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Multiquantum vortices in superconductors:
Electronic and scanning tunneling microscopy spectra
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Superconducting quasiparticle excitation spectra are computed form times quantized flux lines using a
self-consistent Bogoliubov–de Gennes approach. We findm discrete branches of bound-state solutions in the
spectrum, corresponding to different values of the quasiparticle angular momentum. Owing to the bound states,
the scanning tunneling microscopy spectrum of the vortex is predicted to displaym rows of peaks as a function
of the distance from the vortex axis.@S0163-1829~99!04345-3#
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Multiply quantized vortices~MQV! have been observe
using electron holography in type-I superconducting t
films at high magnetic fields,1 confirming earlier theoretica
predictions.2 MQV’s can also be formed in high-temperatu
superconductors having columnar or large pointlike defe
as pinning centers,3 and such structures have been argued
be stable in conventional type-II superconductors with attr
tive columnar defects.4 Multiquantum vortices, imaged with
optical interferometry,5 are also found in thin films of rotat
ing superfluid4He. In rotating bulk superfluid3He, continu-
ous doubly quantized vortices were first detected in theA
phase using NMR.6,7 Moreover, singular doubly quantize
vortices with superfluidA1-phase cores have been predict
to occur in theB phase at high angular velocities.8

Quantum-mechanical tunneling has provided crucial
periments on bulk superconductivity. Lately, scanning tu
neling microscopy~STM! has enabled the first nanosca
measurements of superconductivity. This probe of mesos
structures, or scanning tunneling spectroscopy, has reve
fine details within vortex cores.9 The Bogoliubov–de Genne
~BdG! approach10 restricted to bound electronic excitation
has been applied to account for these features.11 Especially,
the self-consistent method12 facilitated the interpretation o
STM data on singly quantized flux lines and gave an impe
to the renaissance of the wave-function description of in
mogeneous superconductivity.13

In this paper the self-consistent BdG method is gene
ized to multiquantum vortices ins-wave superconductors
We solve the ensuing equations with a fast numer
scheme, allowing us to compute these structures for ph
cally important ranges of parameters inaccessible to prev
authors. We determine the spatial variation of the s
consistent superconducting pair potential, the magnetic v
tor potential, the supercurrent and the full electronic sp
trum. In particular, an STM signature characteristic
multiquantum vortices is predicted.

We consider an isolated vortex line withm flux quanta,
oriented along thez axis of a cylindrical coordinate system
(r ,u,z). We assume isotropics-wave pairing, and a Ferm
surface rotationally invariant about the vortex axis. Hen
the system possesses a cylindrical symmetry which, in
gauge where the pair potentialD(r )5uD(r )ue2 imu, allows
the quasiparticle coherence amplitude to be expressed a
PRB 600163-1829/99/60~21!/14581~4!/$15.00
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c j~r !5S uj~r !

v j~r !
D 5eikzzei (m2szm/2)u f̃ j~r !. ~1!

Here sz is the Pauli matrix andf̃ j (r ) a two-component
spinor, the indexj labeling different quantum states. Th
quasiparticle angular momentum quantum numberm is an
integer for evenm and half an odd integer for oddm.10

Ansatz~1! yields radial BdG equations
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erAu~r !
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2kF
21

mr

mz
kz

2J f̃ j~r !1sxD~r ! f̃ j~r !5Ej f̃ j~r !, ~2!

where A(r )5Au(r ) û is the magnetic field vector potentia
andkF the Fermi wave number. The contribution of the on
particle potential is modeled by choosing appropriate eff
tive massesmr and mz , in the plane perpendicular to th
vortex axis and along it, respectively, and subsuming its c
stant contribution into the Fermi energy. The potentialsD
andA are determined from the implicit self-consistency co
ditions

D~r !5g (
0<Ej<ED

uj~r !v j* ~r !@122 f ~Ej !#, ~3a!

j ~r !5
e\

m (
j

Im$ f ~Ej !uj* ~r !D~r !uj~r !

1@12 f ~Ej !#v j~r !D~r !v j* ~r !%, ~3b!

whereg is the effective electron-electron coupling constanf
the Fermi function,ED5\vD the Debye cutoff,j (r ) the su-
percurrent density, andD(r )5“2( ie/\c)A(r ) the gauge
covariant derivative.

