Chapter 5

Cloud Microphysics

5.1 Nucleation of hydrometeors

5.1.1 Heterogeneous nucleation of cloud droplets

When a parcel of moist air rises to the condensation level, the liquid phase
initially takes the form of small droplets which form, or nucleate on water-
soluble aerosol particles. The number of droplets which form is therefore a
strong function of the concentration, constitution, and size distribution of
such aerosols. As the relative humidity increases, these particles grow by
absorption of water molecules, forming a concentrated solution. However,
further growth into cloud droplets depends on criteria which we now discuss.

Growth of these aerosols and droplets occurs when the actual vapor pres-
sure of water exceeds the saturation vapor pressure relative to the droplet
in question. This droplet-specific saturation vapor pressure differs from the
standard saturation vapor pressure as the result of two competing processes:
(1) The Kelvin effect causes the saturation vapor pressure over the curved
surface of the droplet to be greater than that over a flat water surface. (2)
Raoult’s law tells us that the vapor pressure over water containing a solute
is less than that over pure water.

Kelvin effect

In the chapter on thermodynamics we learned, contrary to the common as-
sertion, that the saturation vapor pressure of water vapor is actually a (weak)
function of the environmental pressure p. We can write this dependence in
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Figure 5.1: The pressure p, inside a cloud droplet of radius a is greater than
the surrounding pressure p due to the surface tension. the force of surface
tension F, on a circular region of droplet surface of radius R is balanced by
the pressure force across the surface.

the form
es(T,p) = es(T) explp/(RvTpw)], (5.1)

where eg(T") is the saturation vapor pressure at zero pressure and tempera-
ture 7' (and is the commonly quoted expression for saturation vapor pressure;
see the chapter on thermodynamics). This pressure dependence becomes im-
portant in small droplets in which the pressure inside the drop is enhanced
over the pressure in the surrounding air. This pressure difference is called
the Kelvin effect.

Figure 5.1 shows how this increased pressure inside the drop is produced.
Due to surface tension, a force per unit length o is exerted across the bound-
ary of the circular region of drop surface illustrated in cross-section in this
figure. The total downward component of this force is 2m Ro sin(6/2), which
in the small angle approximation becomes 7 Ro) = 27 R?c /a, since 0 ~ 2R /a.
The upward pressure force on the surface is ~ TR%(py — p) where pq is the
pressure inside the drop and p is the pressure of the surrounding air. Equat-
ing these two forces tells us that

pa—p=20/a. (5.2)
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Since 0 = 7.5 x 1072 N m~! for water near the freezing point, p; — p =
1500 hPa for a droplet of radius a = 107% m, a not inconsiderable pressure
difference.

In equation (5.1), the pressure is actually the pressure py in the liquid
inside the drop. The saturation vapor pressure over a droplet of radius a is
therefore

es(T,pa) = es(T,p) exp[20/(RyTpya)] = es(T)(1+ ar/a), (5.3)

where the approximation of the exponential function by a first order Taylor
series is quite accurate for the range of values encountered in the atmosphere
and where a = 20/(RyTpy) (= 1.2 x 107 m at T' = 273 K). We have also
approximated eg(T, p) by es(T,0) = es(T).

Reduction of saturation vapor pressure by solute

Raoult’s law indicates that the saturation vapor pressure of water containing
a solute is reduced from the pure water value by the activity

X=_"w_ (5.4)

Ny + N

where n,, is the number of moles of water in the droplet and n is the number
of moles of solute. Raoult’s law isn’t particularly accurate for electrolytes,
such as the typical salts encountered in atmospheric aerosols, but we will
use it here for the purposes of illustration. A more exact treatment may be
found in Pruppacher and Klett (1978). We further assume that ny < n,, so
that we can approximate the activity as

X =1—ng/n,. (5.5)

We now set ny, = M,;/mg where M, is the mass of solute in the droplet
and mg is its molecular weight. A similar expression for the number of moles
of water in the droplet yields n,, = M, /my = 4wa®p,/(3my), where my
is the molecular weight of water substance and where we assume that the
density of the solute is unchanged from the density p,, of pure water. The
activity thus becomes

M 3
X:l—hzl—% (5.6)

Armgpa’
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Figure 5.2: Schematic plots of equilibrium relative humidity versus droplet
radius for pure water (curve AC) and solution (curve BC). The activation
relative humidity is generally less than 1.01 and activation occurs typically
for droplet radii less than 1 pm.

