
Chapter �
Exponentiation

Christophe Doche

Contents in Brief

9.1 Generic methods 146
Binary methods • Left-to-right 2k-ary algorithm • Sliding window method •
Signed-digit recoding • Multi-exponentiation

9.2 Fixed exponent 157
Introduction to addition chains • Short addition chains search • Exponentiation
using addition chains

9.3 Fixed base point 164
Yao’s method • Euclidean method • Fixed-base comb method

Given an element x of a group (G,×) and an integer n ∈ Z one describes in this chapter efficient
methods to perform the exponentiation xn. Only positive exponents are considered since xn =
(1/x)−n but nothing more is assumed especially regarding the structure and the properties of G.
See Chapter 11 for specific improvements concerning finite fields. Two elementary operations are
used, namely multiplications and squarings. The distinction is made for performance reasons since
squarings can often be implemented more efficiently; see Chapters 10 and 11 for details. In the
context of elliptic and hyperelliptic curves, the computations are done in an abelian group denoted
additively (G,⊕). The equivalent of the exponentiation xn is the scalar multiplication [n]P . All
the techniques described in this chapter can be adapted in a trivial way, replacing multiplication by
addition and squaring by doubling. See Chapter 13 for additional details concerning elliptic curves
and Chapter 14 for hyperelliptic curves.

Exponentiation is a very important operation in algorithmic number theory. For example, it is
intensively used in many primality testing and factoring algorithms. Therefore efficient methods
have been studied over centuries. In cryptosystems based on the discrete logarithm problem (cf.
Chapter 1) exponentiation is often the most time-consuming part, and thus determines the efficiency
of cryptographic protocols like key exchange, authentication, and signature.

Three typical situations occur. The base point x and the exponent n may both vary from one
computation to another. Generic methods will be used to get xn in this case. If the same exponent
is used several times a closer study of n, especially the search of a short addition chain for n, can
lead to substantial improvements. Finally, if different powers of the same element are needed, some
precomputations, whose cost can be neglected, give a noticeable speedup.

145

146 Ch. 9 Exponentiation

Most of the algorithms described in the remainder of this chapter can be found in [MEOO+ 1996,
GOR 1998, KNU 1997, STA 2003, BER 2002].

9.1 Generic methods

In this section both x and n may vary. Computing xn naïvely requires n − 1 multiplications, but
much better methods exist, some of them being very simple.

9.1.1 Binary methods

It is clear that x2k

can be obtained with only k squarings, namely x2, x4, x8, . . . , x2k

. Building upon
this observation, the following method, known for more than 2000 years, allows us to compute xn

in O(lg n) operations, whatever the value of n .

Algorithm 9.1 Square and multiply method

INPUT: An element x of G and a nonnegative integer n = (n�−1 . . . n0)2.

OUTPUT: The element xn ∈ G.

1. y ← 1 and i ← � − 1

2. while i � 0

3. y ← y2

4. if ni = 1 then y ← x × y

5. i ← i − 1

6. return y

This method is based on the equality

x(n�−1... ni+1ni)2 =
(
x(n�−1... ni+1)2

)2 × xni .

As the bits are processed from the most to the least significant one, Algorithm 9.1 is also referred to
as the left-to-right binary method.

There is another method relying on

x(nini−1... n0)2 = xni2
i × x(ni−1... n0)2

which operates from the right to the left.

Algorithm 9.2 Right-to-left binary exponentiation

INPUT: An element x of G and a nonnegative integer n = (n�−1 . . . n0)2.

OUTPUT: The element xn ∈ G.

1. y ← 1, z ← x and i ← 0

2. while i � � − 1 do

3. if ni = 1 then y ← y × z

§ 9.1 Generic methods 147

4. z ← z2

5. i ← i + 1

6. return y

Remarks 9.3

(i) Algorithm 9.1 is related to Horner’s rule, more precisely computing xn is similar to
evaluating the polynomial

∑�−1
i=0 niX

i at X = 2 with Horner’s rule.

(ii) Further enhancements may apply to the products y × x in Algorithm 9.1 since one of
the operands is fixed during the whole computation. For example, if x is well chosen the
multiplication can be computed more efficiently. Such an improvement is impossible
with Algorithm 9.2 where different terms of approximately the same size are involved
in the products y × z.

(iii) In Algorithm 9.2, whatever the value of n, the extra variable z contains the successive
squares x2, x4, . . . which can be evaluated in parallel to the multiplication.

The next example provides a comparison of Algorithms 9.1 and 9.2.

Example 9.4 Let us compute x314. One has 314 = (100111010)2 and 	 = 9.

Algorithm 9.1

i 8 7 6 5 4 3 2 1 0
ni 1 0 0 1 1 1 0 1 0
y x x2 x4 x9 x19 x39 x78 x157 x314

Algorithm 9.2

i 0 1 2 3 4 5 6 7 8
ni 0 1 0 1 1 1 0 0 1
z x x2 x4 x8 x16 x32 x64 x128 x256

y 1 x2 x2 x10 x26 x58 x58 x58 x314

The number of squarings is the same for both algorithms and equal to the bit length 	 ∼ lg n of n.
In fact this will be the case for all the methods discussed throughout the chapter.

The number of required multiplications directly depends on ν(n) the Hamming weight of n, i.e.,
the number of nonzero terms in the binary expansion of n. On average 1

2 lg n multiplications are
needed.

Further improvements introduced below tend to decrease the number of multiplications, leading
to a considerable speedup. Many algorithms also require some precomputations to be done. In
the case where several exponentiations with the same base have to be performed in a single run,
these precomputations need to be done only once per session, and if the base is fixed in a given
system, they can even be stored, so that their cost might become almost negligible. This is the case
considered in Algorithms 9.7, 9.10, and 9.23. Depending on the bit processed, a single squaring
or a multiplication and a squaring are performed at each step in both Algorithms 9.1 and 9.2. This
implies that it can be possible to retrieve each bit and thus the value of the exponent from an anal-
ysis of the computation. This has serious consequences when the exponent is some secret key. See
Chapters 28 and 29 for a description of side-channel attacks. An elegant technique, called Mont-
gomery’s ladder, overcomes this issue. Indeed, this variant of Algorithm 9.1 performs a squaring
and a multiplication at each step to compute xn.

148 Ch. 9 Exponentiation

Algorithm 9.5 Montgomery’s ladder

INPUT: An element x ∈ G and a positive integer n = (n�−1 . . . n0)2.

OUTPUT: The element xn ∈ G.

1. x1 ← x and x2 ← x2

2. for i = � − 2 down to 0 do

3. if ni = 0 then

4. x1 ← x2
1 and x2 ← x1 × x2

5. else

6. x1 ← x1 × x2 and x2 ← x2
2

7. return x1

Example 9.6 To illustrate the method, let us compute x314 using, this time, Algorithm 9.5. Starting
from (x1, x2) = (x, x2), the next values of (x1, x2) are given below.

i 7 6 5 4 3 2 1 0

ni 0 0 1 1 1 0 1 0

(x1, x2) (x2, x3) (x4, x5) (x9, x10) (x19, x20) (x39, x40) (x78, x79) (x157, x158) (x314, x315)

See also Chapter 13, for a description of Montgomery’s ladder in the context of scalar multiplication
on an elliptic curve.

