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Abstract—Bloom filters and their variants are widely used
as space efficient probabilistic data structures for representing
set systems and are very popular in networking applications.
They support fast element insertion and deletion, along with
membership queries with the drawback of false positives. Bloom
filters can be designed to match the false positive rates that
are acceptable for the application domain. However, in many
applications a common engineering solution is to set the false
positive rate very small, and ignore the existence of the very
unlikely false positive answers. This paper is devoted to close
the gap between the two design concepts of unlikely and not
having false positives. We propose a data structure, called EGH
filter, that supports the Bloom filter operations and besides it can
guarantee false positive free operations for a finite universe and a
restricted number of elements stored in the filter. We refer to the
limited universe and filter size as the false positive free zone of the
filter. We describe necessary conditions for the false positive free
zone of a filter and generalize the filter to support listing of the
elements. We evaluate the performance of the filter in comparison
with the traditional Bloom filters. Our data structure is based
on recently developed combinatorial group testing techniques.

I. INTRODUCTION

Bloom filter [1] and its variants [2]–[6] are widely used data
structures allowing for an approximate representation of a set
S to answer membership queries of the form: is an element
x in S? Their immense popularity is due to enabling highly
versatile and seemingly endless application opportunities for
membership testing, along with a nice trade-off among running
time, space, error probability and implementation complexity.
Their many computer and networking applications include
caching, filtering, monitoring, data synchronization [7]–[12].

A traditional Bloom filter (BF) is a binary array of length
m used to represent a set S, offering insertions and queries,
both of which are carried out by setting/checking only a small
number k of the m bits, where k � m [1]. The BF is initial-
ized with all bits set to zero. It has k hash functions, all of
which hash elements uniformly and independently in the range
{1, . . . ,m}. In an insertion of an element x, the hash values
h1(x), h2(x), . . . , hk(x) are computed and the corresponding
bits are set to 1. If a bit is already set to 1 then it must
remain set. Querying whether an element y is in S is carried
out by computing the hash values h1(y), h2(y), . . . , hk(y) and
checking if they are all set to 1. If so, then the query returns
that y ∈ S, otherwise it returns y /∈ S. The functionality
can be extended to support deletions by trading the bits for
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Fig. 1: The boundaries of the false positive free zone (FPFZ,
below the curves) of the EGH filter depending on the size of
the universe n and number of elements in the filter d. Data
structure size is m bits.

appropriately sized counters in a variant called the Counting
Bloom Filter (CBF) [2]. By incorporating extra KEYSUM
and VALUESUM fields to accompany each counter, a scheme
named the Invertible Bloom Lookup Table (IBLT) [13] allows
for listing the items through looking for entries with a single
element and extracting them one by one.

By their very nature Bloom filters may give a false positive
answer to a query operation, becoming probabilistic in this
sense. A false positive occurs when all the hash values
h1(y), h2(y), . . . , hk(y) for some element y are set to 1 due
to some other elements, even though y itself has not been
previously inserted. Generally speaking, when tuning a Bloom
filter one estimates the number of items n to be stored in the
filter and chooses an appropriately low false positive proba-
bility p. Given these the number of hash functions k can be
computed and more importantly, the required filter length m.
While storing a fixed number of elements, increasing the filter
length reduces the possible false positive probability obtained
for the corresponding optimal number of hash functions.

In practice, focusing on its great space savings and easy
computation, the very small false positive probability of the
Bloom filter is often ignored and simply regarded as none,
making the Bloom filter a practically false positive free
structure. However, it is only almost false positive free, and
false positive can occur and might cause difficulties in the
application. With that motivation we explore the idea: could
we define some conditions, under which the filter is
guaranteed to avoid false positives?

Generally, Bloom filters can cope with a finite or infinite



universe through using hash functions that map elements to
positions in the range {1, . . . ,m}. Clearly, a strict requirement
to avoid false positives must restrict the universe to be finite
(a limited size memory cannot distinguish between infinite
subsets of elements of an infinite universe). Moreover, the
possibility to satisfy this requirement is affected by the number
of elements being held in the filter. For simplicity the universe
is restricted to U = {1, . . . , nd} for the case when false
positives are guaranteed to be avoided until at most d elements
are in the filter. In other words, if at most d elements from
{1, . . . , nd} are inserted in the filter we can be sure there are
no false positives for queries of elements from {1, . . . , nd}.
Various values of d allow different maximal universe size nd.
We refer to it as the false positive free zone of the filter (see
also Fig. 1). Note that d is assumed to be a small number, e.g.
O(log n).

In this paper we describe necessary conditions for the false
positive free zone of a filter, and propose an alternative hash-
based scheme for Bloom filters which can guarantee a false
positive free zone. The main idea is to show the analogy
between the BF and the widely studied problem of non-
adaptive Combinatorial Group Testing (CGT), where the goal
is to identify up to d defective elements among a given range of
items {1, . . . , nd} through as few group tests as possible. Our
hash function alternatives require less computational cost than
traditional hash functions, as they are just a simple modulo
division by a prime number. We call the resulting data structure
the EGH filter (or shortly EGHF), as it is an adaptation of
the combinatorial group testing method described by Eppstein,
Goodrich and Hirschberg [14]. First we investigate the basic
version of the filter, which supports insertions and queries only,
and we focus later on the more general Counting Bloom Filters
that can also delete elements. We propose a fast algorithm for
listing the elements in the false positive free zone through
a more advanced construction. It is based on some advanced
algebraic computations and runs in O(poly(d log(nd))) steps1,
where d is the number of elements in the represented set. Its
main idea is to define a system of equations where the roots
will be the elements in the filter. The equations are the residues
of elementary symmetric polynomials, and the roots can be
found with the Bisection method and the Sturm chain. Finally,
we evaluate the false positive free zone of the EGH filters of
practical sizes. A space and running-time analysis is provided
to measure the performance of the EGH filter compared to a
traditional BF.

The rest of the paper is organized as follows. Section VI
details use cases focusing on networking applications. Next,
Section III defines the model of the work. Then in Sections IV
and V we propose the solutions that have a false positive free
zone. Section II overviews related work. In Section VIII we
evaluate the performance of the proposed constructions and
finally Section IX concludes the paper.

1Throughout this paper log denotes logarithm of base 2.

II. RELATED WORK

A. Background

This paper focuses on a data structure that supports proba-
bilistic membership testing, similar to Bloom filters, and has
a false positive free zone with a restriction on the number of
elements in the filter. In order to describe the novelty let us
define the two widely investigated problems our data structure
jointly solves. First, Bloom filters consider the following
problem.

