identified power with cardinal number, an
autonomous concept beyond being une façon de parler about bijective correspondence,
and he went beyond well-orderings to the study of linear order types. Cantor embraced
a structured view of sets, when “well-defined”, as being given together with a linear or-
dering of their members. Order types and cardinal numbers resulted from successive

abstraction, from a set M to its order type M and then to its cardinality M.
Almost two decades after his [1874] result that the reals are uncountable, Cantor in a

short note [1891] subsumed it via his celebrated diagonal argument. With it, he estab-

15After describing the similarity between ω and
√

2 as limits of sequences, Cantor [1887: 99] interestingly
correlated the creation of the transfinite numbers to the creation of the irrational numbers, beyond merely break-
ing new ground in different number contexts: “The transfinite numbers are in a certain sense new irrationalities,
and in my opinion the best method of defining the finite irrational numbers [via Cantor’s fundamental sequences]
is wholly similar to, and I might even say in principle the same as, my method of introducing transfinite num-
bers. One can say unconditionally: the transfinite numbers stand or fall with the finite irrational numbers: they
are like each other in their innermost being [Wesen]; for the former like the latter are definite delimited forms
or modifications of the actual infinite.”

16Ferreirós [1995] suggests how the formulation of the second number class as a completed totality with
a succeeding transfinite number emerged directly from Cantor’s work on the operation P′, drawing Cantor’s
transfinite numbers even closer to his earlier work on trigonometric series.
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lished: For any set L the collection of functions from L into a fixed two-element set has a
higher cardinality than that of L. This result indeed generalized the [1874] result, since
the collection of functions from the natural numbers into a fixed two-element set has the
same cardinality as the reals. Here is how Cantor gave the argument in general form:17

Let M be the totality of all functions from L taking only the values 0 and 1. First, L is
in bijective correspondence with a subset of M, through the assignment to each x0 ∈ L of
the function on L that assigns 1 to x0 and 0 to all other x ∈ L. However, there cannot be
a bijective correspondence between M itself and L. Otherwise, there would be a function
φ(x, z) of two variables such that for every member f of M there would be a z ∈ L such that
φ(x, z) = f (x) for every x ∈ L. But then, the “diagonalizing” function g(x) = 1 − φ(x, x)
cannot be a member of M since for z0 ∈ L, g(z0) , φ(z0, z0)!

In retrospect the diagonal argument can be drawn out from the [1874] proof.18 Cantor
had been shifting his notion of set to a level of abstraction beyond sets of reals and the
like, and the casualness of his [1891] may reflect an underlying cohesion with his [1874].
Whether the new proof is really “different” from the earlier one, through this abstraction
Cantor could now dispense with the recursively defined nested sets and limit construction,
and he could apply his argument to any set. He had proved for the first time that there is
a power higher than that of the continuum and moreover affirmed “the general theorem,
that the powers of well-defined sets have no maximum.”19 The diagonal argument, even
to its notation, would become method, flowing later into descriptive set theory, the Gödel
Incompleteness Theorem, and recursion theory.

Today it goes without saying that a function from L into a two-element set corresponds
to a subset of L, so that Cantor’s Theorem is usually stated as: For any set L its power set
P(L) = {X | X ⊆ L} has a higher cardinality than L. However, it would be an exaggeration
to assert that Cantor was working on power sets; rather, he had expanded the 19th Century
concept of function by ushering in arbitrary functions.20 In any case, Cantor would now

17Actually, Cantor took L to be the unit interval of reals presumably to invoke a standard context, but he was
clearly aware of the generality.

18Moreover, diagonalization as such had already occurred in Paul du Bois-Reymond’s theory of growth as
early as in his [1869]. An argument is manifest in his [1875: 365ff] for showing that for any sequence of real
functions f0, f1, f2, . . . there is a real function g such that for each n, fn(x) < g(x) for all sufficiently large reals
x.

Diagonalization can be drawn out from Cantor’s [1874] as follows: Starting with a sequence s of reals and
a half-open interval I0, instead of successively choosing delimiting pairs of reals in the sequence, avoid the
members of s one at a time: Let I1 be the left or right half-open subinterval of I0 demarcated by its midpoint,
whichever does not contain the first element of s. Then let I2 be the left or right half-open subinterval of I1
demarcated by its midpoint, whichever does not contain the second element of s; and so forth. Again, the nested
intersection contains a real not in the sequence s. Abstracting the process in terms of reals in binary expansion,
one is just generating the binary digits of the diagonalizing real.

In that letter of Cantor’s to Dedekind of 7 December 1873 (Ewald [1996: 845ff]) first establishing the un-
countability of the reals, there already appears, quite remarkably, a doubly indexed array of real numbers and
a procedure for traversing the array downward and to the right, as in a now common picturing of the diagonal
argument.

19Remarkably, Cantor had already conjectured in the Grundlagen [1883: 590] that the collection of continuous
real functions has the same power as the second number class (II), and that the collection of all real functions
has the same power as the third number class (III). These are consequences of the later Generalized Continuum
Hypothesis and are indicative of the sweep of Cantor’s conception.

20The “power” in “power set” is from “Potenz” in the German for cardinal exponentiation, while Cantor’s
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have had to confront, in his function context, a general difficulty starkly abstracted from
the Continuum Problem: From a well-ordering of a set, a well-ordering of its power set
is not necessarily definable. The diagonal argument called into question Cantor’s very
notion of set: On the one hand, the argument, simple and elegant, should be part of set
theory and lead to new sets of ever higher cardinality; on the other hand, these sets do not
conform to Cantor’s principle that every set comes with a (definable) well-ordering.21

Cantor’s Beiträge, published in two parts [1895] and [1897], presented his mature the-
ory of the transfinite. In the first part he described his post-Grundlagen work on cardinal
number and the continuum. He quickly posed Cardinal Comparability, whether

for cardinal numbers a and b, a = b, a < b, or b < a ,

as a property “by no means self-evident” and which will be established later “when we
shall have gained a survey over the ascending sequence of transfinite cardinal numbers
and an insight into their connection.” He went on to define the addition, multiplication,
and exponentiation of cardinal numbers primordially in terms of set-theoretic operations
and functions. If a is the cardinal number of M and b is the cardinal number of N, then

ab is the cardinal number of the collection of all functions : N → M, i.e. having domain
N and taking values in M. The audacity of considering arbitrary functions from a set N
into a set M was encased in a terminology that reflected both its novelty as well as the old
view of function as given by an explicit rule.22 As befits the introduction of new numbers
Cantor then introduced a new notation, one using the Hebrew letter aleph, ℵ. With ℵ0 the
cardinal number of the set of natural numbers Cantor observed that ℵ0 · ℵ0 = ℵ0 and that
2ℵ0 is the cardinal number of continuum. With this he observed that the [1878] labor of
associating the continuum with the plane and so forth could be reduced to a “few strokes

“power” is from “M ächtigkeit”.
21This is emphasized in Lavine [1994: IV.2]. Cantor did consider power sets in a letter of 20 September 1898

to Hilbert. In it Cantor entertained a notion of “completed set”, one of the guidelines being that “the collection
of all subsets of a completed set M is a completed set.” Also, in a letter of 10 October 1898 to Hilbert, Cantor
pointed out, in an argument focused on the continuum, that the power set P(S ) is in bijective correspondence
with the collection of functions from S into {0, 1}. But in a letter of 9 May 1899 to Hilbert, writing now “set” for
“completed set”, Cantor wrote: “. . . it is our common conviction that the ‘arithmetic continuum’ is a ‘set’ in this
sense; the question is whether this truth is provable or whether it is an axiom. I now incline more to the latter
alternative, although I would gladly be convinced by you of the former.” For the first and third letters in context
see Moore [2002: 45] and for the second, Ferreirós [2007: epilogue]; the letters are in Meschkowski-Nilson
[1991].

22Cantor wrote [1895: 486]: “. . . by a ‘covering [Belegung] of N with M,’ we understand a law by which
with every element n of N a definite element of M is bound up, where one and the same element of M can
come repeatedly into application. The element of M bound up with n is, in a way, a one-valued function of
n, and may be denoted by f (n); it is called a ‘covering function [Belegungsfunktion] of n.’ The corresponding
covering of N will be called f (N).” A convoluted description! Arbitrary functions on arbitrary domains are now
of course commonplace in mathematics, but several authors at the time referred specifically to Cantor’s concept
of covering, most notably Zermelo [1904]. Jourdain in his introduction to his English translation of the Beiträge
wrote (Cantor [1915: 82]): “The introduction of the concept of ‘covering’ is the most striking advance in the
principles of the theory of transfinite numbers from 1885 to 1895 . . . .”

With Cantor initially focusing on bijective correspondence [Beziehung] and these not quite construed as
functions, Dedekind was the first to entertain an arbitrary function on an arbitrary domain. He [1888: §§21,36]
formulated φ: S → Z, “a mapping [Abbildung] of a system S in Z”, in less convoluted terms, but did not
consider the totality of such. He quickly moved to the case Z = S for his theory of chains; see footnote 36.
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of the pen” in his new arithmetic:

(2ℵ0 )ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 .

Cantor only mentioned
ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . ,

these to be the cardinal numbers of the successive number classes from the Grundlagen
and thus to exhaust all the infinite cardinal numbers.

Cantor went on to present his theory of order types, abstractions of linear orderings.
He defined an arithmetic of order types and characterized the order type η of the rationals
as the countable dense linear order without endpoints, introducing the “forth” part of the
now familiar back-and-forth argument of model theory.23 He also characterized the order
type θ of the reals as the perfect linear order with a countable dense set; whether a realist
or not, Cantor the mathematician was able to provide a characterization of the continuum.

The second Beiträge developed the Grundlagen ideas by focusing on well-orderings
and construing their order types as the ordinal numbers. Here at last was the general
proof via order comparison of well-ordered sets that ordinal numbers are comparable.
Cantor went on to describe ordinal arithmetic as a special case of the arithmetic of order
types and after giving the basic properties of the second number class defined ℵ1 as its
cardinal number. The last sections were given over to a later preoccupation, the study
of ordinal exponentiation in the second number class. The operation was defined via
a transfinite recursion and used to establish a normal form, and the pivotal ε-numbers
satisfying ε = ωε were analyzed.

The two parts of the Beiträge are not only distinct by subject matter, cardinal number
and the continuum vs. ordinal number and well-ordering, but between them there devel-
oped a wide, irreconcilable breach. In the first part nowhere is the [1891] result a < 2a

stated even in a special case; rather, it is made clear [1895: 495] that the procession of
transfinite cardinal numbers is to be secured through their construal as the alephs. How-
ever, the second Beiträge does not mention any aleph beyond ℵ1, nor does it mention CH,
which could now have been stated as

2ℵ0 = ℵ1.

(Cantor did state this in an 1895 letter.24) Ordinal comparability was secured, but cardinal
comparability was not reduced to it. Every well-ordered set has an aleph as its cardinal
number, but where is 2ℵ0 in the aleph sequence?

Cantor’s initial [1874] proof led to the Continuum Problem. That problem was embed-
ded in the very interstices of the early development of set theory, and in fact the structures
that Cantor built, while now of intrinsic interest, emerged in significant part out of efforts
to articulate and solve the problem. Cantor’s [1891] diagonal argument, arguably a trans-
mutation of his initial [1874] proof, exacerbated a growing tension between having well-
orderings and admitting sets of arbitrary functions (or power sets). David Hilbert, when

23See Plotkin [1993] for an analysis of the emergence of the back-and-forth argument.
24See Moore [1989: 99].
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he presented his famous list of problems at the 1900 International Congress of Mathe-
maticians at Paris, made the Continuum Problem the very first problem and intimated
Cantor’s difficulty by suggesting the desirability of “actually giving” a well-ordering of
the reals.

The next, 1904 International Congress of Mathematicians at Heidelberg was to be a
generational turning point for the development of set theory. Julius Kőnig delivered a
lecture in which he provided a detailed argument that purportedly established that 2ℵ0 is
not an aleph, i.e. that the continuum is not well-orderable. The argument combined the
now familiar inequality ℵα < ℵℵ0

α for α of cofinalityω with a result from Felix Bernstein’s
Göttingen dissertation [1901: 49] which alas does not universally hold.25 Cantor was un-
derstandably upset with the prospect that the continuum would simply escape the number
context that he had devised for its analysis.

Accounts differ on how the issue was resolved. Although one has Zermelo finding an
error within a day of the lecture, the weight of evidence is for Hausdorff having found
the error.26 Whatever the resolution, the torch had passed from Cantor to the next gen-
eration. Zermelo would go on to formulate his Well-Ordering Theorem and axiomatize
set theory, and Hausdorff, to develop the higher transfinite in his study of order types and
cofinalities.27

2 MATHEMATIZATION

2.1 Axiom of Choice and Axiomatization

Ernst Zermelo28 (1871–1953), born when Cantor was establishing his trigonometric series
results, had begun to investigate Cantorian set theory at Göttingen under the influence of
Hilbert. In just over a month after the Heidelberg congress, Zermelo [1904] formulated
what he soon called the Axiom of Choice (AC) and with it, established his Well-Ordering
Theorem:

Every set can be well-ordered .

Zermelo thereby shifted the notion of set away from the implicit assumption of Cantor’s
principle that every well-defined set is well-ordered and replaced that principle by an

25The cofinality of an ordinal number α is the least ordinal number β such that there is a set of form {γξ | ξ < β}
unbounded in α, i.e. for any η < α there is an ξ < β such that η ≤ γξ < α. α is regular if its cofinality is itself,
and otherwise α is singular. There concepts were not clarified until the work of Hausdorff, brought together in
his [1908], discussed in 2.6.

Kőnig applied Bernstein’s equality ℵℵ0
α = ℵα ·2ℵ0 as follows: If 2ℵ0 were an aleph, say ℵβ, then by Bernstein’s

equality ℵℵ0
β+ω
= ℵβ+ω · 2ℵ0 = ℵβ+ω , contradicting Kőnig’s inequality. However, Bernstein’s equality fails when

α has cofinality ω and 2ℵ0 < ℵα. Kőnig’s published account [1905] acknowledged the gap.
26See Grattan-Guinness [2000: 334] and Purkert [2002].
27And as with many incorrect proofs, there would be positive residues: Zermelo soon generalized Kőnig’s

inequality to the fundamental Zermelo-Kőnig inequality for cardinal exponentiation, which implies that the
cofinality of 2ℵα is larger than α, and Hausdorff [1904: 571] published his recursion formula ℵℵα

β+1 = ℵβ+1 · ℵℵαβ ,
in form like Bernstein’s result.

28Ebbinghaus [2007] is a substantive biography of Zermelo. See Kanamori [1997,2004] for Zermelo’s work
in set theory.
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explicit axiom about a wider notion of set, incipiently unstructured but soon to be given
form by axioms.

In retrospect, Zermelo’s argument for his Well-Ordering Theorem can be viewed as
pivotal for the development of set theory. To summarize the argument, suppose that x is a
set to be well-ordered, and through Zermelo’s Axiom-of-Choice hypothesis assume that
the power set P(x) = {y | y ⊆ x} has a choice function, i.e. a function γ such that for
every non-empty member y of P(x), γ(y) ∈ y. Call a subset y of x a γ-set if there is a
well-ordering R of y such that for each a ∈ y,

γ({z | z < y or z R a fails}) = a .

That is, each member of y is what γ “chooses” from what does not already precede that
member according to R. The main observation is that γ-sets cohere in the following sense:
If y is a γ-set with well-ordering R and z is a γ-set with well-ordering S , then y ⊆ z and S
is a prolongation of R, or vice versa. With this, let w be the union of all the γ-sets, i.e. all
the γ-sets put together. Then w too is a γ-set, and by its maximality it must be all of x and
hence x is well-ordered.

The converse to this result is immediate in that if x is well-ordered, then the power set
P(x) has a choice function.29 Not only did Zermelo’s argument analyze the connection
between having well-orderings and having choice functions on power sets, it anticipated
in its defining of approximations and taking of a union the proof procedure for von Neu-
mann’s Transfinite Recursion Theorem (cf. 3.1).30

Zermelo [1904: 516] noted without much ado that his result implies that every infinite
cardinal number is an aleph and satisfies m2

= m, and that it secured Cardinal Compara-
bility — so that the main issues raised by Cantor’s Beiträge are at once resolved. Zermelo
maintained that the Axiom of Choice, to the effect that every set has a choice function,
is a “logical principle” which “is applied without hesitation everywhere in mathematical
deduction”, and this is reflected in the Well-Ordering Theorem being regarded as a theo-
rem. The axiom is consistent with Cantor’s view of the finite and transfinite as unitary, in
that it posits for infinite sets an unproblematic feature of finite sets. On the other hand, the
Well-Ordering Theorem shifted the weight from Cantor’s well-orderings with their resid-
ually temporal aspect of numbering through successive choices to the use of a function
for making simultaneous choices.31 Cantor’s work had served to exacerbate a growing
discord among mathematicians with respect to two related issues: whether infinite collec-
tions can be mathematically investigated at all, and how far the function concept is to be
extended. The positive use of an arbitrary function operating on arbitrary subsets of a set
having been made explicit, there was open controversy after the appearance of Zermelo’s
proof. This can be viewed as a turning point for mathematics, with the subsequent tilt-

29Namely, with ≺ a well-ordering of x, for each non-empty member y of P(x), let γ(y) be the the ≺-least
member of y.

30See Kanamori [1997] for more on the significance of Zermelo’s argument, in particular as a fixed point
argument.

31Zermelo himself stressed the importance of simultaneous choices over successive choices in criticism of an
argument of Cantor’s for the Well-Ordering Theorem in 1899 correspondence with Dedekind, discussed in 2.2.
See Cantor [1932: 451] or van Heijenoort [1967: 117].
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ing toward the acceptance of the Axiom of Choice symptomatic of a conceptual shift in
mathematics.

In response to his critics Zermelo published a second proof [1908] of his Well-Ordering
Theorem, and with axiomatization assuming a general methodological role in mathemat-
ics he also published the first full-fledged axiomatization [1908a] of set theory. But as
with Cantor’s work this was no idle structure building but a response to pressure for a
new mathematical context. In this case it was not for the formulation and solution of
a problem like the Continuum Problem, but rather to clarify a specific proof. In addi-
tion to codifying generative set-theoretic principles, a substantial motive for Zermelo’s
axiomatizing set theory was to buttress his Well-Ordering Theorem by making explicit
its underlying set existence assumptions.32 Initiating the first major transmutation of the
notion of set after Cantor, Zermelo thereby ushered in a new abstract, prescriptive view of
sets as structured solely by membership and governed and generated by axioms, a view
that would soon come to dominate. Thus, proof played a crucial role by stimulating an
axiomatization of a field of study and a corresponding transmutation of its underlying
notions.