9.1.2 Left-to-right 2k2k2k2k2k2k2k2k-ary algorithm

The general idea of this method, introduced by Brauer [BRA 1939], is to write the exponent on a
larger base b = 2k. Some precomputations are needed but several bits can be processed at a time.

In the following the function σ is defined by σ(0) = (k, 0) and σ(m) = (s, u) where m = 2su
with u odd.

Algorithm 9.7 Left-to-right 2k-ary exponentiation

INPUT: An element x of G, a parameter k � 1, a nonnegative integer n = (n�−1 . . . n0)2k and
the precomputed values x3, x5, . . . , x2k−1.

OUTPUT: The element xn ∈ G.

1. y ← 1 and i ← � − 1

2. (s, u) ← σ(ni) [ni = 2su]

3. while i � 0 do

4. for j = 1 to k − s do y ← y2

5. y ← y × xu

6. for j = 1 to s do y ← y2

§ 9.1 Generic methods 149

7. i ← i − 1

8. return y

Remarks 9.8

(i) Lines 4 to 6 compute y2k

xni i.e., the exact analogue of y2xni in Algorithm 9.1. To
reduce the amount of precomputations, note that (y2k−s

xu)2
s

= y2k

xni is actually
computed.

(ii) The number of elementary operations performed is lg n + lg n
(
1 + o(1)

)
lg n/ lg lg n.

(iii) For optimal efficiency, k should be equal to the smallest integer satisfying

lg n � k(k + 1)22k

2k+1 − k − 2
·

See [COH 2000] for details. This leads to the following table, which gives for all inter-
vals of bit lengths the appropriate value for k.

k 1 2 3 4 5 6 7

No. of binary digits [1, 9] [10, 25] [26, 70] [70, 197] [197, 539] [539, 1434] [1434, 3715]

Example 9.9 Take n = 11957708941720303968251 whose binary representation is

(10100010000011101010001100000111111101011001011110111000000001111111111011)2.

As its binary length is 74, take k = 4. The representation of n in radix 24 is

(2
2×1

8
8×1

8
8×1

3 10
2×5

8
8×1

12
4×3

1 15 13 6
2×3

5 14
2×7

14
2×7

0 1 15 15 11)24 .

Thus the successive values of y are 1, x, x2, x4, x5, x10, x20, x40, x80, x81, x162, x324, . . . , xn. Let
us denote a multiplication by M and a squaring by S. Then the precomputations cost 7M + S and
additionally one needs 17M + 72S, i.e., 97 elementary operations in total. By way of comparison,
Algorithm 9.1 needs 112 operations, 39M + 73S.

9.1.3 Sliding window method

The 2k-ary method consists of slicing the binary representation of n into pieces using a window of
length k and to process the parts one by one. Letting the window slide allows us to skip strings of
consecutive zeroes. For instance, let n = 334 = (101001110)2. Take a window of length 3 or, in
other words, precompute x3, x5 and x7 only. The successive values of y computed by Algorithm 9.7
are 1, x5, x10, x20, x40, x41, x82, x164, x167 and x334 as reflected by

334 = (101
5

001
1

110
2×3

)2.

But one could compute 1, x5, x10, x20, x40, x80, x160, x167, x334 instead. This saves one multipli-
cation and amounts to allowing non-adjacent windows

334 = (101
5

00111
7

0)2

where the strings of many consecutive zeroes are ignored.

150 Ch. 9 Exponentiation

Here is the general algorithm.

Algorithm 9.10 Sliding window exponentiation

INPUT: An element x of G, a nonnegative integer n = (n�−1 . . . n0)2, a parameter k � 1 and
the precomputed values x3, x5, . . . , x2k−1.

OUTPUT: The element xn ∈ G.

1. y ← 1 and i ← � − 1

2. while i � 0 do

3. if ni = 0 then y ← y2 and i ← i − 1

4. else

5. s ← max{i − k + 1, 0}
6. while ns = 0 do s ← s + 1

7. for h = 1 to i − s + 1 do y ← y2

8. u ← (ni . . . ns)2 [ni = ns = 1 and i − s + 1 � k]

9. y ← y × xu [u is odd so that xu is precomputed]

10. i ← s − 1

11. return y

Remarks 9.11

(i) In Line 6 the index i is fixed, ni = 1 and the while loop finds the longest substring
(ni . . . ns) of length less than or equal to k such that ns = 1. So u = (ni . . . ns)2 is odd
and belongs to the set of precomputed values.

(ii) Only the values xu occurring in Line 9 actually need to be precomputed and not all the
values x3, x5, . . . , x2k−1.

(iii) In certain cases it is possible to skip some squarings at the beginning, at the cost of an ad-
ditional multiplication. For the sake of clarity assume that k = 5 and that the binary ex-
pansion of n is (1000000)2. Then Algorithm 9.10 computes x, x2, x4, x8, x16, x32, x64.
But one could perform x31 × x instead to obtain x32 directly, taking advantage of the
precomputations. However, this trick is interesting only if the first value of u is less than
2k−1.

Example 9.12 With n = 11957708941720303968251 and k = 4 the sliding window method
makes use of the following decomposition

(101
5

0001
1
00000111

7
0101

5
00011

3
000001111

15
111

7
01011

11
001011

11
1101

13
11
3

000000001111
15

1111
15

1101
13

1
1
)2.

The successive values of y are 1, x5, x10, x20, x40, x80, x81, x162, x324, x648, . . . , xn. In this case
93 operations are needed, namely 21M + 72S, precomputations included.

9.1.4 Signed-digit recoding

When inversion in G is fast (or when x is fixed and x−1 precomputed) it can be very efficient to
multiply by either x or x−1. This can be used to save additional multiplications on the cost of
allowing negative coefficients and hence using the inverse of precomputed values. The extreme

§ 9.1 Generic methods 151

example is the computation of x2k−1. With the binary method, cf. Algorithm 9.1, one needs k − 1
squarings and k− 1 multiplications. But one could also perform k squarings to get x2k

followed by
a multiplication by x−1. This remark leads to the following concept.

Definition 9.13 A signed-digit representation of an integer n in radix b is given by

n =
�−1∑
i=0

nib
i with |ni| < b.

A signed-binary representation corresponds to the particular choice b = 2 and ni ∈ {−1, 0, 1}.
It is denoted by (n�−1 . . . n0)s and usually obtained by some recoding technique. The represen-

tation is said to be in non-adjacent form, NAF for short, if nini+1 = 0, for all i � 0. It is denoted
by (n�−1 . . . n0)NAF.

For example, take n = 478 and let 1̄ = −1. Then (101̄11001̄10)s is a signed-binary representation
of n. The first recoding technique was proposed by Booth [BOO 1951]. It consists of replacing
each string of i consecutive 1 in the binary expansion of n by 1 followed by a string of i − 1
consecutive 0 and then 1̄. For 478 = (111011110)2 it gives (1001̄10001̄0)s. Obviously, the signed-
binary representation of n is not unique. However, the NAF of a given n is unique and its Hamming
weight is minimal among all signed-digit representations of n. For example, the NAF of 478 is equal
to (10001̄0001̄0)NAF. On average the number of nonzero terms in an NAF expansion of length 	
is equal to 	/3. See [BOS 2001] for a precise analysis of the NAF density. There is a very simple
algorithm to compute it [REI 1962, MOOL 1990].

