
nDPI: Open-Source High-Speed  
Deep Packet Inspection

Luca Deri 1, 2, Maurizio Martinelli 1, Alfredo Cardigliano 2
IIT/CNR 1

ntop 2
Pisa, Italy

{luca.deri, maurizio.martinelli}@iit.cnr.it, {deri, cardigliano}@ntop.org

Abstract—Network traffic analysis has been traditionally
limited to packet header, because the transport protocol and
application ports were usually sufficient to identify the
application protocol. With the advent of port-independent, peer-
to-peer and encrypted protocols, the task of identifying
application protocols has become increasingly challenging, thus
creating a motivation for creating tools and libraries for network
protocol classification.  
 
This paper covers the design and implementation of nDPI, an
open-source library for protocol classification using both packet
header and payload. nDPI has been extensively validated in
various monitoring projects ranging from Linux kernel protocol
classification, to analysis of 10 Gbit traffic, reporting both high
protocol detection accuracy and efficiency.

Keywords—Passive traffic classification, deep-packet-
inspection, network traffic monitoring.  

I. INTRODUCTION
In the early days of the Internet, network traffic protocols

were identified by a protocol and port. For instance the SMTP
protocol used TCP and port 25 while telnet used TCP on port
23. This well-know protocol/port association is specified in
the /etc/protocols file which is part of every Unix-based
operating system. Over time the use of static ports has become
a problem with the advent of RPC (Remote Procedure Call);
therefore specific applications such as rpcbind and portmap
were developed to handle dynamic mappings. Historically,
application ports up to 1024 identified essential system services
such as email or remote system login and hence require super-
user privileges; their port-to-protocol binding has been
preserved till this day. Remaining ports above 1024 are used
for user-defined services and are generally dynamic.

Protocol identification is often not reliable even when a
static port is used. A case in point is TCP/80 used for HTTP.
Originally HTTP was created to carry web-related resources
such as HTML pages and decorative content. However, its
extensibility (in no small part due to its header flexibility and
MIME type specification) along with its native integration in
web browsers HTTP is now often used to carry non web-
related resources. For instance, it is now the de-facto protocol
for downloading/uploading files, thus replacing the FTP (File
Transfer Protocol), which was designed specifically for that
purpose. The pervasive use of HTTP and its native support of

firewalls (i.e. a firewall recognises and validates the protocol
header), has made HTTP (and its secure counterpart HTTPS)
the ideal developer choice when creating a new protocol that
has to traverse a firewall without restrictions. Many peer-to-
peer protocols and popular applications (e.g. Skype) use HTTP
as last resort when they need to pass through a firewall in case
all other ports are blocked. We have created traffic reports from
various networks, ranging from academic sites to commercial
ISPs, and realised that HTTP is by far the most widely used
protocol. This does not mean that users mostly use it for
surfing the web. This protocol is extensively used by social
networks, geographical maps, and video-streaming services. In
other words the equation TCP/80 = web is no longer valid.

The characterisation of network protocols is required not
only for creating accurate network traffic reports, but
increasingly, for overall network security needs. Modern
firewalls combine IP/protocol/port based security with
selected protocol inspection in order to validate protocols, in
particular those based on UDP (e.g. SNMP - Simple Network
Management Protocol - and DNS - Domain Name System).
VoIP protocols, such as SIP and H.323, are inspected for
specific information (e.g. the IP and port where voice and
video will flow) that allows the firewall to know what IP/ports
to open to allow media flow. Cisco NBAR (Network-based
Application Recognition) devices [1], and Palo Alto Networks
application-based firewalls [2] have pioneered application-
protocol based traffic management. Today these traffic
inspection facilities are available on every modern network
security device because the binding port/protocol scheme no
longer holds.