The objections raised against Zermelo’s first proof [1904] mainly played on the ambi-
guities of a γ-set’s well-ordering being only implicit, as for Cantor’s sets, and on the def-
inition of the well-ordering being impredicative — defined as a γ-set and so drawn from
a collection of which it is already a member. Largely to preclude these objections Zer-
melo in his second [1908] proof resorted to a rendition of orderings in terms of segments
and inclusion first used by Gerhard Hessenberg [1906: 674ff] and a closure approach with
roots in Dedekind [1888]. Instead of extending initial segments toward the desired well-
ordering, Zermelo got at the collection of its final segments by taking an intersection in a
larger setting.33

With his [1908a] axiomatization, Zermelo “started from set theory as it is historically
given” to seek out principles sufficiently restrictive “to exclude all contradictions” and
sufficiently wide “to retain all that is valuable”. However, he would transform set theory
by making explicit new existence principles and promoting a generative point of view.
Zermelo had begun working out an axiomatization as early as 1905, addressing issues
raised by his [1904] proof.34 The mature presentation is a precipitation of seven axioms,
and these do not just reflect “set theory as it is historically given”, but explicitly buttress
his proof(s) of the Well-Ordering Theorem.

Zermelo’s seven set axioms, now formalized, constitute the familiar theory Z, Zermelo
set theory: Extensionality, Elementary Sets (∅, {a}, {a, b}), Separation, Power Set, Union,
Choice, and Infinity. His setting allowed for urelements, objects without members yet
distinct from each other. But Zermelo focused on sets, and his Axiom of Extensional-

32Moore [1982: 155ff] supports this contention using items from Zermelo’s Nachlass.
33To well-order a set M using a choice function ϕ on P(M), Zermelo defined a Θ-chain to be a collection Θ

of subsets of M such that: (a) M ∈ Θ; (b) if A ∈ Θ, then A − {ϕ(A)} ∈ Θ; and (c) if Z ⊆ Θ, then
⋂

Z ∈ Θ. He
then took the intersection I of all Θ-chains, and observed that I is again a Θ-chain. Finally, he showed that I
provides a well-ordering of M given by: a ≺ b iff there is an A ∈ I such that a < A and b ∈ A. I thus consists
of the final segments of the same well-ordering as provided by the [1904] proof. Note that this second proof is
less parsimonious than the [1904] proof, as it uses the power set of the power set of M.

34This is documented by Moore [1982: 155ff] with items from Zermelo’s Nachlass.
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ity announced the espousal of an extensional viewpoint. In line with this AC, a “logical
principle” in [1904] expressed in terms of an informal choice function, was framed less
instrumentally: It posited for a set consisting of non-empty, pairwise disjoint sets the ex-
istence of a set that meets each one in a unique element.35 However, Separation retained
an intensional aspect with its “separating out” of a new set from a given set using a def-
inite property, where a property is “definite [definit] if the fundamental relations of the
domain, by means of the axioms and the universally valid laws of logic, determine with-
out arbitrariness whether it holds or not.” But with no underlying logic formalized, the
ambiguity of definite property would become a major issue. With Infinity and Power Set
Zermelo provided for sufficiently rich settings for set-theoretic constructions. Tempering
the logicians’ extravagant and problematic “all” the Power Set axiom provided the prove-
nance for “all” for subsets of a given set, just as Separation served to capture “all” for
elements of a given set satisfying a property. Finally, Union and Choice completed the
encasing of Zermelo’s proof(s) of his Well-Ordering Theorem in the necessary set exis-
tence principles. Notably, Zermelo’s recursive [1904] argumentation also brought him in
proximity of the Transfinite Recursion Theorem and thus of Replacement, the next axiom
to be adjoined in the subsequent development of set theory (cf. 3.1).

Fully two decades earlier Dedekind [1888] had provided an incisive analysis of the
natural numbers and their arithmetic in terms of sets [Systeme], and several overlap-
ping aspects can serve as points of departure for Zermelo’s axiomatization.36 The most
immediate is how Dedekind’s argumentation extends to Zermelo’s [1908] proof of the
Well-Ordering Theorem, which in the transfinite setting brings out the role of AC. Both
Dedekind and Zermelo set down rules for sets in large part to articulate arguments in-
volving simple set operations like “set of”, union, and intersection. In particular, both
had to argue for the equality of sets resulting after involved manipulations, and exten-
sionality became operationally necessary. However vague the initial descriptions of sets,
sets are to be determined solely by their elements, and the membership question is to be
determinate.37 The looseness of Dedekind’s description of sets allowed him [1888: §66]
the latitude to “prove” the existence of infinite sets, but Zermelo just stated the Axiom of
Infinity as a set existence principle.

The main point of departure has to do with the larger issue of the role of proof for ar-
ticulating sets. By Dedekind’s time proof had become basic for mathematics, and indeed

35Russell [1906] had previously arrived at this form, his Multiplicative Axiom. The elimination of the “pair-
wise disjoint” by going to a choice function formulation can be established with the Union Axiom, and this is
the only use of that axiom in the second, [1908] proof of the Well-Ordering Theorem.

36In current terminology, Dedekind [1888] considered arbitrary sets S and mappings φ: S → S and defined
a chain [Kette] to be a K ⊆ S such that φ“K ⊆ K. For A ⊆ S , the chain of A is the intersection of all chains
K ⊇ A. A set N is simply infinite iff there is an injective φ: N → N such that N − φ“N , ∅. Letting 1 be a
distinguished element of N − φ“N , ∅ Dedekind considered the chain of {1}, the chain of {φ(1)}, and so forth.
Having stated an inherent induction principle, he proceeded to show that these sets have all the ordering and
arithmetical properties of the natural numbers (that are established nowadays in texts for the (von Neumann)
finite ordinals).

37Dedekind [1888: §2] begins a footnote to his statement about extensional determination with: “In what
manner this determination is brought about, and whether we know a way of deciding upon it, is a matter of
indifference for all that follows; the general laws to be developed in no way depend upon it; they hold under all
circumstances.”
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his work did a great deal to enshrine proof as the vehicle for algebraic abstraction and
generalization.38 Like algebraic constructs, sets were new to mathematics and would be
incorporated by setting down the rules for their proofs. Just as calculations are part of the
sense of numbers, so proofs would be part of the sense of sets, as their “calculations”.
Just as Euclid’s axioms for geometry had set out the permissible geometric constructions,
the axioms of set theory would set out the specific rules for set generation and manipu-
lation. But unlike the emergence of mathematics from marketplace arithmetic and Greek
geometry, sets and transfinite numbers were neither laden nor buttressed with substantial
antecedents. Like strangers in a strange land stalwarts developed a familiarity with them
guided hand in hand by their axiomatic framework. For Dedekind [1888] it had sufficed
to work with sets by merely giving a few definitions and properties, those foreshadowing
Extensionality, Union, and Infinity. Zermelo [1908a] provided more rules: Separation,
Power Set, and Choice.

Zermelo [1908], with its rendition of orderings in terms of segments and inclusion,
and Zermelo [1908a], which at the end cast Cantor’s theory of cardinality in terms of
functions cast as set constructs, brought out Zermelo’s set-theoretic reductionism. Zer-
melo pioneered the reduction of mathematical concepts and arguments to set-theoretic
concepts and arguments from axioms, based on sets doing the work of mathematical ob-
jects. Zermelo’s analyses moreover served to draw out what would come to be generally
regarded as set-theoretic out of the presumptively logical. This would be particularly
salient for Infinity and Power Set and was strategically advanced by the relegation of
property considerations to Separation.

Zermelo’s axiomatization also shifted the focus away from the transfinite numbers to
an abstract view of sets structured solely by ∈ and simple operations. For Cantor the
transfinite numbers had become central to his investigation of definable sets of reals and
the Continuum Problem, and sets had emerged not only equipped with orderings but only
as the developing context dictated, with the “set of” operation never iterated more than
three or four times. For Zermelo his second, [1908] proof of the Well-Ordering Theorem
served to eliminate any residual role that the transfinite numbers may have played in the
first proof and highlighted the set-theoretic operations. This approach to (linear) ordering
was to preoccupy his followers for some time, and through this period the elimination
of the use of transfinite numbers where possible, like ideal numbers, was regarded as
salutary.39 Hence, Zermelo rather than Cantor should be regarded as the creator of abstract
set theory.

38cf. the first sentence of the preface to Dedekind [1888]: “In science nothing capable of proof ought to be
accepted without proof.”

39Some notable examples: Lindel öf [1905] proved the Cantor-Bendixson result, that every uncountable closed
set is the union of a perfect set and a countable set, without using transfinite numbers. Suslin’s [1917], discussed
in 2.5, had the unassuming title, “On a definition of the Borel sets without transfinite numbers”, hardly indicative
of its results, so fundamental for descriptive set theory. And Kuratowski [1922] showed, pursuing the approach
of Zermelo [1908], that inclusion chains defined via transfinite recursion with intersections taken at limits can
also be defined without transfinite numbers. Kuratowski [1922] essentially formulated Zorn’s Lemma, and this
was the main success of the push away from explicit well-orderings. Especially after the appearance of Zorn
[1935] this recasting of AC came to dominate in algebra and topology.
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Outgrowing Zermelo’s pragmatic purposes axiomatic set theory could not long fore-
stall the Cantorian initiative, as even 2ℵ0 = ℵ1 could not be asserted directly, and in
the 1920s John von Neumann was to fully incorporate the transfinite using Replacement
(cf. 3.1).40 On the other hand, Zermelo’s axioms had the advantages of schematic sim-
plicity and open-endedness. The generative set formation axioms, especially Power Set
and Union, were to lead to Zermelo’s [1930] cumulative hierarchy picture of sets, and the
vagueness of the definit property in the Separation Axiom was to invite Thoralf Skolem’s
[1923] proposal to base it on first-order logic, enforcing extensionalization (cf. 3.2).

2.2 Logic and Paradox

At this point, the incursions of a looming tradition can no longer be ignored. Gottlob Frege
is regarded as the greatest philosopher of logic since Aristotle for developing quantifica-
tional logic in his Begriffsschrift [1879], establishing a logical foundation for arithmetic
in his Grundlagen [1884], and generally stimulating the analytic tradition in philosophy.
The architect of that tradition was Bertrand Russell who in his earlier years, influenced
by Frege and Giuseppe Peano, wanted to found all of mathematics on the certainty of
logic. But from a logical point of view Russell [1903] became exercised with paradox.
He had arrived at Russell’s Paradox in late 1901 by analyzing Cantor’s diagonal argument
applied to the class of all classes,41 a version of which is now known as Cantor’s Paradox
of the largest cardinal number. Russell [1903: §301] also refocused the Burali-Forti Para-
dox of the largest ordinal number, after reading Cesare Burali-Forti’s [1897].42 Russell’s
Paradox famously led to the tottering of Frege’s mature formal system, the Grundgesetze
[1893, 1903].43

Russell’s own reaction was to build a complex logical structure, one used later to de-
velop mathematics in Whitehead and Russell’s 1910-3 Principia Mathematica. Russell’s
ramified theory of types is a scheme of logical definitions based on orders and types
indexed by the natural numbers. Russell proceeded “intensionally”; he conceived this
scheme as a classification of propositions based on the notion of propositional function, a
notion not reducible to membership (extensionality). Proceeding in modern fashion, we
may say that the universe of the Principia consists of objects stratified into disjoint types
Tn, where T0 consists of the individuals, Tn+1 ⊆ {Y | Y ⊆ Tn}, and the types Tn for n > 0
are further ramified into orders Oi

n with Tn =
⋃

i Oi
n. An object in Oi

n is to be defined
either in terms of individuals or of objects in some fixed O j

m for some j < i and m ≤ n, the
definitions allowing for quantification only over O j

m. This precludes Russell’s Paradox
and other “vicious circles”, as objects consist only of previous objects and are built up

40Textbooks usually establish the Well-Ordering Theorem by first introducing Replacement, formalizing
transfinite recursion, and only then defining the well-ordering using (von Neumann) ordinals; this amounts
to another historical misrepresentation, but one that resonates with how acceptance of Zermelo’s proof broke
the ground for formal transfinite recursion.

41Grattan-Guinness [1974], Coffa [1979], Moore [1988], and Garciadiego [1992] describe the evolution of
Russell’s Paradox.

42Moore-Garciadiego [1981] and Garciadiego [1992] describe the evolution of the Burali-Forti Paradox.
43See the exchange of letters between Russell and Frege in van Heijenoort [1967: 124ff]. Russell’s Paradox

showed that Frege’s Basic Law V is inconsistent.
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through definitions referring only to previous stages. However, in this system it is impos-
sible to quantify over all objects in a type Tn, and this makes the formulation of numerous
mathematical propositions at best cumbersome and at worst impossible. Russell was led
to introduce his Axiom of Reducibility, which asserts that for each object there is a pred-
icative object consisting of exactly the same objects, where an object is predicative if its
order is the least greater than that of its constituents. This axiom reduced consideration
to individuals, predicative objects consisting of individuals, predicative objects consisting
of predicative objects consisting of individuals, and so on—the simple theory of types. In
traumatic reaction to his paradox Russell had built a complex system of orders and types
only to collapse it with his Axiom of Reducibility, a fearful symmetry imposed by an
artful dodger.

The mathematicians did not imbue the paradoxes with such potency. Unlike Russell
who wanted to get at everything but found that he could not, they started with what could
be got at and peered beyond. And as with the invention of the irrational numbers, the
outward push eventually led to the positive subsumption of the paradoxes.

Cantor in 1899 correspondence with Dedekind considered the collection Ω of all ordi-
nal numbers as in the Burali-Forti Paradox, but he used it positively to give mathematical
expression to his Absolute.44 First, he distinguished between two kinds of multiplicities
(Vielheiten): There are multiplicities such that when taken as a unity (Einheit) lead to
a contradiction; such multiplicities he called “absolutely infinite or inconsistent multi-
plicities” and noted that the “totality of everything thinkable” is such a multiplicity. A
multiplicity that can be thought of without contradiction as “being together” he called a
“consistent multiplicity or a ‘set [Menge]”’. Cantor then used the Burali-Forti Paradox ar-
gument to point out that the class Ω of all ordinal numbers is an inconsistent multiplicity.
He proceeded to argue that every set can be well-ordered through a presumably recursive
procedure whereby a well-ordering is defined through successive choices. The set must
get well-ordered, else all of Ω would be injectible into it, so that the set would have been
an inconsistent multiplicity instead.45

Zermelo found Russell’s Paradox independently and probably in 1902,46 but like Can-
tor, he did not regard the emergence of the paradoxes so much as a crisis as an overall
delimitation for sets. In the Zermelian generative view [1908: 118], “. . . if in set theory
we confine ourselves to a number of established principles such as those that constitute
the basis of our proof — principles that enable us to form initial sets and to derive new
sets from given ones – then all such contradictions can be avoided.” For the first theorem
of his axiomatic theory Zermelo [1908a] subsumed Russell’s Paradox, putting it to use as
is done now to establish that for any set x there is a y ⊆ x such that y < x, and hence that
there is no universal set.47

44See footnote 3 for more about the 1899 correspondence. Purkert [1989: 57ff] argues that Cantor had already
arrived at the Burali-Forti Paradox around the time of the Grundlagen [1883]. On the interpretations supported
in the text all of the logical paradoxes grew out of Cantor’s work — with Russell shifting the weight to paradox.

45G.H. Hardy [1903] and Philip Jourdain [1904, 1905] also gave arguments involving the injection of Ω, but
such an approach would only get codified at a later stage in the development of set theory in the work of von
Neumann [1925] (cf. 3.1).

46See Kanamori [2004: §1].
47In 2.6 Hartogs’s Theorem is construed as a positive subsumption of that other, the Burali-Forti Paradox.
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The differing concerns of Frege-Russell logic and the emerging set theory are further
brought out by the analysis of the function concept as discussed below in 2.4, and those
issues are here rehearsed with respect to the existence of the null class, or empty set.48

Frege in his Grundlagen [1884] eschewed the terms “set [Menge]” and “class [Klasse]”,
but in any case the extension of the concept “not identical with itself” was key to his def-
inition of zero as a logical object. Ernst Schröder, in the first volume [1890] of his major
work on the algebra of logic, held a traditional view that a class is merely a collection
of objects, without the { } so to speak. In his review [1895] of Schröder’s [1890], Frege
argued that Schröder cannot both maintain this view of classes and assert that there is a
null class, since the null class contains no objects. For Frege, logic enters in giving unity
to a class as the extension of a concept and thus makes the null class viable.

It is among the set theorists that the null class, qua empty set, emerged to the fore as
an elementary concept and a basic building block. Cantor himself did not dwell on the
empty set. At one point he did write [1880: 355] that “the identity of two pointsets P and
Q will be expressed by the formula P ≡ Q”; defined disjoint sets as “lacking intersection”;
and then wrote [1880: 356] “for the absence of points . . . we choose the letter O; P ≡ O
indicates that the set P contains no single point.” (So, “≡ O” is arguably more like a
predication for being empty at this stage.)

Dedekind [1888: §2] deliberately excluded the empty set [Nullsystem] “for certain rea-
sons”, though he saw its possible usefulness in other contexts. Zermelo [1908a] wrote in
his Axiom II: “There exists a (improper [uneigentliche]) set, the null set [Nullmenge]
0, that contains no element at all.” Something of intension remained in the “(improper
[uneigentliche])”, though he did point out that because of his Axiom I, the Axiom of Ex-
tensionality, there is a single empty set. Finally, Hausdorff [1914] unequivocally opted
for the empty set [Nullmenge]. However, a hint of predication remained when he wrote
[1914: 3]: “. . . the equation A = 0 means that the set A has no element, vanishes [ver-
schwindet], is empty.” The use to which Hausdorff put “0” is much as “∅” is used in
modern mathematics, particularly to indicate the extension of the conjunction of mutually
exclusive properties.

The set theorists, unencumbered by philosophical motivations or traditions, attributed
little significance to the empty set beyond its usefulness. Although embracing both exten-
sionality and the null class may engender philosophical difficulties for the logic of classes,
the empty set became commonplace in mathematics simply through use, like its intimate,
zero.

2.3 Measure, Category, and Borel Hierarchy

During this period Cantor’s two main legacies, the investigation of definable sets of reals
and the extension of number into the transfinite, were further incorporated into mathemat-
ics in direct initiatives. The axiomatic tradition would be complemented by another, one
that would draw its life more directly from mathematics.

The French analysts Emile Borel, Ren é Baire, and Henri Lebesgue took on the in-
vestigation of definable sets of reals in what was to be a paradigmatically constructive

48For more on the empty set, see Kanamori [2003a].
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approach. Cantor [1884] had established the perfect set property for closed sets and for-
mulated the concept of content for a set of reals, but he did not pursue these matters. With
these as antecedents the French work would lay the basis for measure theory as well as
descriptive set theory, the definability theory of the continuum.49

Soon after completing his thesis Borel [1898: 46ff] considered for his theory of mea-
sure those sets of reals obtainable by starting with the intervals and closing off under
complementation and countable union. The formulation was axiomatic and in effect im-
predicative, and seen in this light, bold and imaginative; the sets are now known as the
Borel sets and quite well-understood.