Algorithm 9.14 NAF representation

INPUT: A positive integer n = (n�n�−1 . . . n0)2 with n� = n�−1 = 0.

OUTPUT: The signed-binary representation of n in non-adjacent form (n′
�−1 . . . n′

0)NAF.

1. c0 ← 0

2. for i = 0 to � − 1 do

3. ci+1 ← �(ci + ni + ni+1)/2�
4. n′

i ← ci + ni − 2ci+1

5. return (n′
�−1 . . . n′

0)NAF

Remarks 9.15

(i) Algorithm 9.14 subtracts n from 3n with the rule 0 − 1 = 1 and discards the least
significant digit of the result. For each i, ci is the carry occurring in the addition n +
2n. Let si = ci + ni + ni+1 − 2ci+1 so that the binary expansion of 3n is equal to
(s�−1 . . . s0n0)2. Now n′

i = ci + ni − 2ci+1 ∈ {1, 0, 1} . The following observation
ensures the non-adjacent property of the expansion [JOYE 2000]. If n′

i �= 0, we have
ci + ni = 1, which implies that ci+1 = ni+1. So n′

i+1 = 2(ni+1 − ci+2) must be zero.

(ii) Finding a signed-binary representation in non-adjacent form can be done by table lookup.
Indeed ci+1 and n′

i, computed in Lines 3 and 4, only depend on ni+1, ni and ci giving
just eight cases.

(iii) Algorithm 9.14 operates from the right to the left. Since most of the exponentiation
algorithms presented so far process the bits from the left to the right, the signed-binary
representation must first be computed and stored. To enable “on the fly” recoding, which

152 Ch. 9 Exponentiation

is particularly interesting for hardware applications, cf. Chapter 26, Joye and Yen de-
signed a left-to-right signed-digit recoding algorithm. The result is not necessarily in
non-adjacent form but its Hamming weight is still minimal [JOYE 2000].

(iv) Algorithms 9.1, 9.2, 9.7, and 9.10 can be updated in a trivial way to deal with signed-
binary representation.

(v) A generalization of the NAF is presented below; see Algorithm 9.20.

Example 9.16 Again take n = 11957708941720303968251. Algorithm 9.14 gives

n = (101000100001001̄010100101̄0000100000001̄01̄01̄0101̄00001̄001̄0000000100000000001̄01̄)NAF.

Now one can combine this representation to a sliding window algorithm of length 4 to get the
following decomposition

(101
5

0001
1
00001001̄

7
0101

5
00101̄

3
00001

1
0000000 1̄01̄

−5
0 1̄01

−3
0 1̄
−1

0000 1̄001̄
−9

00000001
1
0000000000 1̄01̄

−5
)NAF.

The number of operations, precomputations included, is 90, namely 18M + 72S.

Koyama and Tsuruoka [KOTS 1993] designed another transformation, getting rid of the condition
nini+1 = 0 but still minimizing the Hamming weight. Its average length of zero runs is 1.42 against
1.29 for the NAF.

Algorithm 9.17 Koyama–Tsuruoka signed-binary recoding

INPUT: The binary representation of n = (n′
�−1 . . . n′

0)2.

OUTPUT: The signed-binary representation (n� . . . n0)s of n in Koyama–Tsuruoka form.

1. m ← 0, i ← 0, j ← 0, u ← 0, v ← 0, w ← 0, y ← 0 and z ← 0

2. while i < �lg n� do

3. if n′
i = 1 then y ← y + 1 else y ← y − 1

4. i ← i + 1

5. if m = 0 then

6. if y − z � 3 then

7. while j < w do nj = bj and j ← j + 1

8. nj ← −1, j ← j + 1, v ← y, u ← i and m ← 1

9. else if y < z then z ← y and w ← i

10. else

11. if v − y � 3 then

12. while j < u do nj = bj − 1 and j ← j + 1

13. nj ← 1, j ← j + 1, z ← y, w ← i and m ← 0

14. else if y > v then v ← y and u ← i

15. if m = 0 or (m = 1 and v � y) then

16. while j < i do nj = bj − m and j ← j + 1

17. nj ← 1 − m and nj+1 ← m

18. else

19. while j < u do nj = bj − 1 and j ← j + 1

20. nj ← 1 and j ← j + 1

§ 9.1 Generic methods 153

21. while j < i do nj = bj and j ← j + 1

22. nj ← 1 and nj+1 ← 0

23. return (n� . . . n0)s

This approach gives good results when combined with the sliding window method.

Example 9.18 For the same n = 11957708941720303968251, a sliding window exponentiation of
length 4 based on the expansion given by Algorithm 9.17 corresponds to

(101
5

0001
1
00001

1
000 1̄01̄1̄

−11
00011

3
00001

1
0000000 1̄01̄

−5
00 1̄1̄01̄

−13
0000 1̄001̄

−9
00000001

1
0000000000 1̄01̄

−5
)s.

In total 89 operations are necessary, i.e., 17M + 72S, including the precomputations.

Now one introduces a generalization of the NAF, which combines window and signed methods as
suggested in [MOOL 1990] and explained in [COMI+ 1997, COH 2005].

Definition 9.19 Let w be a parameter greater than 1. Then every positive integer n has a unique
signed-digit expansion

n =
�−1∑
i=0

ni2i

where

• each ni is zero or odd
• |ni| < 2w−1

• among any w consecutive coefficients at most one is nonzero.

An expansion of this particular form is called width-w non-adjacent form, NAFw for short, and is
denoted by (n�−1 . . . n0)NAFw

.

In [AVA 2005a], Avanzi shows that the NAFw is optimal, in the sense that it is a recoding of
smallest weight among all those with coefficients smaller in absolute value than 2w−1. See also
[MUST 2004] for a similar result.

A generalization of Algorithm 9.14 allows us to compute the NAFw of any number n > 0.

Algorithm 9.20 NAFw representation

INPUT: A positive integer n and a parameter w > 1.

OUTPUT: The NAFw representation (n�−1 . . . n0)NAFw of n.

1. i ← 0

2. while n > 0 do

3. if n is odd then

4. ni ← n mods 2w

5. n ← n − ni

6. else ni ← 0

7. n ← n/2 and i ← i + 1

8. return (n�−1 . . . n0)NAFw

154 Ch. 9 Exponentiation

Remarks 9.21

(i) The function mods used in Line 4 of Algorithm 9.20 returns the smallest residue in
absolute value. Hence, n mods 2w belongs to [−2w−1 + 1, 2w−1].

(ii) For w = 2 the NAFw corresponds to the classical NAF, cf. Definition 9.13.

(iii) The length of the NAFw of n is at most equal to �lg n� + 1. The average density of the
NAFw expansion of n is 1/(w + 1) as n tends to infinity. For a precise analysis, see
[COH 2005].

(iv) A left-to-right variant to compute an NAFw expansion of an integer can be found both
in [AVA 2005a] and in [MUST 2005]. The result may differ from the expansion pro-
duced by Algorithm 9.20 but they have the same digit set and the same optimal weight.

(v) Let w > 1 and precompute the values x+− 3, . . . , x+− (2w−1−1). Then in Algorithm 9.1 it
is sufficient to replace the statement

4. if ni = 1 then y ← x × y
by

4. if ni �= 0 then y ← xni × y
to take advantage of the NAFw expansion of n = (n�−1 . . . n0)NAFw

to compute xn.

