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ABSTRACT—Connectionist models of word reading attempt

to explain the computational mechanisms underlying this

important skill. The goal of this research is an integrated

theory of reading and its brain bases, with the computa-

tional model as the interface between the two. The models

are governed by computational principles that differ con-

siderably from naive intuitions but nonetheless account for

many aspects of normal and impaired (dyslexic) reading.
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Readers are experts at a complex, uniquely human skill, yet

people’s intuitions about how they read are very limited. The

reading process is largely unconscious: People are aware of the

outcome—comprehending a text—but not how the outcome was

achieved. My theory of reading is based on connectionist models

that attempt to simulate the reading process at a level that in-

tuition does not easily penetrate. Such models serve several

functions. They provide a strong test of one’s theoretical as-

sumptions: Are they sufficient to reproduce specific behavioral

phenomena? One’s depth of understanding can be assessed by

determining whether a model instantiates general theoretical

principles or has been tuned in ad hoc ways to fit specific data.

Connectionist models also provide a unique way of testing causal

hypotheses about reading impairments and instructional prac-

tices. For example, a hypothesis about the etiology of develop-

mental dyslexia can be tested by configuring a model with a

computational version of the impairment and seeing if the model

reproduces dyslexic behavior. Finally, the models are beginning

to converge with evidence about the brain bases of reading.

The main drawback of these models is that people find them

difficult to understand. The technical aspects can be intimi-

dating; the fact that they conflict with intuitions about reading

doesn’t help. Numerous books and Web sites provide more and

less gentle introductions to technical aspects of this type of

model. Here I will try to convey something about the properties

of our reading models that have led to a very different under-

standing of this seemingly familiar skill. Note that the term

‘‘reading’’ covers many more phenomena than are addressed by

our models, which focus on comprehending isolated words.

These models represent components of a larger perceptual and

cognitive system that supports text comprehension.

QUASIREGULARITY

Learning the correspondences between spelling and sound is an

important step in becoming a skilled reader. For years, research

and teaching have been driven by the intuition that two types of

knowledge are involved: Rules are used to pronounce ‘‘regular’’

words such as gave and save, whereas exceptions such as have

are memorized (Coltheart, Rastle, Perry, Langdon, & Ziegler,

2001). Rules are also thought to support generalization, as in

pronouncing a nonword such as mave. Dual-mechanism theories

emphasize that the rule and memory subsystems are governed by

different principles, acquired by different mechanisms, relevant

to different types of words, and located in different brain areas.

(Pinker’s [1991] theory of the past tense makes similar claims.)

Assigning the rule-governed forms and exceptions to different

modules creates a paradox, however, because the exceptions are

not arbitrary; they overlap with the regulars. An exception such

as pint shares structure with ‘‘rule-governed’’ forms such as pant

and pine. Dual-mechanism theories miss these partial regular-

ities. They say, in effect, that what the beginning reader learns

about pronouncing pant and pine has no impact on learning pint,

or vice versa. This seems unlikely.

Here is another possibility: The intuition that two mechanisms

are necessary for learning regular words and exceptions is

misleading. The system is not rule governed at all; rather it is

quasiregular: There are different degrees of consistency in the

mapping from spelling to sound. These range from rule-like (e.g.,

initial b is always pronounced /b/) to more complex contingen-

cies. The child might learn that -ave is pronounced as in gave

except in the context of h-, or that the gh in -ght is usually silent

but not in draught, and so on. Many aspects of language are
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quasiregular. Consider morphologically complex words: A baker

bakes and a thinker thinks, but there’s no corn in corner and a

slipper is a kind of footwear, not a person who slips. Similarly, the

past tense seems to be rule governed (step–stepped) but there are

many partially overlapping exceptions (e.g., sleep–slept, creep–

crept, keep–kept).

CONNECTIONIST MODELS

English spelling–sound correspondences are too complex to

characterize by mere inspection. What is needed is a learning

device that can discover such correspondences, to whatever

degree they occur across words. Connectionist networks repre-

sent such a device and so, we think, do people.

Consider a network composed of separate groups (or ‘‘layers’’) of

neuron-like units representing spellings (orthography) and pro-

nunciations (phonology) of words (Fig. 1; the semantic units in the

figure are discussed below). These representations are distributed:

The finite set of units within a layer is used to represent a very

large set of patterns, just as an alphabet represents many words.