Baire in his thesis [1899] took on a dictum of Lejeune Dirichlet’s that a real function
is any arbitrary assignment of reals, and diverging from the 19th Century preoccupation
with pathological examples, sought a constructive approach via pointwise limits. His
Baire class 0 consists of the continuous real functions, and for countable ordinal numbers
α > 0, Baire class α consists of those functions f not in any previous class yet obtainable
as pointwise limits of sequences f0, f1, f2, ... of functions in previous classes, i.e. f (x) =
limn→∞ fn(x) for every real x. The functions in these classes are now known as the Baire
functions, and this was the first stratification into a transfinite hierarchy after Cantor.50

Baire’s thesis also introduced the now basic concept of category. A set of reals is
nowhere dense iff its closure under limits includes no open set, and a set of reals is meager
(or of first category) iff it is a countable union of nowhere dense sets — otherwise, it is of
second category. Baire established the Baire Category Theorem: Every non-empty open
set of reals is of second category. His work also suggested a basic property: A set of
reals has the Baire property iff it has a meager symmetric difference with some open set.
Straightforward arguments show that every Borel set has the Baire property.

Lebesgue’s thesis [1902] is fundamental for modern integration theory as the source
of his concept of measurability. Inspired in part by Borel’s ideas but notably containing
non-constructive aspects, Lebesgue’s concept of measurable set through its closure un-
der countable unions subsumed the Borel sets, and his analytic definition of measurable
function through its closure under pointwise limits subsumed the Baire functions. Cate-
gory and measure are quite different; there is a co-meager (complement of a meager) set
of reals that has Lebesgue measure zero.51 Lebesgue’s first major work in a distinctive
direction would be the seminal paper in descriptive set theory:

In the memoir [1905] Lebesgue investigated the Baire functions, stressing that they
are exactly the functions definable via analytic expressions (in a sense made precise). He
first established a correlation with the Borel sets by showing that they are exactly the pre-
images of open intervals via Baire functions. With this he introduced the first hierarchy
for the Borel sets, his open sets of class α not being in any previous class yet being pre-
images of some open interval via some Baire class α function. After verifying various

49See Kanamori [1995] for more on the emergence of descriptive set theory. See Moschovakis [1980] or
Kanamori [2003] for the mathematical development.

50Baire mainly studied the finite levels, particularly the classes 1 and 2. He [1898] pointed out that Dirichlet’s
function that assigns 1 to rationals and 0 to irrationals is in class 2 and also observed with a non-constructive
appeal to Cantor’s cardinality argument that there are real functions that are not Baire.

51See footnote 11. See Hawkins [1975] for more on the development of Lebesgue measurability. See Oxtoby
[1971] for an account of category and measure in juxtaposition.
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closure properties and providing characterizations for these classes Lebesgue established
two main results. The first demonstrated the necessity of exhausting the countable ordinal
numbers: The Baire hierarchy is proper, i.e. for every countable α there is a Baire func-
tion of class α; correspondingly the hierarchy for the Borel sets is analogously proper.
The second established transcendence beyond countable closure for his concept of mea-
surability: There is a Lebesgue measurable function which is not in any Baire class;
correspondingly there is a Lebesgue measurable set which is not a Borel set.

The first result was the first of all hierarchy results, and a precursor of fundamental
work in mathematical logic in that it applied Cantor’s enumeration and diagonalization
argument to achieve a transcendence to a next level. Lebesgue’s second result was also
remarkable in that he actually provided an explicitly defined set, one that was later seen to
be the first example of a non-Borel analytic set (cf. 2.5). For this purpose, the reals were
for the first time regarded as encoding something else, namely countable well-orderings,
and this not only further embedded the transfinite into the investigation of sets of reals,
but foreshadowed the later coding results of mathematical logic.

Lebesgue’s results, along with the later work in descriptive set theory, can be viewed
as pushing the mathematical frontier of the actual infinite past ℵ0, which arguably had
achieved a mathematical domesticity through increasing use in the late 19th Century,
through Cantor’s second number class to ℵ1. It is somewhat ironic but also revealing, then,
that this grew out of work by analysts with a definite constructive bent. Baire [1899: 36]
viewed the infinite ordinal numbers and hence his function hierarchy as merely une façon
de parler, and continued to view infinite concepts only in potentiality. Borel [1898] took
a pragmatic approach and seemed to accept the countable ordinal numbers. Lebesgue was
more equivocal but still accepting; recalling Cantor’s early attitude Lebesgue regarded the
ordinal numbers as an indexing system, “symbols” for classes, but nonetheless he worked
out their basic properties, even providing a formulation [1905: 149] of proof by transfinite
induction. All three analysts expressed misgivings about AC and its use in Zermelo’s
proof.52

As descriptive set theory was to develop, a major concern became the extent of the
regularity properties, those properties indicative of well-behaved sets of reals of which
Lebesgue measurability, the Baire property, and the perfect set property are the prominent
examples. These properties seemed to get at basic features of the extensional construal of
the continuum, yet resisted inductive approaches. Early explicit uses of AC through its
role in providing a well-ordering of the reals showed how it allowed for new constructions:
Giuseppe Vitali [1905] established that there is a non-Lebesgue measurable set of reals,
and Felix Bernstein [1908], that there is a set of reals without the perfect set property.
Soon it was seen that neither of these examples have the Baire property. Thus, that the
reals are well-orderable, an early contention of Cantor’s, permitted constructions that
precluded the universality of the regularity properties, in particular his own approach to
the Continuum Problem through the perfect set property.

52See Moore [1982: 2.3].
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2.4 Hausdorff and Functions

Felix Hausdorffwas the first developer of the transfinite after Cantor, the one whose work
first suggested the rich possibilities for a mathematical investigation of the higher transfi-
nite. A mathematician par excellence, Hausdorff took that sort of mathematical approach
to set theory and extensional, set-theoretic approach to mathematics that would dominate
in the years to come. While the web of 19th Century intension in Cantor’s work, espe-
cially his approach toward functions, now seems rather remote, Hausdorff’s work seems
familiar as part of the modern language of mathematics.

In [1908] Hausdorff brought together his extensive work on uncountable order types.53

Deploring all the fuss being made over foundations by his contemporaries (p.436) and
with Cantor having taken the Continuum Problem as far as seemed possible, Hausdorff
proceeded to venture beyond the second number class with vigor. He provided an elegant
analysis of scattered linear order types (those having no dense subtype) in a transfinite hi-
erarchy, and constructed the ηα sets, prototypes for saturated model theory. He first stated
the Generalized Continuum Hypothesis (GCH), that 2ℵα = ℵα+1 for every α, clarified the
significance of cofinality, and first considered (p.443) the possibility of an uncountable
regular limit cardinal, the first large cardinal.

Large cardinal hypotheses posit cardinals with properties that entail their transcendence
over smaller cardinals, and as it has turned out, provide a superstructure of hypotheses
for the analysis of strong propositions in terms of consistency. Hausdorff observed that
uncountable regular limit cardinals, also known now as weakly inaccessible cardinals,
are a natural closure point for cardinal limit processes. In penetrating work of only a few
years later Paul Mahlo [1911,1912,1913] investigated hierarchies of such cardinals based
on higher fixed-point phenomena, the Mahlo cardinals. The theory of large cardinals was
to become a mainstream of set theory.54

Hausdorff’s classic text, Grundzüge der Mengenlehre [1914] dedicated to Cantor, broke
the ground for a generation of mathematicians in both set theory and topology. A com-
pendium of a wealth of results, it emphasized mathematical approaches and procedures
that would eventually take firm root.55 After giving a clear account of Zermelo’s first,
[1904] proof of the Well-Ordering Theorem, Hausdorff (p.140ff) emphasized its max-
imality aspect by giving synoptic versions of Zorn’s Lemma two decades before Zorn
[1935], one of them now known as Hausdorff’s Maximality Principle.56 Also, Haus-
dorff (p.304) provided the now standard account of the Borel hierarchy of sets, with the
still persistent Fσ and Gδ notation. Of particular interest, Hausdorff (p.469ff, and also in
[1914a]) used AC to provide what is now known as Hausdorff’s Paradox, an implausible
decomposition of the sphere and the source of the better known Banach-Tarski Paradox

53See Plotkin [2005] for translations and careful analyses of Hausdorff’s work on ordered sets.
54See Kanamori [2003] for more on large cardinals.
55Hausdorff’s mathematical attitude is reflected in a remark following his explanation of cardinal number in

a revised edition [1937:§5] of [1914]: “This formal explanation says what the cardinal numbers are supposed to
do, not what they are. More precise definitions have been attempted, but they are unsatisfactory and unnecessary.
Relations between cardinal numbers are merely a more convenient way of expressing relations between sets; we
must leave the determination of the ‘essence’ of the cardinal number to philosophy.”

56Hausdorff’s Maximality Principle states that if A is a partially ordered set and B is a linearly ordered subset,
then there is a ⊆-maximal linearly ordered subset of A including B.
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from Stefan Banach and Alfred Tarski’s [1924].57 Hausdorff’s Paradox was the first, and
a dramatic, synthesis of classical mathematics and the Zermelian abstract view.

Hausdorff’s reduction of functions through a defined ordered pair highlights the dif-
fering concerns of the earlier Frege-Russell logic and the emerging set theory.58 Frege
[1891] had two fundamental categories, function and object, with a function being “un-
saturated” and supplemented by objects as arguments. A concept is a function with two
possible values, the True and the False, and a relation is a concept that takes two argu-
ments. The extension of a concept is its graph or course-of-values [Werthverlauf], which
is an object, and Frege [1893: §36] devised an iterated or double course-of-values [Dop-
pelwerthverlauf] for the extension of a relation. In these involved ways Frege assimilated
relations to functions. As for the ordered pair, Frege in his Grundgesetze [1893: §144]
provided the extravagant definition that the ordered pair of x and y is that class to which
all and only the extensions of relations to which x stands to y belong.59

On the other hand, Peirce [1883], Schröder [1895], and Peano [1897] essentially re-
garded a relation from the outset as just a collection of ordered pairs. Whereas Frege
was attempting an analysis of thought, Peano was mainly concerned with recasting on-
going mathematics in economical and flexible symbolism and made many reductions,
e.g. construing a sequence in analysis as a function on the natural numbers. Peano from
his earliest logical writings had used “(x, y)” to indicate the ordered pair in formula and
function substitutions and extensions. In [1897] he explicitly formulated the ordered pair
using “(x; y)” and moreover raised the two main points about the ordered pair: First, equa-
tion 18 of his Definitions stated the instrumental property which is all that is required of
the ordered pair:

(∗) 〈x, y〉 = 〈a, b〉 iff x = a and y = b .

Second, he broached the possibility of reducibility, writing: “The idea of a pair is funda-
mental, i.e. we do not know how to express it using the preceding symbols.”

In Whitehead and Russell’s Principia Mathematica [1910-3], relations distinguished
in intension and in extension were derived from “propositional” functions taken as fun-
damental and other “descriptive” functions derived from relations. They [1910: ∗55] like
Frege defined an ordered pair derivatively, in their case in terms of classes and relations,
and also for a specific purpose.60 Previously Russell [1903: §27] had criticized Peirce

57Hausdorff’s Paradox states that a sphere can be decomposed into four pieces Q,A,B,C with Q countable
and A, B, C, and B ∪ C all pairwise congruent. Even more implausibly, the Banach-Tarski Paradox states that
a ball can be decomposed into finitely many pieces that can be rearranged by rigid motions to form two balls
of the same size as the original ball. Raphael Robinson [1947] later showed that there is such a decomposition
into just five pieces with one of them containing a single point, and moreover that five is the minimal number.
See Wagon [1985] for more on these and similar results; they stimulated interesting developments in measure
theory that, rather than casting doubt on AC, embedded it further into mathematical practice (cf. 2.6).

58For more on the ordered pair, see Kanamori [2003a].
59This definition, which recalls the Whitehead–Russell definition of the cardinal number 2, depended on

Frege’s famously inconsistent Basic Law V. See Heck [1995] for more on Frege’s definition and use of his
ordered pair.

60Whitehead and Russell had first defined a cartesian product by other means, and only then defined their
ordered pair x↓y as {x} × {y}, a remarkable inversion from the current point of view. They [1910: ∗56] used their
ordered pair initially to define the ordinal number 2.
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and Schröder for regarding a relation “essentially as a class of couples,” although he did
not mention this shortcoming in Peano.61 Commenting obliviously on Principia Peano
[1911,1913] simply reaffirmed an ordered pair as basic, defined a relation as a class of or-
dered pairs, and a function extensionally as a kind of relation, referring to the final version
of his Formulario Mathematico [1905-8: 73ff.] as the source.

Capping this to and fro Norbert Wiener [1914] provided a definition of the ordered pair
in terms of unordered pairs of classes only, thereby reducing relations to classes. Working
in Russell’s theory of types, Wiener defined the ordered pair 〈x, y〉 as

{{{x},Λ}, {{y}}}

when x and y are of the same type and Λ is the null class (of the next type), and pointed
out that this definition satisfies the instrumental property (∗) above. Wiener used this to
eliminate from the system of Principia the Axiom of Reducibility for propositional func-
tions of two variables; he had written a doctoral thesis comparing the logics of Schröder
and Russell.62 Although Russell praised Sheffer’s stroke, the logical connective not-both,
he was not impressed by Wiener’s reduction. Indeed, Russell would not have been able
to accept it as a genuine analysis. Unlike Russell, Willard V.O. Quine in a major philo-
sophical work Word and Object [1960: §53] regarded the reduction of the ordered pair as
a paradigm for philosophical analysis.

Making no intensional distinctions Hausdorff [1914: 32ff,70ff] defined an ordered pair
in terms of unordered pairs, formulated functions in terms of ordered pairs, and the or-
dering relations as collections of ordered pairs.63 Hausdorff thus made both the Peano
[1911,1913] and Wiener [1914] moves in mathematical practice, completing the reduc-
tion of functions to sets.64 This may have been congenial to Peano, but not to Frege
nor Russell, they having emphasized the primacy of functions. Following the pioneering
work of Dedekind and Cantor Hausdorff was at the crest of a major shift in mathematics
of which the transition from an intensional, rule-governed conception of function to an
extensional, arbitrary one was a large part, and of which the eventual acceptance of the
Power Set Axiom and the Axiom of Choice was symptomatic.

In his informal setting Hausdorff took the ordered pair of x and y to be

{{x, 1}, {y, 2}}

61In a letter accepting Russell’s [1901] on the logic of relations for publication in his journal Rivista, Peano
had pointedly written “The classes of couples correspond to relations” (see Kennedy [1975: 214]) so that rela-
tions are extensionally assimilated to classes. Russell [1903: §98] argued that the ordered pair cannot be basic
and would itself have to be given sense, which would be a circular or an inadequate exercise, and “It seems
therefore more correct to take an intensional view of relations . . . ”.

62See Grattan-Guinness [1975] for more on Wiener’s work and his interaction with Russell.
63He did not so define arbitrary relations, for which there was then no mathematical use, but he was the first to

consider general partial orderings, as in his maximality principle. Before Hausdorff and going beyond Cantor,
Dedekind was first to consider non-linear orderings, e.g. in his remarkably early, axiomatic study [1900] of
lattices.

64As to historical priority, Wiener’s note was communicated to the Cambridge Philosophical Society, pre-
sented on 23 February 1914, while the preface to Hausdorff’s book is dated 15 March 1914. Given the pace of
book publication then, it is arguable that Hausdorff came up with his reduction first.
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where 1 and 2 were intended to be distinct objects alien to the situation.65 In any case, the
now-standard definition is the more intrinsic

{{x}, {x, y}}

due to Kazimierz Kuratowski [1921: 171]. Notably, Kuratowski’s definition is a by-
product of his analysis of Zermelo’s [1908] proof of the Well-Ordering Theorem.66

2.5 Analytic and Projective Sets

A decade after Lebesgue’s seminal paper [1905], descriptive set theory emerged as a dis-
tinct discipline through the efforts of the Russian mathematician Nikolai Luzin. He had
become acquainted with the work of the French analysts while in Paris as a student and
had addressed Baire’s functions with a intriguing use of CH. What is now known as a
Luzin set is an uncountable set of reals whose intersection with any meager set is count-
able, and Luzin established: CH implies that there is a Luzin set.67 This would become
a paradigmatic use of CH, in that a recursive construction was carried out in ℵ1 steps
where at each state only countable many conditions have to be attended to, in this case by
applying the Baire Category Theorem. Luzin showed that the characteristic function of
his set escaped Baire’s function classification, and Luzin sets have since become pivotal
examples of “special sets” of reals.

In Moscow Luzin began an important seminar, and from the beginning a major topic
was the “descriptive theory of functions”. The young Pole Wacław Sierpi ński was an
early participant while he was interned in Moscow in 1915, and undoubtedly this not only
kindled a decade-long collaboration between Luzin and Sierpi ński but also encouraged
the latter’s involvement in the development of a Polish school of mathematics and its
interest in descriptive set theory.

Of the three regularity properties, Lebesgue measurability, the Baire property, and the
perfect set property (cf. 2.3), the first two were immediate for the Borel sets. However,
nothing had been known about the perfect set property beyond Cantor’s own result that
the closed sets have it and Bernstein’s that with a well-ordering of the reals there is a
set not having the property. Luzin’s student Pavel Aleksandrov [1916] established the

65It should be pointed out that the definition works even when x or y is 1 or 2 to maintain the instrumental
property (∗) of ordered pairs.

66The general adoption of the Kuratowski pair proceeded through the major developments of mathemati-
cal logic: Von Neumann initially took the ordered pair as primitive but later noted (von Neumann [1925:VI];
[1928: 338];[1929: 227]) the reduction via the Kuratowski definition. G ödel in his incompleteness paper
[1931: 176] also pointed out the reduction. In his footnote 18, G ödel blandly remarked: “Every proposition
about relations that is provable in [Principia Mathematica] is provable also when treated in this manner, as
is readily seen.” This stands in stark contrast to Russell’s labors in Principia and his antipathy to Wiener’s
reduction of the ordered pair. Tarski [1931: n.3] pointed out the reduction and acknowledged his compatriot Ku-
ratowski. In his recasting of von Neumann’s system, Bernays [1937: 68] also acknowledged Kuratowski [1921]
and began with its definition for the ordered pair. It is remarkable that Nicolas Bourbaki in his treatise [1954]
on set theory still took the ordered pair as primitive, only later providing the Kuratowski reduction in the [1970]
edition.

