
Chapter 3

Shallow Water Equations and the Ocean

Over most of the globe the ocean has a rather distinctive vertical structure, with an upper
layer ranging from 20 m to 200 m in thickness, consisting of water heated by solar radiation,
which is signi�cantly warmer than the underlying deep water. The water in this upper layer
is therefore less dense than deep ocean water. This density strati�cation is weak or absent
only in certain high-latitude regions of the North Atlantic and in a few other locations.
In these regions surface water has become su�ciently cold and salty (via evaporation) to
sink into the deep ocean. Such regions therefore convert surface water to deep ocean water.
Deep water returns to the surface layer over broad regions of the tropics and subtropics in
a manner that is not completely understood. However, it is clear that this transformation
must take place by the entrainment of deep ocean water into the surface layer via turbulent
mixing processes. The complete circulation, consisting of sinking in selected polar regions,
deep transport to the subtropics, entrainment into the surface layer, and surface transport
back to the polar regions, is called the thermohaline circulation.

In addition to the thermohaline circulation, there are important horizontal circulations
con�ned within the surface layer. These gyres are driven by wind stress acting on the ocean
surface. Rather special conditions apply where the surface gyres impinge on the east coasts
of continents, which result in poleward-�owing western boundary currents. The Gulf Stream
o� of the east coast of the United States is an example of a western boundary current.

Figure 3.1 shows an idealized model of the ocean structure discussed above. It is unreal-
istic in a number of respects: In the real ocean the density gradient with depth is continuous
and the ocean bottom is not a �at surface. However, these simpli�cations make the most
important characteristic behaviors of the ocean approachable mathematically.

3.1 Derivation of shallow water equations

Before tackling the dynamics of the two-layer ocean illustrated in �gure 3.1, it is useful to
�warm up� on a simpler problem, that of a single shallow layer of �owing water. We �rst
derive the shallow water equations and then examine the linearized solutions about a state
of rest.

Though it is possible to obtain the equations for this situation from the general �uid equa-
tions, it is actually easier to derive the shallow water equations directly from �rst principles.
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Figure 3.1: Idealized model for the vertical structure of the ocean. The density of the upper
layer ρ1 is less than that of the lower layer ρ2.

In so doing, we make the following assumptions:

1. The water is of uniform density ρ and the layer of water has thickness h(x, y, t).

2. The water �ows over a horizontal, �at surface, so that h is also the elevation of the
water surface.

3. The slope of the water surface is small compared to unity and the horizontal scale of
�ow features is large compared to the depth of the water.

4. The �ow velocity is independent of depth, so that v = v(x, y, t). This velocity is
assumed to be almost horizontal.

5. Friction with the underlying surface is neglected.

6. The water within the layer is in hydrostatic balance. The pressure at the upper surface
is zero. (This is trivially extendable to the case of constant pressure at the surface.)

As noted previously, the hydrostatic equation in geometrical vertical coordinates is

dp

dz
= −gρ. (3.1)

Integrating downward from the surface yields pressure as a function of depth equal to

p = gρ(h− z). (3.2)

Throughout the treatment of layered models we de�ne the gradient operator as being
two-dimensional: ∇ = (∂/∂x, ∂/∂y). We need the horizontal gradient of the pressure for the
momentum equation. From equation (3.2) we �nd that −ρ−1∇p = −g∇h is the horizontal
pressure gradient force per unit mass.

The Coriolis force per unit mass is −2Ω × v. In deriving the relationship between the
vertical pro�les of pressure and density, we have neglected the vertical component of this



CHAPTER 3. SHALLOW WATER EQUATIONS AND THE OCEAN 25

x x + L

L

h
v control

volume

Figure 3.2: Sketch for derivation of the shallow water equations.

force because it is so small compared to the gravitational and pressure gradient forces. If we
resolve Ω = Ωh + Ωzẑ into vertical and horizontal components, the Coriolis force becomes
−(2Ωh × v + 2Ωzẑ × v). Since v is essentially horizontal, the �rst term represents mainly
the vertical component of the Coriolis force, and we drop it for the sake of consistency. The
quantity f = 2Ωz = 2|Ω| sinφ where φ is the latitude, is called the Coriolis parameter. The
retained part of the Coriolis force is thus −f ẑ× v.

Using the equations for the Coriolis force and the pressure gradient force on a unit mass
of �uid, the horizontal momentum equation may be obtained directly from Newton's second
law,

dv

dt
+ g∇h+ f ẑ× v = 0, (3.3)

where v is the (horizontal) velocity of a �uid parcel. Since the total time derivative follows
the evolution of a parcel, it can be expanded using the chain rule as follows:

dv

dt
=
∂v

∂t
+ vx

∂v

∂x
+ vy

∂v

∂y
(3.4)

where we have set dx/dt = vx and dy/dt = vy according to the above ideas. This may be
written more compactly as

dv

dt
=
∂v

∂t
+ v · ∇v. (3.5)

The components of equation (3.3) represent two of the equations needed to determine
the three variables vx, vy, and the thickness h of the �uid layer. The third equation needed
to close the problem comes from the conservation of mass.