where a, = [3my M, /(4mmp,)]/3, and the saturation vapor pressure over a
droplet consisting of a solution with activity X is

65(T,pd,X) = X€S(T,pd). (57)

Kohler curves

Combining the Kelvin effect and Raoult’s law results in the expression

3
H, = es(T, pa, X) Jes(T) ~ (1 + % - 23> , (5.8)

where H, is the equilibrium relative humidity for the droplet, or the value of
the relative humidity relative to a flat surface of pure water which results in
a vapor pressure equal to the saturated vapor pressure over the droplet of
solution.

Figure 5.2 shows schematic plots of the equilibrium relative humidity as
a function of droplet radius for droplets consisting of pure water (curve AC)
and solute (curve BC). If the actual humidity is higher than the equilib-
rium humidity for the droplet’s radius and solute concentration, then the
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droplet will experience condensation and will grow. Conversely, if the actual
humidity is less than this value, the droplet will evaporate.

The points A and C in figure 5.2 thus represent unstable equilibria, in that
if the droplet radius should become slightly larger than the indicated value,
the equilibrium relative humidity becomes less than the actual value, and
the droplet grows further, thus departing more from the equilibrium point.
Likewise, a radius slightly less than the equilibrium value produces acceler-
ating evaporation. In contrast, the point B represents a stable equilibrium,
with departures from the specified droplet radius resulting in a tendency to
return to this radius.

If the relative humidity is increased to the activation humidity for a solute
drop, as illustrated in figure 5.2, the drop radius will increase beyond the ac-
tivation radius and the droplet will then undergo unbounded condensational
growth. We say that the original aerosol is a cloud condensation nucleus or
CCN and has become activated. This is the process of heterogeneous nucle-
ation.

Homogeneous nucleation is the process by which a number of water molecules
spontaneously aggregate by accident, thus forming a very small droplet. Very
high values of the relative humidity are required for such droplets to grow,
because their initial radius is so small and because they have no solute con-
tent to reduce their equilibrium relative humidity to a more reasonable value.
Homogeneous nucleation rarely occurs in the atmosphere, as water-soluble
aerosols are almost always available in sufficient quantities to produce enough
heterogeneous nucleation to take up the available water vapor at vapor pres-
sures only slightly above the saturation vapor pressure. It is for this reason
that cloud models generally assume all water vapor in excess of that re-
quired to produce saturation over a pure, flat water surface to be instantly
condensed.

Cumulus cloud updrafts in very clean air over oceans often nucleate 200 or
fewer CCN per cubic centimeter, while comparable updrafts in contaminated
air over land can produce one to two orders of magnitude higher droplet
concentrations. This difference has significant consequences for the ability
of cumulus clouds to produce precipitation in the two situations, as we shall
see.
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5.1.2 Ice nucleation

Cloud droplets do not freeze spontaneously when they are lifted above the
freezing level by updrafts. In fact, spontaneous freezing does not occur until
droplets are cooled to at least —40° C. Most freezing in clouds therefore
occurs by the action of ice nuclei.

Ice nuclei are aerosols which create ice crystals at temperatures below
freezing by one of three mechanisms (Pruppacher and Klett, 1978): direct
deposition onto the aerosol; freezing via an aerosol which has previously been
incorporated into the droplet; and freezing which occurs when an aerosol in
the surrounding air comes in contact with the droplet. The effectiveness of
ice nuclei becomes greater as the temperature decreases. According to Young
(1993), complete freezing initiated by commonly present ice nuclei generally
occurs in the atmosphere by —20° C. Particularly effective ice nuclei such as
silver iodide crystals can initiate freezing at temperatures as warm as —4° C.

Many facets of ice nucleation are still not well understood; it is a field filled
with formidable observational, experimental, and theoretical difficulties.

5.2 Diffusive growth

Here we consider the growth of water droplets, and briefly, the growth of ice
crystals by diffusive processes.