The need to increase network traffic visibility has created a
need for DPI (Deep Traffic Inspection) libraries to replace the
first generation of port-based tools [21]. Payload analysis [22],
however, uses extensive computational resource [15]. This
difficulty triggered the development of statistical analysis
based approaches [28] often based on Machine-Learning
Algorithms (MLA) [13, 20] instead of direct payload
inspection. These methods often rely on statistical protocol
properties such as packet size and intra-packet arrival time
distributions. Although some authors claim these algorithms
provide high detection accuracy [3, 4], real-life tests [5, 6, 10,
12, 14, 19] have demonstrated that:

• Such protocols are able to classify only a few traffic
categories (an order of magnitude less than DPI libraries)

and thus less suitable for fine protocol granularity detection
applications.

• Some tests show a significant rate of inaccuracy
suggesting that such methods may be useful in passive
traffic analysis, but unlikely to be used for mission critical
applications, such as traffic blocking.

These needs constitute the motivation for developing an
efficient open-source DPI library where efficiency is defined
by the requirement to monitor 10 Gbps traffic using solely
commodity hardware (i.e. not specialised hardware needed).
The use of open source is essential because:

• Commercial DPI libraries are very expensive both in
terms of one-time license fee and yearly maintenance costs.
Sometimes their price is set based on yearly customers
revenues, rather than on a fixed per-license fee, thus further
complicating the price scheme.

• Closed-source DPI toolkits are often not extensible by
end-users. This means that developers willing to add new/
custom protocols support need to request these changes to
the toolkits manufacturer. In essence, users are therefore at
the mercy of DPI library vendors in terms of cost and
schedule.

• Open-source tools cannot incorporate commercial DPI
libraries as they are subject to NDA (Non-Disclosure
Agreement) that makes them unsuitable to be mixed with
open-source software and included into the operating system
kernel.

Although deep packet inspection has been a hot topic for a
long time, beside some rare exceptions most research works
have not lead to the creation of a publicly available DPI toolkit
but limited their scope to prototypes or prof-of-concept tools.
The need to create an efficient open-source DPI library for
network monitoring has been the motivation for this work.
Because DPI is a dual use technology, its users need to have
source code to ensure that it is free of trojans or malware.

The rest of the paper is structured as follow. Section 2
describes the motivation of this work, and it explains how
nDPI is different from its predecessor OpenDPI [17]. Section 3
covers the nDPI design and implementation. Section 4
describes the validation process, and finally section 5
concludes the paper.

II. BACKGROUND AND MOTIVATION
DPI is defined as the analysis of a packet’s data payload in

real time (i.e. DPI processing must be faster than the traffic rate
to be monitored as otherwise it would result in packet drops) at
a given physical location. Inspection is motivated by various
reasons including application protocol identification, traffic
pattern analysis and metadata (e.g. user name) extraction.
Some proprietary DPI library vendors such as iPoque,
QOSMOS, and Vineyard cover all aspects, whereas others,
such as libprotoident [7], UPC [8], L7-filter [9], and TIE [18]
limit their scope to protocol identification [24, 25, 26].

Protocol detection may also be implemented using pattern
matching or by using specialised protocol decoders. The
former approach is inefficient due to the use of regular-
expressions [23] and error-prone because:

• It does not reconstruct packets in 6-tuple flows (VLAN,
Protocol, IP/port source/destination) thus missing cross-
packet matches.

• Searching for patterns within an un-decoded payload can
lead to out of context search data (e.g. an email including
an excerpt from a HTTP connection might be confused
with web-traffic) or mismatches when specific packet
fields (e.g. NetBIOS host name) are encoded.

Application drive the selection of the appropriate DPI
library. We chose to focus on network traffic monitoring that
can range from passive packet analysis to active inline packet
policy enforcement. A DPI library must have include the
following features:

• High-reliability protocol detection for inline, per
application, protocol policy enforcement.

• Library extensibility is needed for new protocols and
runtime in sub-protocols definition. This feature is
required because new protocols appear from time to time
or evolve (e.g. the Skype protocol has changed
significantly since after the Microsoft acquisition).
Permanent library maintenance is therefore required.

• Ability to integrate under an open source license for use
by existing open-source applications and embedding into
an operating system’s kernel. As already discussed, full
source code availability is essential to safeguard privacy.