PROBABILISTIC MEMBERSHIP(p,m, k): Given a set S
which is a subset of a (finite or infinite) universe
U , design a data structure on m bits such that
membership queries of the form ”x ∈ S” can be
answered using k bitprobes with the probability of
false answers p.

Second, static membership testing is a deterministic data
structure on a finite number of elements in the universe. This
subproblem we are facing in the false positive free zone.

STATIC MEMBERSHIP(d, n,m, k): Given a set S with at
most d elements, where S is a subset of a finite
universe U = {1, . . . , n}, design a data structure on
m bits such that membership queries of the form
”x ∈ S” can be answered using k bitprobes without
giving false answers if |S| ≤ d.

Adapting the notation of prior work [16]–[18], a
(d, n,m, k)-scheme is a storage scheme that stores any d
elements of an n-bit-sized universe using m bits such that
membership queries can be answered using k probes. Such
a scheme can be either adaptive or non-adaptive, depending
on whether during the execution of a query the results of
previous bit probes can be taken into account or not while
determining the later probes, respectively. In this work we
consider non-adaptive schemes. For an arbitrary deterministic
non-adaptive scheme we denote the minimum space m needed
for a (d, n,m, k)-scheme to exist by m(d, n, k), where false
positives are not allowed.

B. Previous Results in Probabilistic Membership Problem

First let us mention randomized schemes dealing with the
static membership problem. A number of papers consider this
problem [19], [20], for a survey we refer the reader to [18].

Bloom filters and their variants [1]–[6] are by far the most
popular data structures allowing an approximate representation
of S. In Bloom filters to achieve an optimal false positive rate
p the number of hash functions k is proportional to log 1

p .
In [21] Bloom filters were improved to make k a constant
number independent of p.

Other solutions that use hashing for the static membership
problem have been proposed, including hash compaction [22],
cuckoo hashing [23] and multiset-representation [21].

The functions used by the EGH filter were previously
investigated in [24] for a fundamentally different goal of
reducing the computation time of the hash functions at lookup.

The functionality of a Bloom filter can be extended to
support deletions by trading the bits for appropriately sized
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counters [2], called Counting Bloom Filter (CBF). By incor-
porating extra cells to accompany each counter one can also
achieve listing of the items [13].

C. Previous Results in Static Membership Problem

The related solutions based on the above characteristics are:
In recent years a lot of work has been focused on the special

cases when either d or k is small. The capabilities of very few
bit probes are explored in [25] and [26]. A summary of most
of these results can be found in the survey [18].

There exist a number of deterministic schemes solving the
static membership problem. The most famous is the Fredman-
Komlós-Szemerédi scheme [27], that can perform queries
in a clearly optimal O(1) time in the word-RAM model.
However, it requires O(n) space, that can be much larger than
O(d2 log n) for small d.

In general, this design problem is also often called combi-
natorial group testing (CGT) in the literature [28]. The idea
of group testing dates back to World War II when millions of
blood samples were analyzed to detect syphilis in US military.
In order to reduce the number of tests it was suggested to pool
the blood samples. The problem is called non adaptive CGT
if the probing is performed simultaneously without knowing
the result of other tests. The goal is to identify defective items
among a given set of items through as few tests as possible.
The special case d = 1 is called a separating system [29]. The
problem to find exactly d defectives is to design d-separable
matrices [28]. A dual notion in combinatorics is called d-
cover-free families [30], [31], superimposed codes or ZFDr

codes [32]. Finding up to d items is related to the design of
d-disjunct matrices [28].

III. PROBLEM DEFINITION: IDENTIFYING ELEMENTS
THROUGH GROUP TESTING

In this paper we deal with two variants of functionality: the
basic EGH filter should support insert and query; while the
advanced EGH filter should support insert, query, delete and
list.

Definition 1: The data structure filter can store a set of
elements of the universe U in a binary array of m bits, where
a set of functions hi : U → {1, . . . ,m} for i = 1, . . . , k are
used to represent each element x.

Inserting an element x ∈ U in a filter S means setting the
bits at positions h1(x), h2(x), . . . , hk(x) to one.

Querying whether an element y is in S means returning
y ∈ S if bits at positions h1(y), h2(y), . . . , hk(y)
are all set to 1, otherwise returning y /∈ S.

The code of the element x is an m bit long binary vector
with ones only in positions hi(x) for i = 1, . . . , k. We say
that a code of element y is contained in the filter if the
filter has bit 1 at positions hi(y) for i = 1, . . . , k. Filters
can provide O(1) lookup-per-operation complexity in the bit-
probe model. In the traditional Bloom filter the functions
his are pseudo-random hash functions. In the EGH filter
having a false positive-free zone we replace {h1, h2, . . . , hk}
with functions {ĥ1, ĥ2, . . . , ĥk} such that there is no false

positive in the membership testing for a given finite universe
Ud = {1, . . . , nd} as long as the number of elements stored
in the filter is not greater than a pre-defined threshold d.
Formally:

Definition 2: The false positive free zone of a filter allows
a universe of size nd for d = 1, . . . , dmax, if for any filter
S ⊆ Ud and |S| ≤ d the query operator of an element y ∈ Ud
always returns the true answer, where Ud = {1, . . . , nd}.

For simplicity we refer to nd as n. For a filter with n
elements in the universe we define a code matrix M . It is
an m × n binary matrix, where each column corresponds to
a code of an element in the universe. The binary array of the
filter S is going to be the Boolean sum (bitwise OR) of the
columns of M corresponding to the elements of S. A false
positive occurs when the Boolean sum of d columns contains
another column. Such a case has to be avoided.

This problem was widely investigated in the context of non-
adaptive Combinatorial Group Testing (CGT). The primary
goal of a CGT construction is to identify up to d defective
elements among a given set through as few group tests as
possible. Formally,

Given:a finite universe U = {1, . . . , n} and a (positive
integer) maximum number of defective elements d.

Find: an m × n binary matrix M , where the union or
Boolean sum (or bitwise OR) of any up to d columns
does not contain any other column.

Note that, in the matrix M the rows correspond to the group
tests and the columns to the elements. An entry of the matrix
indexed (i, j) is equal to 1 if the ith test contains the jth

element, and 0 otherwise. Such matrices are called d-disjunct
matrices, and they are sufficient to unambiguously identify all
d faulty elements and constitute the basis for non-adaptive
combinatorial search algorithms and binary d-superimposed
codes. In other words, to avoid false positives when having at
most d elements in the EGH filter, we need to ensure that the
code matrix is d-disjunct2. Formally we have the following.