5.2.1 Growth of water droplets

We now investigate the diffusional growth of small water drops in the presence
of supersaturation, i. e., a relative humidity H greater than the equilibrium
relative humidity H. of the droplet in question. As illustrated in figure 5.3,
latent heat released at the surface of the drop by condensation of the vapor
must be exported diffusively.
Given a gradient in the density of water vapor py, the flux of water vapor
is
Fyv = —DVpy, (5.9)
where D is the diffusivity of water molecules in air. Adjustment of the water
vapor distribution can be shown in this case to occur very rapidly compared
to other possible processes, which means that to a good approximation the
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Figure 5.3: A droplet growing by diffusion imports water vapor (inward
arrows) and exports the latent heat produced by condensation of the vapor
on the drop surface (outward arrows).

water vapor distribution satisfies the time-independent diffusion equation
V2py = 0. This has the spherically symmetric solution
Pva — pPv)a
pvr = pv + <T)a (5.10)
where py, is the vapor density at radius r, with py, being the value at the
surface of the droplet, and where py is now taken as the density far from the
droplet. With this solution the radial component of the flux at the surface
of the drop is
D _
Fy, = (PVa—PV) (5.11)
a
The time rate of change of the droplet mass M, can be related to this
flux:

dMy

dt
Given that for a spherical drop, My = 4wa®p, /3 where p,, is the density of
liquid water, this equation can be recast in terms of the time rate of change
of the droplet radius. substituting equation (5.11), we find

= —47a*Fy,. (5.12)

da D(pVa - PV)
_— = 5.13
“at Puw ( )

The diffusive heat flux is

Fy = —KVT (5.14)
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and by the same arguments as made above, the temperature at radius r is
(T, — T)a

r

T, =T+ (5.15)

where T, is the temperature at the surface of the droplet and T is the temper-
ature far from the droplet. The heat flux at the droplet surface is therefore
K(T,—T)

Fryy=———+—7—. 5.16
" ; (5.16)

The sensible heat flow away from the droplet must just balance the latent
heat flow toward the droplet, which means that the fluxes of vapor and heat
are related by Fy, = —LFy,, where L is the latent heat of condensation.
Thus, we have

K(T, = T) = =LD(pva — pv). (5.17)

As long as the droplet radius is much greater than the mean free path of
air molecules, i. e., greater than a micrometer or so, the air at the droplet
surface will be saturated. By the ideal gas law,
eSd(Ta) -~ BSd(Ta) - QSd(T) 1 des

~ ~ 1+ ——2(T, - 1), 5.18
RVTa RvT RvT + (S dT( ) ( )

PvVa =

where egq(T,) is the saturation vapor pressure specific to the drop, at the
droplet temperature. Several approximations have been made: the droplet
temperature has been replaced by the temperature distant from the drop in
the denominator, but not in the expression for the saturation vapor pressure,
since the vapor pressure is a very sensitive function of the temperature; a
Taylor series expansion has been used to write the saturation vapor pressure
at temperature T, in terms of the saturation vapor pressure at temperature
T'; finally, the droplet-specific saturation vapor pressure has been replaced
by the vapor pressure over a flat, pure water surface in the first order term
of the Taylor series.
Computing the logrithmic derivative of the saturation vapor pressure

yields

1 deg . LL

es d  RyT?
where Ly, is the latent heat of condensation. Substituting this into equation
(5.18) finally yields

(5.19)

(5.20)

PVa =

65(T>He 1 4 LL(Ta — T)
RyT RyT? ’
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where we have set egq(T") = es(T)H.. Recall that H, is the equilibrium rel-

ative humidity over the drop (at temperature T') and eg(7’) is the saturation

mixing ratio over a pure, flat water surface at this temperature.
Substitution of equation (5.20) into equation (5.17) results in

LLDGS(He - H)

T,—T=-— ,
KRyT + L2 Deg/(RyT?)

(5.21)

where the minor additional approximation that H,. is set to unity where it
occurs by itself. Between this equation and equations (5.13) and (5.17), we
finally arrive at an expression for droplet growth:

o rsD(p/pa) (M~ 1)
dt — 1+rg(D/K)[L3/(CppRyT?)]

= A. (5.22)

In this equation we have defined the heat diffusion coefficent for air x =
K /(pCpp) where p is the air density, and we have eliminated the saturation
vapor pressure in favor of the saturation mixing ratio rg = egs/(RyTp). We
refer to H — H,. as the supersaturation.