Referring to �gure 3.2, the time rate of change of mass in the control volume, taken as
a square column of side L topped by the water surface, is equal to the net �ow of mass in
from the sides:

dMCV

dt
= ρL [h(x)vx(x)− h(x+ L)vx(x+ L) + h(y)vy(y)− h(y + L)vy(y + L)] . (3.6)

The mass in the control volume may be written MCV = ρL2h and the di�erences on the
right side of this equation may be approximated as follows: h(x)vx(x)−h(x+L)vx(x+L) =
−L(∂hvx/∂x), leading to the following governing equation for h:

∂h

∂t
+∇ · (hv) = 0. (3.7)
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Note that by making a product rule expansion of the divergence term, this equation may
also be written as

dh

dt
+ h∇ · v = 0 (3.8)

where the total time derivative has the same meaning as in equation (3.5).

3.2 Linear solutions

Let us assume a basic state of rest in which v =v0 = 0 and h = h0 = constant. These
values trivially satisfy the mass continuity and momentum equations. We now examine the
behavior of small perturbations about this base state by assuming that h = h0(1 + η) where
|η| � 1. We also assume that v is small enough that quadratic terms in v and η can be
ignored. The mass continuity and momentum equations become

∂η

∂t
+∇ · v = 0 (3.9)

and
∂v

∂t
+ gh0∇η + f ẑ× v = 0. (3.10)

We now assume that η and v are proportional to exp[i(kxx+kyy−ωt)], resulting in three
linear, homogeneous algebraic equations which may be written in matrix form: −ω kx ky

kxgh0 −ω if
kygh0 −if −ω


 η
vx

vy

 = 0. (3.11)

This equation only has non-trivial solutions when the determinant of the matrix of coe�cients
is zero, which yields a polynomial equation for ω:

ω3 − ω(f 2 + k2gh0) = 0, (3.12)

where k2 = k2
x + k2

y. This has solutions

ω = 0, ω = ±(f 2 + k2gh0)
1/2. (3.13)

3.2.1 Geostrophic balance

The solution with ω = 0 appears trivial, but is not. Substitution of this frequency value back
into equation (3.11) results in the following conditions in the special case in which ky = 0:

vx = 0, vy = (ikxgh0/f)η. (3.14)

This is a special case of geostrophic balance. The �ow pattern is illustrated in �gure 3.3. The
sinusoidally varying pressure gradient force in the x direction induced by the corresponding
�uctuations in layer thickness is countered by the Coriolis force, which is produced by the
sinusoidally varying �ow velocity.
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Figure 3.3: Relationship between �ow and layer thickness in northern hemisphere geostrophic
�ow.

More generally, geostrophic balance occurs with any �ow in which parcels do not accel-
erate, i. e., when dv/dt = 0. In this case equation (3.3) reduces to

g∇h+ f ẑ× v = 0, (3.15)

which shows that �ow is parallel to lines of constant thickness, with lower thicknesses to the
left in the northern hemisphere and to the right in the southern hemisphere. The stronger
the thickness gradient, the stronger the �ow.

In many circumstances where the parcel acceleration is not zero, but occurs over time
scales long compared with the rotational period of the earth, i. e., when |dv/dt| � |f ẑ×v|,
the actual �ow is approximately geostrophic. The small deviations from geostrophic �ow are
much more important than their relative magnitude would suggest, and constitute the focus
of much of large-scale geophysical �uid dynamics. We return to this subject later.

3.2.2 Gravity-inertia waves

The other solutions to the linearized shallow water equations are wave-like. Let us �rst look
at the special case in which f = 0, i. e., for waves on the equator. In this case ω2 = k2gh0,
which means that the wave has phase speed c = ω/k = (gh0)

1/2. Equation (3.10) with f set
to zero shows us that the velocity vector is in the direction of wave propagation, i. e., the
wave is longitudinal. Furthermore the magnitude of the longitudinal velocity is related to
the fractional thickness perturbation by

vl = cη. (3.16)

Thus thicker regions have �uid velocities in the direction of wave propagation, while thinner
regions have �uid velocities pointing in the opposite direction.
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Figure 3.4: Rotation (looking down) at the rotation of the velocity vector in a gravity-inertia
wave in the northern hemisphere.