67Mahlo [1913a] also established this result.
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groundbreaking result that the Borel sets have the perfect set property, so that “CH holds
for the Borel sets”.68

In the work that really began descriptive set theory another student of Luzin’s, Mikhail
Suslin, investigated the analytic sets following a mistake he had found in Lebesgue’s
paper.69 Suslin [1917] formulated these sets in terms of an explicit operation A70 and
announced two fundamental results: a set B of reals is Borel iff both B and IR − B are
analytic; and there is an analytic set which is not Borel.71 This was to be his sole publi-
cation, for he succumbed to typhus in a Moscow epidemic in 1919 at the age of 25. In an
accompanying note Luzin [1917] announced the regularity properties: Every analytic set
is Lebesgue measurable, has the Baire property, and has the perfect set property, the last
result attributed to Suslin.

Luzin and Sierpi ński in their [1918] and [1923] provided proofs, and the latter paper
was instrumental in shifting the emphasis toward the co-analytic sets, i.e. sets of reals
X such that IR − X is analytic. They used well-founded relations to provide a basic tree
representation of co-analytic sets, one from which the main results of the period flowed,
and it is here that well-founded relations entered mathematical practice.72

After the first wave in descriptive set theory brought about by Suslin [1917] and Luzin
[1917] had crested, Luzin [1925a] and Sierpi ński [1925] extended the domain of study to
the projective sets. For Y ⊆ IRk+1 and with ordered k-tuples defined from the ordered pair,
the projection of Y is

pY = {〈x1, ..., xk〉 | ∃y(〈x1, ..., xk, y〉 ∈ Y)}.

Suslin [1917] had essentially noted that a set of reals is analytic iff it is the projection of a
Borel subset of IR2.73 Luzin and Sierpi ński took the geometric operation of projection to

68After getting a partial result [1914: 465ff], Hausdorff [1916] also showed, in essence, that the Borel sets
have the perfect set property.

69Sierpiński [1950: 28ff] describes Suslin’s discovery of the mistake.
70A defining system is a family {Xs}s of sets indexed by finite sequences s of natural numbers. The result of

the Operation A on such a system is that setA({Xs}s) defined by:

x ∈ A({Xs}s) iff (∃ f :ω→ ω)(∀n ∈ ω)(x ∈ X f |n)

where f |n denotes that sequence determined by the first n values of f . For a set X of reals, X is analytic iff
X = A({Xs}s) for some defining system {Xs}s consisting of closed sets of reals.

71Luzin [1925] traced the term “analytic” back to Lebesgue [1905] and pointed out how the original example
of a non-Borel Lebesgue measurable set there was in fact the first example of a non-Borel analytic set.

72Building on the penultimate footnote, suppose that Y is a co-analytic set of reals, i.e. Y = IR − X with
X = A({Xs}s) for some closed sets Xs, so that for reals x,

x ∈ Y iff x < X iff (∀ f :ω→ ω)(∃n ∈ ω)(x < X f |n) .

For finite sequences s1 and s2 define: s1 ≺ s2 iff s2 is a proper initial segment of s1. For a real x define:
Tx = {s | x ∈ Xt for every initial segment t of s}. Then:

x ∈ Y iff ≺ on Tx is a well-founded relation ,

i.e. there is no infinite descending sequence . . . ≺ s2 ≺ s1 ≺ s0. Tx is a tree (cf. 3.5). Well-founded relations

were explicitly defined much later in Zermelo [1935]. Constructions recognizable as via recursion along a well-
founded relation had already occurred in the proofs that the Borel have the perfect set property in Aleksandrov
[1916] and Hausdorff [1916].

73Borel subsets of IRk are defined analogously to those of IR.
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be basic and defined the projective sets as those sets obtainable from the Borel sets by the
iterated applications of projection and complementation. The corresponding hierarchy
of projective subsets of IRk is defined, in modern notation, as follows: For A ⊆ IRk,

A is Σ1
1 iff A = pY for some Borel set Y ⊆ IRk+1 ,

i.e. A is analytic74 and for integers n > 0,

A is Π1
n iff IRk − A is Σ1

n ,

A is Σ1
n+1 iff A = pY for some Π1

n set Y ⊆ IRk+1 , and

A is ∆1
n iff A is both Σ1

n andΠ1
n .

Luzin [1925a] and Sierpi ński [1925] recast Lebesgue’s use of the Cantor diagonal ar-
gument to show that the projective hierarchy is proper, and soon its basic properties were
established. However, this investigation encountered basic obstacles from the beginning.
Luzin [1925a] emphasized that whether the Π1

1 sets, the co-analytic sets at the bottom
of the hierarchy, have the perfect set property was a major question. In a confident and
remarkably prophetic passage he declared that his efforts towards its resolution led him
to a conclusion “totally unexpected”, that “one does not know and one will never know”
of the family of projective sets, although it has cardinality 2ℵ0 and consists of “effective
sets”, whether every member has cardinality 2ℵ0 if uncountable, has the Baire property,
or is even Lebesgue measurable. Luzin [1925b] pointed out the specific problem of es-
tablishing whether the Σ1

2 sets are Lebesgue measurable. Both these difficulties were
also pointed out by Sierpi ński [1925]. This basic impasse in descriptive set theory was
to remain for over a decade, to be surprisingly resolved by penetrating work of Gödel
involving metamathematical methods (cf. 3.4).

2.6 Equivalences and Consequences

In this period AC and CH began to be explored no longer as underlying axiom and primor-
dial hypothesis but as part of mathematics. Consequences were drawn and even equiv-
alences established, and this mathematization, like the development of non-Euclidean
geometry, led eventually to a deflating of metaphysical attitudes and attendant concerns
about truth and existence.

Friedrich Hartogs [1915] established an equivalence result for AC, and this was the first
substantial use of Zermelo’s axiomatization after its appearance. The axiomatization had
initially drawn ambivalent response among commentators,75 especially those exercised
by the paradoxes, and its assimilation by structuring sets and clarifying arguments began
with such uses.

As noted in 1.3, Cardinal Comparability had become a concern for Cantor by the time
of his Beiträge [1895]; Hartogs showed in Zermelo’s system sans AC that Cardinal Com-
parability implies that every set can be well-ordered. Thus, an evident consequence of

74Analytic subsets of IRk are defined as for the case k = 1 in terms of a defining system consisting of closed
subsets of IRk.

75See Moore [1982: 3.3].



27

every set being well-orderable also implied that well-ordering principle, and this first
“reverse mathematics” result established the equivalence of the well-ordering principle,
Cardinal Comparability, and AC over the base theory.

Hartogs actually established without AC what is now called Hartogs’s Theorem: For
any set M, there is a well-orderable set E not injectible into M. Cardinal Comparability
would then imply that M is injectible into E and hence is well-orderable. For the proof
Hartogs first worked out a theory of ordering relations in Zermelo’s system in terms of
inclusion chains as in Zermelo’s [1908] proof.76 He then used Power Set and Separation
to get the set MW of well-orderable subsets of M and the set E of equivalence classes
partitioning MW according to order-isomorphism. Finally, he showed that E itself has
an inherited well-ordering and is not injectible into M.77 Reminiscent of Zermelo’s sub-
sumption of Russell’s Paradox in the denial of a universal set, Hartogs’s Theorem can be
viewed as a subsumption of the Burali-Forti Paradox into the Zermelian setting.

The first explicit uses of AC mostly amounted to appeals to a well-ordering of the reals,
Cantor’s preoccupation. Those of Vitali [1905] and Bernstein [1908] were mentioned in
2.3, and Hausdorff’s Paradox [1914,1914a], in 2.4. Georg Hamel [1905] constructed by
transfinite recursion a basis for the reals as a vector space over the rationals; cited by
Zermelo [1908, 114], this provided a useful basis for later work in analysis and algebra.
These various results, jarring at first, broached how a well-ordering allows for a new kind
of arithmetical approach to the continuum.

The full exercise of AC in ongoing mathematics first occurred in the pioneering work
of Ernst Steinitz [1910] on abstract fields. This was the first instance of an emerging phe-
nomenon in algebra and topology: the study of axiomatically given structures with the
range of possibilities implicitly including the transfinite. Steinitz studied algebraic clo-
sures of fields and even had an explicit transfinite parameter in the transcendence degree,
the number of indeterminates necessary for closure. Typical of the generality in the years
to come was Hausdorff’s [1932] result using well-orderings that every vector space has
a basis. As algebra and topology developed however, such results as these came to be
based on the maximal principles that Hausdorff had first broached (cf. 2.4) and began to
dominate after the appearance of Zorn’s Lemma [1935]. Explicit well-orderings seemed
out of place at this level of organization, and Zorn’s Lemma had the remarkable feature
that its hypothesis was easily checked in most applications.

Poland since its reunification in 1918 featured an active school of mathematics estab-
lishing foundational results in mathematical logic, topology, and analysis, and at Warsaw
Tarski and Kuratowski together with Sierpi ński were making crucial contributions to set
theory and the elucidation of its role in mathematics. The Polish school of mathemat-
ics carried out a penetrating investigation of the role of AC in set theory and analysis.
Sierpi ński’s earliest publications, culminating in his survey [1918], not only dealt with
specific constructions but showed how deeply embedded AC was in the informal devel-
opment of cardinality, measure, and the Borel hierarchy (cf. 2.3), supporting Zermelo’s

76This is better done in Kuratowski [1921]. The Hausdorff [1914] approach with an ordered pair could have
been taken, but that only became standard later when more general relations were considered.

77As with Zermelo’s Well-Ordering Theorem, textbooks usually establish Hartogs’s Theorem after first intro-
ducing Replacement and (von Neumann) ordinals, and this amounts to a historical misrepresentation.
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contention [1904: 516] that the axiom is applied “everywhere in mathematical deduc-
tion”. Tarski [1924], explicitly building his work on Zermelo’s system, provided several
propositions of cardinal arithmetic equivalent to AC, most notably that m2

= m for every
infinite cardinal m. Adolf Lindenbaum and Tarski in their [1926] gave further cardinal
equivalents, some related to the Hartogs [1915] result, and announced that GCH, in the
form that m < n < 2m holds for no infinite cardinals m and n, implies AC. This study
of consequences led to other choice principles, further implications and sometimes con-
verses in a continuing cottage industry.78

The early mathematical study of AC extended to the issue of its independence. Abra-
ham Fraenkel’s first investigations [1922] directly addressed Zermelo’s axioms, pointing
out the need for the Replacement Axiom and attempting an axiomatization of the definit
property for the Separation Axiom (cf. 3.1). The latter was motivated in part by the need
to better articulate independence proofs for the various axioms. Fraenkel [1922a] came
to the fecund idea of starting with urelements and some initial sets closing off under
set-theoretic operations to get a model. For the independence of AC he started with urele-
ments an, an for n ∈ ω and the set A = {{an, an} | n ∈ ω} of unordered pairs and argued that
for any set M in the resulting model there is a co-finite AM ⊆ A such that M is invariant
if members of any {an, an} ∈ AM are permuted. This immediately implies that there is no
choice function for A in the model. Finally, Fraenkel argued that the model satisfies the
other Zermelo axioms, except Extensionality because of the urelements.

Fraenkel’s early model building emphasized the Zermelian generative framework, an-
ticipated well-founded recursion, and foreshadowed the later play with models of set the-
ory. That Extensionality was not to be had precluded settling the matter, but just as for the
early models of non-Euclidean or finite geometries Fraenkel’s achievement lay in stimu-
lating interest in mathematical constructions despite relaxing some basic tenet. Fraenkel
tried to develop his approach from time to time, but it needed the articulation that would
come with the full espousal of the satisfaction relation. In the latter 1930s Lindenbaum
and Andrzej Mostowski so cast and extended Fraenkel’s work. Mostowski [1939] forged
a method according to post-Gödelian sensibilities, bringing out the importance of groups
of permutations leaving various urelements fixed, and the resulting models as well as later
versions are now known as the Fraenkel-Mostowski models.

Even more than AC, Sierpi ński investigated CH, and summed up his researches in a
monograph [1934]. He provided several notable equivalences to CH, e.g. (p.11) the plane
IR2 is the union of countably many curves, where a curve is a set of form {〈x, y〉 | y = f (x)}
or {〈x, y〉 | x = f (y)} with f a real function.

Moreover, Sierpi ński presented numerous consequences of CH from the literature, one
in particular implying a host of others: Mahlo [1913a] and Luzin [1914] had shown that
CH implies that there is a Luzin set, an uncountable set of reals whose intersection with
any meager set is countable (cf. 2.5). To state one consequence, say that a set X of
reals has strong measure zero iff for any sequence ε0, ε1, ε2, . . . of positive reals there is a
sequence of intervals I0, I1, I2, . . . such that the length of In is less than εn for each n and
X ⊆ ⋃n In. Borel [1919] conjectured that such sets are countable. However, Sierpi ński
[1928] showed that a Luzin set has strong measure zero. Analogous to a Luzin set, a

78See Moore [1982], especially its 5.1, for other choice principles.
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Sierpiński set is an uncountable set of reals whose intersection with any Lebesgue measure
zero set is countable. Sierpi ński [1924] showed that CH implies that there is a Sierpiński
set, and emphasized [1934] an emerging duality between measure and category.

The subsequent work of Fritz Rothberger would have formative implications for the
Continuum Problem. He [1938] observed that if both Luzin and Sierpi ński sets exist,
then they have cardinality ℵ1, so that the joint existence of such sets of the cardinality
of the continuum implies CH. Then in penetrating analyses of the work of Sierpinski and
Hausdorff on gaps (cf. 2.1) Rothberger [1939,1948] considered other sets and implications
between cardinal properties of the continuum independent of whether CH holds. It be-
came newly clarified that absent CH one can still isolate uncountable cardinals ≤ 2ℵ0 that
gauge and delimit various recursive constructions, and this approach was to blossom half
a century later in the study of cardinal characteristics (or invariants) of the continuum.79

These results cast CH in a new light, as a construction principle. Conclusions had been
drawn from having a well-ordering of the reals, but one given by CH allowed for recur-
sive constructions where at any stage only countably many conditions corresponding to
as many reals had to be handled. The construction of a Luzin set was a simple recur-
sive application of the Baire Category Theorem, and later constructions took advantage
of the possibility of diagonalization at each stage. However, whereas the new construc-
tions using AC, though jarring at first, were eventually subsumed as concomitant with the
acceptance of the axiom and as expressions of the richness of possibility, constructions
from CH clashed with that very sense of richness for the continuum. It was the mathe-
matical investigation of CH that increasingly raised doubts about its truth and certainly
its provability (cf. end of 3.4).

3 CONSOLIDATION

3.1 Ordinals and Replacement

In the 1920s fresh initiatives structured the loose Zermelian framework with new features
and corresponding developments in axiomatics: von Neumann’s work with ordinals and
Replacement; the focusing on well-founded sets and the cumulative hierarchy; and exten-
sionalization in first-order logic. Von Neumann effected a counter-reformation of sorts:
The transfinite numbers had been central for Cantor but peripheral to Zermelo; von Neu-
mann reconstrued them as bona fide sets, now called simply the ordinals, and established
their efficacy by formalizing transfinite recursion.

Von Neumann [1923,1928], and before him Dimitry Mirimanoff [1917,1917a] and Zer-
melo in unpublished 1915 work,80 isolated the now familiar concept of ordinal, with the
basic idea of taking precedence in a well-ordering simply to be membership. Appealing
to forms of Replacement Mirimanoff and Von Neumann then established the key instru-
mental property of Cantor’s ordinal numbers for ordinals: Every well-ordered set is order-

79See Miller [1984] for more on special sets of reals and van Douwen [1984] as a trend setting paper for
cardinal characteristics of the continuum. See Blass [2008] and Bartoszyński [2008] for recent work on cardinal
characteristics.

80See Hallett [1984: 8.1].
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isomorphic to exactly one ordinal with membership. Von Neumann in his own axiomatic
presentation took the further step of ascribing to the ordinals the role of Cantor’s ordinal
numbers. Thus, like Kepler’s laws by Newton’s, Cantor’s principles of generation for his
ordinal numbers would be subsumed by the Zermelian framework. For this reconstrual
of ordinal numbers and already to define the arithmetic of ordinals von Neumann saw the
need to establish the Transfinite Recursion Theorem, the theorem that validates defini-
tions by transfinite recursion. The proof was anticipated by the Zermelo 1904 proof, but
Replacement was necessary even for the very formulation, let alone the proof, of the the-
orem. With the ordinals in place von Neumann completed the restoration of the Cantorian
transfinite by defining the cardinals as the initial ordinals, those ordinals not in bijective
correspondence with any of its predecessors. Now, the infinite initial ordinals are denoted

ω = ω0, ω1, ω2, . . . , ωα, . . . ,

so that ω is to be the set of natural numbers in the ordinal construal, and the identification
of different intensions is signaled by

ωα = ℵα

with the left being a von Neumann ordinal and the right being the Cantorian cardinal
number.

Replacement has been latterly regarded as somehow less necessary or crucial than
the other axioms, the purported effect of the axiom being only on large-cardinality sets.
Initially, Abraham Fraenkel [1921,1922] and Thoralf Skolem [1923] had independently
proposed adjoining Replacement to ensure that E(a) = {a,P(a),P(P(a)), . . .} be a set
when a is the particular infinite set Z0 = {∅, {∅}, {{∅}}, . . .} posited by Zermelo’s Axiom
of Infinity, since, as they pointed out, Zermelo’s axioms cannot establish this. However,
even E(∅) cannot be proved to be a set from Zermelo’s axioms,81 and if his axiom of
Infinity were reformulated to accommodate E(∅), there would still be many finite sets a
such that E(a) cannot be proved to be a set.82 Replacement serves to rectify the situation
by admitting new infinite sets defined by “replacing” members of the one infinite set given
by the Axiom of Infinity. In any case, the full exercise of Replacement is part and parcel
of transfinite recursion, which is now used everywhere in modern set theory, and it was
von Neumann’s formal incorporation of this method into set theory, as necessitated by his
proofs, that brought in Replacement.

That Replacement became central for von Neumann was intertwined with his taking of
function, in its full extensional sense, instead of set as primitive and his establishing of a
context for handling classes, collections not necessarily sets. He [1925,1928a] formalized
the idea that a class is proper, i.e. not a set, exactly when it is in bijective correspondence
with the entire universe, and this exactly when it is not an element of any class. This thus
brought in another move from Cantor’s 1899 correspondence with Dedekind (cf. 2.2).
However, von Neumann’s axiomatization [1925,1928] of function was complicated, and

81The union of E(Z0), with membership restricted to it, models Zermelo’s axioms yet does not have E(∅) as
a member.

82See Mathias [2001].
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reverting to sets as primitive Paul Bernays (cf. his [1976]) recast and simplified von Neu-
mann’s system. Still, the formal incorporation of proper classes introduced a superstruc-
ture of objects and results distant from mathematical practice. What was to be inherited
was a predisposition to entertain proper classes in the mathematical development of set
theory, a willingness that would have crucial ramifications (cf. 3.6).