The diffusivity of water vapor is a function of temperature and pressure,

D =2.14 x 107°(T/Tr)"**(pr/p) m* s (5.23)

according to Pruppacher and Klett (1978), where Tr = 273.15 K and pr =
1000 hPa. The diffusivity of heat and water vapor should scale the same way
with respect to temperature and pressure. The ratio of the two is approxi-
mately

D/ = 1.15. (5.24)

Assuming that the right side of equation (5.22) takes on a constant value
A > 0, the droplet radius will increase with time according to

a(t) = (2At)Y/? (5.25)

and the droplet mass will obey

_Awdlp,  4Am(24t)%?p,
3 3 '
Thus, the rate of increase of droplet mass itself increases with time under

these conditions. The implication of this result is that if condensation sup-
plies mass to a fixed number of droplets at a constant rate, then the value of

My(t) (5.26)
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the supersaturation H — H. must decrease with time. Thus, under normal
circumstances, a parcel of air reaches a relatively high value of supersatura-
tion just as condensation begins, and this supersaturation decreases as the
resulting droplets grow in size.

The square-root dependence of droplet radius on time means that an ini-
tial size distribution of droplets will become narrower as droplets grow by
diffusion. This has important consequences for the production of precipita-
tion by collision-coalescence processes, as we shall see.

5.2.2 Bergeron process

As we noted earlier, liquid water droplets in clouds do not spontaneously
freeze when they are lifted above the freezing level by updrafts. The freezing
process is a gradual one, as some of the droplets encounter ice nuclei and
freeze into ice crystals as a result. The Swedish meteorologist Tor Bergeron
first realized that a mixed environment of supercooled droplets and a few ice
crystals promotes rapid diffusional growth of the ice crystals as a consequence
of the saturation vapor pressure over ice being lower than that over liquid
water.

5.3 Accretional growth

Droplets and ice crystals produced by diffusional growth in the time available
in a convective cloud are generally too small to fall out of the cloud and reach
the ground. Precipitation is produced when small hydrometeors generated
by the diffusion mechanism collide and stick together, resulting in composite
particles with a greater fall velocity relative to the air parcel in which they
are embedded and a greater resistance to evaporation as they fall through
the unsaturated environment.

In order for collisions, and thus coalescence to occur, the distribution of
fall velocities of hydrometeors must be broad enough for there to be signifi-
cant differential motion between them. Only if this is true can hydrometeors
collide with each other. Thus, the first topic we take up is how to estimate
hydrometeor fall velocities.
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5.3.1 Hydrometeor fall velocities

Pruppacher and Klett (1978) and other references on cloud physics provide
detailed information on terminal fall speed wr, i. e., the equilibrium fall
speeds of hydrometeors relative to the air parcel in which they are imbedded
of all sorts of hydrometeors. Here we confine ourselves to understanding the
basic principles that determine these fall speeds.

In the equilibrium case, we have a balance between the force of gravity on
the hydrometeor and the drag force of the air. As a hydrometeor gets bigger,
it takes longer to establish this equilibrium, but in most cases the transient
regime is unimportant. Thus, we confine ourselves to the equilibrium situa-
tion.

An important parameter in determining the character of the flow past a
hydrometeor is the Reynolds number of the flow. The Reynolds number is
an estimate of the ratio of inertial to viscous forces in a flow:

vV

Re ~ lvV2v|”

(5.27)

In estimating this dimensionless number, we approximate spatial derivatives
by inverse lengths and velocities by typical velocity values occurring in the
problem. Here we assume that V — 1/a where a is the hydrometeor ra-
dius (or other characteristic dimension for a non-spherical hydrometeor) and
|v| = wr, resulting in

wra

Re = (5.28)

14

Low Reynolds number

Small particles fall slowly and therefore exhibit low Reynolds number flow
around them. In this case the drag force is dominated by the viscous term
relative to the pressure term, which tends to scale with the inertial term
v - Vv. An exact solution to the viscous drag may be obtained in this case,
but an approximate form for the drag which scales with the actual drag may
be obtained using simple arguments.