Following Gygi and Schlu¨ter,12 we solve Eq.~2! in a cyl-
inder of radiusR applying an iterative scheme: At each i
eration step, new potential functions are calculated us
Eqs. ~3a! and ~3b!, combined with Maxwell’s equation
¹3¹3A5(4p/c) j , until convergence is achieved. The r
dius R is chosen large enough for finite-size effects to
14 581 ©1999 The American Physical Society
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14 582 PRB 60BRIEF REPORTS
negligible, and in particular much larger than the cohere
lengthj and the magnetic-field penetration depthl. We use
a finite-difference method to transform Eq.~2! into an eigen-
value problem. Eigensolutions below the Debye cutoff
calculated employing the Lanczos method.14 The computing
time scales withN, the number of discretization lattic
points, only approximately linearly. This is to be contrast
with the Bessel function expansion method applied in Re
12 and 15, leading to a computing time scaling as (Nd)p with
p'3; hereNd is the number of degrees of freedom in t
discretization. This difference in scaling implies superior
of our method for largekFR.16

The materials parameters in our computations were c
sen appropriate for NbSe2. We assumed a cylindrical Ferm
surface (mz@mr), so that thekz dependence in Eq.~2! may
be neglected. We chose a Debye cutoffED53.0 meV, an
effective mass mr52me , and a Fermi energyEF

FIG. 1. Self-consistent electronic excitations in an axisymme
vortex with m54 flux quanta~cf. Ref. 1, Fig. 16!. Quasiparticle
amplitudesu(r ) andv(r ) are denoted with blue and red curves,
the respective eigenenergies. The corresponding pair potentialD(r )
is indicated with the dotted curve~cf. Fig. 2!. Bound states with~a!
m52, ~b! m5100, and a scattering state for~c! m52.

FIG. 2. Iterated self-consistent pair potentials for axisymme
multiquantum vortex lines withm52, . . . ,8 atT51.5 K. The sin-
gly quantized vortex structure~dashed! agrees with the calculation
of Ref. 12. In the quantum limitT→0, the pair potentials~Refs. 15
and 20! differ qualitatively from the Ginzburg-Landau form; her
these features are barely distinguishable.
e
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537.3 meV corresponding to velocityvF58.13106 cm/s.
The coupling constantg was chosen to correspond to a bu
energy gap ofD`[D(r 5R)51.12 meV and a critical tem-
peratureTc'7.4 K. These values, especially that of the e
fective mass, are not optimized to the experimental data
singly quantized vortices;9 however, we argue that qualita
tively the results remain invariant within a wide range
parameter values.17

The radius of the domain was set toR56000 Å, twice
the value used in Ref. 12. The supercurrent density ca
lated from Eq.~3b! was fitted at a radiusr c , where the self-
consistent current density has decreased to 2.5% of its p
value, to a general Ginzburg-Landau formCK1(r /l); here
K1 is the modified Bessel function,C a constant to be deter
mined, andl the penetration depth calculated for the sing
quantized vortex using a fitting interval of 500 Å.18

Results of self-consistent calculations at the tempera
T51.5 K are shown in Figs. 1–4. Figure 1 displays the a
plitudes u(r ), v(r ) of three quasiparticle eigenstates in
vortex with m54 flux quanta. States~a! and ~b! are expo-
nentially decaying bound states belowD` while ~c! is a scat-
tering state. On the vortex axis, the amplitudes behave
ymptotically as u(r );r um2m/2u and v(r );r um1m/2u. They
display maxima at approximatelyr .umu/kF , in accordance
with the angular momentum of the states. The self-consis
pair-potential amplitudesD(r ) for m52, . . . ,8 flux quanta
are presented in Fig. 2. Our results are in accordance with
asymptotic Ginzburg-Landau formD(r );r m (r &j); how-
ever, quantum effects manifest at low temperatures20 are dis-
cernible already atT51.5 K considered here.

