supernova, a multiprocessor-aware
synthesis server for SuperCollider

Tim BLECHMANN
Vienna, Austria
tim@klingt.org

Abstract

SuperCollider |] is a modular com-
puter music system, based on an object-oriented
real-time scripting language and a standalone syn-
thesis server. supernova is a new implementation of
the SuperCollider synthesis server, providing an ex-
tension for multi-threaded signal processing. With
adding one class to the SuperCollider class library,
the parallel signal processing capabilities are ex-
posed to the user.

Keywords

SuperCollider, multi-processor, real-time

1 Introduction

In the last few years, multi- and many-core com-
puter architectures nearly replaced single-core
CPUs. Increasing the single-core performance
requires a higher power consumption, which
would lower the performance per watt. The
computer industry therefore concentrated on in-
creasing the number of CPU cores instead of
single-core performance. These days, most mo-
bile computers use dual-core processors, while
workstations use up to quad-core processors
with support for Simultaneous Multithreading.

Most computer-music applications still use
a single-threaded programming model for the
signal processing. Although multi-processor
aware signal processing was pioneered in the
late 1980s, most notably with IRCAM’s ISPW
[|, most systems, that are com-
monly used these days, have limited support for
parallel signal processing. Recently, some sys-
tems introduced limited multi-processor capa-
bilities, e.g. PureData, using a static pipelining
technique similar to the ISPW | 1,
adding a delay of one block size (usually 64 sam-
ples) to transfer data between processors. Jack2
[| can execute different clients in
parallel, so one can manually distribute the sig-
nal processing load to different applications. It
can also be used to control multiple SuperCol-

lider server instances from the same language
process.

This paper is divided into the following sec-
tions. Section 2 gives an introduction to the
difficulties when parallelizing computer music
applications, Section 3 describes the general ar-
chitecture of SuperCollider and the program-
ming model of a SuperCollider signal graph.
Section 4 introduces the concept of ‘parallel
groups’ to provide multi-processor support for
SuperCollider signal graphs. Section 5 gives an
overview of the supernova architecture, Section
6 describes the current limitations.

2 Parallelizing Computer Music
Systems

Parallelizing computer music systems is not a
trivial task, because of several constraints.

2.1 Signal Graphs

In general, signal graphs are data-flow graphs, a
form of directed acyclic graphs (DAGs), where
each node does some signal processing, based
on its predecessors. When trying to parallelize
a signal graph, two aspects have to be consid-
ered. Signal graphs may have a huge number of
nodes, easily reaching several thousand nodes.
Traversing a huge graph in parallel is possible,
but since the nodes are usually small building
blocks (‘unit generators’), processing only a few
samples, the synchronization overhead would
outweigh the speedup of parallelizing the traver-
sal. To cope with the scheduling overhead, Ul-
rich Reiter and Andreas Partzsch developed an
algorithm for clustering a huge node graph for a
certain number of threads |
]

While in theory the only ordering con-
straint between graph nodes is the graph or-
der (explicit order), many computer music
systems introduce an implicit order, which
is defined by the order, in which nodes access
shared resources. This implicit order changes

with the algorithm, that is used for traversing
the graph and is undefined for a parallel graph
traversal. Implicit ordering constraints make it
especially difficult to parallelize signal graphs of
max-like | | computer music sys-
tems.

2.2 Realtime Constraints

Computer Music Systems are realtime systems
with low-latency constraints. The most com-
monly used audio driver APIs use a ‘Pull
Model’!, that means, the driver calls a certain
callback function at a monotonic rate, when
the audio device provides and needs new data.
The audio callback is a realtime function. If it
doesn’t meet the deadline and the audio data
is delivered too late, a buffer under-run oc-
curs, resulting in an audio dropout. The dead-
line itself depends on the driver settings, espe-
cially on the block size, which is typically be-
tween 64 and 2048 samples (roughly between
1 and 80 milliseconds). For low-latency appli-
cations like computer-based instruments play-
back latency below 20 ms are desired |

], for processing percussion instru-
ments round-trip latencies for below 10 ms are
required to ensure that the sound is perceived
as single event. Additional latencies may be
introduced by buffering in hardware and digi-
tal/analog conversion.

In order to match the low-latency real-time
constraints, a number of issues has to be dealt
with. Most importantly, it is not allowed to
block the realtime thread, which could happen
when using blocking data structures for syn-
chronization or allocating memory from the op-
erating system.