The viscous stress on the surface of the drop is equal to the strain rate
at the surface of the drop, dotted with the outward normal to the droplet
surface, times the dynamic viscosity p. The strain is produced by the droplet
itself, and a scale analysis indicates that it scales with wr/a, where a is the
drop radius. Multiplying this by the viscosity and a2, which is proportional
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to the surface area of the drop leads to an estimate for the viscous drag:
Fy =~ pawr. The actual drag obtained from a detailed calculation is

Fy = 6mpawy. (5.29)

Equating this to the force of gravity on the drop F, = Myg = 4ma®p,g/3
yields
2pwga’
wr = 9,u,
where g is the acceleration of gravity and p,, is the density of liquid water.
The Reynolds number may be evaluated retrospectively in order to de-
termine the range of validity of this equation,

: (5.30)

_ 2puga®

R
¢ 912

(5.31)

where we have written the dynamic viscosity in terms of the kinematic vis-
cosity v: u = pv. The Reynolds number appears to increase with decreasing
density, but this fails to take into account that the kinematic viscosity itself
is inversely proportional to the density, which means that the Reynolds num-
ber actually decreases with decreasing density! Using typical sea level values
p=12kgm™3 and v = 1.5 x 1075 m? s7!, we find that

a(Re) = 5.0 x 107°Re'/? m. (5.32)

Thus drops up to about 25 um in radius have Reynolds numbers of 0.1 or less,
and droplets with this radius have a terminal velocity of about 0.075 m s~
Below this radius terminal velocity scales as the square of the droplet radius.

High Reynolds number

At high Reynolds number the pressure part of the stress exceeds the viscous
part. In this case the difference between the pressure on the front and rear
of the drop is the primary source of drag. The pressure at the very front
of the drop will be pw?/2 greater than the ambient pressure, a result which
may be obtained using the Bernoulli equation and assuming that the flow
velocity there is zero. The pressure on the rear of the drop varies with
Reynolds number, but is generally not too far from the ambient pressure at
high Reynolds number.
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Dropping numerical factors, we can therefore estimate the drag force on
the drop to be of order Fy ~ a?pw?, since the projected area of the drop
scales with a?. We write this

Fy = Cppa’*wi (5.33)

where the drag coefficient Cp is a dimensionless parameter of order unity
which is a function only of Reynolds number. Equating this to the force of
gravity on the drop yields a terminal velocity equal to

AT pwga 12
= = . 5.34
ur = (et (5:30)

The Reynolds number therefore becomes

/2
dmp,ga®’

where this is an implicit equation, as Cp is itself a function of Reynolds
number. Solving for droplet radius, we find

a(Re) = 1.9 x 107°CH{*Re*? m. (5.36)

If Cp =1 and Re = 300, then a ~ 0.85 mm and wy ~ 5.4 m s~!, which is
not too far away from the measured sea level value (see, e. g., Gunn and
Kinzer, 1949). Between Reynolds numbers of 0.1 and 300, there is no simple

solution, but measurements have been fit to convenient equations by Beard
(1976).

Distortion of large drops

When differences in pressure on different parts of a rain drop become com-
parable to the pressure excess inside a drop due to surface tension, then the
drop deforms. Equating the surface tension-induced pressure excess inside a
drop from equation (5.2) to the pressure excess at the nose of a drop, pw% /2,
and then eliminating wr with equation (5.34) results in a critical radius

300\ /2
a. = ( DU) ~ 1.3 mm, (5.37)
TPw9
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where as usual we have assumed sea level values and C'p = 1. Droplets with
radii of this order or larger are subject to significant distortion by pressure
forces.

Since the highest pressure exists on the bottom of the falling drop and
the lowest pressure exists around the horizontal periphery, large rain drops
tend to be distorted into the shape of a horizontally oriented pancake. Drops
greater than about 4 mm in radius cannot exist due to these pressures, and
even smaller drops are sometimes disrupted, as we shall see below. The
greater cross section presented by distorted rain drops causes additional drag
over that which would have occurred if the drop were spherical. This effect
increases with droplet mass, resulting in a maximum terminal velocity of rain

drops at sea level of order 10 m s—*.

Ice hydrometeors

Ice hydrometeors are not subject to disruption by pressure forces as are liquid
drops, so in principle (and occasionally in practice) they can become bigger
than rain drops. However, ice hydrometeors are often less dense than liquid
water, and this needs to be taken into account in the calculation of terminal
velocities as well. In addition, smaller ice crystals can differ significantly
from the spherical shape we have assumed so far, which makes calculation
of their terminal velocities difficult. However, the strongest deviations from
a spherical shape occur for small crystals resulting from diffusional growth,
where the terminal velocities tend to be small in any case.