• Extraction of basic network metrics (e.g. network and
application latency) and metadata (e.g. DNS query/
response) that can be used within monitoring
applications thus avoiding duplicate packet decoding,
once in the DPI library and also in the monitoring
application.

Our focus is therefore reliable protocol detection using
protocol decoders combined with the ability to extract selected
metadata parameter for the use of applications that is this
library. This enables the extraction of selected metadata
parameters that can then be used by applications using the DPI
library. Other open-source protocol detection libraries, such as
libprotoident, are limited in scope because it does not extract
metadata and only analyses the first 4 bytes of payload in each
direction for protocol detection. Because commercial DPI
libraries could not be used a starting basis we chose OpenDPI,
an open-source predecessor of the commercial iPoque PACE
(Protocol and Application Classification Engine), which is no
longer maintained by its developers. OpenDPI has been
designed to be both an application protocol detection and
metadata extraction library. Because it has been unmaintained
for some time, the library did not include any modern protocol
(e.g. Skype); the code was largely prototype quality and likely
used as a proof of concept for the commercial product. A point
in favour of OpenDPI was the fact that it was distributed under
the GPLv3 license that allows developers to include it in
software applications without being bound to an NDA or other
restrictions typical of commercial DPI products. Furthermore
an open-source license allows the code to be inspected, key
requirement when the packet payload is inspected and
potentially private information might leak. Our choice of
OpenDPI as starting point was driven by these reasons. We
then proceeded to make specific changes relating to issues we
have identified. These reasons were the drivers for its choice.

We identified specific issues and made the requisite change to
address them.
A. From OpenDPI to nDPI

The OpenDPI library is written in C language and it is
divided in two main components:

• The core library is responsible for handling raw packets,
decoding IP layer three/four, and extracting basic
information such as IP address and port.

• The plugin dissectors that are responsible for detecting
the ~100 protocols supported by OpenDPI.

nDPI has inherited this two-layer architecture but it has
addressed several issues present in the OpenDPI design:

• The OpenDPI library was designed to be extensible, but
in practice the data structures used internally were static. For
instance, many data-types and bitmaps, used to keep the
state for all supported protocols, were bound to specific
sizes (e.g. 128 bits) and thus limiting the number of
identifiable protocols.

• Whenever a protocol was detected, the library tried to
find further protocol matches instead of just returning the
first match. The result was a performance penalty without a
real need of requiring extra detection work.

• No encrypted protocol support (e.g. HTTPs). While
encryption is designed to preserve privacy and regular DPI
libraries are not expected to decode the some information
can be gleaned to suggest the nature of the information
carried on a specific connection.

• OpenDPI was not designed to be a reentrant (i.e. thread-
safe) library. This required multi-threaded applications to
create several instances of the library or add semaphores in
order to avoid multiple threads to modify the same data at the
same time. Per thread library state was required to support
reentrancy. This was a substantial change that touched many
many data structures across most library components.
OpenDPI also made wide use of global variables; this too
had to change in order to make the library thread-safe and
not require semaphores.

• Many parts of OpenDPI suggest problematic design
choices. For instance, the library was performing much per
flow initialisation instead of doing them once. The result was
that applications using the library had to pay an unnecessary
performance penalty whenever a new connection was passed
to OpenDPI for application detection. We believe that these
design choices might have been due to the fact that the
library was probably used as prototype/playground for the
commercial version of library, and so overtime the code
needed some cleaning.

• The protocol dissection was non-hierarchical. In other
words whenever a new connection needed to be analysed,
the library was not applying the dissectors based on their
matching probability. For instance, if there is a connection
on TCP port 80, OpenDPI was not trying the HTTP
dissector first, but it was applying dissectors in the same
order as they were registered in the library.

• The library had no runtime configuration capability; the
only way to define new dissectors was to code them in C

anew. While this is usually a good policy for efficiency
reasons, at times more flexibility is needed. For instance, if a
given user needs to define a custom protocol Y as TCP/port-
X it would be easier to have a runtime configuration
directive instead of changing the library code. OpenDPI
assumes that the library must have a dissector for all
supported protocols, a difficult goal to achieve in reality. In
particular, in closed-environments such as a LAN, specific
hosts use proprietary/custom protocols that flow on specific
ports/protocols; in this case it is more convenient for the
user to detect them from the packet header rather than from
its payload.