3.2 Well-Foundedness and the Cumulative Hierarchy

With ordinals and Replacement, set theory continued its shift away from pretensions of
a general foundation toward a theory of a more definite subject matter, a process fueled
by the incorporation of well-foundedness. Mirimanoff [1917] was the first to study the
well-founded sets, and the later hierarchical analysis is distinctly anticipated in his work.
But interestingly enough well-founded relations next occurred in the direct definability
tradition from Cantor, descriptive set theory (cf. 2.5).

In the axiomatic tradition Fraenkel [1922], Skolem [1923] and von Neumann [1925]
considered the salutary effects of restricting the universe of sets to the well-founded sets.
Von Neumann [1929: 231,236ff] formulated in his functional terms the Axiom of Foun-
dation, that every set is well-founded,83 and defined the resulting hierarchy of sets in his
system via transfinite recursion: In modern notation, the axiom, as is well-known, entails
that the universe V of sets is stratified into cumulative ranks Vα, where

V0 = ∅; Vα+1 = P(Vα); Vδ =
⋃
α<δVα for limit ordinals δ ;

and
V =
⋃
αVα .

Von Neumann used this, the cumulative hierarchy, to establish the first relative consis-
tency result in set theory via “inner models”; his argumentation in particular established
the consistency of Foundation relative to Zermelo’s axioms plus Replacement.

During this period mathematical logic gained new currency, and a tussle based on the
different approaches of first- and second-order logic to set theory would lead to a substan-
tial axiomatic development.84 The prescient Skolem [1923] made the proposal of using
for Zermelo’s definite properties for the Separation Axiom those properties expressible
in first-order logic with ∈ as a binary relation symbol. After Leopold Löwenheim [1915]
had broken the ground for model theory with his result about the satisfiability of a first-
order sentence, Skolem [1920,1923] had located the result solidly in first-order logic and
generalized it to the Löwenheim-Skolem Theorem: If a countable collection of first-order
sentences is satisfiable, then it is satisfiable in a countable domain. That Skolem in-
tended for set theory to be a first-order system without a privileged interpretation for
∈ becomes evident in the initial application of the Löwenheim-Skolem Theorem to get

83∀x(x , ∅ −→ ∃y ∈ x(x∩y = ∅)). This is von Neumann’s Axiom VI4 in terms of sets. The term “Foundation
[Fundierung]” itself comes from Zermelo [1930].

84First-order logic is the logic of formal languages consisting of formulas built up from specified function
and relation symbols using logical connectives and first-order quantifiers ∀ and ∃, quantifiers to be interpreted
as ranging over the elements of a domain of discourse. Second-order logic has quantifiers to be interpreted as
ranging over arbitrary subsets of a domain.
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Skolem’s Paradox: In first-order logic Zermelo’s axioms are countable, Separation hav-
ing become a schema, a schematic collection of axioms, one for each first-order formula;
the theorem then implies the existence of countable models of the axioms although they
entail the existence of uncountable sets. Skolem intended by this means to deflate the
possibility of set theory becoming a foundation for mathematics. Exercised by this rela-
tivism and by the recent work of Fraenkel and von Neumann, Zermelo [1929] in his first
publication in set theory in two decades proposed an axiomatization of his definit property
in second-order terms. In direct response Skolem [1930] pointed out possible difficulties
with this approach and reaffirmed his first-order formulation, completing the backdrop for
a new axiomatic synthesis.

Zermelo in his remarkable [1930] offered his final axiomatization of set theory as well
as a striking view of a procession of natural models that would have a modern resonance.
While ostensibly a response to Skolem [1930], the dramatically new picture of sets in
Zermelo [1930] reflects gained experience and the germination of ideas over a prolonged
period. The main axiomatization incorporated Replacement but also the Axiom of Foun-
dation. In contrast to Zermelo [1908a], while urelements continued to be allowed, Infinity
was eschewed and Choice was regarded as part of the underlying logic. Concerning Sepa-
ration and Replacement it becomes evident from how Zermelo proceeded that he regarded
their applicability in a fully second-order context.

As described in above, Foundation in modern set theory ranks the universe of sets into
the cumulative hierarchy V =

⋃
α Vα. Zermelo substantially advanced this schematic

generative picture with his inclusion of Foundation in an axiomatization. Replacement
and Foundation focused the notion of set, with the first making possible the means of
transfinite recursion and induction, and the second making possible the application of
those means to get results about all sets. It is now almost banal that Foundation is the one
axiom unnecessary for the recasting of mathematics in set-theoretic terms, but the axiom
ascribes to membership the salient feature that distinguishes investigations specific to set
theory as an autonomous field of mathematics. Indeed, it can be fairly said that modern
set theory is at base a study couched in well-foundedness, the Cantorian well-ordering
doctrines adapted to the Zermelian generative conception of sets.

In [1930] Zermelo described a range of models for set theory, each an initial segment
of a cumulative hierarchy built on an initial set of urelements. Zermelo then established
a categoricity of sorts for his axioms, one made possible by his second-order context.
He showed that his models are characterized up to isomorphism by two cardinals, the
number of their urelements and the height of their ordinals. Moreover, he established
that if two models have the same number of urelements yet different heights, then one
is isomorphic to an initial segment of the other’s cumulative hierarchy. Grappling with
Power Set and Replacement he characterized the heights of his models (“Grenzzahlen”)
as ℵ0 or the (strongly) inaccessible cardinals, those uncountable regular cardinals κ that
are strong limit, i.e. if λ < κ, then 2λ < κ.

Zermelo posited an endless procession of models, each a set in a next, advocating
a dynamic view of sets that was a marked departure from Cantor’s (and later, Gödel’s)
realist presumption of a fixed universe of sets. In synthesizing the sense of progression
inherent in the new cumulative hierarchy picture and the sense of completion in the limit
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numbers, the inaccessible cardinals, he promoted the crucial idea of internal models of
set theory. The open-endedness of Zermelo’s original [1908a] axiomatization had been
structured by Replacement and Foundation, but he advanced a new open-endedness with
an eternal return of models approaching Cantor’s Absolute.

In the process, inaccessible cardinals became structurally relevant. Sierpi ński-Tarski
[1930] had formulated these cardinals arithmetically as those uncountable cardinals that
are not the product of fewer cardinals each of smaller power and observed that they
are weakly inaccessible — the first large cardinal concept, from Hausdorff [1908: 443]
(cf. 2.4). Be that as it may, in the early model-theoretic investigations of set theory the
inaccessible cardinals provided the natural models as envisioned by Zermelo. Moreover,
strong large cardinal hypotheses emerging in the 1960s were to be formulated in terms of
these initial segments of the cumulative hierarchy.85

The journal volume containing Zermelo’s paper also contained Stanisław Ulam’s sem-
inal paper [1930] on measurable cardinals, the most important of all large cardinals. For
a set S , U is a (non-principal) ultrafilter over S iff U is a collection of subsets of S con-
taining no singletons, closed under the taking of supersets and finite intersections, and
such that for any X ⊆ S , either X ∈ U or S − X ∈ U. For a cardinal λ, an ultrafilter U is
λ-complete iff for any D ⊆ U of cardinality less than λ,

⋂
D ∈ U. Finally, an uncountable

cardinal κ is measurable iff there is a κ-complete ultrafilter over κ. Thus, a measurable
cardinal is a cardinal whose power set is structured with a two-valued measure having
strong closure property.

Measurability embodied the first large cardinal confluence of Cantor’s two legacies,
the investigation of definable sets of reals and the extension of number into the transfinite:
Distilled from measure-theoretic considerations related to Lebesgue measure, the concept
also entailed inaccessibility in the transfinite. Moreover, the initial airing generated a
problem that was to keep the spark of large cardinals alive for the next three decades:
Can the least inaccessible cardinal be measurable? In the 1960s consequences of, and a
structural characterization of, measurability were established that became fundamental in
the setting structured by the new Zermelian emphasis on well-foundedness (cf. 3.6).

3.3 First-Order Logic and Extensionalization

The final structuring of set theory before it was to sail forth on its independent course
as a distinctive field of mathematics was its full extensionalization in first-order logic.86

However influential Zermelo’s [1930] and despite his subsequent advocacy [1931,1935]
of infinitary logic, his efforts to forestall Skolem were not to succeed, as stronger currents
were at work in the direction of first-order formalization.

Hilbert effected a basic shift in the development of mathematical logic when he took
Whitehead and Russell’s Principia Mathematica, viewed it as an uninterpreted formalism,
and made it an object of mathematical inquiry. The book [1928]87 by Hilbert and Wilhelm

85See Kanamori [2003: chap.5].
86See Goldfarb [1979] and Moore [1988a] for more on the emergence of first-order logic.
87The historical development is clarified by the fact that while this book was published in light of the devel-

opments of the 1920s, it has a large overlap with unpublished lecture notes for a 1917-8 course given by Hilbert
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Ackermann reads remarkably like a recent text. In marked contrast to the formidable
works of Frege and Russell with their forbidding notation and all-inclusive approach, it
proceeded pragmatically and upward to probe the extent of structure, making those moves
emphasizing forms and axiomatics typical of modern mathematics. After a complete
analysis of sentential logic it distinguished and focused on first-order logic (“functional
calculus”, and later “(restricted) predicate calculus”) as already the source of significant
problems. Thus, while Frege and Russell never separated out first-order logic, Hilbert
through his mathematical investigations established it as a subject in its own right.

Hilbert in the 1920s developed proof theory, i.e. metamathematics, and proposed his
program of establishing the consistency of classical mathematics. The issues here gained
currency because of Hilbert’s preeminence, just as mathematics in the large had been
expanded in the earlier years of the century by his reliance on non-constructive proofs
and transcendental methods and his advocacy of new contexts. Through this expansion the
full exercise of AC had become a mathematical necessity (cf. 2.6) and arbitrary functions,
and so Power Set, had become implicitly accepted in the extensive investigation of higher
function spaces.

Hilbert-Ackermann [1928: 65ff,72ff] raised two crucial questions directed at the further
possibilities for first-order logic: the completeness of its axioms and the Decision Problem
[Entscheidungsproblem]. These as well as Hilbert’s program for securing consistency
were to be decisively informed by penetrating work that for set theory eventually led to
its first sophisticated metamathematical result, the relative consistency of AC and GCH.

Kurt Gödel (1906–1978), born when Zermelo was devising his proofs of the Well-
Ordering Theorem, virtually completed the mathematization of logic by submerging meta-
mathematical methods into mathematics. The main vehicle was of course the direct cod-
ing, “the arithmetization of syntax”, in his celebrated Incompleteness Theorem [1931].
Establishing a fundamental distinction between what is true about the natural numbers
and what is provable, this theorem transformed Hilbert’s consistency program and led
to the undecidability of the Decision Problem from Hilbert–Ackermann [1928] and the
development of recursion theory. Gödel’s work showed in particular that for a (schemat-
ically definable) collection of axioms A, its consistency, that from A one cannot prove a
contradiction, has a formal counterpart in an arithmetical formula Con(A) about natural
numbers. Gödel’s “second” theorem asserts that if A is consistent and subsumes some
elementary arithmetic of the natural numbers, then Con(A) cannot be proved from A. But
starting an undercurrent, the earlier Completeness Theorem [1930] from his thesis an-
swered affirmatively a Hilbert–Ackermann [1928] question about semantic completeness,
clarified the distinction between the formal syntax and semantics of first-order logic, and
secured its key instrumental property with the Compactness Theorem.

Tarski [1933,1935] then completed the mathematization of logic by providing his defi-
nition of truth, exercising philosophers to a surprising extent ever since. Through Hilbert-
Ackermann [1928] and Gödel [1930] the satisfaction relation had been informal, and in
that sense completeness could be said to have remained inadequately articulated. Tarski
simply extensionalized truth in formal languages and provided a formal, recursive defi-
nition of the satisfaction relation in set-theoretic terms. This new response to a growing

at G öttingen.
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need for a mathematical framework became the basis for model theory, but thus cast into
mathematics truth would leave behind any semantics in the real meaning of the word.
Tarski’s [1933] was written around the same time as his [1931], a seminal paper that
highlights the thrust of his initiative. In [1931] Tarski gave a precise mathematical (that is,
set-theoretic) formulation of the informal concept of a (first-order) definable set of reals,
thus infusing the intuitive notion of definability into ongoing mathematics. This math-
ematization of intuitive or logical notions was accentuated by Kuratowski-Tarski [1931],
where second-order quantification over the reals was correlated with the geometric op-
eration of projection, beginning the process of explicitly wedding descriptive set theory
to mathematical logic. The eventual effect of Tarski’s [1933] mathematical formulation
of (so-called) semantics would be not only to make mathematics out of the informal no-
tion of satisfiability, but also to enrich ongoing mathematics with a systematic method for
forming mathematical analogues of several intuitive semantic notions.88

In this process of extensionalization first-order logic came to be accepted as the canon-
ical language because of its mathematical possibilities as epitomized by the Compactness
Theorem, and higher-order logics became downgraded as the workings of the power set
operation in disguise. Skolem’s early suggestion for set theory was thus taken up gener-
ally, and again the ways of paradox were positively subsumed, as the negative intent of
Skolem’s Paradox gave way to the extensive, internal use of Skolem functions from the
Löwenheim-Skolem Theorem in set-theoretic constructions.

3.4 Relative Consistency

Set theory was launched on an independent course as a distinctive field of mathematics by
Gödel’s construction of L [1938,1939] leading to the relative consistency of the Axiom
of Choice and the Generalized Continuum Hypothesis. Synthesizing all that came before,
Gödel built on the von Neumann ordinals as sustained by Replacement to formulate a
relative Zermelian universe of sets based on logical definability, a universe imbued with a
Cantorian sense of enumerative order.

Gödel’s advances in set theory can be seen as part of a steady intellectual development.
In a lecture [1933] on the foundations of mathematics Gödel propounded the axiomatic
set theory “as presented by Zermelo, Fraenkel and von Neumann” as “a natural gener-
alization of [Russell’s simple] theory of types, or rather, what becomes of the theory of
types if certain superfluous restrictions are removed.” First, the types can be taken to be
cumulative, and second, the process can be continued into the transfinite. As for how
far this cumulative hierarchy of sets is to continue, “the first two or three [infinite] types
already suffice to define very large [Cantorian ordinal numbers]” which can then serve to
index the process, and so on. Implicitly referring to his incompleteness result Gödel noted
that for a formal system S based on the theory of types a number-theoretic proposition
can be constructed which is unprovable in S but becomes provable if to S is adjoined “the
next higher type and the axioms concerning it.”89 Thus, although he never mentioned

88Incidentally, Tarski [1931] stated a result whose proof led to Tarski’s well-known theorem [1951] that the
elementary theory of real closed fields is decidable via the elimination of quantifiers.

89G ödel was evidently referring to propositions like Con(S ). In a prescient footnote, 48a, to his incomplete-
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Zermelo [1930], Gödel was entertaining its cumulative hierarchies but as motivated by
the theory of types.

It is to this initiative, separately fueled by Zermelo and Gödel, that one can date how
the formation of sets out of sets iterated into the transfinite as embodied by the cumulative
hierarchy can be regarded as a motivation for the subject matter of set theory. In a notable
inversion, what has come to be regarded as the iterative conception became a heuristic
for motivating the axioms of set theory generally.90 The iterative conception of sets, like
Tarski’s definition of truth, has exercised philosophers to a surprising extent with respect
to extrinsic justifications. This has opened the door to a metaphysical appropriation in the
following sense: It is as if there is some notion of set that is “there”, in terms of which the
axioms must find some further justification. But set theory has no particular obligations
to mirror some prior notion of set arrived at a posteriori. Replacement and Choice for
example do not quite “fit” the iterative conception,91 but if need be, Replacement can
be “justified” in terms of achieving algebraic closure of the axioms, a strong motivation
in the work of Fraenkel and the later Zermelo, and choice can be “justified” in terms of
Cantorian well-ordering doctrines or as a logical principle as Zermelo did.

In his first announcement [1938] about L Gödel described it as a hierarchy “which
can be obtained by Russell’s ramified hierarchy of types, if extended to include transfinite
orders.” Indeed, with L Gödel had refined the cumulative hierarchy of sets to a cumulative
hierarchy of definable sets which is analogous to the orders of Russell’s ramified theory.
Gödel’s further innovation was to continue the indexing of the hierarchy through all the
ordinals. Von Neumann’s canonical well-orderings would be the spine for a thin hierarchy
of sets, and this would be the key to both the AC and CH results.

In a brief account [1939] Gödel informally presented L essentially as is done today:
For any set x let def(x) denote the collection of subsets of x first-order definable over
〈x, ∈〉.92 Then define:

L0 = ∅; Lα+1 = def(Lα), Lδ =
⋃{Lα | α < δ} for limit ordinals δ;

and the constructible universe

L =
⋃{Lα | α is an ordinal}.

Gödel pointed out that L “can be defined and its theory developed in the formal systems
of set theory themselves.” This is a remarkable understatement of arguably the central

ness paper [1931] G ödel had already written: “. . . the true reason for the incompleteness inherent in all formal
systems of mathematics is that the formation of ever higher types can be continued into the transfinite . . . while
in any formal system at most denumerably many of them are available. For it can be shown that the undecidable
propositions constructed here become decided whenever appropriate higher types are added (for example, the
type ω to the system P [Peano Arithmetic]). An analogous situation prevails for the axiom system of set theory.”

90Shoenfield [1967: 238ff][1977], Wang [1974a], Boolos [1971], and Scott [1974] motivate the axioms of set
theory in terms of an iterative concept of set based on stages of construction. Parsons [1977] raises issues about
this approach.

91See Boolos [1971] for Replacement and Scott [1974: 214] for Choice.
92For a first-order formula ϕ(v1, . . . , vn) in ∈, ϕx(x1, . . . , xn) is the restriction of the formula to x, i.e. each ∀y

is replaced by ∀y ∈ x and each ∃y is replaced by ∃y ∈ x (with these abbreviations having the expected formal
articulation). A set y ⊆ x is first-order definable over 〈x, ∈〉 if there is a first-order formula ϕ(v0, v1, . . . , vn) and
a1, . . . , an all in x such that y = {z ∈ x | ϕx(z, a1, . . . , an)}.
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feature of the construction of L. L is a class definable in set theory via a transfinite recur-
sion that could be based on the formalizability of def(x), the definability of definability,
which was later reaffirmed by Tarski’s systematic definition of the satisfaction relation in
set-theoretic terms. With this, one can formalize the Axiom of Constructibility V = L,
i.e. ∀x(x ∈ L). In modern parlance, an inner model is a transitive class93 containing all the
ordinals such that, with membership and quantification restricted to it, the class satisfies
each axiom of ZF. In summary terms, what Gödel did was to show in ZF that L is an
inner model, and moreover that L satisfies AC and CH. He thus established the relative
consistency Con(ZF) implies Con(ZFC + GCH).

In the approach via def(x) it is necessary to show that def(x) remains unaltered when
applied in L with quantifiers restricted to L. Gödel himself would never establish this
absoluteness of first-order definability explicitly, preferring in his one rigorous published
exposition of L to take an approach that avoids def(x) altogether.