Claim 1: A necessary and sufficient condition to avoid false
positives in a filter having at most d elements from the universe
{1, . . . , n} is that the corresponding m× n code matrix is d-
disjunct.
Namely false positive-free operations require the codes as-
signed to each element to be d-disjunct non-adaptive CGT
codes. Ruszinkó [33] gave a lower bound on the size of the d-
disjunct matrices which can be applied to our scenario. Later
it was improved by Füredi [34].

Claim 2: For any false positive free filter

m(d, n) ≥ 0.25
d2

log(d)
log(n) , (1)

where m(d, n) denotes the space m needed for n elements
in the false positive free zone and at most d elements in the
filter.

2Note that there is a weaker CGT construction, called d-separable, where
the bitwise OR of up to arbitrary d codes are to be distinct from each other.
Note that distinct codes are not enough to avoid false positives, but we also
need the property that the codes do not contain each other.
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IV. BASIC EGH FILTER WITH FALSE POSITIVE FREE ZONE

A. Data Structure Construction

The proposed EGH filter data structure is based on the
combinatorial group testing method described by Eppstein et
al. [14, Section 2]. The essence of their solution is to use the
Chinese Remainder Theorem [35] and solve a CGT problem
by finding a solution to a system of linear congruences.

Let U be the set of the integers in the interval [1, . . . , n].
Let d be the maximal number of inserted elements for which
the false positive free zone is guaranteed. A number of k first
primes are selected {p1 = 2, p2 = 3, . . . , pk} (e.g., by the
sieve of Eratosthenes), such that their product P is at least
nd, i.e.,

nd ≤ P =

k∏
i=1

pi , (2)

while their sum
m =

k∑
i=1

pi ,

denotes the length of the codes. In the EGH filter the simple
functions ĥi for i = 1, . . . , k are defined as

ĥi(x) = x (mod pi) +

i−1∑
j=1

pj . (3)

Note that the code consists of k blocks, where the ith block
has pi bits all zero except for one position, which is x
(mod pi) for an element x. In other words, the code is a radix
block representation of the remainders after division with pi
(an example appears in Section IV-B). The codes generated
by the construction were proved to be d-disjunct, meaning
that the bitwise OR of any up to d codes does not contain
any other code. In order to better understand the solution,
we present the proof for that property with our terminology
and notations. First we summarize the well known Chinese
Remainder Theorem [35]. Let p1, . . . , pk be pairwise coprime
integers and a1, . . . , ak be arbitrary integers. The theorem
states that the following system of simultaneous congruences

x ≡ ai (mod pi), i ∈ {1, . . . , k} (4)

has a unique solution for x modulo P =
∏k
i=1 pi. The solution

can be found through the following method [36]. For each
1 ≤ i ≤ k the integers pi and

∏
j 6=i pj are necessarily coprime.

In the first step for each 1 ≤ i ≤ k, the modular multiplicative
inverse of

∏
j 6=i pj modulo pi is found. Namely, for each 1 ≤

i ≤ k the following congruences are solved:

qi ·
∏
j 6=i

pj ≡ 1 (mod pi).

By using the extended Euclidean algorithm the integers ri and
qi satisfying ri · pi = 1 + qi ·

∏
j 6=i pj can be found.

Then, choosing ei = qi
∏
j 6=i pj , x can be constructed as

x =

k∑
i=1

aiei (mod P ), (5)

Algorithm 1: CHINESEREMAINDER

Input: p1, . . . , pk, and a1, . . . , ak
begin

1 for i = 1 to k do
2 Ni =

∏
j 6=i pj

3 Find the modular multiplicative inverse:
qi = N−1

i (mod pi)

return x =
∑k

i=1 aiqiNi (mod p1p2 · · · pk).

which satisfies the congruences (4). Algorithm 1 provides a
more formal description of this key method.

The following lemma shows the correctness of the above
construction.

Lemma 1: The EGH filter has a false positive free zone with
at most d elements in the filter for universe U = {1, . . . , nd =
n} if

n ≤ d

√√√√ k∏
j=1

pj , (6)

which can be written as

d ≤
log

k∏
j=1

pj

log n
=

k∑
j=1

log pj

log n
. (7)

See the proof in Appendix A.
We consider the space and time requirements of the EGH

filter. We can rely on a result from [14], showing that for
given d and n, the inequality of (7) can be satisfied with
k∑
j=1

pj = O(d2 log n) and pk ≤ d2d log(n)e. Note that EGH

filter memory size is given by the sum of prime values.
Namely, to have a false positive-free zone over n elements in
the universe and maximum d elements in the filter, we have
m(d, n) = O(d2 log n). We can also evaluate the required
time.

Corollary 1: The computation time of constructing an EGH
filter with a false positive zone over n elements in the universe
and maximum d elements in the filter is O(d log(n)).

Proof: To construct an EGH filter we need to find a
set of primes (or prime powers), for which

∏k
i=1 pi ≥ nd

holds, where pi denotes the ith prime number (or prime power)
and k is the number of primes found. This can be done by
generating the sequence of primes till

∏k
i=1 pi ≥ nd holds.

The fastest implementation of prime number sieves requires
O(pk) operations [37], which leads to O(d log(n)) operations
in total.

B. Illustrative example of EGH Filter

Now let us construct an EGH Filter which has a false
positive free zone over a universe of size n2 = 48 when at
most d = 2 elements can be in the filter. First, a set of prime
integers should be selected such that their product is at least
nd = 482 = 2304. Multiplying the first five primes 2, 3, 5,
7 and 11 we get P = 2310, which results in codes of length
2+3+5+7+11 = 28 bits. We have five simple functions by
Eq. (3), namely ĥ1(x) = x mod 2, ĥ2(x) = x (mod 3) + 2,
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ĥ3(x) = x (mod 5) + 5, ĥ4(x) = x (mod 7) + 10 and
ĥ5(x) = x (mod 11) + 17.

With the use of the above codes of 28 bits, the allowed
universe size is determined by the number of allowed elements
d. While for d = 2 we explained that the size is n2 = 48, it
increases to n1 = 2310 for d = 1 and decreases to n3 = 13 for
d = 3, as (n1)

1 = 2310, (n3)
3 = 2197 ≤ 2310. Note that for

d = 3, the EGH representation is not efficient since it stores
subsets of 13 elements in 28 bits. Instead we could assign a
bit dedicated for each of the 13 elements, that would result
in a trivial 13 bit long false positive free representation for
any d. We can also calculate the false positive rate when more
than d elements are stored in the set, as studied in the next
subsection. For instance, with n2 = 48 for d = 2, the false
positive rate over universe {1, . . . , 48} while keeping 3 > d
elements in the filter would be 0.55%.