• OpenDPI has not been designed to extract any metadata
from analysed traffic. On one hand this preserves privacy,
but on the other it requires monitoring applications to
decode the application traffic again in order to extract basic
information such as the URL from HTTP traffic. Reporting
this information does not add any overhead to the library as
it is decoded anyway when parsing the packet payload.

In sum OpenDPI has been a good starting point for nDPI
because we did not have to start from scratch. Many
components of the original library have been changed in order
to address the issues we have identified. This was the ground
work necessary to start the creation of an efficient DPI library
and extending the set of supported. Not surprisingly, the
number of protocols recognised has an impact on both DPI
detection performance and protocol recognition. The more
protocols recognised, the more time spent on detection
whenever a specific traffic pattern is not identified and thus all
the possible protocol decoders have to be tested for match.
This means that DPI libraries supporting many protocols may
be slower in specific situation than those supporting fewer.
Another impact on performance is due to metadata extraction:
the richer the set of extracted attributes, the slower the
processing. Although specific activities such as string and
pattern matching can be accelerated on specialised hardware
platforms such as Cavium and RMI, or using GPUs [27], we
have decided not to use any of these cards, in order to let the
library operate on all hardware platforms.

nDPI was designed to be used by applications that need to
detect the application protocol of communication flow. Its
focus is on Internet traffic, thus all the available dissectors
support standard protocols (e.g. HTTP and SMTP) or selected
proprietary ones (e.g. Skype or Citrix) that are popular across
the Internet community. In the latter case, as protocol
specifications are not publicly available, we had to create the
dissectors by reverse-engineering network traffic created by
their proprietary applications. Although nDPI can extract
specific metadata (e.g. HTTP URL) from analysed traffic, it
has not been designed as a library to be used in fields such as
lawful interception or data leak prevention; its primary goal is
to characterise network traffic. Similar to OpenDPI, nDPI can
be used both inside the Linux kernel and in user-space
applications. As portability is one of the primary goals for open
source applications, nDPI has been ported to most operating
systems including Linux, Windows, MacOS X and the BSD
family. In terms of CPU architectures, it currently runs on x86
(32 and 64 bits), MIPS and ARM processors.

III. NDPI DESIGN AND IMPLEMENTATION
In nDPI an application protocol is defined by a unique

numeric protocol Id, and a symbolic protocol name (e.g.
Skype). Applications using nDPI will probably use the protocol
Id whereas humans the corresponding name. In nDPI a
protocol includes both network protocols such as SMTP or
DNS, and communications over network protocols. For
instance in nDPI, Facebook and Twitter are two protocols,
although from the network point of view they are
communications from/to Facebook/Twitter servers used by the
two popular social networks. A protocol is usually detected by
a traffic dissector written in C, but it can be defined also in
terms of protocol/port, IP address (e.g. traffic from/to specific
networks), and protocol attributes. For instance the Dropbox
traffic is identified by both the dissector for LAN-based
communications, and by tagging as Dropbox the HTTP traffic
on which the ‘Host’ header field is set to ‘*.dropbox.com’. As
explained later in this section, the nDPI library includes the
detection of over 170 protocols, but it can also be further
extended at runtime using a configuration file.