In his monograph [1940], based on 1938 lectures, Gödel provided a specific, formal
presentation of L in a class-set theory emanating from that of Paul Bernays (cf. [1976]),
a theory based in turn on a theory of von Neumann [1925]. Using eight binary operations
producing new classes from old, Gödel generated L set by set via transfinite recursion.
This veritable “Gödel numbering” with ordinals bypassed def(x) and made evident cer-
tain aspects of L. Since there is a direct, definable well-ordering of L, choice functions
abound in L, and AC holds there. Of the other axioms the crux is where first-order logic
impinges, in Separation and Replacement. For this, “algebraic” closure under Gödel’s
eight operations ensured “logical” Separation for bounded formulas,94 and then the full
exercise of Replacement (in V) secured all of the ZF axioms in L.

Gödel’s proof that L satisfies GCH consisted of two separate parts. He established the
implication V = L → GCH, and, in order to apply this implication within L, that L as
defined within L with quantifiers restricted to L is again L itself. This latter follows from
the aforementioned absoluteness of def(x), and in [1940] Gödel gave an alternate proof
based on the absoluteness of his eight binary operations.

Gödel’s argument for V = L → GCH rests, as he himself wrote in [1939], on “a gener-
alization of Skolem’s method for constructing enumerable models.” This was the first sig-
nificant use of Skolem functions since Skolem’s own to establish the Löwenheim-Skolem
theorem, and with it, Skolem’s Paradox. Ironically, though Skolem sought through his
paradox to discredit set theory based on first-order logic as a foundation for mathemat-
ics, Gödel turned paradox into method, one promoting first-order logic. Gödel [1939]
specifically established:

(∗) For infinite α, every constructible subset of Lα
belongs to some Lβ for a β of the same cardinality as α.

It is straightforward to show that for infinite α, Lα has the same cardinality as that of α.
It follows from (∗) that in the sense of L, the power set of Lℵα is included in Lℵα+1 , and so
GCH follows in L. To establish (∗), Gödel actually iterated the Skolem closure procedure,

93A class C is transitive if members of members of C are themselves members of C, so that C is “closed
under membership”.

94That is, those first-order formulas in which all the quantifiers can be rendered as ∀x ∈ y and ∃x ∈ y.
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and made the first use of the now familiar Mostowski collapse (cf. 3.6). In an incisive 1939
lecture Gödel announced the version of (∗) for countable α as the crux of the consistency
proof of CH and asserted that “this fundamental theorem constitutes the corrected core
of the so-called Russellian axiom of reducibility.”95 Thus, Gödel established another
connection between L and Russell’s ramified theory of types. But while Russell had to
postulate his ill-fated Axiom of Reducibility for his finite orders, Gödel was able to derive,
with an important use of Replacement, an analogous form for his transfinite hierarchy that
asserts that the types are delimited in the hierarchy of orders.

The synthesis at L extended to the resolution of difficulties in descriptive set theory
(cf. end of 2.5). Gödel [1938] announced, in modern terms: If V = L, then (a) there is a
∆

1
2 set of reals that is not Lebesgue measurable, and (b) there is a aΠ1

1 set of reals without
the perfect set property. Thus, the descriptive set theorists were confronting an obstacle
insurmountable in ZFC! Gödel [1938] listed each of these impossibility results on an
equal footing with his AC and GCH results. Unexpected, they were the first instances of
metamathematical methods resolving outstanding mathematical problems that exhibited
no prior connection to such methods. When eventually confirmed and refined, the results
were seen to turn on a Σ1

2 well-ordering of the reals in L defined via reals coding well-
founded structures and thus connected to the well-founded tree representation of a Π1

1 set
(cf. 2.5).96

Set theory had progressed to the point of establishing, in addition to a consistent reso-
lution of CH, a consistent possibility for a definable well-ordering of the reals as Cantor
had wanted, one that synthesizes the two historical sources of well-foundedness. Put into
a broader historical context, formal definability was brought into descriptive set theory
by Tarski [1931], and by Kuratowski-Tarski [1931] and Kuratowski [1931] which pur-
sued the basic connection between existential number quantifiers and countable unions
and between existential real quantifiers and projection and used these “logical symbols”
to aid in the classification of sets in the Borel and projective hierarchies. Gödel’s results
(a) and (b) constitute the first real synthesis of abstract and descriptive set theory, in that
the axiomatic framework is brought to bear on the investigation of definable sets of reals.

Gödel brought into set theory a method of construction and argument which affirmed
several features of its axiomatic presentation. Most prominently, Gödel showed how first-
order definability can be formalized and used in a transfinite recursive construction to
establish striking new mathematical results. This significantly contributed to a lasting
ascendancy for first-order logic which beyond its sufficiency as a logical framework for

95See G ödel [1939a: 141].
96When every real is in L, this Σ1

2 well-ordering is also ∆1
2 and does not satisfy Fubini’s Theorem for Lebesgue

measurable subsets of the plane, and this is one way to confirm (a). What may have been G ödel’s original
argument for (b) is given in Kanamori [2003: 170].

Texts establish (b) indirectly via the Kondô Π1
1 Uniformization Theorem, and this leads to a historical point

about G ödel the working mathematician. As 1938 correspondence with von Neumann makes evident, G ödel
was working on one-to-one continuous images of Π1

1 sets, and his [1938] actually states the results (a) and
(b) in these terms. In a 1939 letter, von Neumann informed G ödel of Kondô [1939], the paper containing the
uniformization result, from which it is immediate that the Σ1

2 sets are exactly the one-to-one continuous images
ofΠ1

1 sets. In a replying letter to von Neumann of 20 March 1939 G ödel wrote: “The result of Kondô is of great
interest to me and will definitely allow an important simplification in the consistency proof of [(a)] and [(b)] of
the attached offprint.” See G ödel [2003] for the G ödel–von Neumann correspondence.
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mathematics was seen to have considerable operational efficacy. Moreover, Gödel’s con-
struction buttressed the incorporation of Replacement and Foundation into set theory. Re-
placement was immanent in the arbitrary extent of the ordinals for the indexing of L and
in its formal definition via transfinite recursion. As for Foundation, underlying the con-
struction was the well-foundedness of sets. Gödel in a footnote to his 1939 note wrote:
“In order to give A [the axiom V = L] an intuitive meaning, one has to understand by
‘sets’ all objects obtained by building up the simplified hierarchy of types on an empty
set of individuals (including types of arbitrary transfinite orders).”

How Gödel transformed set theory can be broadly cast as follows: On the larger stage,
from the time of Cantor, sets began making their way into topology, algebra, and analysis
so that by the time of Gödel, they were fairly entrenched in the structure and language
of mathematics. But how were sets viewed among set theorists, those investigating sets
as such? Before Gödel, the main concerns were what sets are and how sets and their
axioms can serve as a reductive basis for mathematics. Even today, those preoccupied
with ontology, questions of mathematical existence, focus mostly upon the set theory
of the early period. After Gödel, the main concerns became what sets do and how set
theory is to advance as an autonomous field of mathematics. The cumulative hierarchy
picture was in place as subject matter, and the metamathematical methods of first-order
logic mediated the subject. There was a decided shift toward epistemological questions,
e.g. what can be proved about sets and on what basis.

As a pivotal figure, what was Gödel’s own stance? What he said would align him more
with his predecessors, but what he did would lead to the development of methods and
models. In a 1944 article on Russell’s mathematical logic, in a 1947 article on Cantor’s
continuum problem (and in a 1964 revision), and in subsequent lectures and correspon-
dence, Gödel articulated his philosophy of “conceptual realism” about mathematics. He
espoused a staunchly objective “concept of set” according to which the axioms of set
theory are true and are descriptive of an objective reality schematized by the cumulative
hierarchy. Be that as it may, his actual mathematical work laid the groundwork for the
development of a range of models and axioms for set theory. Already in the early 1940s
Gödel worked out for himself a possible model for the negation of AC, and in a 1946
address he described a new inner model, the class of ordinal definable sets.

In later years Gödel speculated about the possibility of deciding propositions like CH
with large cardinal hypotheses based on the heuristics of reflection and later, general-
ization. Already in that 1946 address he suggested97 the consideration of “stronger and
stronger axioms of infinity,” and reflection as follows: “Any proof of a set-theoretic the-
orem in the next higher system above set theory (i.e. any proof involving the concept of
truth . . . ) is replaceable by a proof from such an axiom of infinity.” This ties in with the
class of all ordinal numbers cast as Cantor’s Absolute: A largeness property ascribable
to the class might be used to derive some set-theoretic proposition; but any such property
confronts the antithetical contention that the class is mathematically incomprehendable,
fostering the synthetic move to a large cardinal posited with the property.

In the expository article [1947] on the Continuum Problem Gödel presumed that CH
would be shown independent from ZF and speculated more concretely about possibilities

97See G ödel [1990: 151].
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with large cardinals. He argued that the axioms of set theory do not “form a system closed
in itself” and so the “very concept of set on which they are based suggests their extension
by new axioms that assert the existence of still further iterations of the operation of ‘set
of’ ”, citing Zermelo [1930] and echoing its theme. In an unpublished footnote 20 toward
a 1966 revision of [1947] Gödel was to acknowledge98 “extremely strong axioms of in-
finity of an entirely new kind”, generalizations of properties of ω “supported by strong
arguments from analogy”. This heuristic of generalization ties in with Cantor’s view of
the finite and transfinite as unitary, with properties like inaccessibility and measurability
technically satisfied by ω being too accidental were they not also ascribable to higher
cardinals through the uniformity of the set-theoretic universe.99

Gödel [1947] at the end actually argued against CH by drawing on the work of Sier-
pinski and others (cf. 2.6) to exhibit six “paradoxical” consequences. One of them is the
existence of a Luzin set of cardinality of the continuum, and three others actually follows
from the existence of such a set. This brought to the fore Gödel’s stance about what is
true in set theory. Whether CH is proved consistent or independent of ZFC, he believed
in a “truth of the matter” both from the point of view of intuitions about the continuum
and from his philosophical standpoint. That CH is implausible because it led to various
implausible conclusions became a prominent attitude, one that would stay with set theory
through its subsequent development.

3.5 Combinatorics

Gödel’s construction of L was both a culmination in all major respects of the early period
in set theory and a source for much that was to follow. But for quite some time it was to
remain an isolated monument in the axiomatic tradition. No doubt the intervening years of
war were a prominent factor, but there was a continuing difficulty in handling definability
within set theory and a stultifying lack of means for constructing models of set theory
to settle issues of consistency and independence. It would take a new generation versed
in emerging model-theoretic methods to set the stage for the next major methodological
advances.

In the mean time, the direct investigation of the transfinite as extension of number was
advanced, gingerly at first, by a new initiative. The seminal results of infinite combi-
natorics were established beginning in the 1930s. As for algebra and topology, it was
natural to extend concepts over the transfinite, and significantly, the combinatorics that
would have the most bearing there had their roots in the mathematization of logic.

Frank Ramsey [1930] established a special case of the Decision Problem of Hilbert-
Ackermann [1928], the decidability of validity for the ∃∀ formulas with identity. For
this purpose he established a basic generalization of the pigeonhole principle. In a move
that transcended purpose and context he also established an infinite version implicitly
applying the now familiar Kőnig’s Lemma for trees. Stated more generally for graphs by
D énes Kőnig [1927: 121] the lemma had also figured implicitly in Löwenheim [1915]. In

98See G ödel [1990: 260ff].
99See Wang [1974: §§1,4] for more on G ödel’s view on heuristics as well as the criteria of intrinsic necessity

and pragmatic success for accepting new axioms.
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what follows we affirm the general terminology for the formulation of Ramsey’s results
and then Kőnig’s Lemma, anticipating extensions into the transfinite.

For ordinals α, β, and δ and n ∈ ω the partition property

β −→ (α)n
δ

is the assertion that for any partition f : [β]n → δ of the n-element subsets of β into δ cells
there is an H ⊆ β of order type α homogeneous for the partition, i.e. all the n-element
subsets of H lie in the same cell. Ramsey showed that for any k, n, and r all in ω, there is
a m ∈ ω such that m −→ (k)n

r . Skolem [1933] sharpened Ramsey’s argument and thereby
lowered the possibilities for the m’s, but to this day the least such m’s, the Ramsey num-
bers, have not been determined except in the simplest cases. Ramsey’s infinite version is:
ω −→ (ω)n

r for every n, r ∈ ω. This partition property and its variants have been adapted
to a variety of situations, and today Ramsey theory is a thriving field of combinatorics.100

A tree is a partially ordered set T such that the predecessors of any element are well-
ordered. The αth level of T consists of those elements whose predecessors have order type
α, and the height of T is the least α such that the αth level of T is empty. A chain of T is a
linearly ordered subset, and an antichain is a subset consisting of pairwise incomparable
elements. A branch of T is a maximal chain, and a cofinal branch of T is a branch with
elements at every non-empty level of T . Finally, for a cardinal κ, a κ-tree is a tree of height
κ each of whose levels has cardinality less than κ, and

κ has the tree property iff every κ-tree has a cofinal branch .

Finite trees of course are quite basic to current graph theory and computer science. With
infinite trees the concerns are rather different, typically involving cofinal branches. Kőnig’s
Lemma asserts that ω has the tree property.

The first systematic study of transfinite trees was carried out in -Duro Kurepa’s thesis
[1935], and several properties emerging from his investigations, particularly for ω1-trees,
would later become focal in the combinatorial study of the transfinite.

An Aronszajn tree is an ω1-tree without a cofinal branch ,

i.e. a counterexample to the tree property for ω1. Kurepa [1935: §9,thm 6] gave Nachman
Aronszajn’s result that there is an Aronszajn tree.

A Suslin tree is an ω1-tree with no uncountable chains or antichains .

Kurepa [1935: appendix] reduced a hypothesis growing out of a problem of Suslin [1920]
about the characterizability of the order type of the reals to a combinatorial property of
ω1 as follows: Suslin’s Hypothesis holds iff there are no Suslin trees.

A Kurepa tree is an ω1-tree with at least ω2 cofinal branches ,

and Kurepa’s Hypothesis deriving from Kurepa [1942: 143], is the assertion that such trees
exist. Much of this would be rediscovered, and both Suslin’s Hypothesis and Kurepa’s
Hypothesis would be resolved three decades later with the advent of forcing, several of
the resolutions in terms of large cardinal hypotheses.101Kurepa’s work also anticipated

100See the text Graham-Rothschild-Spencer [1990] and the compendium Nešetřil-R ödl [1990] for the recent
work on Ramsey Theory.

101See Todorčević [1984] for a wide-ranging account of transfinite trees.
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another development from a different quarter:
Paul Erdős, although an itinerant mathematician for most of his life, was the prominent

figure of a strong Hungarian tradition in combinatorics, and through some seminal results
he introduced major initiatives into the detailed combinatorial study of the transfinite.
Erdős and his collaborators simply viewed the transfinite numbers as a combinatorially
rich source of intrinsically interesting problems, the concrete questions about graphs and
mappings having a natural appeal through their immediacy. One of the earliest advances
was Erdős-Tarski [1943] which concluded enticingly with an intriguing list of six com-
binatorial problems, the positive solution to any, as it was to turn out, amounting to the
existence of a large cardinal. In a footnote various implications were noted, one of them
being essentially that for inaccessible κ, the tree property for κ implies κ −→ (κ)2

2, gen-
eralizing Ramsey’s ω −→ (ω)2

2 and making explicit the Kőnig Lemma property needed.
While Kurepa was investigating distinctive properties of uncountable trees, Erdős-Tarski
[1943] was evidently motivated by strong properties of ω to formulate direct combinato-
rial generalizations to inaccessible cardinals by analogy.102 The situation would become
considerably clarified, but only two decades later.103

The detailed investigation of partition properties began in earnest in the 1950s, with
Erdős and Richard Rado’s [1956] being representative. For a cardinal κ, let κ+ denote its
successor cardinal and set exp0(κ) = κ and expn+1(κ) = 2expn(κ). What became known as
the Erdős-Rado Theorem asserts: For any infinite cardinal κ and n ∈ ω,

expn(κ)+ −→ (κ+)n+1
κ .

This was established using the basic tree argument underlying Ramsey’s results, whereby
a homogeneous set is not constructed recursively, but a tree is constructed such that its
branches provide homogeneous sets, and a counting argument ensures that there must be
a homogeneous set of sufficient cardinality. Kurepa [1937,1939] in effect had actually
established the case n = 1 and shown that exp1(κ)+ was the least possible. The expn(κ)+

was also shown to be the least possible in the general case, and so unlike for the Ramsey
numbers in the finite case an exact analysis was quickly achieved in the transfinite. This
was to be a recurring phenomenon, that the gross features of transfinite cardinality make
its combinatorics actually easier than in the analogous finite situation. And notably, it-
erated cardinal exponentiation figured prominently, so that shedding deeper concerns the
power set operation became further domesticated in the arithmetic of combinatorics. In
fact, assuming GCH simplified results and formulations, and this was often done, as in
Erdős, Andr ás Hajnal, and Rado’s [1965], representative of the 1960s. Increasingly, a
myriad of versions have been investigated in the larger terrain without GCH.104

Still among the Hungarians, G éza Fodor [1956] established the now familiar regressive

102On the other hand, Kurepa [1935: §10.3] did ask whether every inaccessible cardinal has the tree property,
a question only resolved by work of Hanf (cf. 3.6).

103The details of implications asserted at the end of Erdős-Tarski [1943] were worked out in an influential
seminar conducted by Tarski and Mostowski at Berkeley in 1958-9, and appeared in Erdős-Tarski [1961].

104The results of Erdős-Hajnal-Rado [1965] were extended in Byzantine detail to the general situation without
GCH by the book Erdős-Hajnal-Máté-Rado [1984]. See Hajnal–Larson [2008] for recent work on partition
relations.
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function lemma for stationary sets: If λ regular and uncountable, S is stationary in λ,105

and f : S → λ is regressive (i.e. f (ξ) < ξ for ξ ∈ S ), then there is an α < λ such that
{ξ ∈ S | f (ξ) = α} is stationary in λ. It is a basic fact and a simple exercise now, but then
it was the culmination of a progression of results beginning with a special case established
in Aleksandrov-Urysohn [1929] and getting to the right largeness notion of stationarity.
The contrast with how the lemma’s earlier precursors were considered difficult and even
paradoxical is striking, indicative of both the novelty of uncountable cofinality and the
great leap forward that set theory has made.

3.6 Model-Theoretic Methods

Model theory began in earnest with the method of diagrams of Abraham Robinson’s thesis
[1951] and the related method of constants from Leon Henkin’s thesis which gave a new
proof [1949] of the Gödel Completeness Theorem. Tarski had set the stage with his
definition of truth and more generally his casting of formal languages and structures in
set-theoretic terms, and with him established at the University of California at Berkeley
a large part of the development in the 1950s and 1960s would take place there. The
construction of models freely used transfinite methods and soon led to new questions in
set theory, but also set theory was to be decisively advanced by the infusion of model-
theoretic methods.