C. False Positives Outside the False Positive Free Zone

The false positive rate of the Bloom filter is

PBFfalse =

(
1−

(
1− 1

m

)kd′)k
≈
(
1− e−kd

′/m
)k

, (8)

which is minimal if k ≈ m
d′ ln 2, where d′ is the number of

inserted elements.
The probability of false positives for infinite universe and

arbitrary number of elements in the filter satisfies

PEGHfalse =

k∏
i=1

(
1−

(
1− 1

pi

)d′)
. (9)

V. ADVANCED EGH FILTERS WITH FALSE POSITIVE FREE
ZONE

The EGH filter data structure can be easily extended to sup-
port deletions by using an array of counters (rather than bits),
of dlog de bits each, as in the Counting Bloom Filter (CBF) [2].
This makes the EGH structure take O(d2 log n log d) space,
where again Eq. (7) holds. In this variant, inserting an element
x is done by incrementing the counters ĥi(x) by 1 for
i = 1, . . . , k. Deletion of an item y that had previously been
inserted, is carried out by decrementing the corresponding
counters by 1.

As for listing, the problem is much more challenging. In
CGT the obvious solution is to iterate through the universe
{1, . . . , nd = n} and perform membership testing for each
entry. In our case we intend to have an algorithm that runs
in O(poly(d log(n))) steps for listing the elements, where d
is the number of elements in the filter. The main idea is to
define a system of equations where the roots are the elements
in modular arithmetic. The equations are then solved to obtain
the list of elements. This requires algebraic computations
described in the rest of this section.

Before we explain our approach for general d, let us first
explain the special cases of d = 1 and d = 2.

A. Algorithms for Listing d = 1, 2 Elements in the EGH Filter

The situation for d = 1 is simple, because Algorithm 1
(The Chinese Remainder) solves the problem based on the
remainders of the single element for each of the primes.

For d = 2 let yi,1 and yi,2 be the remainders for the prime
pi for i ∈ [1, k]. The task is to compute two integers x1, x2
resulting in these remainders. The method is based on the fact
that the Chinese remainders provide a ring homomorphism.
In other words, the operations +,−,× can be swapped with
forming remainders. More precisely, let x1, x2, satisfying x1
(mod pi) = yi,1 and x2 (mod pi) = yi,2, be two elements in
the filter. Then the remainder of x1+x2 (mod pi) is yi,1+yi,2
(mod pi). A similar argument is valid for x1 × x2 and for
x1 − x2.

As a result (yi,1 − yi,2)
2 (mod pi) is congruent to z :=

(x1−x2)2 (mod pi). Even if we swap yi,1 and yi,2 we get the
same value of z after squaring. In other words, this symmetric
function is invariant for swapping the remainders of x1 and
x2. On the other hand, z can be obtained by solving the
corresponding set of congruences with the Chinese Remainder
Theorem, and we know it is a square number because x1 and
x2 are both in [1, n], thus their difference cannot be more than
n, hence z ≤ n2 ≤ P = p1 · p2.

Next we need to find the square root of integer z in modular
arithmetic. This can be done with Newton-iteration or binary
search for large n. Let u be the positive square root of z, and
assume that x1 ≥ x2. Let ui be the remainder of u modulo
pi. Please observe that in advance we know the remainders
{yi,1, yi,2} only as a set, and cannot associate one of the num-
bers with a specific remainder. The equation ui = yi,1 − yi,2
helps us to find that association, and hence identify x1 and
x2 by Algorithm 1. It is clear from the properties of the
congruences that x1 − x2 ≡ ui (mod pi) for 1 ≤ i ≤ k. On
the other hand it is clear that x1+x2 ≡ yi,1+yi,2 (mod pi) for
1 ≤ i ≤ k. We solve this system of congruences by applying
Algorithm 1. As x1 and x2 are both in [1, n], we get that both
x1 − x2 and x1 + x2 are at most 2n < n2, thus we have an
equality in our congruences.

B. An Illustrative Example of the Algorithm for Listing two
Elements in the EGH Filter

To illustrate how this idea works for d = 2 we give an
example. Assume that we have n = 14 items and we would
like to describe a set of two of them (x1 and x2). Our task is
to identify these items. To do this we have to choose coprime
integers say p1 = 2, p2 = 3, p3 = 5 and p4 = 7, which
clearly satisfy P = 210 > 196 = n2. The remainders are
y1,1 = 0, y2,1 = 0, y3,1 = 1, y4,1 = 6 and y1,2 = 0, y2,2 = 1,
y3,2 = 4, y4,2 = 4. The values of z are 0, 1, 4, 4, which solved
by using the Chinese Remainder Theorem (Algorithm 1) we
obtain that z ≡ 4 (mod 210) thus u = 2. Obviously u1 =
0, u2 = 2, u3 = 2, u4 = 2, thus by (Algorithm 1) we get that
x1 − x2 ≡ 2 (mod 210). Similarly we get that x1 + x2 ≡ 10
(mod 210). As 210 > n2 = 196 it follows that x1 − x2 = 2
and x1 +x2 = 10. Solving this system of linear equations we
obtain that x1 = 6 and x2 = 4 as desired.
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C. Algorithm to List d Elements in the EGH Filter

In this subsection we explain how to define for a general
d, a system of equations whose roots are the elements of the
filter. Then we provide an approach to solve the system for
obtaining the list of elements. We strongly on the theory of
elementary symmetric polynomials. We use the following facts
about polynomials [38], that if we have a polynomial p(z),
where αi denotes its coefficients and xis are the roots of p(z),
i.e.,

p(z) = zd+ . . . +αd−1z+αd = (z− x1) . . . (z− xd), (10)

then we have
αi = (−1)iσi(x1, . . . , xd), (11)

where σi(x1, . . . , xd) for (1 ≤ i ≤ d) is called the ith

elementary symmetric polynomial of x1, . . . , xd and can be
computed by using Algorithm 2 [39]. The obtained elementary
symmetric polynomial for 1 ≤ m ≤ d is

σm(x1, . . . , xd) =
∑

1≤j1<j2<...<jm≤d

xj1 · . . . · xjm .