The nDPI library inherits some of OpenDPI design, where
the library code is used for implementing general functions,
and protocol dissection is implemented in plugins. All the
library code is now fully reentrant, meaning that applications
based on nDPI do not need to use locks or other techniques to
serialise operations. All the library initialisation is performed
only once at startup, without a runtime penalty when a new
packet needs to be dissected. nDPI expects the caller to provide
the packet divided in flows (i.e. set of packets with the same
VLAN, protocol, IP/port source/destination), and that the
packet has been decoded up to layer three. This means that the
caller has to handle all the layer-2 encapsulations such as
VLAN and MPLS, by leaving to nDPI the task of decoding the
packet from the IP layer up. nDPI comes with a simple test
application named pcapReader.c that shows how to implement 1

packet classification and provides utility functions for efficient
flow processing. The protocol dissectors are registered with
attributes such as the default protocol and port. This means for
instance that the HTTP dissector specifies the default TCP/80,
and the DNS dissector TCP/UDP on port 53. This practice has
two advantages:

• Packets belonging to an unclassified flow (i.e. a flow for
which the application protocol has not been detected yet) are
passed to all dissectors registered starting from the most
likely one. For instance, a TCP packet on port 80, is first
passed to the HTTP protocol and then if not detected is
passed to the remaining registered dissectors. Of course only
dissectors for TCP protocols are considered, whereas those
for non-TCP protocols are not. This solution, on average,
reduces the number of dissectors that are tested, and
decreases the matching time because the most likely
dissector is checked first. Note that this optimisation does
not prevent detecting HTTP on non-standard ports, but it
increases the detection performance by first testing the most
likely case.

• When a flow is unclassified (e.g. nDPI has tried all
dissectors but none has matched), nDPI can guess the
application protocol by checking whether there was a

protocol registered for the protocol/port used by the flow.
Note that a flow can be unclassified not just because of
protocol dissectors limitations, but also because not all flow
packets where passed to nDPI. A typical example is the case
when nDPI has to dissect packets belonging to a flow whose
beginning has not been analysed (e.g. nDPI has been
activated after the flow start).

The protocol recognition lifecycle for a new flow is the
following:

• nDPI decodes the layer 3 and 4 of the packet.

• In case there is a dissector registered for the packet
protocol/port, such dissector is tried first.

• In case of no match, all the registered dissectors for the
packet protocol (i.e. in case of a UDP packet, all UDP
dissectors are tried, but no non-UDP dissector is considered)
are tried. If a dissector cannot match a packet, it has two
options: either the match failed because the analysed packet
will never match (e.g. a DNS packet passed to the SNMP
dissector), or it failed but it may be that future packets will
match. In the former case, the dissector will not be
considered for future packets belonging to the same flow,
whereas in the latter the dissector will still be considered for
future packets belonging to the same flow.

• Protocol detection ends as soon as a dissector matches.

A typical nDPI user question is the number of packets
needed to detect the application protocol, or decided that a
given flow is unknown. From experience we have learned that
the answer is protocol dependent. For most UDP-based
protocols such as DNS, NetFlow or SNMP one packet is
enough to make this decision. Unfortunately there are other
UDP-based protocols such as BitTorrent whose signature might
require up to 8 packets in order to be detected. This leads us to
the rule of thumb that in nDPI at most 8 packets per direction
are enough to make a decision.
A. Handling Encrypted Traffic

Like it or not, the trend of Internet traffic is towards
encrypted communications. Due to security and privacy
concerns, HTTPS is slowly replacing HTTP not just for secure
transactions but also for sending tweets and messages to
mobile terminals, posting notes, and performing searches.
Identifying this traffic as SSL is not enough, but it is necessary
to bet ter character ise i t . When using encrypted
communications, the only part of the data exchange that can be
decoded is the initial key exchange. nDPI contains a decoder
for SSL that extracts the host name of the contacted server.
This information is placed in the nDPI flow metadata similar to
what happens with in the HTTP decoded when extracting the
server host name from the ‘Host:’ HTTP header. With this
approach we can:

• Identify known services and tag them according to the
server name. For instance an encrypted communication
towards a server named ‘api.twitter.com’ is marked as
Twitter, ‘maps.google.com’ as Google maps, and
‘*.whatsapp.net’ as the WhatsApp messaging protocol.

 The application source code is available at https://svn.ntop.org/svn/ntop/trunk/nDPI/example/pcapReader.c1

• Discover self-signed SSL certificates. This information is
important as it might indicate that the connection is not safe,
not just in terms of data leak, but also in terms of the activity
behind the communication. For instance symmetric (i.e. the
traffic is not predominant in one direction such as in HTTPS,
where the client sends little traffic with respect to the traffic
sent by the server) long standing SSL connections with self-
signed certificates often hide SSL VPNs.