The first relevant result was a generalization accreditable to Mostowski [1949] of the
Mirimanoff–von Neumann result that every well-ordered set is order-isomorphic to ex-
actly one ordinal with membership. A binary relation R is extensional on X iff for any
x , y both in X there is a z ∈ X such that z R x iff ¬z R y. Recall that x is transitive
iff members of members of x are themselves members of x, so that x is “closed under
membership”. If R is a well-founded relation on a set X and extensional on X, there is a
unique isomorphism of 〈X,R〉 onto 〈T, ∈〉 where T is transitive, i.e. a bijection π: X → T
such that for any x, y ∈ X, x R y iff π(x) ∈ π(y). T is the transitive collapse of X, and
π the collapsing isomorphism. Thus, the linearity of well-orderings has been relaxed to
well-foundedness and an analogue of the Axiom of Extensionality, and the transitive sets
become canonical representatives as ordinals are for well-orderings. Gödel [1939: 222]
had made the first substantial use of the transitive collapse; Mostowski [1949: 147] es-
tablished the general result much later; and John Shepherdson [1951: 171] in a structured
setting that brought out a further necessary hypothesis for classes X: R is set-like, i.e. for
any x ∈ X, {y | y R x} is a set. The initial applications in Mostowski [1949] and Shepherd-
son [1953] were to establish the independence of the assertion that there is a transitive
set M which with ∈ restricted to it is a model of set theory. While the Mirimanoff–von
Neumann result was basic to the analysis of number in the transfinite, the transitive col-
lapse result grew in significance from specific applications and came to epitomize how
well-foundedness made possible a coherent theory of models of set theory.

The relationship between ZFC and Bernays-Gödel (BG), the class-set theory brought

105A set C ⊆ λ is closed unbounded in λ iff C contains its limit points, i.e. those 0 < α < λ such that C∩α = α,
and is cofinal, i.e.

⋃
C = λ. A set S ⊆ λ is stationary in λ iff for any C closed unbounded in λ, S ∩ C is not

empty.
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into prominence by its use in Gödel [1940], was clarified during this period. As analyzed
in Hao Wang [1949], BG can be construed as an extension of ZFC via the introduction of
class variables intended to range over subcollections of V and correlative axioms, together
with a comprehension principle asserting for each formula ϕ with just one set variable v
free and no class variables quantified that there is a corresponding class {v | ϕ}. Ilse Novak
[1950] and Barkley Rosser and Wang in their [1950] established that if ZFC is consistent,
then so is BG by providing model-theoretic interpretations of BG relative to ZFC. Then
Mostowski [1950] showed that BG is a conservative extension of ZF, i.e. any sentence σ
without class variables provable in BG is already provable in ZFC. Subsequently, Joseph
Shoenfield [1954] showed how to convert directly a proof of such a σ in BG into a proof
in ZFC. These results reinforced the impression that, as far as the axiomatic tradition from
Zermelo through Gödel is concerned, there is essentially one set theory, and one might as
well work in the parsimonious ZFC.

Shepherdson [1951,1952,1953] studied “inner” models of set theory, with [1952] giv-
ing a rigorous first-order account of the results of Zermelo [1930]. The term is now
reserved for the case mentioned in 3.4: A transitive class containing all the ordinals such
that, with membership and quantification restricted to it, the class satisfies each axiom of
ZF. The archetypal inner model is Gödel’s L, and L ⊆ M for any inner model M since
the construction of L carried out in M is again L. Because of this Shepherdson [1953]
observed that the relative consistency of hypotheses like the negation of CH cannot be
established via inner models.

Hajnal [1956,1961] and Azriel Levy [1957,1960] developed generalizations of L that
were to become basic in a richer setting. For a set A, Hajnal formulated the constructible
closure L(A) of A, i.e. the smallest inner model M such that A ∈ M, and Levy formulated
the class L[A] of sets constructible relative to A, i.e. the smallest inner model M such
that for every x ∈ M, A ∩ x ∈ M.106 L(A) realizes the algebraic idea of building up a
model starting from a set of generators, and L[A] the idea of building up a model using
A construed as a predicate. L(A) may not satisfy AC since e.g. it may not have a well-
ordering of A, yet L[A] always satisfies that axiom. This distinction was only to surface
later, as both Hajnal and Levy took A to be a set of ordinals, when L(A) = L[A]. Hajnal
and Levy (and also Shoenfield [1959], who formulated a special version of Levy’s con-
struction) used these models to establish conditional independence results of the sort: if
the failure of CH is consistent, then so is that failure together with 2λ = λ+ for sufficiently
large cardinals λ.

After Richard Montague [1956,1961] applied reflection phenomena to investigate finite
axiomatizability for set theory, Levy [1960a,1960b] also formulated reflection principles
and established their broader significance. The Reflection Principle for ZF, drawn from
Montague [1961: 99] and from Levy [1960a: 234], asserts: For any (first-order) formula
ϕ(v1, . . . , vn) and any ordinal β, there is a limit ordinal α > β such that for any x1, . . . , xn ∈

106To formulate L(A), define: L0(A) = the smallest transitive set ⊇ {A} (to ensure that the resulting class
is transitive); Lα+1 = def(Lα(A)) (where def is as in 3.4); Lδ =

⋃
α<δ Lα(A) for limit δ > 0; and finally

L(A) =
⋃
α Lα(A). To formulate L[A], first let defA(x) denote the collection of subsets of x first-order definable

over 〈x, ∈,A ∩ x〉, i.e. A ∩ x is now allowed as a predicate in the definitions. Then define: L0[A] = ∅; Lα+1[A] =
defA(Lα[A]); Lδ[A] =

⋃
α<δ Lα[A] for limit δ > 0; and finally L[A] =

⋃
α Lα[A].
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Vα,
ϕ[x1, . . . , xn] iff ϕVα[x1, . . . , xn] ,

i.e. the formula holds exactly when it holds with all the quantifiers restricted to Vα. Levy
showed that this schema is equivalent to the conjunction of the Replacement schema to-
gether with Infinity in the presence of the other axioms of ZF. Moreover, he formulated
reflection principles in local form that characterized cardinals in the Mahlo hierarchy
(2.4), conceptually the least large cardinals after the inaccessible cardinals. Then William
Hanf and Dana Scott in their [1961] posited analogous reflection principles for higher-
order formulas, leading to what are now called the indescribable cardinals, and eventu-
ally Levy [1971] carried out a systematic study of the sizes of these cardinals.107 The
model-theoretic reflection idea thus provided a coherent scheme for viewing the bottom
of an emerging hierarchy of large cardinals as a generalization of Replacement and In-
finity, one that resonates with the procession of models in Zermelo [1930]. The heuristic
of reflection had been broached in 1946 remarks by Gödel (cf. 3.4), and another point of
contact is the formulation of the concept of ordinal definable set in those remarks. With
the class of ordinal definable sets formalized by OD =

⋃
α def(Vα), the adequacy of this

definition is based on some form of the Reflection Principle for ZF. With tc(y) denoting
the smallest transitive set ⊇ y, let HOD = {x | tc({x}) ⊆ OD}. the class of hereditarily
ordinal definable sets. As adumbrated by Gödel, HOD is an inner model in which AC,
though not necessarily CH, holds. The basic results about this inner model were to be re-
discovered several times.108 In these several ways reflection phenomena both as heuristic
and as principle became incorporated into set theory, bringing to the forefront what was
to become a basic feature of the study of well-foundedness.

The set-theoretic generalization of first-order logic allowing transfinitely indexed log-
ical operations was to lead to the solution of the problem of whether the least inaccessi-
ble cardinal can be measurable (cf. 3.2). Extending familiarity by abstracting to a new
domain Tarski [1962] defined the strongly compact and weakly compact cardinals by as-
cribing natural generalizations of the key compactness property of first-order logic to the
corresponding infinitary languages. These cardinals had figured in Erdős-Tarski [1943]
(cf. 3.5) in combinatorial formulations that was later seen to imply that a strongly com-
pact cardinal is measurable, and a measurable cardinal is weakly compact. Tarski [1962]
pointed out that his student William Hanf (cf. [1964]) established, using the satisfaction
relation for infinitary languages, that there are many inaccessible cardinals (and Mahlo
cardinals) below a weakly compact cardinal. A fortiori, the least inaccessible cardinal
is not measurable. This breakthrough was the first result about the size of measurable
cardinals since Ulam’s original paper [1930] and was greeted as a spectacular success
for metamathematical methods. Hanf’s work radically altered size intuitions about prob-
lems coming to be understood in terms of large cardinals and ushered in model-theoretic
methods into the study of large cardinals beyond the Mahlo cardinals.109

Weak compactness was soon seen to have a variety of characterizations; most notably
in terms of 3.5, κ is weakly compact iff κ → (κ)2

2 iff κ → (κ)n
λ

for every n ∈ ω and λ < κ iff

107See Kanamori [2003: §6].
108See Myhill-Scott [1971], especially p. 278.
109See Kanamori [2003: §4] for these results about strongly and weakly compact cardinals.
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κ is inaccessible and has the tree property. Erdős and Hajnal [1962] noted that the study of
stronger partition properties had progressed to the point where a combinatorial proof that
the least inaccessible cardinal is not measurable could have been given before Hanf came
to his argument. However, model-theoretic methods quickly led to far stronger conclu-
sions, particularly through the connection that had been made in Ehrenfeucht-Mostowski
[1956] between partition properties and sets of indiscernibles.110

The concurrent emergence of the ultraproduct construction in model theory set the
stage for the development of the modern theory of large cardinals in set theory. With a
precursor in Skolem’s [1933a,1934] construction of a non-standard model of arithmetic
the ultraproduct construction was brought to the forefront by Tarski and his students after
Jerzy Ło ś’s [1955] adumbration of its fundamental theorem. This new method of con-
structing concrete models brought set theory and model theory even closer together in a
surge of results and a lasting interest in ultrafilters. Measurable cardinals had been formu-
lated (cf. 3.2) in terms of ultrafilters construed as two-valued measures; Jerome Keisler
[1962] struck on the idea of taking the ultrapower of a measurable cardinal κ by a κ-
complete ultrafilter over κ to give a new proof of Hanf’s result, seeing the crucial point
that the completeness property led to a well-founded, and so in his case well-ordered,
structure.

Then Scott [1961] made the further, crucial move of taking the ultrapower of the uni-
verse V itself by such an ultrafilter. The full exercise of the transitive collapse as a gen-
eralization of the correlation of ordinals to well-ordered sets now led to an inner model
M , V and an elementary embedding j: V → M.111 With this Scott established: If
there is a measurable cardinal, then V , L. Large cardinal hypotheses thus assumed
a new significance as a means for maximizing possibilities away from Gödel’s delimi-
tative construction. Also, the Cantor-Gödel realist view of a fixed set-theoretic universe
notwithstanding, Scott’s construction fostered the manipulative use of inner models in set
theory. The construction provided one direction and Keisler [1962a] the other of a new
characterization that established a central structural role for measurable cardinals: There
is an elementary embedding j: V → M for some inner model M , V iff there is a measur-
able cardinal. This result is not formalizable in ZFC because of the use of the satisfaction
relation and the existential assertion of a proper class, but technical versions are. Despite
the lack of formalizability such existential assertions have been widely entertained since,
and with this set theory in practice could be said to have overleaped the bounds of ZFC.
On the other hand, that the existence of a class elementary embedding is equivalent to
the existence of a certain set, the witnessing ultrafilter for a measurable cardinal, can be
considered a means of formalization in ZFC, one that would be paradigmatic for such
reductions.

Work of Petr Vopěnka, who started the active Prague seminar in set theory in the spring
of 1963, would be closely connected to that of Scott. Aware of the limitations of inner

110See Kanamori [2003: §§7, 8, 9] for more on partition relations and sets of indiscernibles, particularly their
role in the formulation the set of natural numbers 0# and its role of transcendence over L.

111That is, for any formula ϕ(v1, . . . , vn) and sets x1, . . . , xn, ϕ(x1, . . . , xn) ←→ ϕM ( j(x1), . . . , j(xn)), i.e. the
formula holds of the xis exactly when it holds of the j(xi)s with the quantifiers restricted to M. Thus elementary
embeddings are just the extension of algebraic monomorphisms to the preservation of logical properties.
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models for establishing independence results Vopěnka (cf. [1965]) embarked on a sys-
tematic study of (mostly ill-founded) class models of Bernays-Gödel set theory using
ultrapower and direct limit constructions. Vopěnka not only established [1962] Scott’s
result on the incompatibility of measurability and constructibility via different means, but
he and his student Karel Hrb áček in their [1966] soon established a global generalization
for inner models L(A): If there is a strongly compact cardinal, then V , L(A) for any set
A.

Through model-theoretic methods set theory was brought to the point of entertaining
elementary embeddings into well-founded models,112 soon to be transfigured by a new
method for getting well-founded extensions of well-founded models.

4 INDEPENDENCE

4.1 Forcing

Paul Cohen (1934–2007), born just before Gödel established his relative consistency re-
sults, established the independence of AC from ZF and the independence of CH from
ZFC [1963,1964]. That is, Cohen established that Con(ZF) implies Con(ZF + ¬AC) and
Con(ZF) implies Con(ZFC + ¬CH). These results delimited ZF and ZFC in terms of the
two fundamental issues at the beginnings of set theory. But beyond that, Cohen’s proofs
were soon to flow into method, becoming the inaugural examples of forcing, a remarkably
general and flexible method for extending models of set theory. Forcing has strong intu-
itive underpinnings and reinforces the notion of set as given by the first-order ZF axioms
with conspicuous uses of Replacement and Foundation. If Gödel’s construction of L had
launched set theory as a distinctive field of mathematics, then Cohen’s method of forcing
began its transformation into a modern, sophisticated one.113

Cohen’s approach was to start with a model M of ZF and adjoin a set G, one that would
exhibit some desired new property. He realized that this had to be done in a minimal
fashion in order that the resulting structure also model ZF, and so imposed restrictive
conditions on both M and G. He took M to be a countable standard model, i.e. a countable
transitive set that together with the membership relation restricted to it is a model of ZF.114

The ordinals of M would then coincide with the predecessors of some ordinal ρ, and M
would be the cumulative hierarchy M =

⋃
α<ρ Vα ∩ M. Cohen then established a system

of terms to denote members of the new model, finding it convenient to use a ramified
language: For each x ∈ M let ẋ be a corresponding constant; let Ġ be a new constant;
and for each α < ρ introduce quantifiers ∀α and ∃α. Then develop a hierarchy of terms
as follows: Ṁ0 = {Ġ}, and for limit ordinals δ < ρ, Ṁδ =

⋃
α<δ Ṁα. At the successor

stage, let Ṁα+1 be the collection of terms ẋ for x ∈ Vα ∩ M and “abstraction” terms

112See Keisler-Tarski [1964] for a comprehensive account of the theory of large cardinals through the use of
ultrapowers in the early 1960s.

113According to Scott (Bell [1985: ix]): “Set theory could never be the same after Cohen, and there is simply
no comparison whatsoever in the sophistication of our knowledge about models of set theory today as contrasted
to the pre-Cohen era.”

114The existence of such a model is an avoidable assumption in formal relative consistency proofs via forcing.
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corresponding to formulas allowing parameters from Ṁα and quantifiers ∀α and ∃α. It is
crucial that this ramified language with abstraction terms be entirely formalizable in M,
through a systematic coding of symbols. Once a set G is provided from the outside, a
model M[G] =

⋃
α<ρ Mα[G] would be determined by the terms, where each ẋ is to be

interpreted by x for x ∈ M and Ġ is to be interpreted by G, so that: M0[G] = {G}; for
limit ordinals δ < ρ, Mδ[G] =

⋃
α<δ Mα[G]; and Mα+1[G] consists of the sets in Vα ∩ M

together with sets interpreting the abstraction terms as the corresponding definable subsets
of Mα[G] with ∀α and ∃α ranging over this domain.

But what properties can be imposed on G to ensure that M[G] be a model of ZF?
Cohen’s key idea was to tie G closely to M through a system of sets in M called conditions
that would approximate G. While G may not be a member of M, G is to be a subset
of some Y ∈ M (with Y = ω a basic case), and these conditions would “force” some
assertions about the eventual M[G] e.g. by deciding some of the membership questions,
whether x ∈ G or not, for x ∈ Y. The assertions are to be just those expressible in
the ramified language, and Cohen developed a corresponding forcing relation p ‖- ϕ, “p
forces ϕ”, between conditions p and formulas ϕ, a relation with properties reflecting his
approximation idea. For example, if p ‖- ϕ and p ‖- ψ, then p ‖- ϕ & ψ. The conditions are
ordered according to the constraints they impose on the eventual G, so that if p ‖- ϕ, and
q is a stronger condition, then q ‖- ϕ. Scott actually provided the now common forcing
symbol ‖- , and with Cohen having worked with prenex formulas, Scott showed how to
proceed generally by separating out negation with: p ‖- ¬ϕ iff for no stronger condition q
does q ‖- ϕ. It was crucial to Cohen’s approach that the forcing relation, like the ramified
language, be definable in M.

The final ingredient is that the whole scaffolding is given life by incorporating a certain
kind of set G. Stepping out of M and making the only use of its countability, Cohen enu-
merated the formulas of the ramified language in a countable sequence and required that
G be completely determined by a countable sequence of stronger and stronger conditions
p0, p1, p2, . . . such that for every formula ϕ of the ramified language exactly one of ϕ or
¬ϕ is forced by some pn. Such a G is called a generic set. Cohen was able to show that
the resulting M[G] does indeed satisfy the axioms of ZF: Every assertion about M[G]
is already forced by some condition; the forcing relation is definable in M; and so the
ZF axioms, holding in M, most crucially Power Set and Replacement, can be applied to
derive corresponding forcing assertions about ZF axioms holding in M[G].

The foregoing outline in its main features reflects how forcing was viewed by July
1963 and presented by Cohen himself in a course in Spring 1965.115 He first described
the case when G ⊆ ω and the conditions p are functions from some finite subset of ω into
{0, 1} and p ‖- ṅ ∈ Ġ if p(n) = 1 and p ‖- ṅ < Ġ if p(n) = 0. Today, a G so adjoined to M
is called a Cohen real over M. Cohen established the independence of CH by adjoining
a set which can be construed as a sequence of many Cohen reals. He established the
independence of AC by a version of the above scheme where in addition to Ġ there are
also new constants Ġi for i ∈ ω, with Ġ to be interpreted by a set X of Cohen reals, each
an interpretation of some Ġi. The point is that X is not well-orderable in the extension.