Algorithm 2: ELEMENTARYSYMMETRICPOLYNOMIALS

Input: x1, . . . , xd
Result: σ1(x1, . . . , xd), . . . , σd(x1, . . . , xd)
begin

1 σ
(1)
1 := 1, for i = 1, . . . d− 1

2 σ
(i)
j = 0, for all j > i

3 σ
(1)
2 = x1

4 for i = 2 to d do
5 for j = 1 to i do
6 σ

(i)
j = σ

(i−1)
j + xiσ

(i−1)
j−1

For example for d = 3 we have

σ1(x1, x2, x3) = x1 + x2 + x3 , (12)
σ2(x1, x2, x3) = x1x2 + x1x3 + x2x3 , (13)

σ3(x1, x2, x3) = x1x2x3 . (14)

Next we explain how to define for a general d, a system of
equations in modular arithmetic whose roots are the elements
in the filter. Let p1, . . . , pk be pairwise coprime prime powers,
i.e., pi = qαi

i , where qi is a prime and αi ≥ 0 is an integer.
We choose the pis such that Eq. (7) holds, i.e. nd ≤ P =∏k
i=1 pi. Let yi,1, . . . , yi,d be the remainders modulo pi of

the d ≤ n elements x1, . . . , xd from S. The task is to find
numbers x1, . . . , xd which satisfy the following systems of
congruences:

x1 ≡ yi,1 (mod pi), . . . , xd ≡ yi,d (mod pi)

for all 1 ≤ i ≤ k.
Note that in the advanced filter we have counters instead

of bits, thus we know how many elements lie in each
residue class. It follows that with Algorithm 2 we can cal-
culate the residues of the elementary symmetric polynomials
of x1, . . . , xd modulo all the pis. For j = 1, . . . , d let

σj(x1, . . . , xd) denote the jth elementary symmetric poly-
nomial of x1, . . . , xd. It follows from the properties of the
congruences that the following holds

σj(x1, . . . , xd) ≡ σj(y1,1, . . . , y1,d) (mod p1) ,
...

σj(x1, . . . , xd) ≡ σj(yk,1, . . . , yk,d) (mod pk) ,

for every j = 1, . . . , d. Note that on the right hand side we
have constants. We define

a
(j)
i ≡ σj(yi,1, . . . , yi,d) (mod pi) (15)

so that we can substitute it to have the following d×k system
of equations

σ1(x1, . . . , xd) ≡ a(1)1 (mod p1), . . . , σ1(x1, . . . , xd) ≡ a(1)k (mod pk),
...

σd(x1, . . . , xd) ≡ a(d)1 (mod p1), . . . , σd(x1, . . . , xd) ≡ a(d)k (mod pk).

We can run Algorithm 1, the Chinese Remainder Theorem
for each row of the above equations to obtain

Aj := CHINESEREMAINDER(a
(j)
1 , . . . , a

(j)
k , p1, . . . , pk) ,

(16)
for j = 1, . . . d. Next we have the following system of
equations σ1(x1, . . . , xd) ≡ A1 (mod P ) ,

...

σd(x1, . . . , xd) ≡ Ad (mod P ) .

It is clear from the definition of σj(x1, . . . , xd) that

σj(x1, . . . , xd) <

(
d

j

)
nj =

(
d

d− j

)
nj < dd−jnj

< nd−jnj = nd. (17)

It follows that the following congruences hold without
(mod P ), because P ≥ nd and σj(x1, . . . , xd) ≤ nd for
j = 1, . . . d i.e.,

σ1(x1, . . . , xd) = A1, . . . , σd(x1, . . . , xd) = Ad.

Recall that according to Eq. (10) and (11) the roots of the
polynomial

f(z) = zd − σ1(x1, . . . , xd)zd−1

+ σ2(x1, . . . , xd)z
d−2 − · · ·+ (−1)dσd(x1, . . . , xd)

are actually x1, . . . , xd. This means that in order to list the
elements we need to find the roots of the polynomial

f(z) = zd − A1z
d−1 + A2z

d−2 − .... + (−1)dAd. (18)

It can be done with standard mathematical algorithms, such
as the root finder method of Heindel [40] based on the Bisec-
tion method [41] and the Sturm chain [38]. Roughly speaking,
this technique first isolates the roots of the polynomial with
the help of a theorem of Sturm and then finds them by the
Bisection method. See the details in Appendix C.

To summarize the above we have the following algorithm.
In the inner loop we compute a

(j)
i by Eq. (15) for i =

1, . . . , k and j = 1, . . . , d, which is the pi remainder of
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the jth elementary symmetric polynomials after substituting
yi,1, . . . , yi,d. In the outer loop this gives the Ajs with the
Chinese remaindering process as in Eq. (16). Then we build
up our polynomial f(z) and find its roots by using the
ROOTFINDER method.

Algorithm 3: LISTEGHFILTER

Input: yi,1, . . . , yi,d for all 1 ≤ i ≤ k, p1, . . . , pk
begin

for j = 1 to d do
for i = 1 to k do

a
(j)
i := σj(yi,1, . . . , yi,d) (mod pi)

Aj := CHINESEREMAINDER(a(j)1 , . . . , a
(j)
k , p1, . . . , pk)

Set f(z) = zd +
∑d

t=1(−1)tAtz
d−t

Compute (x1, x2, . . . , xd) = ROOTFINDER(f(z), 0, P )

Theorem 1: The LISTEGHFILTER finds the elements stored
in the EGH filter using O(d10 log3 n) bit operations3.

See the proof in Appendix B.

VI. NETWORK APPLICATIONS AND USE CASES

A. Encoding of Flow Attributes in SDN Switches

A recent study [43] describes Software-Defined Networking
(SDN) scenarios in which exact encoding of small sets is
necessary to distinguish between classes of traffic with dif-
ferent required treatment. Each such traffic class is encoded
as a unique attribute carrying tag in the packet header. A
desired property is the ability to test whether the represented
set includes some queried attribute.

They deal with three scenarios. The first corresponds to
Internet Exchange Point (IXP), where multiple autonomous
systems (ASes) exchange traffic and interdomain routing infor-
mation. Here the tag encodes the set of advertising peers used
in the forwarding decision. The second is related to service
chaining, where the tag represents the set of middleboxes
which must be traversed by the traffic flow. The third scenario
is in the context of network policies where each traffic class
is allowed to access different network resources.

In all of these three applications, false positives should be
avoided, e.g., to avoid wrong forwarding of a packet, the
appliance of a redundant network function or an illegal access
to a resource. With the EGH filter, if the tag is for instance
m = 100 bit long, with a variety of n = 606 pre-defined
attributes (fixed universe), false positives can be fully avoided
if each traffic class has at most d = 3 attributes.

B. Multicast Addressing

Another application for the EGH filter can be the in-
packet Bloom filter [44]. It is a new forwarding mechanism
developed for information centric networking, where Bloom
filters are used to encode multicast trees in the packet header
in a stateless manner. Placed in packet headers, the in-packet
Bloom filters can effectively represent a set of node or link IDs

3Theorem 3.1 in [42] provides a faster but more complex algorithm than
the Sturm chain that finds the items at the Boolean cost Õ(d3 log3 n).

along the expected path. Paths are often short. The study [45]
overviews the forwarding anomalies caused by false positives,
such as packets storms, forwarding loops and flow duplication.