(vi) See [MÖL 2003] for a further generalization called the signed fractional window method,
where only a subset of

{
x+− 3, . . . , x+− (2w−1−1)

}
is actually precomputed.

Example 9.22 For n = 11957708941720303968251 and w = 4 one has

n = (500010000000700050000300001000000010005000300010007000000010000000000005)NAFw

where ni = −ni. With this representation and the modification of Algorithm 9.1 explained above
xn can be obtained with 3M+S for the precomputations and then 12M+69S, that is 85 operations
in total.

9.1.5 Multi-exponentiation

The group G is assumed to be abelian in this section.
It is often needed in cryptography, for example during a signature verification, cf. Chapter 1, to

evaluate xn0
0 xn1

1 where x0, x1 ∈ G and n0, n1 ∈ Z. Instead of computing xn0
0 and xn1

1 separately
and then multiplying these terms, it is suggested in [ELG 1985] to adapt Algorithm 9.1 in the
following way, in order to get xn0

0 xn1
1 in one round. Indeed, start from y ← 1. Scan the bits of n0

and n1 simultaneously from the left to the right and do y ← y2. Then if the current bits of n0
n1

are
1
0

, 0
1 or 1

1 multiply by x0, x1 or x0x1 accordingly.
For example, to compute x51

0 x166
1 write the binary expansion of 51 and 166

51 = (00110011)2
166 = (10100110)2

and apply the rules above so that the successive values of y are at each step 1, x1, x2
1, x0x

5
1, x3

0x
10
1 ,

x6
0x

20
1 , x12

0 x41
1 , x25

0 x83
1 , and finally x51

0 x166
1 .

This trick is often credited to Shamir although it is a special case of an idea of Straus [STR 1964]
described below. Note that the binary coefficients of nj are denoted by nj,k. If necessary, the
expansion of nj is padded with zeroes in order to be of length 	.

§ 9.1 Generic methods 155

Algorithm 9.23 Multi-exponentiation using Straus’ trick

INPUT: The elements x0, . . . , xr−1 ∈ G and the �-bit positive exponents n0, . . . , nr−1. For
each i = (ir−1 . . . i0)2 ∈ [0, 2r − 1], the precomputed value gi =

Qr−1
j=0 x

ij

j .

OUTPUT: The element xn0
0 · · ·xnr−1

r−1 .

1. y ← 1

2. for k = � − 1 down to 0 do

3. y ← y2

4. i ←Pr−1
j=0 nj,k2j [i = (nr−1,k . . . n0,k)2]

5. y ← y × gi

6. return y

Remarks 9.24

(i) Computing xn0
0 . . . x

nr−1
r−1 in a naïve way requires r	 squarings and r	/2 multiplications

on average. With Algorithm 9.23, precomputations cost 2r − r− 1 multiplications, then
only 	 squarings and (1 − 1/2r)	 multiplications are necessary on average. However
one needs to store 2r − r values.

(ii) One can use Algorithm 9.23 to compute xn. To do so, write n = (n�−1 . . . n0)b in
base b, then set xi = xbi

and compute xn =
∏�−1

i=0 xni

i . This approach can be seen as a
baby-step giant-step algorithm, where the giant steps xbi

are computed first.

(iii) All the improvements of Algorithm 9.1 described previously apply to Algorithm 9.23
as well. In particular the use of parallel sliding window leads to a faster method; see
[AVA 2002, AVA 2005b, BER 2002] for a general overview on multi-exponentiation.

Example 9.25 Let us compute x31021. One has 31021 = (7 36 45)64, so that xn = x45
0 x36

1 x7
2

where x0 = x, x1 = x64 and x2 = x642
. First precompute the gi’s

i 0 1 2 3 4 5 6 7

gi 1 x0 x1 x0x1 x2 x0x2 x1x2 x0x1x2

Then one gets

k 5 4 3 2 1 0

n2,k 0 0 0 1 1 1

n1,k 1 0 0 1 0 0

n0,k 1 0 1 1 0 1

i 3 0 1 7 4 5

y x0x1 x2
0x

2
1 x5

0x
4
1 x11

0 x9
1x2 x22

0 x18
1 x3

2 x45
0 x36

1 x7
2

To improve Straus’ method in case of a double exponentiation within a group where inversion can
be performed efficiently, Solinas [SOL 2001] made signed-binary expansions come back into play.

Definition 9.26 The joint sparse form, JSF for short, of the 	-bit integers n0 and n1 is a representa-
tion of the form (

n0

n1

)
=
(

n0,� . . . n0,0

n1,� . . . n1,0

)
JSF

156 Ch. 9 Exponentiation

such that

• of any three consecutive positions, at least one is a zero column, that is for all i and all
positive j one has ni,j+k = n1−i,j+k = 0, for at least one k in {0, +− 1}

• adjacent terms do not have opposite signs, i.e., it is never the case that ni,jni,j+1 = −1
• if ni,j+1ni,j �= 0 then one has n1−i,j+1 = +− 1 and n1−i,j = 0.

The joint Hamming weight is the number of positions different from a zero column.

Solinas also gives an algorithm to compute the JSF of two integers.

Algorithm 9.27 Joint sparse form recoding

INPUT: Nonnegative �-bit integers n0 and n1 not both zero.

OUTPUT: The joint sparse form of n0 and n1.

1. j ← 0, S0 = (), S1 = (), d0 ← 0 and d1 ← 0

2. while n0 + d0 > 0 or n1 + d1 > 0 do

3. �0 ← d0 + n0 and �1 ← d1 + n1

4. for i = 0 to 1 do

5. if �i ≡ 0 (mod 2) then ri ← 0

6. else

7. ri ← �i mods 4

8. if �i ≡ +− 3 (mod 8) and �1−i ≡ 2 (mod 4) then ri ← −ri

9. Si ← ri ||Si [ri prepended to Si]

10. for i = 0 to 1 do

11. if 2di = 1 + n′
i then di ← 1 − di

12. ni ← �ni/2�
13. j ← j + 1

14. return S0 and S1

Remarks 9.28

(i) The joint sparse form of n0 and n1 is unique. The joint Hamming weight of the JSF
of n0 and n1 is equal to 	/2 on average and the JSF is optimal in the sense that it has
the smallest joint Hamming weight among all joint signed representations of n0 and n1

[SOL 2001].

(ii) The naïve computation of xn0
0 xn1

1 involving NAF representations of n0 and n1 requires
2	 squarings and 2	/3 multiplications on average. Only 	 squarings and 	/2 multiplica-
tions are necessary with the JSF, neglecting the cost of the precomputations of x0x1 and
x0/x1. Applying Straus’ trick with two integers in NAF results in a Hamming weight
of 5	/9 on average.

(iii) In [GRHE+ 2004], Grabner et al. introduce the simple joint sparse form whose joint
Hamming weight is also minimal but which can be obtained in an easier way.

§ 9.2 Fixed exponent 157

Example 9.29 Let us compute x51
0 x166

1 . The joint NAF expansion of 51 and 166 is

51 = (0101̄0101̄)NAF

166 = (1010101̄0)NAF.

Its joint Hamming weight is 8. The JSF of 51 and 166, as given by Algorithm 9.27, is

(
51
166

)
=
(

00101̄0011
101̄01̄1̄01̄0

)
JSF

with a joint Hamming weight equal to 6.