3 SuperCollider

supernova is designed to be integrated in the
SuperCollider system. This Section gives an
overview about the parts of SuperCollider’s ar-
chitecture, that are relevant for parallel signal
processing.

3.1 SuperCollider Architecture

SuperCollider in its current version 3 [

| is designed as a very modular system,
consisting of the following parts (compare Fig-
ure 3.1):

Language (sclang) SuperCollider is based on
an object-oriented scripting language with

le.g. Jack, CoreAudio, ASIO, Portaudio use a pull
model

pipe / ¢ api c api / osc

sclang

Esc

scsynth / supernova

eor]

(Unit Generators)

Figure 1: SuperCollider architecture

a real-time garbage collector, which is in-
spired by Smalltalk. The language comes
with a huge class library, specifically de-
signed for computer music applications. It
includes classes to control the synthesis
server from the language.

Synthesis Server (scsynth) The SuperCol-
lider server is the signal processing engine.
It is controlled from the Language using a
simple OSC-based network interface.

Unit Generators Unit Generators (building
blocks for the signal processing like oscil-
lators, filters etc.) are provided as plugins.
These plugins are shared libraries with a C-
based API, that are loaded into the server
at boot time.

IDE There are a number of integrated devel-
oper environments for SuperCollider source
files. The original IDE is an OSX-only ap-
plication, solely built as IDE for SuperCol-
lider. Since it is OSX only, several alter-
natives exist for other operating systems,
including editor modes for Emacs, Vim,
gedit. Beside that, there is a plugin for
Eclipse and a windows client called Psycol-
lider.

GUI To build a graphical user interface for Su-
perCollider, two solutions are widely used.
On OSX, the application provides Cocoa-
based widgets. For other operating sys-

tems, one can use SwingOSC, which is
based on Java’s Swing widget toolkit.

This modularity makes it easy to change some
parts of the system, while keeping the func-
tionality of other parts. It is possible to use
the server from other systems or languages, or
control multiple server instances from one lan-
guage process. Users can extend the language
by adding new classes or class methods or write
new unit generators (ugens).

3.2 SuperCollider Node Graph

The synthesis graph of the SuperCollider server
is directly exposed to the language as a node
graph. A node can be either a synth, i.e. a
synthesis entity, performing the signal process-
ing, or a group, representing a list of nodes.
So, the node graph is internally represented as
a tree, with groups at its root and inner leaves.
Inside a group, nodes are executed sequentially,
the node ordering is exposed to the user. Nodes
can be instantiated at a certain position inside
a group or moved to a different location.

4 Multi-core support with supernova

supernova is designed as replacement for the
SuperCollider server scsynth. It implements
the OSC interface of scsynth and can dynam-
ically load unit generators. Unit Generators
for scsynth and supernova are not completely
source compatible, though the API changes are
very limited, so porting SuperCollider ugens to
supernova, is trivial. The API difference is de-
scribed in detail in Section 5.3.

4.1 Parallel Groups

To make use of supernova’s parallel execution
engine, the concept of parallel groups has
been introduced. The idea is, that all nodes in-
side such a parallel group can be executed con-
currently. Parallel groups can be nested, ele-
ments can be other nodes (synths, groups and
parallel groups).

The concept of parallel groups has been im-
plemented in the SuperCollider class library
with a new PGroup class. Its interface is close to
the interface of the Group class, but uses paral-
lel groups on the server. Parallel groups can be
safely emulated with traditional groups, making
it easy to run code using the PGroup extension
on the SuperCollider server.

4.2 Shared Resources

When writing SuperCollider code with the
PGroup extension, the access to shared resources

(i.e. buses and buffers) needs some attention to
avoid data races. While with nodes in sequential
groups the access to shared resources is ordered,
this ordering constraint does not exist for paral-
lel groups. E.g. if a sequential group G contains
the synths S1 and S2, which both write to the
bus B, S1 writes to B before S2, if and only if
S1 is located before S2. If they are placed in
a parallel group P, it is undetermined, whether
S1 writes to B before or after S2. This may be
an issue, if the order of execution affects the re-
sult signal. Summing buses would be immune
to this issue, though.

Shared resources are synchronized at ugen
level in order to assure data consistency. It is
possible to read the same resource from differ-
ent unit generators concurrently, but only one
unit generator can write to a resource at the
same time. If the order of resource access mat-
ters, the user is responsible to take care of the
correct execution order.