In [45] the AS-level topology graph was considered for m =
800, 1024. It has n ≤ 105 links today (the universe is fixed),
which can be in the FPFZ of an EGH filter for d = 6, 7.

C. Early Detection of Botnet Attacks
In early detection of botnet attacks the goal is to identify

communication patterns as a sign of communication between
the bots and the botnet controllers (called C&C servers) [46].
For example, a common technique is to hide C&C servers
behind an hourly-changing domain name. Bots algorithmically
generate and try to resolve a number of domains (with domain
generation algorithms - DGA), only one of which is registered
as the C&C server. Thus DGA behavior is characterized by
many, often repeating, failed DNS queries at multiple DNS
servers form the same IP address.

The application requires to succinctly store a set of sus-
picious IP addresses at each DNS server, which is sent
periodically to each other, and list the items in the possible
intersections of the sets. In this case the universe is the set of
32 bit long IP addresses (i.e. n = 232 and fixed universe), and
because of the short monitoring period the number of newly
infected IP addresses are typically small. A false positive
answer in this case means wrong IP address is identified.

For example there are i = 1000 suspicious IP addresses
in each monitoring period, which is i · 32bit= 4KB to send
as a blacklist, while to find the intersection of two lists has
O(i log i) time complexity. On the other hand, an EGH filter of
m = 1161 counters can detect up to d = 4 infected items, with
constant time element insertion in the filter, and intersection
has O(i) time complexity.

VII. DISCUSSION

A. Flexibility
Compared to the traditional BF an important advantage of

the EGH filter is that the function ĥi is the same for any filter
not depending on its length. In other words the EGH filter has
a block structure; and for a longer EGH filter we need to add
more blocks, while keeping the previous blocks as is. This
allows a great flexibility, because the size of the Bloom filter
can be dynamically changed without recomputing the filter. To
reduce the length we just need to erase the last blocks.

B. Implementation Issues
Another advantage of the EGH filter in comparison with

Bloom filters is the reduced hash computation cost. Typically
the hash functions are either computationally intensive (like
the cryptographic hash functions such as MD5) or have good
randomness (e.g., CRC32, FNV, BKDR). The randomness is
important to have small a false positive rate. In EGH, we need
to perform only a simple modulo operation. Moreover, the
same function ĥi in a EGH filter is used if i ≤ k. This means,
the functions {ĥ1, ĥ2, . . . , ĥk} can be hardware implemented,
or in assembly for software implementations. The EGH filter
size then defines the number of functions we need to use.
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TABLE I: The size of the false positive free zone nd of the EGH
filter with up to d elements for different memory size (of m bits).
The filter makes use of k primes, such that pk is the last of them.

k pkm FPFZ
1 2 2 n1 = 2
2 3 5 n1 = 6
3 5 10 n1 = 30
4 7 17 n1 = 210

5 11 2
8 n1 = 2310

n2 = 48

6 13 4
1 n1 = 30000

n2 = 173

7 17 5
8

n1 = 511000
n2 = 714
n3 = 79

8 19 7
7

n1 = 9.7·106

n2 = 3110
n3 = 213

9 23

1
0
0

n1 = 2.2·108

n2 = 14900
n3 = 606
n4 = 122

10 2
9

1
2
9

n1 = 6.5·109

n2 = 80400
n3 = 1860
n4 = 283

pkm FPFZ

p
1
1
=

3
1

1
6
0

n1 = 2.01·1011

n2 = 448000
n3 = 5850
n4 = 669
n5 = 182

p
1
2
=

3
7

1
9
7

n1 = 7.42·1012

n2 = 2.72·106

n3 = 19500
n4 = 1650
n5 = 375

p
1
3
=

4
1

2
3
8

n1 = 3.04·1014

n2 = 1.74·107

n3 = 67300
n4 = 4180
n5 = 788
n6 = 259

p
1
4
=

4
3

2
8
1

n1 = 1.31·1016

n2 = 1.14·108

n3 = 236000
n4 = 10700
n5 = 1670
n6 = 485

pkm FPFZ

p
1
5
=

4
7

3
2
8

n1 = 6.15·1017

n2 = 7.84·108

n3 = 850000
n4 = 28000
n5 = 3610
n6 = 922
n7 = 348

p
1
6
=

5
3

3
8
1

n1 = 3.26·1019

n2 = 5.71·109

n3 = 3.19·106

n4 = 75600
n5 = 7990
n6 = 1790
n7 = 613

p
1
7
=

5
9

4
4
0

n1 = 1.92·1021

n2 = 4.38·1010

n3 = 1.24·107

n4 = 209000
n5 = 18100
n6 = 3530
n7 = 1100
n8 = 458

VIII. NUMERICAL EVALUATION

We perform experiments to examine the performance of
the EGH filter under different scenarios. We compare it with
existing Bloom-filter based solutions and focus on the amount
of memory, the universe size, the obtained probability for false
positives (if exist) and the number of memory accesses.

First, we evaluate the universe size that allows the false
positive free zone (FPFZ) of the EGH filter for different
number of stored items d. We implemented the Eppstein-
Goodrich-Hirschberg (EGH) filter, as described in Section IV.
The sequence of prime numbers (i.e. p1 = 2, p2 = 3, p3 = 5,
etc.) is generated via the sieve of Eratosthenes. To have a
FPFZ of a given d and nd we add prime numbers until∏k
i=1 pi ≥ (nd)

d holds. This gives us an EGH filter length of
m =

∑k
i=1 pi bits where k is the number of prime numbers.

In Table I, we describe, for various values of d, the universe
size nd that allows keeping up to d elements from the universe
without false positives for m ≤ 440. For example, an EGH
filter of length m = 440 has a false positive free zone for
universe of {1, . . . , n5 = 18100} with at most d = 5 elements
in the filter. To perform a membership query, we need to test
17 positions in the filter, as the number of (first) primes that
sum up to 440. The number of bits increases in a logarithmic
fashion for a fixed d as a function of the order of magnitude
of the universe size.

Next we compared the EGH filter the with Bloom filter
(BF). To illustrate the benefits of the EGH filter we computed
the false positive probability of the Bloom filter with the same
size m and same number of hash functions k as in the EGH
filter with the FPFZ. The results are shown in Table II. The
false positive probability of the BF is not negligible, especially
for small d, where EGH in the FPFZ is guaranteed to avoid
false positives. We also added the minimum value of false
positives of the BF obtained when an optimal number of hash
functions are used.