The next section is devoted to the case when several exponentiations to the same exponent n have
to be performed.

9.2 Fixed exponent

The methods considered in this section essentially give better algorithms when the exponent n is
fixed. They rely on the concept of addition chains. However, the computation of a short addition
chain for a given exponent can be very costly. But if the exponent is to be used several times it is
probably a good investment to carry out this search.

In the following, different kinds of addition chains are discussed, then efficient methods to actu-
ally find short addition chains are introduced before related exponentiation algorithms are described.

9.2.1 Introduction to addition chains

Definition 9.30 An addition chain computing an integer n is given by two sequences v and w such
that

v = (v0, . . . , vs), v0 = 1, vs = n
vi = vj + vk for all 1 � i � s with respect to
w = (w1, . . . , ws), wi = (j, k) and 0 � j, k � i − 1. (9.1)

The length of the addition chain is s.
A star addition chain satisfies the additional property that at each step vi = vi−1 + vk for some

k such that 0 � k � i − 1.

Note that one should write vi = vj(i) + vk(i) since the indexes depend on i. They are omitted for
the sake of simplicity. Sometimes only v is given since it is easy to retrieve w from v. For example
v = (1, 2, 3, 6, 7, 14, 15) is an addition chain for 15 of length 6. It is implicit in the computation
of x15 by Algorithm 9.1. In fact binary or window methods can be seen as methods producing and
using special classes of addition chains but it is often possible to do better, that is to find a shorter
chain. For instance (1, 2, 3, 6, 12, 15) computes also 15 and is of length 5.

For a given n, the smallest s for which there exists an addition chain of length s computing n is
denoted by 	(n). It is not hard to see that 	(15) = 5 but the determination of 	(n) can be a difficult
problem even for rather small n.
As complexities of squarings and multiplications are usually slightly different, note that a carefully
chosen complexity measure should take into account not only the length of the chain but also the
respective numbers of squarings and multiplications involved. For example (1, 2, 4, 5, 6, 11) and

158 Ch. 9 Exponentiation

(1, 2, 3, 4, 8, 11) compute 11 and have the same length 5. However the first chain needs 3 multipli-
cations whereas the latter requires only 2.

There is an abundant literature about addition chains. It is known [SCH 1975, BRA 1939] that

lg(n) + lg
(
ν(n)

)
− 2.13 � 	(n) � lg(n) + lg(n)

(
1 + o(1)

)
/ lg
(
lg(n)

)
,

where ν(n) is the Hamming weight of n.
As said before, finding an addition chain of the shortest length can be very hard. To make this pro-

cess easier, it seems harmless to restrict the search to star addition chains. But Hansen [HAN 1959]
proved that for some n, the smallest being n = 12509, there is no star addition chain of minimal
length 	(n). The shortest length 	(n) has been determined for all n up to 220, pruning trees to speed
up the search [BLFL]. See also Thurber’s algorithm, which is able to find all the addition chains for
a given n [THU 1999]. The hardness of this search depends primarily on ν(n), so that it is longer to
find the minimal length of 191 = (10111111)2 than 1048577 = (100000000000000000001)2, but
the running time can be quite long, even for small integers with a rather low density.

The concept of addition chain can be extended in at least three different ways.

Definition 9.31 An addition-subtraction chain is similar to an addition chain except that the condi-
tion vi = vj + vk is replaced by vi = vj + vk or vi = vj − vk.

For example, an addition chain for 314 is v = (1, 2, 4, 8, 9, 19, 38, 39, 78, 156, 157, 314). The addi-
tion–subtraction chain v = (1, 2, 4, 5, 10, 20, 40, 39, 78, 156, 157, 314) is one term shorter.

Definition 9.32 An addition sequence for the set of integers S = {n0, . . . , nr−1} is an addition
chain v that contains each element of S. In other words, for all i there is j such that ni = vj .

For example, an addition sequence computing {47, 117, 343, 499, 933, 5689} is

(1, 2, 4, 8, 10, 11, 18, 36, 47 , 55, 91, 109, 117 , 226, 343 , 434, 489, 499 , 933 , 1422, 2844, 5688, 5689).

In [YAO 1976], it is shown that the shortest length of an addition sequence computing the set of
integers {n0, . . . , nr−1} is less than

lg N + cr lg N/ lg lg N,

where N = maxi{ni} and c is some constant.

Definition 9.33 Let k and s be positive integers. A vectorial addition chain is a sequence V of
k-dimensional vectors of nonnegative integers vi for −k + 1 � i � s together with a sequence w,
such that

v−k+1 = [1, 0, 0, . . . , 0, 0]
v−k+2 = [0, 1, 0, . . . , 0, 0]

...
v0 = [0, 0, 0, . . . , 0, 1]

vi = vj + vk for all 1 � i � s with − k + 1 � j, k � i − 1
vs = [n0, . . . , nr−1]
w = (w1, . . . , ws), wi = (j, k). (9.2)

For example, a vectorial addition chain for [45, 36, 7] is

V =
`
[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [2, 2, 0], [4, 4, 0], [5, 4, 0], [10, 8, 0],

[11, 9, 0], [11, 9, 1], [22, 18, 2], [22, 18, 3], [44, 36, 6], [45, 36, 6], [45, 36, 7]
´

§ 9.2 Fixed exponent 159

w =
`
(−2,−1), (1, 1), (2, 2), (−2, 3), (4, 4), (1, 5), (0, 6), (7, 7), (0, 8), (9, 9), (−2, 10), (0, 11)

´
.

Since k = 3, the first three terms of V are v−2 = [1, 0, 0], v−1 = [0, 1, 0], and v0 = [0, 0, 1]. This
chain is of length 12 and is implicitly produced by Algorithm 9.23.

Addition sequences and vectorial addition chains are in some sense dual. We refer the inter-
ested reader to [BER 2002, STA 2003] for details and to [KNPA 1981] for a more general ap-
proach. In [OLI 1981] Olivos describes a procedure to transform an addition sequence computing
{n0, . . . , nr−1} of length 	 into a vectorial addition chain of length 	 + r − 1 for [n0, . . . , nr−1].

To illustrate his method let us deduce a vectorial addition chain for [45, 36, 7] from the addition
sequence v = (1, 2, 4, 6, 7, 9, 18, 36, 45) computing {7, 36, 45}. Let {ej | 0 � j � k} be the
canonical basis of Rk+1. The idea is then to build an array by induction, starting in the lower right
corner with a 2-by-2 array, and then processing the successive elements vh of the addition sequence,
following two rules:

• if vh = 2vi then the line to be added on top is the double of line i and the new two
columns on the left are 2eh and 2eh + ei

• if vh satisfies vh = vi + vj then the new line on top is the sum of lines i and j and the
two columns on the left are eh + ei and eh + ej .