As described later in this section, nDPI contains internally a
configuration for many known protocols that are discovered
using the above technique. In addition, it is possible to add at
runtime a configuration file that further extends the set of
detected protocols so that new ones can be defined without
changing the protocol dissector. Please note that with the
advent of CDN (Content Delivery Networks) this is probably
the only way of identifying the application protocol, as at any
given time the same server (identified with a single IP address)
can deliver two different services provided by two customers
using the same CDN. As a fallback, nDPI can identify specific
application protocols using the IP address. For instance nDPI
detects many Apple-provided services such as iTunes and
iMessage, but in addition to that it marks as Apple (generic
protocol) all communications that have not been identified
more in details by the available dissector but that have been
exchanged with the Apple-registered IP addresses (i.e.
17.0.0.0/8).

B. Extending nDPI
As previously explained, nDPI users can define protocols

not just by adding a new protocol dissector, but also providing
a configuration file at runtime. The file format is the following.
Format:
<tcp|udp>:<port>,<tcp|udp>:<port>,.....@<proto>

tcp:81,tcp:8181@HTTP
udp:5061-5062@SIP
tcp:860,udp:860,tcp:3260,udp:3260@iSCSI
tcp:3000@ntop

Subprotocols
Format:
host:"<value>",host:"<value>",.....@<subproto>

host:"googlesyndacation.com"@Google
host:"venere.com"@Venere
host:"kataweb.it",host:"repubblica.it"@Repubblica

1. nDPI Configuration File.

New protocols are defined by name. When nDPI detects
that a protocol name is already defined (e.g. in the above
example SIP and HTTP are handled by the native dissector),
the configuration file extends the default configuration already
present in nDPI. For instance in the previous example,
whenever nDPI sees TCP traffic on port 81 or 8181 it tags it as
HTTP. Additionally, nDPI can also identify a protocol using
strings that are matched against metadata extracted from the
nDPI flow such as HTTP Host and SSL certificate server name.
The defined strings are stored on a automata based on the
Multifast library that implements string matching according to 2

the Aho-Corasick algorithm. This library is quite efficient: at
startup the automata creation takes little time (i.e. almost
instantaneous with tenth of strings, or some seconds with
hundred thousand strings), then this library configured
performs over 10 Gbps during search when configured with
hundred thousand strings.

IV. NDPI VALIDATION
There are recent papers that compare the nDPI accuracy in

terms of protocol detection against other DPI toolkits. Their
conclusion is that “nDPI and libprotoident were successful at
correctly classifying most (although admittedly not all) of the
applications that we examined and only one of the evaluated
applications could not be classified by both tools” [12], and
“the best accuracy we obtained from nDPI (91 points), PACE
(82 points), UPC MLA (79 points), and Libprotoident (78
points)” [5]. These tests have shown that nDPI is pretty
accurate, even more accurate than PACE, the commercial
version of the old OpenDPI library on which nDPI is based.
We are aware that nDPI had some false positives with Skype
and BitTorrent due heuristics use. In the latest nDPI versions
(svn revision 7249 or newer), we have decided to remove the
use of these heuristics, so that we have basically eliminated
false positives at the cost of slightly increasing the number of
undetected flows when using these two protocols.

As there are many extensive tests on nDPI protocol
detection accuracy, this paper focuses on nDPI performance.
To that end we have developed an application named
pcapReader that can both capture from a physical network 3

device and read packets from a pcap file. In order to test nDPI
on a physical network at 10 Gbps, we have used the test
application on top of PF_RING [16], which allows applications
on commodity hardware to process packets in RX/TX at 10
Gbps line rate for any packet size. For our tests we have used a
pcap file of over 3 million packets, captured on a
heterogeneous environment thus including both LAN protocols
(e.g. NFS and NetBios) and Internet protocols (e.g. Skype and
DropBox). We have used a PC running Ubuntu Linux 13.10
(kernel 3.11.0-15) on a 8 core Intel i7 860. We have bound the
application to a single core, in order to test it in the worst case,
and see how the application can scale when using multiple
cores. The test outcome is depicted below:
taskset -c 1 ./pcapReader -i ~/test.pcap

Using nDPI (r7253)

pcap file contains

IP packets: 3000543 of 3295278 packets

IP bytes: 1043493248(avg pkt size 316 bytes)

Unique flows: 500

nDPI throughout: 3.42 M pps / 8.85 Gb/sec

Guessed flow protocols: 82

1. nDPI Validation Test Outcome.