5.3.2 Precipitation production

Precipitation is produced when small hydrometeors produced by diffusive
growth collide and stick together. We first list the types of precipitation
particles produced and the mechanisms by which this production occurs.
We then investigate time scales for the precipitation production by collision
and subsequent coalescence.

Types of precipitation particles

e Warm rain arises from collisions between droplets. Calculations of this
process are often unable to explain the rapidity with which it happens
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under certain circumstances, such as moist tropical conditions. A hy-
pothesis which has gone in and out of favor over the years is that warm
rain is initiated by ultra-giant salt nuclei, which are capable of growing
much larger than the usual droplets via diffusional growth. Such nuclei
might be produced by evaporation of spray from breaking ocean waves.

e Snowflakes result from the aggregation of ice crystals created by the
Bergeron process. The existence of aggregates of pristine crystals in-
dicates that precipitation formation took place in the absence of su-
percooled liquid water once the ice crystals have exhausted the initial
supply via diffusive transfer. Snowflakes have a very low density, and
hence fall relatively slowly through the air (=~ 1 m s™1).

e Graupel consists of ice crystals or snowflakes which have encountered
additional supercooled liquid. When such droplets impact these parti-
cles, they freeze instantly, a process called riming. Riming tends to fill
in the gaps between crystals, resulting roughly spherical particles with
densities higher than that of snowflakes, but less than that of pure ice.
When graupel encounters supercooled droplets with radii of at least
12 pm between temperatures of —3 C and —8 C, the freezing process
can cause the ejection of numerous small ice crystals. This is called the
Hallett-Mossop ice multiplication process (Hallett and Mossop, 1974).
The Hallett-Mossop process can generate far more ice crystals than can
be produced by the typical environmental concentration of ice nuclei.
These ice crystals can then grow via the Bergeron process and serve as
nuclei for additional graupel particles, etc.

e Hail is produced when graupel encounters especially high concentra-
tions of supercooled water. The latent heat release exceeds the ability
of the hailstone to transfer heat to the environment, raising the tem-
perature of the hailstone to the freezing point. Freezing is thus delayed,
which means that the liquid water can easily flow into the remaining
nooks and crannies of the hydrometeor, resulting in a dense body of
ice. Hailstones can grow to large sizes (10 cm diameter or greater) in
severe storms.

When the freezing level is far enough above the surface, most precipitation
particles melt and thus form raindrops before they reach the surface. The
exception is large hailstones. These hydrometeors can fall without melting
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through a thick layer of above-freezing air, due to their large size and resulting
thermal inertia.

Time scale for particle collisions

Let us attempt to calculate the time between collisions of cloud droplets. In
order to collide at all, droplets must have different radii, so as to have different
fall speeds. Assuming at first that air flow perturbations around drops cause
no deviations in drop trajectories, a cloud droplet of radius a will collide
with a droplet of radius b if the latter droplet is located within a horizontal
distance a+b of a vertical line passing through the center of the first droplet.
The differential speed between the two droplets will be |wr(a)—wr(b)|, which
means that the effective volume swept out per unit time by the first drop in
encounters with droplets of radius b is 7(a + b)?|wr(a) — wr(b)|. If there are
N(b)db particles with radius between b and b+ db, then the rate at which the
initial particle encounters these particles is 7(a + b)*|wr(a) — wr(b)| N (b)db.

In actuality, aerodynamic forces tend to sweep each particle around the
other, thus avoiding a collision. This reduction in the collision rate over the
geometrically specified value is accounted for by multiplying the above colli-
sion rate by a correction E(a,b) called the collision efficiency. The collision
efficiency is a strong function of the radii of the two droplets. Since what
we are generally interested in is not just the collision rate, but the rate at
which the droplets coalesce, we can include the efficiency for coalescence in
E as well, at which point we call E the collection efficiency. Integrating over
all radii for the second particle, we come up with an overall collection rate,
which we express as the inverse of a time constant 7:

= /0 " w(a + b)2E(a, b)|wr(a) — we(b)|N(b)db. (5.38)

This time constant is a good indication of the ability of a convective cloud
to initiate warm rain. If the time constant is comparable to the lifetime of a
cloud, then precipitation can occur. The first set of collisions is the hardest,
as increased particle sizes result in larger terminal velocities and collection
efficiencies. On the other hand, if this time constant is much larger than a
cloud lifetime, then precipitation is unlikely to form in significant quantities.