The expression of vh in terms of the vi’s is written on the right. The first steps are:

2 2 2 = 1 + 1

0 1 1
=⇒

2 2 4 4 4 = 2 + 2

0 1 2 2 2 = 1 + 1

0 0 0 1 1

=⇒

1 1 2 3 6 6 6 = 4 + 2

1 0 2 2 4 4 4 = 2 + 2

0 1 0 1 2 2 2 = 1 + 1

0 0 0 0 0 1 1

At the end one has

1 1 2 2 4 5 5 5 5 5 5 10 10 20 40 45 45 = 36 + 9 ←
1 0 2 2 4 4 4 4 4 4 4 8 8 16 32 36 36 = 18 + 18 ←
0 0 0 1 2 2 2 2 2 2 2 4 4 8 16 18 18 = 9 + 9

0 1 0 0 0 1 1 1 1 1 1 2 2 4 8 9 9 = 7 + 2

0 0 0 0 0 0 1 0 1 1 1 1 2 3 6 7 7 = 6 + 1 ←
0 0 0 0 0 0 0 0 1 0 1 1 2 3 6 6 6 = 4 + 2

0 0 0 0 0 0 0 0 0 0 1 0 2 2 4 4 4 = 2 + 2

0 0 0 0 0 0 0 1 0 0 0 1 0 1 2 2 2 = 1 + 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

Then discard all the lines except the ones marked by an arrow and corresponding to 7, 36, and 45.
Consider the columns from the left to the right, eliminate redundancies and finally add the canonical
vectors of Rr so that a vectorial addition sequence for [45, 36, 7] is(

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [2, 2, 0], [4, 4, 0], [5, 4, 0],

[5, 4, 1], [10, 8, 1], [10, 8, 2], [20, 16, 3], [40, 32, 6], [45, 36, 7]
)
.

Conversely the procedure to get an addition sequence from a vectorial addition exists as well
[OLI 1981].
Before explaining how to find short chains, let us remark that the set of vectors (n0, . . . , nr−1,)
such that there is an addition sequence of length 	 containing n0, . . . , nr−1 has been shown to
be NP-complete [DOLE+ 1981]. This does not imply, as it is sometimes claimed, that finding a
shortest addition chain for n is NP-complete. However, we have seen that dedicated algorithms to
find a shortest addition chain are in practice limited to small exponents.

160 Ch. 9 Exponentiation

9.2.2 Short addition chains search

In the following, different heuristics to find short addition chains are discussed. They are rather
efficient but do not necessarily find a shortest possible chain. Most of the methods described here
use the concept of dictionary.

Definition 9.34 Given an integer n, a dictionary D for n is a set of integers such that

n =
k∑

i=0

bi,dd2i, with bi,d ∈ {0, 1} and d ∈ D.

Note that all the algorithms introduced in Section 9.1 can be used to produce addition chains and
implicitly use a dictionary. For example, the dictionary associated to window methods of length k
is the set {1, 3, . . . , 2k − 1}. For the NAFw it is {+− 1, +− 3, . . . , +− (2k−1 − 1)}.

In [GOHA+ 1996, O’CO 2001] the dictionary is simply made of the elements 2i −1 for 0 < i �
w, for some fixed parameter w.

The power tree method [KNU 1997] is quite simple to implement but it does not always return
an optimal addition chain, the first counter example being n = 77. Like other algorithms exploring
trees it cannot be used for exponents of cryptographic relevance, as the size grows too fast in the bit
size of the exponent and is too large for the required sizes.

A more sophisticated method is described in [KUYA 1998] and is related to the Tunstall method;
see [TUN 1968]. Namely, choose a parameter k, let p be the number of zeroes in the expansion of
n divided by its length 	 and let q = 1 − p. If the expansion is signed let q̂ = (1 − p)/2. Then
form a tree having a root of weight 1 and while the number of leaves is less than k + 1 add leaves
to this tree according to the following procedure. Take the leaf of highest weight w and create two
children with weight wp and wq, labeled respectively by 0 and 1. If the expansion is signed create
three children with weight wp, wq̂, and wq̂, labeled respectively by 0, 1̄0, and 10, instead. At the
end read the labels from the root to the leaves and concatenate 1 (10 if signed) at the beginning of
each sequence. The dictionary D is the set of odd integers obtained by removing the zeroes at the
end of each sequence. The result is a function of 	 and of the number of zeroes in the signed-binary
expansion of n. The best choice for the size of the dictionary depends on 	 and can be as large as
20 for 512-bit exponents [KUYA 1998].

Example 9.35 Take n = 587257 and k = 4. The signed-binary recoding Algorithm 9.14 gives
n = (100100001̄01̄000001̄001)NAF. One has p = 7/10 and q̂ = 3/20. After two iterations, there
are five leaves and D = {(00), (010), (01̄0), (10), (1̄0)} as shown below

=⇒

•

• • • =⇒

•
0

��������
10

1̄0

��������

• • •

•
0

��������
10

1̄0

�������� • •

•
0

��������
10

1̄0

��������

Then concatenate (10) at the beginning of each sequence of D and remove all the zeroes at the end
to finally get D = {1, 3, 5, 7, 9}. From this one can compute n = 219 + 216 − 5 × 29 − 7.

Yacobi suggests a completely different approach [YAC 1998], namely to use the well-known
Lempel–Ziv compression algorithm [ZILE 1977, LEZI 1978] to get the dictionary.

At the beginning the dictionary is empty and new elements are added while the binary expansion
of the exponent is scanned from the right to the left. Take the longest word in the dictionary that

§ 9.2 Fixed exponent 161

fits as prefix of the unscanned part of the exponent and concatenate it to the next unscanned digit
of the exponent to form a new element of the dictionary. Repeat the process until all the digits are
processed. There is also a sliding version that skips strings of zeroes.

Example 9.36 For n = 587257 one gets (1000 1111 010 111 11 10 0 1)2 and the dictionary
{1, 0, 2, 3, 7, 2, 15, 0, 2}, which actually gives rise to D = {1, 3, 7, 15}. One has n = 1 × 219 +
15 × 212 + 1 × 210 + 7 × 26 + 3 × 24 + 1 × 23 + 1 so that an addition chain for n is

(1, 2, 3, 4, 7, 8, 15, 16, 32, 64, 128, 143, 286, 572, 573, 1146, 2292, 4584,

9168, 9175, 18350, 36700, 36703, 73406, 73407, 146814, 293628, 587256, 587257)

whose length is 28.
The sliding version returns D = {1, 3, 5, 7} from the decomposition

(10000111 101 01 111 11001)2.

In this case n = 1× 219 + 7× 213 + 5× 210 + 1× 28 + 7× 26 + 3× 23 + 1 and an addition chain
for n is

(1, 2, 3, 5, 7, 8, 16, 32, 64, 71, 142, 284, 568, 573, 1146, 2292, 2293, 4586,

9172, 18344, 18351, 36702, 73404, 73407, 146814, 293628, 587256, 587257)

of length 27.

This method can also be used with signed-digit representations and is particularly efficient when the
number of zeroes is small.

In [BEBE+ 1989] continued fractions and the Euclid algorithm are used to produce short addition
chains. First let ⊗ and ⊕ be two simple operations on addition chains, defined as follows. If
v = (v0, . . . , vs) and w = (w0, . . . , wt) then

v ⊗ w = (v0, . . . , vs, vsw0, . . . , vswt)

and if j is an integer

v ⊕ j = (v0, . . . , vs, vs + j).