The orthographic representations might be composed of letters or

visual features of letters; the phonological representations could

be composed of phonemes (the /t/ in bat) or phonetic features (e.g.,

fricative, labial) that are the constituents of phonemes. Order of

elements must also be represented: lap is different from pal.

Usually there is a layer of interlevel ‘‘hidden’’ units that allow the

network to learn and represent more complex mappings than if

input and output layers were only connected directly. Processing

involves activating the units corresponding to an input pattern

(e.g., a word’s spelling) and letting activation pass to the output

units (e.g., a pronunciation) via connections between them. Each

connection carries a weight that modulates the flow of activation.

These elements yield a simple feedforward network—that is, one

in which activation only flows in one direction (input! hid-

den! output). More complex networks are created by adding

connections between the units on a layer, connections between

units on the input and output layers, feedback connections (e.g.,

from the hidden units back to orthography), additional hidden

layers, units representing the context in which a word occurs, and

other computational elements.

The model is given a task that beginning readers face: Given a

spelling pattern, learn to compute its pronunciation correctly. In

network terms, this means finding an appropriate set of weights.

Several learning principles can be used to adjust the weights

based on examples. Some principles are closely tied to how

learning occurs at the neural level; some capture what is learned

at a computational level that abstracts away from neurophysio-

logical details.

Such models can learn to perform the pronunciation task ac-

curately for thousands of words. The model represents both rule-

governed cases and exceptions—mint–pint, gave–have, bone–

done, and all the rest—contrary to the intuition that two mech-

anisms are necessary. How does the model do it? The pronun-

ciation of every word involves using all the weights. All that

varies on a given trial is the spelling pattern presented as input.

The rest is simply a matter of computing the activations of units

on successive layers. The weights have to assume values that

allow all words to be pronounced correctly. This is achieved by

incrementally adjusting the weights after each exposure to a

word, making bigger changes to weights that contribute more to

inaccurate performance.

Has the model simply memorized all of the words? No. That

would require dedicating subsets of units and connections to in-

dividual words, and there aren’t enough of them to achieve this. As

a result, performance on any given word is affected by knowledge

of other words. For example, training on save and gate results in

weight adjustments that also help performance on gave.

According to this theory, mastering spelling–sound corre-

spondences is a statistical learning problem. The model is a

representation of this statistical knowledge; the learning algo-

rithm is a procedure for discovering it. ‘‘Rule-governed’’ forms

and ‘‘exceptions’’ represent points on a continuum of spelling–

sound consistency. Many aspects of language have this graded

character.

RELATING MODEL AND BEHAVIOR

Showing that a network can encode both regular and exception

words is a nice trick, but what is it good for? The computational

model is a simplified instantiation of a theory of behavior. If the

model is based on valid principles, relevant behaviors should

emerge with a minimum of fuss. For example, our pronunciation

models learned to produce accurate output. However, the

Fig. 1. Theoretical framework (introduced by Seidenberg and McClel-
land, 1989) that has served as the basis for several implemented models of
word reading. Collectively known as the ‘‘triangle model,’’ the models
differ in details and focus but are based on the same theoretical principles.
Large ovals represent groups (‘‘layers’’) of units that encode different
types of information: orthography (spelling), phonology (derived from
pronunciation and sound), and semantics (meaning). Smaller ovals rep-
resent ‘‘hidden units,’’ which increase the computational capacity of the
network and provide the basis for abstraction. Most models have focused
on the orthography-to-phonology mapping. Harm and Seidenberg (2004)
implemented both orthography–semantics and orthography–phonology–
semantics components, using a variant of this architecture.
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weights are a compromise: What is good for gave is not optimal

for have and vice versa. The net effect of the competing demands

among all the words is that the model performs better on some

words than on others. ‘‘Better’’ means either producing output

that more closely matches the veridical pronunciation or pro-

ducing it more rapidly (in networks that have a dynamic com-

ponent and ‘‘settle into’’ a pronunciation over time; Plaut,

McClelland, Seidenberg, & Patterson, 1996). This variability in

network performance is the source of predictions about human

performance: Differences in model performance should corre-

spond to differences in human performance.

