Preforming Gather/Scatter Operations On A 2D Grid Using Tensor Contractions and CTF

Peter Tatkowski

Laboratory for Parallel Numerical Algorithms Department of Computer Science University of Illinois at Urbana-Champaign

July 27, 2017

イロト イポト イヨト イヨト

Outline

- Background Knowledge
- Problem Statement
- Motivation

2 Technical Details

- Grid Structure
- Edge Conectivity
- Tensor Contractions
- Correctness Check
- Scaling and Summary
 - Scaling
 - Summary

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

Background Knowledge Problem Statement Motivation

Finite Element Methods

- Numerical method for solving problems of engineering and computional physics
- Involves taking a mesh and splitting it into many elements
 - Makes what used to be solving complicated differential equations rather easy to approximate
- This has many advantages
 - Accurate representation of complex geometry
 - Easy representation of the total solution
 - Capture of local effects
- Spectral Element Methods are similar to Finite Element Methods, except that they use different nodes and different differential equations

ヘロト ヘワト ヘビト ヘビト

Background Knowledge Problem Statement Motivation

Unstructured Grids

- I will focus on unstructured grid setup
 - This means that any individual element can be connected with any other element along its edges
 - Grid may be disconnected
- This kind of setup allows us to take into account lots of different grid possibilities

イロト イポト イヨト イヨト

Background Knowledge Problem Statement Motivation

Figure 1: An example of a Finite Element Method

Peter Tatkowski Gather/Scatter and CTF

Background Knowledge Problem Statement Motivation

Figure 2

Figure 2: 2 elements with n = 3 degrees of freedom

Deville, M.O., Fischer, P.F., Mund, E.H. (2002) *High-Order Methods for Incompressible Fluid Flow.* New York, NY: Cambridge University Press.

Background Knowledge Problem Statement Motivation

Boundary Conditions

- When preforming a Finite Element Method in 2D on an unstructured grid, certian degrees of freedom repeat themselves
 - This replication happens because of a particular approach taken where it is highly convinient
- For each element:
 - The edges can repeat at most twice
 - The corners can repeat an infinite amount of times
- Is there a way to account for this repetition using tensor contractions?

ヘロト ヘワト ヘビト ヘビト

Background Knowledge Problem Statement Motivation

Figure 3: Regular Grid

Peter Tatkowski Gather/Scatter and CTF

Background Knowledge Problem Statement Motivation

Figure 4: Irregular Grid

Peter Tatkowski Gather/Scatter and CTF

Background Knowledge Problem Statement Motivation

Problem Statement

- After computing calculations on individual degrees of freedom in each element, can we find an effecient way to sum up each degree of freedom's neighbors using tensor contractions?
- Also, how does this scale with multiple processes?
- More focused on long term preformance rather than short term setup
- Key idea: since internal degrees of freedom don't have any neighbors, we can effectively ignore them in our calculations.
 - We can reduce the tensor, as shown in the details later

ヘロト ヘワト ヘビト ヘビト

Background Knowledge Problem Statement Motivation

Motivation

- Finite Element Analysis is used with many engineering applications
 - Computational fluid dynamics
 - Car crash simulation
 - Several chemical, fluid, structural applications as well
- Focus on implementing a simple, algebaic approach to the problem with tensor contractions. Advantageous because:
 - Simple to implement and understand
 - Can be computed with different meshes quickly
 - Easy to implement the methods using high-level linear algebra programming abstractions (like CTF)
 - Easy extension to higher dimensional domains

・ロト ・回ト ・ヨト ・ヨト

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Tensor Implementation of Grid

- The grid *u* has dimensions *elems*, *n*, *n*
 - elems is the number of finite elements in the grid
 - *n* is the number of degrees of freedom in each direction of the mesh
- Grid is this shape because it is unstrucuted
 - Each wall can connect to only one other wall
 - Each corner can have any number of neighbors
- Tensor can be filled with double values

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Element Connectivity

- We need some way to determine connectivity between elements
- First, number all elements in the mesh from [0, elems 1]
- We allocate a global array of dimension elems, 4
 - This shape allows us to account for each element and each of its respective four edges
 - This array allows us to determine each element's neighbors
 - If an index contains a natural number, the current element's corresponding wall neighbors the other element referenced by the index
 - If an index contains a negative number, the current element's corresponding wall doesn't neighbor anything

イロト イポト イヨト イヨト

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Implicit Numbering

- The walls and corners in the tensor have an implicit numbering to them based on its coordinates in the *u* tensor
- This numbering will make it easier to not only compute wall-wall connectivity, but also corner connectivity as well
- It is importaint that this numbering is maintained within the grid, or else this method doesn't work
 - Several checks in place in the code to make sure that the mesh is correctly structured

イロト イポト イヨト イヨト

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Figure 5

Figure 5: How Walls Were Implicitly Defined

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Wall Connectivity In The Mesh

 Each wall can only connect with a certain set of other walls, as indicated below:

0	1	2	3
1	0	0	1
2	3	3	2

- This is because the degrees of freedom will be backwards if this is not honored
- User just has to make sure that all elements have this connectivity between other elements, works for all 2D meshes

・ロット (雪) () () () ()

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

General Form For Contractions

• We want to achieve a result like this for both the corners and the walls:

$$egin{aligned} & U_{walls} = m{P}_{walls}^{ au} G_{walls} m{P}_{walls} m{U}_{orig} \ & U_{corners} = m{P}_{corners}^{ au} G_{corners} m{P}_{corners} m{U}_{orig} \end{aligned}$$

$$u = u_{orig} + u_{walls} + u_{corners}$$

- Each P tensor takes respective elements out of u_{orig}
- Each G tensor adds up shared elements