Collection efficiencies are complicated to calculate theoretically and to
determine experimentally. In addition to terminal velocity differences, tur-
bulence can bring particles into close enough proximity to coalesce. However,
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as a general rule, for both particles having radii greater than 50 um, collec-
tion efficiencies are of order unity. For particles of radius ~ 20 um, collection
efficiencies are of order 0.1, while for smaller particles than this, collection
efficiencies decrease strongly with decreasing radius. Thus, for warm rain to
occur, it is important for droplets to grow to as large a size as possible by
diffusion (see Pruppacher and Klett, 1978).

Time scales for collisions of non-spherical particles such as ice crystals are
even more complex to determine than for spherical droplets.

5.4 Evaporation and breakup of raindrops

Evaporation is like diffusional growth in reverse, except the large drop size
means that a ventilation factor must be included. This ventilation factor
takes the form of a multiplicative term in the droplet growth equation:

Jda_ 15D(p/pu)(H = H)(1 + FRe'/) (539)
&t~ 1+ rs(D/R)LL)(CrpRyT?)] |

where the Reynolds number Re is defined as previously, and where F' =
F(Re) is a dimensionless quantity which is approximately unity for large
Reynolds numbers.

We have already seen that drops larger than a certain size are likely to
break up. Repeated growth-breakup cycles tend to result in an exponential
drop size distribution first discovered by Marshall and Palmer (1948). This
takes the form

N(a) = Nyexp(—Aa), (5.40)

where N(a)da is the number of raindrops per unit volume with radius be-
tween a and a + da. Empirically, Ny ~ 1.6 x 107" m™ and ) is adjusted to
produce the observed mass of rain water per unit volume of air. It should be
emphasized that this is an empirical result averaged over many rain events
and is not necessarily replicated in every case.
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5.6 Problems

1. Derive equations for the activation radius and saturation humidity of
soluble aerosols as a function of a; and a,. Plot these as a function of a,
over the range 107® m to 107% m with a;, calculated for a temperature

of 273 K.

2. Suppose the soluble aerosol consists of N particles per unit volume of
air, all with the same value of a,, and hence H,, in a parcel ascend-
ing such that drg/dt remains constant (and negative). This supplies
condensate to the aerosols at the approximate rate —drg/dt, assuming
that the relative humidity in the parcel never greatly exceeds unity.

(a) Determine the radius a(t) of the resulting droplets as a function
of time.

(b) Find H — H. as a function of time. You may assume that p, T,
and rg remain effectively constant for the purpose of evaluating
the right side of equation (5.22).

(c¢) For 200 aerosol particles per cubic centimeter, pressure 900 hPa,
temperature 290 K, and drg/dt = —107° s7! (equivalent to an
updraft of roughly 5 m s7!), plot a(t) and H — H. as a function
of time for the first 100 s. (Ignore the changes in all quantities
except H — H. in this 500 m ascent.)
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(d) Do the same as above for 10000 aerosol particles per cubic cen-
timeter.

3. Suppose a cloud contains two groups of drops, the first with initial
radius 5 x 107% m, the second with initial radius 1 x 107 m. Both
groups of drops are supplied with the same constant value of H — H..
What will the radius of the second group of drops be when the first
group has reached 10 x 1076 m?

4. Estimate the diffusional growth rate of a spherical ice crystal (a rather
rare critter!) of radius a at temperature 7' = —5 C and pressure p =
500 hPa, assuming a vapor pressure equal to water saturation at that
temperature. Compute how long such a crystal takes to grow from zero
to 50 x 107% m radius.

5. Estimate the terminal fall speed of hailstones 6 cm in diameter. Assume
that they are solid ice spheres.

6. Obtain an expression for 7 (the time constant for droplet collisions)
for a droplet of radius a, otherwise assuming a delta function distri-
bution of droplets N(b) = Nyd(b — by). Take a = 2by and assume a
constant collection efficiency of £ = 0.1. Assume the low Re regime
for computing terminal velocity.

(a) Compute the value of 7 for a liquid water mass per unit volume of
air p;, = 3 g m3 spread uniformly over 200 condensation nuclei
per cubic centimeter.

(b) Do the same for 3 g m™ of liquid water spread over 5000 nuclei
per cubic centimeter.