The outcome has demonstrated that the test application
processes packets at an average speed of 3.5 Mpps / 8.85 Gbps

 http://multifast.sourceforge.net2

 https://svn.ntop.org/svn/ntop/trunk/nDPI/example/pcapReader.c3

using a single core. As the test pcap file using during the test
has been captured on a real network, it contained some flows
that already begun at the time the packet capture started. nDPI
detects a flow protocol by looking at the initial flow packets, so
some flows are detected due to this reason. For undetected
flows, nDPI can guess the protocol by using the flow protocol/
port registered during startup or it can leave the flows
undetected. When using this test application over PF_RING
DNA on a 10 Gbps Intel adapter, it is possible to use the
network driver with hardware flow balancing. In this way we
can start one instance of the test application per virtual queue,
binding each instance to a different core. In sum 10 Gbps
traffic can be inspected when balanced across two cores (the
above tests show DPI at 8 Gbps using a single core) using the
modestly priced commodity hardware we used in our tests.

In terms of memory usage, nDPI needs some memory to
load the configuration and automata used for string-based
matching. This memory used by nDPI is ~210 KB with no
custom configuration loaded, that increases of ~25 KB when
the configuration in Figure 1, is loaded. In addition to that,
nDPI keeps per-flow information that is independent from the
application protocol that will be detected and that takes ~1 KB
per flow.

V. FINAL REMARKS
This paper has presented nDPI, an open source toolkit

released under GPLv3 license. It is currently able to detect
more than 170 protocols including Skype, BitTorrent, and other
messaging protocols. The validation test performed by third
parties has demonstrated that nDPI outperforms some
commercial and open-source toolkits in terms of protocol
recognition accuracy. In terms of performance, using two CPU
cores and commodity hardware, nDPI can handle a 10 Gbit
link fully loaded with Internet traffic. This makes it suitable for
scenarios where both detection accuracy and high performance
are a requirement.

CODE AVAILABILITY
This work is distributed under the GNU GPLv3 license and

is freely available in source format at the ntop home page
https://svn.ntop.org/svn/ntop/trunk/nDPI/ for both Windows
and Unix systems including Linux, MacOS X, and FreeBSD.
The PF_RING framework used during the validation phase is
available from https://svn.ntop.org/svn/ntop/trunk/PF_RING/.

ACKNOWLEDGMENT
Our thanks to Italian Internet domain Registry that has

greatly supported the development of nDPI, Alexander Tudor
< a l e x @ n t o p . o r g > a n d F i l i p p o F o n t a n e l l i
<fontanelli@ntop.org> for their help and suggestions.

REFERENCES
1. Cisco, Network Based Application Recognition (NBAR), 2008.
2. Palo Alto Networks, Next-Generation Firewall Overview, 2011.
3. S. Ubik, P. Zejdl, Evaluating application-layer classification using a

Machine Learning technique over different high speed networks. 2010
Fifth International Conference on Systems and Networks
Communications, IEEE 2010, pp. 387–391.

4. J. Li, S. Zhang, Y. Lu, Z. Zhang, Internet Traffic Classification Using
Machine Learning, Proceedings of CHINACOM ’07, August 2007.

5. T. Bujlow, V. Carela-Español, P. Barlet-Ros, Comparison of Deep Packet
Inspection (DPI) Tools for Traffic Classification, Technical Report,
Version 3, June 2013.