TABLE II: The false positive probability p of the Bloom filter for
the same size m and the number of bit lookups k and the number
of elements in the filter d as the EGH filter allowing a universe size
of at least nd = 100, 200, 500. The last two columns corresponds to
the Bloom filter with optimal number of hash functions to achieve
minimal false positives.

input EGH BF Optimal BF
d m k nd p kOPT p
1 17 4 209 .00215 12 .000364
2 41 6 173 .00028 15 .00006
3 77 8 213 .000028 18 .000004
4 100 9 122 .000022 18 .000006

5 160 11 182 1.30·10−6 23 2.22·10−7

10 440 17 134 4.03·10−9 31 6.77·10−10

20 1264 27 104 4.13·10−13 44 6.58·10−14

2 58 7 714 .000022 21 .000001
3 77 8 213 .000028 18 .000004

4 129 10 283 1.88·10−6 23 1.19·10−7

5 197 12 375 1.10·10−7 28 6.33·10−9

10 501 18 202 4.39·10−10 35 3.61·10−11

20 1593 30 211 8.03·10−16 56 2.44·10−17

1 28 5 2310 .000127 20 .0000018

3 100 9 606 2.41·10−6 24 1.21·10−7

4 160 11 669 1.60·10−7 28 4.79·10−9

5 238 13 788 8.50·10−9 33 1.23·10−10

10 712 21 726 3.61·10−13 50 1.43·10−15

20 2127 34 562 ε 74 ε

Fig. 2 shows the false positive rate of EGH and Bloom filters
for two filter lengths m = 197 and m = 501 bits. The solid
curves are the false positive rate of the BF computed by Eq. (8)
for optimal number of hash functions, and for the same number
as for the EGH filter. The dotted curve shows the false positive
rate outside the false positive free zone (FPFZ), computed by
Eq. (9). The false positive is slightly larger for EGH outside of
the FPFZ, especially for small d, which is the price we pay to
have a FPFZ. We also measured the false positives for a fixed
universe for different values of d. We did it by generating 109

filters with d elements and selected a random element not in
the filter. For each such instance, we tested if the filter gives a
false positive or not. Recall the false positive rate is guaranteed
to be zero in the FPFZ; however, surprisingly a larger zone was
actually free of false positives. For example in the m = 501 bit
long filter the universe U = {1, . . . , n6 = 6996} has a FPFZ
till d = 6, while in 109 randomly generated queries, there
were no false positives when d was at most 9. In general the
false positive rate increases in a similar way for EGH and in
BF as more and more elements are inserted to the filter. On
the charts we can also see how the false positive free zone
depends on the size of the universe. It is because smaller n
and larger d can also meet the same bound of

∏k
i=1 pi ≥ nd.

IX. CONCLUSION

In this paper we described the EGH filter for the represen-
tation of sets, while avoiding false positives when constraints
on the universe size and the represented set size hold. The
proposed approach is an adaptation of a known non-adaptive
combinatorial group testing scheme. The used functions are
deterministic, fast and simple to calculate, enabling a superior
lookup performance compared to Bloom filters. We also
extended the model through the use of counters, supporting
deletions and efficient listing of the elements. The fast listing
of the elements is performed by finding the roots of a system
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Fig. 2: Beyond the false positive free zone: The false positive rate of the EGH and the Bloom filters for various filter length
m, and size of universe n.

of equations in modulo arithmetic. Our approach is based on
traditional number theoretical techniques such as the Chinese
Remainder Theorem, the Bisection Method and the Sturm
chain. Through numerical evaluations we demonstrated the
performance of the new approach.
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APPENDIX

A. Proof of Lemma 1

The EGH filter has a false positive free zone with at most
d elements in the filter for universe U = {1, . . . , nd = n} if

n ≤ d

√√√√ k∏
j=1

pj . (19)

Proof 1: Recall that the EGH filter consists of k blocks,
each of them assigned to a prime pj , where j = 1, . . . , k. For
all k blocks the bit that corresponds to the remainder of x
(mod pj) is set to 1 in the EGH filter. The proof is indirect
and we assume there is a set of codes S belonging to no more
than d elements and the EGH filter composed of the bitwise
OR of the corresponding codes has bit 1 for the remainders
of x (mod pj) for every prime j = 1, . . . , k.

For items x, y ∈ U let us define the function P (x, y) as
follows:

P (x, y) =
∏

j=1,...,k|x≡y mod pj

pj .

In other words P (x, y) is the product of all the generator
primes pj in which x and y cannot be distinguished, as
both have the same remainder. Intuitively, P (x, y) shows the
similarity between the codes of x and y. By the Chinese
Remainder Theorem we have x ≡ y mod P (x, y).

Assume by contradiction that the EGH filter wrongly indi-
cates on the membership of an element x /∈ S. Note that every
1 bit of x is covered and thus every pj appears at least once
in one of these products P (x, y) for some y ∈ S, and because
of Eq. (2) we have∏

y∈S
P (x, y) ≥

k∏
j=1

pj ≥ nd .

Moreover, there are at most d elements in S leading to the
fact

max
y∈S

P (x, y) ≥ d
√
nd = n .

Therefore, there exists at least one element in the EGH filter
(denoted as y′) for which P (x, y′) ≥ n. By construction, y′ is
congruent to the same values to which x is congruent modulo
each of the pj’s in P (x, y′). By the Chinese Remainder
Theorem, the solution to these common congruences is unique
modulo the least common multiple of these pj’s, which is
P (x, y′) itself, since the pj’s are relatively prime to each other.
Therefore, x must be equal to y′ modulo a number that is at
least n, and since both x and y′ are positive integers ≤ n.
Thus we have x = y′; which contradicts the fact that x /∈ S.

B. Proof of Theorem 1

The LISTEGHFILTER finds the elements stored in the EGH
filter using O(d10 log3 n) bit operations4.

Proof 2:

4Theorem 3.1 in [42] provides a faster but more complex algorithm than
the Sturm chain that finds the items at the Boolean cost Õ(d3 log3 n).
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The LISTEGHFILTER algorithm contains three steps. In the
first step, it computes the elementary symmetric polynomials,
in the second step it uses the Chinese Remainder Theorem, and
finally it determines the roots of the corresponding polynomial.

In Algorithm 2 we compute the elementary symmetric
polynomials recursively. To get the rth elementary symmetric
polynomial one needs r−1 additions and r−1 multiplications
in Algorithm 2, thus we can compute all elementary symmetric
polynomials by using 1 + . . . + (d − 1) additions and mul-
tiplications. As x1, . . . , xd < n, one addition needs O(log n)
bit operations, and one multiplication requires O(log2 n) bit
operations, thus the total cost of Algorithm 2 is O(d2 log2 n)
bit operations.