The appeal to a countable model in Cohen’s approach is a notable positive subsumption

115See Cohen [1966].
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of Skolem’s Paradox (cf. 3.2) into a new method. Remarkably, Skolem [1923: 229] had
entertained the possibility of adjoining a new subset of the natural numbers to a countable
model of Zermelo’s system and getting a new model, adding in a footnote that “it is quite
probable” that the Continuum Hypothesis is not decided by Zermelo’s axioms. Just as
starting with a countable standard model is not formally necessary for relative consistency
results, other features of Cohen’s argument would soon be reformulated, reorganized,
and generalized, but the main thrust of his constructive approach through definability
and genericity would remain. Cohen’s particular achievement lies in devising a concrete
procedure for extending well-founded models of set theory in a minimal fashion to well-
founded models of set theory with new properties but without altering the ordinals.116

Set theory had undergone a sea-change, and beyond how the subject was enriched, it is
difficult to convey the strangeness of it.

The creation of forcing is a singular phenomenon in the development of set theory
not only since it raised the level of the subject dramatically but also since it could well
have occurred decades earlier. But however epochal Cohen’s advance there was a line of
development for which it did provide at least a semblance of continuity: Interest in inde-
pendence results for weak versions of AC had been on the rise from the mid-1950’s, with
more and more sophisticated Fraenkel-Mostowski models being constructed.117 Solomon
Feferman, who was one of the first to whom Cohen explained his ideas for the indepen-
dence proofs in the process of their development, was the first after him to establish results
by forcing; Levy soon followed; and among their first results were new independences
from ZF for weak versions of AC (Feferman-Levy [1963], Feferman [1965]). Cohen
[1965: 40] moreover acknowledged the similarities between his AC independence result
and the previous Fraenkel-Mostowski models. In fact, consistencies first established via
Fraenkel-Mostowski models were soon “transferred” to consequence of ZF via forcing by
correlating urelements with generic sets.118

After an initial result by Feferman [1963], Levy [1963,1965,1970] also probed the
limits of ZFC definability, establishing consistency results about definable sets of reals
and well-orderings and in descriptive set theory. Intriguingly, inaccessible cardinals were
brought in to overcome a technical hurdle in this study; Levy [1963: IV] applied the defin-
ing properties of such a cardinal to devise its “collapse” to ℵ1 by making every smaller
ordinal countable, and this forcing is now known as the Levy collapse.

Forcing was quickly generalized and applied to achieve wide-ranging results, partic-
ularly by Robert Solovay. He above all epitomized this period of great expansion in
set theory with his mathematical sophistication and fundamental results about and with
forcing, and in the areas of large cardinals and descriptive set theory. Just weeks after
Cohen’s breakthrough Solovay [1963,1965] elaborated the independence of CH by char-
acterizing the possibilities for the size of 2κ for regular κ and made the first exploration

116Scott continued (Bell [1985: ix]): “I knew almost all the set-theoreticians of the day, and I think I can say
that no one could have guessed that the proof would have gone in just this way. Model-theoretic methods had
shown us how many non-standard models there were; but Cohen, starting from very primitive first principles,
found the way to keep the models standard (that is, with a well-ordered collection of ordinals).”

117See Moore [1982: 5.1].
118See Felgner [1971] and Jech [1973] for more on the independence of weak versions of AC and transfers,

and Pincus [1972] for a strong transfer theorem.
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of a spectrum of cardinals. Then William Easton [1964,1970] established the definitive
result for powers of regular cardinals: Suppose that GCH holds and F is a class function
from the class of regular cardinals to cardinals such that for κ ≤ λ, F(κ) ≤ F(λ) and
the cofinality of F(κ) is greater than κ. Then there is a forcing extension preserving co-
finalities in which 2κ = F(κ) for every regular κ. Thus, as Solovay had seen locally, the
only restriction beyond monotonicity on the power function for regular cardinals is that
given by the Zermelo–Kőnig inequality.119 Easton’s result vitally infused forcing not only
with the introduction of proper classes of forcing conditions but the now basic idea of a
product analysis and the now familiar concept of Easton support. Through its reduction
Easton’s result focused interest on the possibilities for powers of singular cardinals, and
this Singular Cardinals Problem together with the Singular Cardinals Hypothesis would
stimulate the further development of set theory much as the Continuum Problem and the
Continuum Hypothesis had stimulated its early development.120

In the Spring of 1964 Solovay [1965b,1970] established a result remarkable for its
mathematical depth and revelatory of what standard of argument was possible with forc-
ing: If there is an inaccessible cardinal, then in an inner model of a forcing extension
every set of reals is Lebesgue measurable, has the Baire property, and has the perfect set
property. Like Cohen’s results, this contextually decided issues dating back to the turn of
the century and before; as described in 2.3 the regularity properties of sets of reals was a
major concern of the early descriptive set theorists. Classical counterexamples show that
Solovay’s inner model cannot have a well-ordering of the reals, and so AC fails there.
However, he established that the model satisfies the Principle of Dependent Choices, a
principle sufficient for the formal rendition of the traditional theory of measure and cate-
gory. Thus, Solovay’s work vindicated the early descriptive set theorists in the sense that
the regularity properties can consistently hold for all sets of reals in a bona fide model for
mathematical analysis. For his result Solovay applied the Levy collapse of an inaccessible
cardinal and built on its definability properties as first exploited by Levy [1963: IV]; for
the Lebesgue measurability he introduced a new kind of forcing beyond Cohen’s direct
ways of adjoining new sets of ordinals or collapsing cardinals, that of adding a random
real. Solovay’s work not only opened the door to a wealth of different forcing arguments,
but to this day his original definability arguments remain vital to descriptive set theory.

The perfect set property, central to Cantor’s direct approach to the Continuum Prob-
lem through definability (1.2,2.3,2.5), led to the first acknowledged instance of a new
phenomenon in set theory: the derivation of equiconsistency results with large cardinal
hypotheses based on the complementary methods of forcing and inner models. A large
cardinal hypothesis is typically transformed into a proposition about sets of reals by forc-
ing that “collapses” that cardinal to ℵ1 or “enlarges” the power of the continuum to that
cardinal. Conversely, the proposition entails the same large cardinal hypothesis in the
clarity of an inner model. Solovay’s result provided the forcing direction from an inac-
cessible cardinal to the proposition that every set of reals has the perfect set property (and
ℵ1 is regular). But Ernst Specker [1957: 210] had in effect established that if this obtains,

119See 1.3, especially footnote 27.
120The Singular Cardinal Hypothesis asserts that 2λ for singular λ is the least possible with respect to the

powers 2µ for µ < λ, as given by monotonicity and the Zermelo-Kőnig inequality.
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then ℵ1 (of V) is inaccessible in L. Thus, Solovay’s use of an inaccessible cardinal was
actually necessary, and its collapse to ℵ1 complemented Specker’s observation. Other
propositions figuring in the initial applications of inaccessibility to forcing turned out to
require inaccessibility, further integrating it into the interstices of set theory.121 The emer-
gence of such equiconsistency results is a subtle transformation of earlier hopes of Gödel
(cf. 3.4): Propositions can be positively subsumed if there are enough ordinals, how many
being specified by positing a large cardinal.122 On the other hand, forcing quickly led
to the conclusion that there could be no direct implication for CH: Levy and Solovay
(Levy [1964], Solovay [1965a], Levy-Solovay [1967]) established that measurable car-
dinals neither imply nor refute CH, with an argument generalizable to most inaccessible
large cardinals. Rather, the subsumption for many other propositions would be in terms of
consistency, the methods of forcing and inner models being the operative modes of argu-
ment. In a new synthesis of the two Cantorian legacies, hypotheses of length concerning
the extent of the transfinite are correlated with hypotheses of width concerning sets of
reals.

It was the incisive work of Scott and Solovay through this early period that turned Co-
hen’s breakthrough into a general method of wide applicability. Scott simplified Cohen’s
original formulation as noted above; Solovay made the important move to general partial
orders and generic filters; and they together developed, with vicissitudes, the formula-
tion in terms of Boolean-valued models.123 These models forcibly showed how to avoid
Cohen’s ramified language as well as his dependence on a countable model. With their el-
egant algebraic trappings and seemingly more complete information they held the promise
of being the right approach to independence results. But Shoenfield [1971] showed that
forcing with partial orders can get at the gist of the Boolean approach in a straightfor-
ward manner. Moreover, Boolean-valued models were soon found to be too abstract and
unintuitive for establishing new consistency results, so that within a few years set the-
orists were generally working with partial orders. It is a testament to Cohen’s concrete
approach that in this return from abstraction even the use of ramified languages has played
an essential role in careful forcing arguments at the interface of recursion theory and set
theory.

121The original application of the Levy collapse in Levy [1963: IV] also turned out to require an inaccessible
cardinal (Levy [1970: 131ff]) – a remarkable turn of events for an apparently technical artifact at the beginning
of forcing.

Many years later, Saharon Shelah [1980,1984] was able to establish the necessity of Solovay’s inaccessible
for the proposition that every set of reals is Lebesgue measurable; on the other hand, Shelah also showed that
the inaccessible is not necessary for the proposition that every set of reals has the Baire property.

122There is a telling antecedent in the result of Gerhard Gentzen [1936,1943] that the consistency strength of
arithmetic can be exactly gauged by an ordinal ε0, i.e. transfinite induction up to that ordinal in a formal system
of notations. Although Hilbert’s program of establishing consistency by finitary means could not be realized,
Gentzen provided an exact analysis in terms of ordinal length. Proof theory blossomed in the 1960s with the
analysis of other theories in terms of such lengths, the proof theoretic ordinals.

123Vopěnka had developed a similar concept in a reworking [1964] of the independence of CH. The concept
was generalized and simplified in a series of papers on the so-called ∇-models from the active Prague seminar
founded by Vopěnka (see Hájek [1971: 78]), culminating in the exposition Vopěnka [1967]. However, the earlier
papers did not have much impact, partly because of an involved formalism in which formulas were valued in a
complete lattice rather than Boolean algebra.
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4.2 Envoi

Building on his Lebesgue measurability result Solovay soon reactivated the classical de-
scriptive set theory program (cf. 2.5) of investigating the extent of the regularity properties
by providing characterizations for the Σ1

2 sets, the level at which Gödel established from
V = L the failure of the properties (cf. 3.4), and showed in particular that the regularity
properties for these sets follow from the existence of a measurable cardinal. Thus, al-
though measurable cardinals do not decide CH, they do establish the perfect set property
for Σ1

2 sets (Solovay [1969]) so that “CH holds for the Σ1
2 sets” – a vindication of Gödel’s

hopes for large cardinals through a direct implication. Donald Martin and Solovay in
their [1969] then applied large cardinal hypotheses weaker than measurability to push
forward the old tree representation ideas of the classical descriptive set theorists, with the
hypotheses cast in the new role of securing well-foundedness in this context.

The method of forcing as part of the axiomatic tradition together with the transmu-
tations of Cantor’s two legacies, large cardinals furthering the extension of number into
the transfinite and descriptive set theory investigating definable sets of reals, established
set theory as a sophisticated field of mathematics, a study of well-foundedness expanded
into one of consistency strength. With the further development of forcing through in-
creasingly sophisticated iteration techniques questions raised in combinatorics and over
a broad landscape would be resolved in terms of consistency, sometimes with equicon-
sistencies in terms of large cardinals. The theory of large cardinals would itself be much
advanced with the heuristics of reflection and generalization and sustained through in-
creasing use in the study of consistency strength. In the most distinctive and intriguing
development of contemporary set theory, the investigation of the determinacy of games,
large cardinals would be further integrated into descriptive set theory. They were not only
used to literally incorporate well-foundedness of inner models into the study of tree rep-
resentations, historically first context involving well-foundedness, but also to provide the
exact hypotheses, with Woodin cardinals, for gauging consistency strength.124

Stepping back to gaze at modern set theory, the thrust of mathematical research should
deflate various possible metaphysical appropriations with an onrush of new models, hy-
potheses, and results. Shedding much of its foundational burden, set theory has become an
intriguing field of mathematics where formalized versions of truth and consistency have
become matters for manipulation as in algebra. As a study couched in well-foundedness
ZFC together with the spectrum of large cardinals serves as a court of adjudication, in
terms of relative consistency, for mathematical statements that can be informatively con-
textualized in set theory by letting their variables range over the set-theoretic universe.
Thus, set theory is more of an open-ended framework for mathematics rather than an elu-
cidating foundation. It is as a field of mathematics that both proceeds with its own internal
questions and is capable of contextualizing over a broad range which makes of set theory
an intriguing and highly distinctive subject.

124See Kanamori [2003] for these recent developments.
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[Bendixson, 1883] I. Bendixson. Quelques théorèmes de la théorie des ensembles de points, Acta Mathematica

2 (1883), 415–429.
[Bernays, 1937] P. Bernays. A system of axiomatic set theory, Part I, The Journal of Symbolic Logic 2 (1937),

65–77.
[Bernays, 1976] P. Bernays. A system of axiomatic set theory, in Gert H. M üller (editor), Sets and Classes. On
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infinit äre Aufl ösung von Gleichungen, Mathematische Annalen 8 (1875), 363–414.

[Dugac, 1976] P. Dugac. Richard Dedekind et les fondements des math ématiques, Collection des travaux de
l’Académie Internationale d’Histoire des Sciences #24, Vrin, Paris 1976.

[Easton, 1964] W. B. Easton. Powers of regular cardinals. Ph.D. thesis, Princeton University 1964. Abstracted
as: Proper classes of generic sets, Notices of the American Mathematical Society 11 (1964), 205. Published
in abridged form as [1970] below.

[Easton, 1970] W. B. Easton. Powers of regular cardinals, Annals of Mathematical Logic 1 (1970), 139–178.
[Ebbinghaus, 2007] H.-D. Ebbinghaus. Ernst Zermelo. An Approach to his Life and Work, Springer, Berlin

2007.
[Ehrenfeucht and Mostowski, 1956] A. Ehrenfeucht and A. M. Mostowski. Models of axiomatic theories ad-

mitting automorphisms, Fundamenta Mathematicae 43 (1956), 50–68. Reprinted in Mostowski [1979], 494–
512.
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[Fraenkel, 1922a] A. A. Fraenkel. Über den Begriff ‘definit’ und die Unabh ängigkeit des Auswahlax-
ioms, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse
(1922), 253–257. Translated in van Heijenoort [1967], 284–289.

[Fraenkel, 1930] A. A. Fraenkel. Georg Cantor, Jahresbericht der Deutschen Mathematiker-Vereinigung 39
(1930), 189–266. Published separately as Georg Cantor, B.G. Teubner, Leipzig 1930. Published in abridged
form in Cantor [1932], 452–483.

[Fraenkel, 1953] A. A. Fraenkel. Abstract Set Theory, North-Holland, Amsterdam 1953.
[Frege, 1879] G. Frege. Begriffsschrift, eine der arithmetischen nachgëbildete Formelsprache des reinen
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1987.
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y) = f (x) + f (y), Mathematische Annalen 60 (1905), 459–462.
[Hanf, 1964] W. P. Hanf. Incompactness in languages with infinitely long expressions, Fundamenta Mathe-

maticae 53 (1964), 309–324.
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Springer, Berlin 1928. Second edition, 1938; third edition, 1949. Second edition was translated by Ham-
mond, Lewis M., George G. Leckie, and F. Steinhardt as Principles of Mathematical Logic, Chelsea, New
York 1950.

[Howard and Rubin, 1998] P. Howard and J. E. Rubin. Consequences of the Axiom of Choice, Mathematical
Surveys and Monographs, vol. 59, American Mathematical Society, Providence, 1998.
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Skolem, Thoralf, et al. (editors), Mathematical Interpretation of Formal Systems, North-Holland, Amster-
dam 1955, 98–113.
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[Nešetřil and R ödl, 1990] J. Nešetřil and V. R ödl. Mathematics of Ramsey Theory, Springer, Berlin 1990.
[Noether and Cavaillès, 1937] E. Noether and J. Cavaillès, eds. Briefwechsel Cantor-Dedekind, Hermann,

Paris 1937. Translated into French in Cavaillès [1962].
[Novak, 1950] I. L. Novak. A construction for models of consistent systems, Fundamenta Mathematicae 37

(1950), 87–110.
[Oxtoby, 1971] J. C. Oxtoby. Measure and Category. A Survey of the Analogies between Topological and Mea-

sure Spaces, Springer, New York 1971.
[Parsons, 1977] C. Parsons. What is the iterative concept of set? in: Butts, Robert E., and Jaakko Hintikka (ed-

itors), Logic, Foundations of Mathematics and Computability Theory. Proceedings of the Fifth International
Congress of Logic, Methodology, and the Philosophy of Science (London, Ontario 1975), The University of
Western Ontario Series in Philosophy and Science, vol. 9; D. Reidel, Dordrecht 1977, 335–367. Reprinted
in Benacerraf-Putnam [1983], 503–529.

[Peano, 1897] G. Peano. Studii di logica matematica, Atti della Accademia delle scienze di Torino, Classe di
scienze fisiche, matematiche e naturali 32 (1897), 565–583. Reprinted in [1958] below, 201–217.

[Peano, 1905-8] G. Peano. Formulario Mathematico, Bocca, Torino 1905-8. Reprinted Edizioni Cremonese,
Rome 1960.

[Peano, 1911] G. Peano. Sulla definizione di funzione. Atti della Accademia nazionale dei Lincei, Rendiconti,
Classe di scienze fisiche, matematiche e naturali 20-I (1911), 3–5.

[Peano, 1913] G. Peano. Review of: A.N. Whitehead and B. Russell, Principia Mathematica, vols. I,II, Bollet-
tino di bibliografia e storia delle scienze matematiche Loria 15 (1913), 47–53, 75–81. Reprinted in [1958]
below, 389–401.

[Peano, 1958] G. Peano. Opere Scelte, vol. 2, Edizioni Cremonese, Rome 1958.
[Peckhaus, 1990] V. Peckhaus. “Ich habe mich wohl geh ütet alle Patronen auf einmal zu verschiessen.” Ernst
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[Plotkin, 2005] J. M. Plotkin. Hausdorff on Ordered Sets, American Mathematical Society, Providence 2005.
[Purket, 1989] W. Purkert. Cantor’s views on the foundations of mathematics, in: Rowe, David E., and John

McCleary (editors), The History of Modern Mathematics, vol. 1: Ideas and their Reception, Academic Press,
Boston 1989, 49–65.
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[Schr öder, 1890] E. Schr öder. Vorlesungen über die Algebra der Logik (exakte Logik). Vol. 1. Leipzig, B.G.

Teubner 1890. Reprinted in [1966] below.
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[von Neumann, 1923] J. von Neumann. Zur Einf ührung der transfiniten Zahlen, Acta Litterarum ac Sci-

entiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum mathematicarum 1
(1923), 199–208. Reprinted in [1961] below, 24–33. Translated in van Heijenoort [1967], 346–354.

[von Neumann, 1925] J. von Neumann. Eine Axiomatisierung der Mengenlehre, Journal für die reine und
angewandte Mathematik 154 (1925), 219–240. Berichtigung 155, 128. Reprinted in [1961] below, 34–56.
Translated in van Heijenoort [1967], 393–413.
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