6. M. Dusi, F. Gringoli, and L. Salgarelli, Quantifying the accuracy of the
ground truth associated with Internet traffic traces, International Journal
of Computer and Telecommunications Networking, Vol. 55 Issue 5, 2011

7. S. Alcock, R. Nelson, Libprotoident: Traffic Classification Using
Lightweight Packet Inspection ,Technical report, University of Waikato.
http://www.wand.net.nz/publications/lpireport, 2013.

8. Clear Foundation, L7-filter, http://l7-filter.clearfoundation.com/.
9. T. Bujlow, T. Riaz, J.M. Pedersen, A Method for classification of

network traffic based on C5.0 Machine Learning Algorithm, in
proceedings of ICNC’12, pp. 244–248, February 2012.

10. N. Cascarano, L. Ciminiera, and Fulvio Risso, Optimizing Deep Packet
Inspection for High-Speed Traffic Analysis, Journal of Network and
System Management, 2011.

11. P.M. Santiago del Rio, D. Rossi, F. Gringoli, L. Nava, L. Salgarelli, J.
Aracil, Wire-speed statistical classification of network traffic on
commodity hardware, Proceedings of IMC 2012, 2012.

12. S. Alcock, R. Nelson, Measuring the Accuracy of Open-Source Payload-
Based Traffic Classifiers Using Popular Internet Applications, IEEE
Workshop on Network Measurements (WNM), 2013.

13. T. Bujlow, R. Tahir, J. Myrup Pedersen, A method for classification of
network traffic based on C5. 0 Machine Learning Algorithm,
Proceedings of ICNC 2012, 2012.

14. R. Goss, R. Botha, Deep Packet Inspection—Fear of the unknown,
Proceedings of ISSA 2010, 2010.

15. M. Avalle, F. Risso, R. Sisto, Efficient Multistriding of Large Non-
deterministic Finite State Automata for Deep Packet Inspection,
Proceedings of ICC 2012, 2012.

16. F. Fusco, L. Deri, High Speed Network Traffic Analysis with
Commodity Multi-core System, Proceedings of IMC 2010 Conference,
November 2010.

17. Y. Wei, Z. Yun-feng, L.Guo, Analysis of Message Identification for
OpenDPI, Computer Engineering, 2011.

18. A. Dainotti, W. de Donato, and A. Pescapè, Tie: A Community-Oriented
Traffic Classification Platform, Traffic Monitoring and Analysis, 2009.

19. S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and M. Mel-
lia, Reviewing Traffic Classification, Data Traffic Monitoring and
Analysis, 2013.

20. T. T. T. Nguyen and G. Armitage. A Survey of Techniques for Internet
Traffic Classification using Machine Learning, IEEE Communications
Surveys & Tutorials, 2008.

21. M. Mellia, A. Pescapè, L. Salgarelli, Traffic Classification and its
Applications to Modern Networks. Computer Networks, 2009.

22. F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus.
Lightweight, Payload-based Traffic Classification: An Experimental
Evaluation, Proceedings of IEEE ICC ’08, 2008.

23. S. Kumar, P. Crowley, Algorithms to Accelerate Multiple Regular
Expressions Matching for Deep Packet Inspection, Proceedings of
SIGCOMM ’06, 2006.

24. A. R. Khakpour, A. X. Liu. High-Speed Flow Nature Identification,
Proceedings of ICDCS ’09, 2009.

25. H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, K. Lee.
Internet Traffic Classification Demystified: Myths, Caveats, and the Best
Practices, Proceedings of ACM CoNEXT 2008, 2008.

26. G. Aceto, A. Dainotti, W. d. Donato, A. Pescapè, Portload: Taking the
Best of Two Worlds in Traffic Classification, Proceedings of INFOCOM
IEEE Conference 2010, 2010.

27. N. Cascarano, P. Rolando, F. Risso, and R. Sisto, Infant: NFA Pattern
Matching on GPGPU Devices, Computer Communication Review,
2010.

28. M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli, Traffic Classification
Through Simple Statistical Fingerprinting. ACM SIGCOMM Computer
Communication Review, January 2007.  