Now let 1 < k < n be some integer. Then

(1, . . . , k, . . . , n) = (1, . . . , n mod k, . . . , k) ⊗ (1, . . . , �n/k�)⊕ (n mod k). (9.3)

The point is to choose the best possible k. If k = �n/2� then the addition chain is equal to the one
obtained with binary methods. Instead the authors propose a dichotomic strategy, that is to take

k = γ(n) =
⌊

n

2��lg n�/2�

⌋
·

The rule (9.3) is then applied recursively in minchain(n), which uses the additional procedure
chain(n, k),

162 Ch. 9 Exponentiation

minchain(n)
1. if n = 2� then return (1, 2, 4, . . . , 2�)
2. if n = 3 then return (1, 2, 3)
3. return chain

(
n, 2�lg n/2�)

and
chain(n, k)

1. q ← �n/k� and r ← n mod k

2. if r = 0 then return
(
minchain(k) ⊗ minchain(q)

)
3. else return chain(k, r) ⊗ minchain(q) ⊕ r

Note that these algorithms are able to find short addition sequences as well.

Example 9.37 For n = 87, one has k = �87/8� = 10 and the successive calls are

chain(87, 10)
chain(10, 7) ⊗ minchain(8) ⊕ 7
(chain(7, 3) ⊗ minchain(1) ⊕ 3) ⊗ minchain(8) ⊕ 7(
(minchain(3) ⊗ minchain(2) ⊕ 1) ⊗ minchain(1) ⊕ 3

)
⊗ minchain(8) ⊕ 7

so that the final result is the optimal addition chain (1, 2, 3, 6, 7, 10, 20, 40, 80, 87).

In [BEBE+ 1994], the authors generalize this approach, introducing new strategies to determine a
set of possible values for k. So the choice of k is no longer deterministic and it is necessary to
backtrack the best possible k. For the factor method, see also [KNU 1997], one has{

k ∈ {n − 1} if n is prime

k ∈ {n − 1, p} if p is the smallest prime dividing n.

For the total strategy, k ∈ {2, 3, . . . , n − 1}. For the dyadic strategy,

k ∈
{⌊ n

2j

⌋
, j = 1, . . .

}
·

Note that only Fermat’s strategy, where

k ∈
{⌊ n

22j

⌋
, j = 0, 1, . . .

}
has a reasonable complexity and is well suited for large exponents.

Example 9.38 The corresponding results for 87 are all optimal and given in the next table.

Strategy Initial k Result

Factor 3 (1, 2, 3, 6, 12, 24, 48, 72, 84, 87)
Total 17 (1, 2, 4, 8, 16, 17, 34, 68, 85, 87)
Dyadic 2 (1, 2, 4, 6, 10, 20, 40, 80, 86, 87)
Fermat 5 (1, 2, 3, 5, 10, 20, 40, 80, 85, 87)

In [BOCO 1990] Bos and Coster use similar ideas to produce an addition sequence. See also
[COSTER]. Starting from 1, 2 and the requested numbers . . . , f2, f1, f they replace at each step
the last term by new elements produced by one of four different methods. A weight function helps

§ 9.2 Fixed exponent 163

to decide which rule should be used at each stage. Here is a brief description of these strategies with
some examples.

Approximation

Condition 0 � f − (fi + fj) = ε with fi � fj and ε small
Insert fi + ε
Example 49 67 85 117→ 49 50 67 85 (because 117 - (49 + 67) = 1)

Division

Condition f is divisible by p ∈ {3, 5, 9, 17}. Let (1, 2, . . . , αr = p) be an addition chain for p
Insert f/p, 2f/p, . . . , αr−1f/p
Example 17 48→ 16 17 32 (because 48/3= 16 and (1,2,3) computes 3)

Halving

Condition f/fi � 2u and �f/2u� = k
Insert k, 2k, . . . , k2u

Example 14 382→ 14 23 46 92 184 368 (because 382/14 � 24 and �382/24� = 23)

Lucas

Condition f and fi belong to a Lucas series (fi = u0, f = uk, k � 3 and ui+1 = ui + ui−1)
Insert u1, u2, . . . , uk−1

Example 4 23→ 4 5 9 14 (because 4,5,9,14,23 is a Lucas series)

For faster results use only Approximation and Halving steps. The choice is simpler and does not
require any weight function.

Example 9.39 This method applied to {1, 2, 47, 117, 343, 499, 933, 5689} returns

(1, 2, 4, 8, 10, 11, 18, 36, 47 , 55, 91, 109, 117 , 226, 343 , 434, 489, 499 , 933 , 1422, 2844, 5688, 5689).

The method of Bos and Coster when combined to a sliding window of big length allows us to
compute xn with a dictionary of small size and no precomputation. The following example is taken
from [BOCO 1990].

Example 9.40 Let n = 26235947428953663183191 and take a window of length 10 (except for
the first digit corresponding to a window of length 13). Then

n=(1011000111001
5689

0000001110100101
933

001110101
117

000000101111
47

00000111110011
499

00101010111
343

)2

so that the dictionary is D = {47, 117, 343, 499, 933, 5689} and the corresponding addition chain
built with D is of length 89. By way of comparison, Algorithms 9.1 and 9.10 need respectively 110
and 93 operations.

Finally, see [NEMA 2002] for techniques related to genetic algorithms.

9.2.3 Exponentiation using addition chains

Once an addition chain for n is found it is straightforward to deduce xn.

164 Ch. 9 Exponentiation

Algorithm 9.41 Exponentiation using addition chain

INPUT: An element x of G and an addition chain computing n i.e., v and w as in (9.1).

OUTPUT: The element xn.

1. x1 ← x

2. for i = 1 to s do xi ← xj × xk [w(i) = (j, k)]

3. return xs

Example 9.42 Let us compute x314, from the addition chain for 314 given below

i 0 1 2 3 4 5 6 7 8 9 10 11 12

vi 1 2 4 8 9 18 19 38 39 78 156 157 314

wi — (0, 0) (1, 1) (2, 2) (3, 0) (4, 4) (5, 0) (6, 6) (7, 0) (8, 8) (9, 9) (10, 0) (11, 11)

xi x x2 x4 x8 x9 x18 x19 x38 x39 x78 x156 x157 x314

Vectorial addition chains are well suited to multi-exponentiation. Here again G is assumed to be
abelian.

Algorithm 9.43 Multi-exponentiation using vectorial addition chain

INPUT: Elements x0, . . . , xr−1 of G and a vectorial addition chain of dimension r computing
[n0, . . . , nr−1] as in (9.2).

OUTPUT: The element xn0
0 · · ·xnr−1

r−1 .

1. for i = −k + 1 to 0 do yi ← xi+k−1

2. for i = 1 to s do yi ← yj × yk [w(i) = (j, k)]

3. return ys

The vectorial addition chain for [45, 36, 7] implicitly produced by Algorithm 9.23 is of length 12.
A careful search reveals a chain of length 10 as it can be seen in the next table, which displays the
execution of Algorithm 9.43 while computing x45

0 x36
1 x7

2 with it. Recall that y−2 = x0, y−1 = x1

and y0 = x2.

i 1 2 3 4 5 6 7 8 9 10

wi (−2,−1) (1, 1) (2, 2) (−2, 3) (0, 4) (4, 5) (0, 6) (6, 7) (8, 8) (5, 9)

yi x0x1 x2
0x

2
1 x4

0x
4
1 x5

0x
4
1 x5

0x
4
1x2 x10

0 x8
1x2 x10

0 x8
1x

2
2 x20

0 x16
1 x3

2 x40
0 x32

1 x6
2 x45

0 x36
1 x7

2

9.3 Fixed base point

In some situations the element x is always the same whereas the exponent varies. Precomputations
are the key point here.