In this paragraph we analyze the Chinese remaindering
process (Algorithm 1). It is well known [49] that Chinese
remaindering requires O(log2 P ) bit operations. As noted
before the pis are some power of primes, i.e., pi = qαi

i , where
qi is a prime and αi ≥ 1. Since pi ≤ n, it follows that qαi

i ≤ n,
thus we have αi ≤ log2 n (log2 n denotes the logarithm of n
to the base 2). In view of this observation it is easy to see [47]
that if we select the first k primes for q1, . . . , qk then

logP =

k∑
i=1

log pi =

k∑
i=1

αi log qi ≤ log2 n

k∑
i=1

log qi

< (log n)π(qk) log qk = k(log n)(log qk), (20)

where π(x) denotes the number of primes up to x. It is
well known [50] that the kth prime number is O(k log k),
thus we have logP = O((log n)k(log k + log log k)) =
O((log n)k log k). We know from [14] that

k = O
( d log n

log(2d log n)

)
,

which implies k log k = O(d log n). It follows that the
total cost is O(d2 log4 n). Since the number of systems of
congruences is d, computing the Ajs in the LISTEGHFILTER
needs O(d3 log4 n) bit operations.

In the last step we have to determine the roots of the polyno-
mial f(z). For a polynomial f(z) = adz

d+ . . . +a1z+a0 let
K =

∑d
i=0 |ai|, which is called the 1 - norm of the polynomial

f(z).
It is clear that all coefficients of our polynomial are at most

nd, which implies that K ≤ dnd. It follows from [51] that the
running time of Heindel’s algorithm is O(d10+d7 log3K) (see
Theorem 8. and the remark after that and see also in [51]).
We have to use the Bisection method at most d − 1 times,
which requires O(d log n) operations, because the length of
each interval is at most n. Thus the total cost to determine
all roots requires at most O(d10 + d10 log3 n + d log n) =
O(d10 log3 n) bit operations. This implies that the total cost
of the LISTEGHFILTER algorithm is O(d2 log2 n+d2 log4 n+
d3 log4 n+ d10 log3 n) = O(d10 log4 n) bit operations.

C. The Root Finder Algorithm

In this section we give a short survey about the main tools
we make use of. First we describe the well known Bisection

method [41], which is useful to find a root of a polynomial
(with some required level of accuracy). Let f be a polynomial
for the real variable z and consider the equation f(z) = 0.
Let [a, b] be an interval and assume that f(a) and f(b) have
opposite signs. Since f is continuous on [a, b], the Intermediate
Value Theorem implies that there exists an r ∈ [a, b], such that
f(r) = 0. At each step we divide the interval into two smaller
intervals by computing the midpoint c = (a + b)/2 of the
interval and the value f(c). If f(c) = 0 then c is a root of f .
Otherwise either f(a) and f(c) have opposite signs and [a, c]
contains a root, or f(c) and f(b) have opposite signs and [c, b]
contains a root. We select the subinterval which contains a root
as the new interval to be used in the next step. Note that the
size of the interval that contains a root of f is reduced by half
at each step. The above process is continued until the interval
is sufficiently small, smaller than some pre-defined threshold
ε. Pseudo-code is given in Algorithm 4.

Algorithm 4: BISECTIONMETHOD

Input: Polynomial f , range [a, b], accuracy ε
begin

Repeat the following process while b−a
2

> ε do
1 Compute c = a+b

2
and d = f(c) · f(a)

2 if d < 0 then
b := c

3 if d > 0 then
a := c

4 if d = 0 then
break

return c

We also need some facts about Sturm sequences [38]. By
applying the Euclidean algorithm to compute the greatest
common divisor of f0(z) = f(z) and f1(z) = f

′
(z) it is

easy to obtain a Sturm sequence. In particular, by taking
successively the remainders with polynomial division and
change their signs. See also Algorithm 5 for the pseudo-code.
The algorithm terminates, because the degree sequence of f

′

i s
is decreasing. Finally, the obtained sequence of polynomials
have the following property

f0(z) = q1(z)f1(z)− f2(z),
f1(z) = q2(z)f2(z)− f3(z),

...
fm−2(z) = qm−1(z)fm−1(z)− fm(z),

fm−1(z) = qm(z)fm(z).

where qi+1(z) is the quotient of the polynomial long division
of fi(z) by fi+1(z).

Let f0(z) = f(z), f1(z), . . . , fm(z) be a Sturm sequence,
where f(z) has no repeated roots, and let ω(z) denote the
number of sign changes (ignoring zeroes) in the sequence
f(z), f1(z), . . . , fm(z). Sturm’s theorem states that if f(a) 6=
0 and f(b) 6= 0, then the number of distinct roots of f in the
interval (a, b] is equal to ω(a)− ω(b).
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Algorithm 5: STURMSEQUENCE

Input: A polynomial f(z) with integral coefficients
Result: A Sturm sequence of polinomials

f0(z), f1(z), . . . , fm(z)
begin

1 f0(z) = f(z)

2 f1(z) = f
′
(z)

for i = 2 to m do
3 fi(z) := the remainder of the polynomial long division

of fi−2(z) by fi−1(z) .

If there is given a polynomial with integral coefficients and
with no repeated integral roots which lie in the interval [a, b],
then we can find all the roots of this polynomial by combining
the Bisection method and Sturm theorem in the following
way. Consider the intervals [a, (a + b)/2] and [(a + b)/2, b].
Apply Sturm’s Theorem and calculate the number of roots in
both intervals. Choose one in which there is at least one root,
e.g., [a, (a+ b)/2] and divide it into two equal parts by taking
its halve point, and calculate the number of roots in both
of these smaller intervals. Repeat these steps until one the
subintervals will contain only one root. We can find this root
by the Bisection method. Dividing the original polynomial
by the corresponding linear polynomial. We can repeat this
process and obtain all the roots of the original polynomial.
More formally we have the following algorithm.

Algorithm 6: ROOTFINDER

Input: polynomial f(z) with integral coefficients, range [a, b]
begin

1 f0(z), . . . , fm(z) := STURMSEQUENCE(f(z))
2 Calculate ω(a)− ω(b).
3 if ω(a)− ω(b) = 0 then

There is no root in (a, b)

4 if ω(a)− ω(b) = 1 then
Find the only root by the BISECTIONMETHOD

5 if ω(a)− ω(b) > 1 then
Calculate c = a+b

2
and goto step 2 and repeat this

process to the intervals (a, c) and (c, b)
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