5 supernova Architecture

The architecture of supernova is not too differ-
ent from scsynth, except for the node graph in-
terpreter. It is reimplemented from scratch in
the c+4 programming language, making heavy
use of the stl, the boost libraries and template
programming techniques. This Section covers
the design aspects, that differ between the Su-
perCollider server and supernova.

5.1 DSP Threads

The multi-threaded dsp engine of supernova
consists of the main audio callback thread and a
number of worker threads, running with a real-
time scheduling policy similar to the main audio
thread. To synchronize these worker threads,
the synchronization constraints, that are usu-
ally imposed (see Section 2.2), have to be re-
laxed. Instead of not using any blocking syn-
chronization primitives at all, the dsp threads
are allowed to use spin locks, that are blocking,
but don’t suspend the calling thread for syn-
chronizing with other realtime threads. Since
this reduces the parts of the program, that can
run in parallel, this should be avoided whenever
it is possible to use lock-free data structures for
synchronization.

5.2 Node Scheduling

At startup supernova creates a configurable
number of worker threads. When the main au-
dio callback is triggered, it wakes the worker
threads. All audio threads processes jobs from

a queue of runnable items. With each queue
item, an activation count is associated, denot-
ing the number of its predecessors. After an
item has been executed, the activation counts
of its successors are decremented and if it drops
to zero, they are placed in the ready queue. The
concept of using an activation count is similar to
the implementation of Jack2 |]

Items do not directly map to dsp graph nodes,
since sequential graph nodes are combined to
reduce the overhead for scheduling item. E.g.
groups that only contain synths would be sched-
uled as one item.

5.3 Unit Generator Interface

The plugin interface of SuperCollider is based
on a simple c-style API. The API doesn’t pro-
vide any support for resource synchronization,
which has to be added to ensure the consistency
of buffers and buses. supernova is therefore
shipped with a patched version of the SuperCol-
lider source tree, providing an API extension to
cope with this limitation. With this extension,
reader-writer locks for buses and buffers are in-
troduced, that need to be acquired exclusively
for write access. The impact for the ugen code
is limited, as the extension is implemented with
C preprocessor macros, that can easily be dis-
abled. So the adapted unit generator code for
supernova can easily be compiled for scsynth.

In order to port a SuperCollider unit genera-
tor to supernova, the following rules have to be
followed:

e ugens, that do not access any shared re-
sources, are binary compatible.

e ugens, that are accessing buses
have to guard write access with
a pair of ACQUIRE_BUS_AUDIO and
RELEASE_BUS_AUDIO statements and read
access with ACQUIRE_BUS_AUDIO_SHARED
and RELEASE_BUS_AUDIO_SHARED. Ugens
like In, Out and their variations (e.g.
ReplaceOut) fall in this category.

e ugens, that are accessing buffers
(e.g. sampling, delay ugens) have
to use pairs of ACQUIRE_SNDBUF
or ACQUIRE_SNDBUF_SHARED
and RELEASE_SNDBUF or

RELEASE_SNDBUF_SHARED. In addi-
tion to that, the LOCK_SNDBUF and
LOCK_SNDBUF_SHARED can be used to cre-
ate a RAIl-style lock, that automatically

unlocks the buffer, when running out of
scope.

e To prevent deadlocks, one should not lock
more than one resource type at the same
time. When locking multiple resources of
the same type, only resources with adja-
cent indices are allowed to be locked. The
locking order has to be from low indices to
high indices.

6 Limitations

At the time of writing, the implementation of
supernova still imposed a few limitations.

6.1 Missing Features

The SuperCollider server provides some fea-
tures, that haven’t been implemented in super-
nova, yet. The most important feature, that is
still missing is non-realtime synthesis, that is
implemented by scsynth. In contrast to the re-
altime mode, OSC commands are not read from
a network socket, but from a binary file, that is
usually generated from the language. Audio 10
is done via soundfiles instead of physical audio
devices. Other missing features are ugen com-
mands for specific commands to specific unit
generators and plugin commands to add user-
defined OSC handlers. While these features ex-
ist, they are neither used in the standard distri-
bution nor in the sc3-plugins repository?.