The Seidenberg and McClelland (1989) model captured several

important behavioral phenomena. For example, the word-fre-

quency effect—the observation that common words are typically

read more quickly than less common words—is usually taken as

evidence that words are stored as entries in lexical memory; oth-

erwise how could people keep track of their frequencies? How-

ever, our model produced such effects even though it has no lexical

entries (frequency affects the weights relevant to a word but this

does not require word-level units). Moreover, it correctly predicted

that frequency effects are modulated by a word’s similarity to other

words. The effects are smaller for words with many close neighbors

(e.g., gave) than for ‘‘strange’’ words such as sieve or scythe. Fre-

quency of exposure to gave is less important if the model is also

acquiring friends like gate and save, whereas performance on

scythe heavily depends on how often that word is used.

Then there are consistency effects. In a dual-mechanism

theory, must is rule governed and have is an exception. But what

is gave? Gave is rule governed but has the irregular neighbor

have. Glushko (1979) found that gave-type words took longer to

read aloud than words such as must, which do not have irregular

neighbors. In later work, we showed that these effects are larger

for lower-frequency words and less-skilled readers. Such effects

are easy to explain in connectionist models. The same weights

are used in pronouncing all words. Exposure to have shifts the

weights slightly away from optimal values for gave, producing a

small penalty such that gave takes longer to pronounce than

words such as must. The effects are harder to explain in dual-

route models: Gave and must are both rule governed and so

should act alike. Similar effects occur for nonwords such as

mave, both in people and in our models, a result that calls into

question the fundamental idea that generalization involves ap-

plying rules.1

CONTROVERSIES

Connectionist models of reading have been controversial. The

intuition that people learn rules and memorize exceptions is

powerful and easy to grasp. The idea that the same phenomena

can be explained by a multilayer network employing distributed

representations and a connectionist learning algorithm is not.

Moreover, it is trivially simple to falsify a computational model.

Every implemented model is limited in scope, ensuring that it

will fail to capture behavior at some level of detail. The question,

then, is whether such limitations reflect deep flaws in the theory

on which the model is based or merely the limits of a given

implementation. To illustrate, our original model pronounced

nonwords less well than people did (it erred on difficult ones like

faije). If the ways that a model’s performance matches people’s

are taken as evidence for the model, then surely the ways in

which its performance deviates from peoples’ should be taken as

evidence against it.

Not exactly. The nonword generalization problem was soon

traced to the imprecise way that phonological information was

represented in the model. This imprecision had little impact on

words, but affected nonwords, which require recombining known

elements in novel ways. Models with improved phonological

representations yielded much better nonword performance

(Harm & Seidenberg, 1999; Plaut et al., 1996). Thus the non-

word problem ‘‘falsified’’ our original model but not the theory it

approximated. Moreover, this ‘‘failure’’ led to insights about how

representations determine network behavior, to improved mod-

els, and to advances in understanding developmental dyslexia,

which is associated with phonological impairments (Harm &

Seidenberg, 1999). This pattern, in which the limitations of one

model lead to deeper insights and improved next-generation

models, is a positive aspect of the modeling methodology.

Are the models, then, unfalsifiable—able to fit any data pat-

tern? After all, there are a lot of weights and other parameters

that could be adjusted to produce particular results. In practice,

this concern is moot. First, designing models that capture phe-

nomena systematically is difficult. The model that can ‘‘fit any

data’’ is a fiction—unfortunately! Second, tweaking a model (i.e.,

adjusting parameters) to fit specific behavioral results is self-

defeating, because it results in overfitting: Matching one data set

by making arbitrary changes to minor parameters will result in

mismatching data from other experiments. When this occurs it is

a sign the model has failed to capture relevant general princi-

ples. Finally, there is the First Law of Modeling: Every model is

false. This property is built into the simulation methodology,

because all models are limited in scope. What changes is the

range of phenomena that successive models encompass and the

depth of understanding of the underlying principles. So, are the

models falsifiable? Positively, so to speak.

COMPUTING MEANING

Early connectionist models focused on pronouncing letter

strings aloud, an interesting task and a major hurdle for begin-

ning readers. However, the main goal in reading is under-

1Coltheart et al. (2001) attempted to account for consistency effects for words
in terms of other factors (e.g., some of the inconsistent words used in some studies
are actually exceptions according to their model). However, many studies have
produced consistency effects that cannot be attributed to such factors (e.g.,
Jared, 2002).
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standing. The technical challenges in developing models that

compute meanings are substantial. Our first attempt (Harm &

Seidenberg, 2004) addressed a longstanding debate: Are words

read visually (computing from spelling to meaning) or phono-

logically (from spelling to an internal phonological code to

meaning)? The pendulum has swung back and forth on this issue

for many years.