§ 9.3 Fixed base point 165

9.3.1 Yao’s method

A simpler version of Algorithm 9.44, which can be seen as the dual of the 2k-ary method, was first
described in [YAO 1976]. A slightly improved form is presented in [KNU 1981, answer to exercise
9, Section 4.6.3]. Note that it is identical to the patented BGMW’s algorithm [BRGO+ 1993].

Let n, ni, bi, 	 and h be integers. Suppose that

n =
�−1∑
i=0

nibi with 0 � ni < h for all i ∈ [0, 	 − 1]. (9.4)

Let xi = xbi . The method relies on the equality

xn =
�−1∏
i=0

xni

i =
h−1∏
j=1

[∏
ni=j

xi

]j
.

Algorithm 9.44 Improved Yao’s exponentiation

INPUT: The element x of G, an exponent n written as in (9.4) and the precomputed values
xb0 , xb1 , . . . , xb�−1 .

OUTPUT: The element xn.

1. y ← 1, u ← 1 and j ← h − 1

2. while j � 1 do

3. for i = 0 to � − 1 do if ni = j then u ← u × xbi

4. y ← y × u

5. j ← j − 1

6. return y

Remarks 9.45

(i) The term
[∏

ni=j

xi

]j
is computed by repeated iterations in Line 4.

One obtains the correct powers xni

i as in each round the result is multiplied with u and
xi is included in u for ni rounds.

(ii) The choice of h and of the bi’s is free. One can set h = 2k and bi = hi so that the ni’s
are simply the digits of n in base h.

(iii) One needs 	 + h − 2 multiplications and 	 + 1 elements must be stored to compute xn.

Example 9.46 Let us compute x2989. Set h = 4, bi = 4i then 2989 = (2 3 2 2 3 1)4 and 	 = 6.
Suppose that x, x4, x16, x64, x256 and x1024 are precomputed and stored.

j 3 2 1

u x4x256 = x260 x260x16x64x1024 = x1364 x1364x = x1365

y x260 x260x1364 = x1624 x1624x1365 = x2989

166 Ch. 9 Exponentiation

9.3.2 Euclidean method

The Euclidean method was first introduced in [ROO 1995], see also [SEM 1983]. Algorithm 9.47
computes xn generalizing a method to compute the double exponentiation xn0

0 xn1
1 discussed by

Bergeron et al. [BEBE+ 1989] which is similar to the technique introduced in Section 9.2.2 to find
short addition chains. The idea is to recursively use the equality

xn0
0 xn1

1 = (x0x
q
1)

n0 × x
(n1 mod n0)
1 where q = �n1/n0�.

Algorithm 9.47 Euclidean exponentiation

INPUT: The element x of G, an exponent n as in (9.4) and the precomputed values x0 =
xb0 , x1 = xb1 , . . . , x�−1 = xb�−1 .

OUTPUT: The element xn.

1. while true do

2. Find M such that nM � ni for all i ∈ [0, � − 1]

3. Find N �= M such that nN � ni for all i ∈ [0, � − 1], i �= M

4. if nN �= 0 then

5. q ← �nM/nN�, xN ← xM
q × xN and nM ← nM mod nN

6. else break

7. return xnM
M

Example 9.48 Take the same exponent 2989 = (2 3 2 2 3 1)4 and let us evaluate x2989.

n5 n4 n3 n2 n1 n0 M N q x5 x4 x3 x2 x1 x0

— — — — — — — — — x1024 x256 x64 x16 x4 x

2 3 2 2 3 1 4 1 1 x1024 x256 x64 x16 x260 x

2 0 2 2 3 1 1 2 1 x1024 x256 x64 x276 x260 x

2 0 2 2 1 1 5 3 1 x1024 x256 x1088 x276 x260 x

0 0 2 2 1 1 3 2 1 x1024 x256 x1088 x1364 x260 x

0 0 0 2 1 1 2 1 2 x1024 x256 x1088 x1364 x2988 x

0 0 0 0 1 1 1 0 1 x1024 x256 x1088 x1364 x2988 x2989

0 0 0 0 0 1 0 1 — x1024 x256 x1088 x1364 x2988 x2989

9.3.3 Fixed-base comb method

This algorithm is a special case of Pippenger’s algorithm [BER 2002, PIP 1979, PIP 1980]. It is also
often referred to as Lim–Lee method [LILE 1994]. It is essentially a special case of Algorithm 9.23
where the different base points are in fact distinct powers of a single base. Suppose that n =
(n�−1 . . . n0)2. Select an integer h ∈ [1,]. Let a = �	/h� and choose v ∈ [1, a]. Let r = �a/v�
and write the ni’s in an array with h rows and a columns as below (pad the representation of n with
zeroes if necessary)

§ 9.3 Fixed base point 167

a − 1 · · · 1 0
na−1 · · · n1 n0

n2a−1 · · · na+1 na

...
...

...
...

nah−1 · · · nah−a+1 nah−a

For each s, the column number s can be read as the binary representation of an integer denoted by
I(s). For example the last column I(0) is the binary representation of I(0) = (nah−a . . . nan0)2.
The algorithm relies on the following equality

xn =
r−1∏
k=0

⎛
⎝v−1∏

j=0

G[j, I(jr + k)]

⎞
⎠

2k

where

G[j, i] =

(
h−1∏
s=0

xis2as

)2jr

for j ∈ [0, v − 1] and i = (ih−1 . . . i0)2 ∈ [0, 2h − 1].

Algorithm 9.49 Fixed-base comb exponentiation

INPUT: The element x of G and an exponent n. Let h, a, v, r and G[j, i] be as above.

OUTPUT: The element xn.

1. y ← 1 and k ← r − 1

2. for k = r − 1 down to 0 do

3. y ← y2

4. for j = v − 1 down to 0 do

5. I ←Ph−1
s=0 nas+jr+k2s [I = I(jr + k)]

6. y ← y × G[j, I]

7. return y

Example 9.50 Once again, let us compute x2989. Set h = 3 and v = 2 so that a = 4 = rv, hence
r = 2. Form the following array from the digits of 2989 = (101110101101)2

s 3 2 1 0

ns . . . n0 1 1 0 1
na+s . . . na 1 0 1 0

n2a+s . . . n2a 1 0 1 1
I(s) 7 1 6 5

The precomputed values are

i 0 1 2 3 4 5 6 7

G[0, i] 1 x x16 xx16 x256 xx256 x16x256 xx16x256

G[1, i] 1 x4 x64 x4x64 x1024 x4x1024 x64x1024 x4x64x1024

168 Ch. 9 Exponentiation

The algorithm proceeds as follows

k 1 1 1 0 0 0

j — 1 0 — 1 0

jr + k — 3 1 — 2 0

I — 7 6 — 1 5

G[j, I] — x1092 x272 — x4 x257

y 1 x1092 x1364 x2728 x2732 x2989

Remarks 9.51

(i) One needs at most a + r − 2 multiplications and v(2h − 1) precomputed values. If
squarings can be achieved efficiently or “on the fly” (for example in finite fields of even
characteristic represented through normal bases, see Section 11.2.1.c), only 2h−1 values
must be stored.

(ii) The adaptation of this method to larger base representations or signed representations
such as the non-adjacent form is straightforward.