6.2 Synchronization and Timing

As explained in Section 5.2 the audio callback
wakes up the worker threads before working on
the job queue. The worker threads are not put
to sleep until all jobs for the current signal block
have been run, in order to avoid some schedul-
ing overhead. While this is reasonable, if there
are enough parallel jobs for the worker threads,
it leads to busy-waiting for sequential parts of
the signal graph. If no parallel groups are used,
the worker threads wouldn’t do any useful work,
or even worse, they would prevent the operating
system to run threads with a lower priority on
this specific CPU. This is neither very friendly
to other tasks nor to the environment (power
consumption). The user can make sure to par-
allelize the signal processing as much as possi-
ble and adapt the number of worker threads to

2The sc3-plugin repository (http://sc3-plugins.
sourceforge.net/) is an svn repository of third-party
unit generators, that is maintained independently from
SuperCollider

http://sc3-plugins.sourceforge.net/
http://sc3-plugins.sourceforge.net/

match the demands of the application and the
number of available CPU cores.

On systems with a very low worst-case
scheduling latency, it would be possible to put
the worker threads to sleep, instead of busy-
waiting for the remaining jobs to finish. On a
highly tweaked linux system with the RT Pre-
emption patches enabled, one should be able
to get worst-case scheduling latencies below 20
microseconds |], which
would be acceptable, especially if a block size of
more than 128 samples can be used. On my per-
sonal reference machines, worst-case scheduling
latencies of 100 ps (Intel Core2 Laptop) and 12
ps (Intel i7 workstation, power management,
frequency scaling and SMT disabled) can be
achieved.

7 Conclusions

supernova, is a scalable solution for real-time
computer music. It is tightly integrated with
the SuperCollider computer music system, since
it just replaces one of its components and
adds the simple but powerful concept of par-
allel groups, exposing the parallelism explic-
itly to the user. While existing code doesn’t
make use of multiprocessor machines, it can
easily be adapted. The advantage over other
multiprocessor-aware computer music systems
is its scalability. An application doesn’t need
to be optimized for a certain number of CPU
cores, but can use as many cores as desired. It
does not rely on pipelining techniques, so no la-
tency is added to the signal. Resource access is
not ordered implicitly, but has to be dealt with
explicitly by the user.

8 Acknowledgements

I would like to thank James McCartney for
developing SuperCollider and publishing it as
open source software, Anton Ertl for the valu-
able feedback about this paper, and all my
friends, who supported me during the develop-
ment of supernova.

References

Stéphane Letz, Yann Orlarey, and Dominique
Fober. 2005. Jack audio server for multi-
processor machines. In Proceedings of the In-
ternational Computer Music Conference.

Thor Magnusson. 2006. Affordances and con-
straints in screen-based musical instruments.
In NordiCHI ’06: Proceedings of the 4th

Nordic conference on Human-computer inter-
action, pages 441-444, New York, NY, USA.
ACM.

James McCartney. 1996. SuperCollider, a
new real time synthesis language. In Pro-
ceedings of the International Computer Music
Conference.

James McCartney. 2002. Rethinking the
Computer Music Language: SuperCollider.
Computer Music Journal, 26(4):61-68.

Miller Puckette. 1991. FTS: A Real-time
Monitor for Multiprocessor Music Synthesis.
Computer Music Journal, 15(3):58-67.

Miller Puckette. 2002. Max at Seventeen.
Computer Music Journal, 26(4):31-43.

Miller Puckette. 2008. Thoughts on Parallel
Computing for Music. In Proceedings of the
International Computer Music Conference.

Ulrich Reiter and Andreas Partzsch. 2007.
Multi Core / Multi Thread Processing in Ob-
ject Based Real Time Audio Rendering: Ap-
proaches and Solutions for an Optimization
Problem. In Audio Engineering Society 122th
Convention.

Steven Rostedt and Darren V. Hart. 2007.
Internals of the RT Patch. In Proceedings of
the Linux Symposium, pages 161-172.

	Introduction
	Parallelizing Computer Music Systems
	Signal Graphs
	Realtime Constraints

	SuperCollider
	SuperCollider Architecture
	SuperCollider Node Graph

	Multi-core support with supernova
	Parallel Groups
	Shared Resources

	supernova Architecture
	DSP Threads
	Node Scheduling
	Unit Generator Interface

	Limitations
	Missing Features
	Synchronization and Timing

	Conclusions
	Acknowledgements