Figure 3 shows parts of the self-consistent energy spe

c

c

FIG. 3. Parts of the computed discrete self-consistent ene
spectra for quasiparticles in vortices with~a! m54 and ~b! m55
flux quanta. Note them discrete branches of bound states belo
D`51.12 meV.



e
e STM

PRB 60 14 583BRIEF REPORTS
FIG. 4. Computed tunneling conductances for vortex lines withm52, 3, and 4 flux quanta exhibitm rows of peaks as functions of th
radial distancer from the vortex axis, in triangular patterns. This predicted structure and number of the tunneling maxima in th
conductance spectrum would serve as a fingerprint for the number of flux quanta enclosed by a vortex line.
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calculated for flux lines withm54 and 5 flux quanta. They
exhibit an interesting feature which we argue to hold gen
ally: the quasiparticle spectrum for a vortex line withm flux
quanta has exactlym bound-state branches, for fixedkz , as a
function of m. We have checked this numerically form
51, . . . ,20with various parameter values. This characteris
can also be derived analytically: Generalizing the calculat
of Bardeenet al.19 ~based on the WKBJ approximation! to
multiply quantized vortices, one finds that the values ofm
where the bound-state branches cross theE50 axis for kz
50 are given approximately as

m.kFr D cosF S 1

2
1 l D p

mG ; l 50,1, . . . ,bm21

2 c. ~4!

Here r D is the half depth radius of the pair potential well
the core, andb c denotes rounding downwards to the prece
ing integer. In the detailed derivation,20 the potential well is
assumed to be steep. Formula~4! yields the locations of the
branches in agreement with our self-consistent calculatio
except for the outermost branches for largem. More impor-
tantly, Eq. ~4! predicts the total number of the branches
equalm. It is to be noted that this property in no way d
pends on the exact form of the pair potential, as long asr D is
not too small.

Them bound-state branches of the quasiparticle spect
lead to a peculiar multipeak structure in the tunneling c
ductance, that we suggest to be measured with STM exp
ments. The computed differential conductance12

]I

]V
}2(

j
$uuj~r !u2f 8~Ej2eV!1uv j~r !u2f 8~Ej1eV!%,

~5!

where V is the bias voltage, is presented in Fig. 4 for t
multiquantum flux lines withm52, 3, and 4~see Ref. 12
for m51). The conductance maxima arise from the struct
of the bound-state branches in the corresponding en
spectra: as noted above, the quasiparticle probability am
tudesuu(r )u2 and uv(r )u2 have maxima atr .umu/kF , while
the derivative of the Fermi function is peaked at zero ener
Hence, for given (r ,V), the principal contribution to the tun
neling conductance originates from states with (umu,E)
r-
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m
-
ri-

e
gy
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5(kFr,ueVu). In the bound-state region, there usually is only
single state satisfying this condition, but for certain (r ,V)
there occur two such states, situated symmetrically aboum
50. This results in local maxima in the differential condu
tance. On the other hand, for states withE'0, both theu
andv components of the quasiparticle amplitudes contrib
to the conductance at the same point, also giving lo
maxima; this explains the prominent peaks at (r ,V)5(0,0)
for oddm. Altogether, them bound-state branches generate
wedge-shaped pattern of maxima in the differential cond
tance, consisting ofm rows of peaks as a function ofr.21

These are clearly displayed in Fig. 4.
In bulk superconductors, multiquantum vortices can

stabilized by columnar defects.22 We have also studied th
effect of such material inhomogeneities on the electro
structure of vortices, finding that the predicted qualitati
features of STM spectra are essentially modified only in
sulating regions of the defects. Especially, for defects w
normal metallic conductivity the multipeak STM signatu
remains. The results are expected to be relevant also for m
tiquantum vortices in thin films of type-I materials, for whic
the homogeneity approximation can be essentially comp
sated by using effective materials parameters of type-II
perconductors. Experimental observations of multiquant
vortices has been difficult due to the requirement of simu
neous high spatial resolution and magnetic-flux sensitivity
the measurements.1 However, we propose that the magne
flux of multiquantum vortices can in fact be counted fro
the predicted tunneling peaks exactly, merely using the
cellent spatial resolution of scanning tunneling microscop

In conclusion, we have solved the Bogoliubov–de Gen
equations numerically for axisymmetric multiply quantize
vortices using a fast computational scheme. The energy s
trum for vortices with m flux quanta exhibits exactlym
bound-state branches as a function of the quasiparticle a
lar momentum; we argue this to be valid generally. The s
cific structure of the bound-state part of the spectrum lead
a characteristic multipeak structure in the computed differ
tial conductance. We suggest an experimental search
these distinct STM fingerprints of multiquantum vortices.

We thank the Academy of Finland for support.
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