Our model again departed from intuition. Previous thinking

held that a meaning was accessed by either a visual or a pho-

nological process; usually it was assumed that the two processes

operated in parallel, with a ‘‘race’’ between them. In our model,

the activation of the semantic units builds up from both pathways

simultaneously. The issue is not which pathway ‘‘wins’’ the race

but rather the division of labor between them, which varies as a

function of factors such as properties of words (e.g., frequency,

spelling–sound consistency) and amount of experience. Early in

training, the model relied more on the orthography–phonology–

semantics component (see Fig. 1); with additional training, the

contribution of the orthography–semantics component in-

creased. This model simulated various behavioral phenomena,

including ones taken as evidence for other theories.

Thus, skilled reading involves the visual and phonological

pathways working together. What each pathway contributes

depends on what the other pathway does. The division of labor

emerges as the network learns to compute meanings quickly and

accurately. In skilled reading, both pathways make significant

contributions to most words. The exact division of labor appears

to vary between different writing systems, which differ in how

they represent sound and meaning, but the computational prin-

ciples are the same.

INSTRUCTION AND DYSLEXIA

What is the best way to teach reading, and what are the causes of

developmental reading impairments (dyslexia)? Instructional

questions can be addressed by training models in different ways;

hypotheses about dyslexia can be tested by configuring models

with different impairments and seeing if they develop charac-

teristic dyslexic behaviors. The models strongly support the

importance of phonics (methods that emphasize the relations

between spoken and written language) in early reading in-

struction. In training a model, we can provide different types of

feedback—for example, about both the pronunciation and

meaning of a word, or just about meaning. The latter method is

sometimes advocated in anti-phonics approaches. In practice,

providing both types of feedback allows the model to learn and

converge on an efficient division of labor more rapidly. Appli-

cations of the model to dyslexia yielded two basic findings (Harm

& Seidenberg, 1999). First, the simulations supported the ob-

servation that dyslexia is often associated with impairments in

the representation of phonological information. Degrading these

representations causes our models to learn more slowly and to

generalize poorly. Finding the neurological basis for these im-

precise or ‘‘noisy’’ representations is a focus of current research

(Sperling, Lu, Manis, & Seidenberg, 2005). Second, the models

suggest that dyslexia can also have other causes. Many dyslexics

exhibit a general developmental delay in reading rather than a

specific phonological deficit. The modeling suggests that this

delay may arise from constitutional factors (e.g., a learning

deficit) or experiential ones (e.g., lack of reading experience).

Some of these children may be ‘‘instructional dyslexics’’ who

were taught using methods that did not incorporate phonics,

which slows reading acquisition, as occurs in our models under

similar training conditions.

FUTURE DIRECTIONS

Our reading models were developed on the basis of computa-

tional principles and behavioral phenomena. We can now study

the brain bases of reading using neuroimaging. If the goal is to

understand behavior in terms of the brain, where does this leave

the computational models?

The simple answer is that modeling and neuroimaging

methodologies are complementary. Modeling helps in under-

standing the brain systems that underlie complex behavior. For

example, the reading brain appears to use a division-of-labor

strategy like the one described above. There are two main brain

circuits involved in reading: a phonologically-dominant one that

develops earlier and an orthography–semantics pathway that

develops with additional experience (Pugh et al., 2000). The

functions of these circuits are clearer with the computational

model in hand. The models also make testable neuroimaging

predictions (e.g. Frost et al., 2005). At the same time, imaging

research underscores the models’ limitations: For example, they

do not address the fact that different types of semantic infor-

mation are represented in different brain regions; the repre-

sentation of spelling and how it is shaped by phonological

knowledge; the role of the right hemisphere in reading; the role of

the hippocampus in learning; and other important issues. The

reading models will continue to evolve as evidence about brain

function and behavior accumulates. The goal is to converge on

an integrated theory of reading behavior and its brain bases, with

the computational model acting as the interface between the two.

This is a powerful paradigm that can potentially be applied to

many psychological phenomena.
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