ヘロト ヘ戸ト ヘヨト ヘヨト

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Wall Gather Operation

• The form of the *u_{walls}* contraction is:

$$u_{ijk} = P_{cdzjk} G_{iwabcd} P_{abzxy} u_{wxy}$$

- These tensors have shapes:
 - *P*: 2, 2, *n*, *n*, *n*
 - G: elems, elems, 2, 2, 2, 2
- G_{iwabcd} contains 1 iff wall (c, d) of element i borders wall (a, b) of element w
 - This is simple one to one mapping: (0,0) = 0, (0,1) = 1, (1,1) = 2, (1,0) = 3

ヘロト ヘアト ヘビト ヘビト

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Wall Gather Operation

 $u_{ijk} = P_{cdzjk} G_{iwabcd} P_{abzxy} u_{wxy}$

- *P_{abzxy}* contains 1 iff the wall corresponding to *a*, *b* is properly indexed by either *x* or *y*, and the one that it is not indexed by has the same value as *z*. For example, on an *n* = 3 grid:
 - *P*_{0,0,1,1,2} would be one because index 1, 2 is on wall 0 (0,0), and indicies *z*, *x* match
 - *P*_{1,0,2,0,2} would be one because index 0, 2 is on wall 3 (1,0), and indicies *z*, *y* match
 - P_{0,1,1,1,2} would be zero because index 1, 2 is on wall 0 (0,0), but the index is supposed to be on wall 1 (0,1)
- *P_{abzxy}* reduces the tensor to just be its walls, while *P_{cdzjk}* brings the tensor back to its original shape (*elems*, *n*, *n*)

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Corner Gather Operation

• The Form of the *u*_{corners} contraction is:

$$u_{ijk} = P_{ak}^{(1)} P_{aj}^{(2)} G_{iwab} P_{bq}^{(2)} P_{br}^{(1)} u_{wqr}$$

- The shapes of these tensors are:
 - $P^{(1)}, P^{(2)}: 4, n$
 - G: elems, elems, 4, 4
- *G_{iwab}* contains 1 iff corner *a* of element *i* borders corner *b* of element *w*

ヘロト ヘアト ヘビト ヘビト

1

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Corner Gather Operation

$$u_{ijk} = P_{ak}^{(1)} P_{aj}^{(2)} G_{iwab} P_{bq}^{(2)} P_{br}^{(1)} u_{wqr}$$

- $P_{br}^{(1)}$ brings each element of *u* to its left and right walls, which are repeated twice
- *P*⁽²⁾_{bq} reduces this even further, reducing the left and right walls to their first and last elements
 - This reduces every element of *u* to its corners in a 2, 2 grid
- After G_{iwab} preforms its operation on u, $P_{ak}^{(1)}P_{aj}^{(2)}$ brings u back to its original form, *elems*, *n*, *n*

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Filling The Corner Gather Tensor

- So far, we have only wall to wall connectivity
- How do we achieve corner connectivity with just wall connectivity?
- If the grid is set up correctly, the corner connectivity can be discovered using an algorithm to traverse the walls in O(elems²), Ω(elems) time
 - Not necessarily a tight upper bound, but tight lower bound, depends on grid sturucture

ヘロト ヘ戸ト ヘヨト ヘヨト

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

The Algorithm

Algorithm For Corner Traversal

Algorithm 1 Corner Neighbor Gather		
1:	procedure Corner Traversal	
2:	let $cornerarr \leftarrow length 4$	
3:	let $edges \leftarrow$ wall connectivity	
4:	loop i through all corners:	
5:	let $cornerarr[i] \leftarrow mutable vector$	
6:	let $traversepos \leftarrow current corner$	
7:	let $currelem \leftarrow original element$	
8:	while $edges[currelem][traversepos] \neq origelem do$	
9:	let $newelem \leftarrow edges[currelem][traversepos]$	
10:	if <i>newelem</i> is negative then Break	
11:	let $lastelem \leftarrow edges[origelem][(i+1) \mod 4]$	
12:	if Not first iteration and newelem \neq lastelem then	
13:	push newelem to cornerarr[i]	
14:	$currelem \leftarrow newelem$	
15:	$traversepos \leftarrow traversepos + 3 \mod 4$	

€⇒

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

- This algorithm, if done over all corners, produces a *elems*, 4, *vector* array, where the *vector* index can be of variable length
 - The variable length accounts for the variable amount of elements one corner can connect to
- This algorithm is then used to fill the *G_{corners}* tensor, by filling the appropriate indicies with 1
- Future work will involve a tensor-based version of this algorithm, allowing for maximum parallelization

・ロト ・回ト ・ヨト ・ヨト

Grid Structure Edge Connectivity Tensor Contractions Correctness Check

Correctness Check

- The gather operation was tested by comparing every index in our calculated tensor with what the values should have been
- The true values were computed by adding up adjacent walls, and the corners were evaluated using a similar method to filling the gather corner tensor.
- Meshes tested were Figure 4 and also a larger version of Figure 3, both of which passed

ヘロト ヘアト ヘヨト ヘ

Scaling Summary

Scaling

- Currently small scale testing being preformed right now
 - Mainly done with changing the number of elements and degrees of freedom
 - Changing number of elements, *elems*, changes run time more drastically than changing number of degrees of freedom, *n*
- Will test scalability with multiple processes on Blue Waters in the forseeable future

イロト イポト イヨト イヨト

Scaling Summary

Summary

- Two tensor contractions preform the gather operation
- Operation can be preformed efficently in parallel
- Designed for many contractions, so setup time can be overlooked
- Outlook
 - Tensor version of Algorithm 1
 - Test scaliability of this method on Blue Waters
 - Transition this method over to 3D

æ