If f 6= 0, the Coriolis force acts to de�ect �uid parcels which are otherwise oscillating
back and forth in the direction of wave motion. Interestingly, the frequency remains �nite
at zero wavenumber in this case, which means that the phase speed tends to in�nity for long
wavelengths:

uphase = (f 2/k2 + c2)1/2, (3.17)

where c2 ≡ gh0 as before. The velocity vector rotates through 360◦ in an elliptical trajectory
with one cycle per wave period, as shown in �gure 3.4. The rotation is clockwise looking down
in the northern hemisphere, and counterclockwise in the southern. The ratio of semi-minor
to semi-major axes of the elliptical trajectory is given by

vt

vl

=
f

(f 2 + k2c2)1/2
. (3.18)

Equation (3.16) generalizes to
vl = upη (3.19)

when f 6= 0.
A basin of water open at the top supports waves of all horizontal wavelengths. The

shallow water solutions we have discussed here are valid for horizontal wavelengths much
greater than the depth of the basin, as expected from the initial assumptions. A more exact
analysis reveals the form of the waves at shorter wavelengths, but we do not pursue this
analysis here. Numerous alternative sources (e. g., Kundu, 1990; Faber, 1995) present this
solution.

3.3 Two-layer ocean

We now approach the problem of disturbances in the real ocean by analyzing the two-layer
case illustrated in �gure 3.1. For the most part, each layer can be treated separately, in the
manner used to deal with the single layer case. The factor which couples the layers together
is the horizontal pressure gradient term.

From the hydrostatic equation the pressure in the �rst or upper layer is

p1 = gρ1(h1 + h2 − z), (3.20)
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where we have assumed that the pressure is zero above the water surface. From this we infer
that the pressure at the interface between the two layers is

pI = gρ1h1. (3.21)

Finally, the pressure in the second layer is

p2 = pI + gρ2(h2 − z) = gρ1h1 + gρ2(h2 − z). (3.22)

The mass continuity equations for each layer are identical to that for a single layer:

∂h1,2

∂t
+∇ · (h1,2v1,2) = 0. (3.23)

Using the fact that ∇p1 = g∇[ρ1(h1 + h2)] and ∇p2 = g∇[ρ1h1 + ρ2h2], the momentum
equations for the two layers are

∂v1

∂t
+ v1 · ∇v1 + g∇(h1 + h2) + f ẑ× v1 = 0 (3.24)

and
∂v2

∂t
+ v2 · ∇v2 + g∇[(ρ1/ρ2)h1 + h2] + f ẑ× v2 = 0. (3.25)

To understand how this system of equations works, it is su�cient to examine linearized
solutions about a state of rest at the earth's equator, where f = 0. Letting h1 = h01(1 + η1)
and h2 = h02(1 + η2) as before, and assuming a plane wave moving in the x direction with
form exp[i(kx−ωt)], the mass continuity equations and the x components of the momentum
equations reduce to a set of four linear, homogeneous equations. In matrix form these
equations are 

−ω k 0 0
kgh01 −ω kgh02 0

0 0 −ω k
kg(ρ1/ρ2)h01 0 kgh02 −ω




η1

vx1

η2

vx2

 = 0. (3.26)

Taking the determinant of the matrix of coe�cients yields

ω4 − gk2(h01 + h02)ω
2 + g2k4(1− ρ1/ρ2)h01h02 = 0, (3.27)

which has the solutions

ω2 =
gk2(h01 + h02)

2

1±
[
1− 4

(
1− ρ1

ρ2

)
h01h02

(h01 + h02)2

]1/2
 . (3.28)

In the ocean the fractional di�erence between ρ1 and ρ2 is tiny, which means that |1−ρ1/ρ2| �
1. Using (1 + ε)1/2 ≈ 1 + ε/2, which is valid when |ε| � 1, equation (3.28) simpli�es to

ω2 =
gk2(h01 + h02)

2

{
1±

[
1− 2

(
1− ρ1

ρ2

)
h01h02

(h01 + h02)2

]}
. (3.29)

The two solutions are now explored.
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3.3.1 External mode

The wave mode associated with the plus sign is called the external mode. The term involving
the density ratio can be ignored due to its small size, resulting in

ω2 = gk2(h01 + h02). (3.30)

This mode is just like that which occurs for a single shallow water layer of undisturbed depth
h01 + h02. The fact that this layer is made up of two sub-layers of slightly di�erent density
is of no sign�cance here. In the ocean this could be called the �tsunami mode�, representing
the rapidly moving waves generated by sub-surface earthquakes and landslides. The phase
speed of these waves is c = [g(h01 + h02)]

1/2, which is very fast for deep ocean basins. This
mode is of little interest in climate applications but of great interest for tsunami predictions.

3.3.2 Internal mode

The minus sign in equation (3.29) results in

ω2 = gk2

(
1− ρ1

ρ2

)
h01h02

h01 + h02

= gk2he, (3.31)

where

he =

(
1− ρ1

ρ2

)
h01h02

h01 + h02

(3.32)

is called the equivalent depth. The signi�cance of he is that a single layer of water of undis-
turbed depth he would support gravity waves of the same phase speed as this mode of the
two-layer system. Note that if h02 � h01 (the usual case), then h01h02/(h01 + h02) ≈ h01.

A signi�cant part of ocean dynamics, especially that part pertaining to climate, is con-
tained in the dynamics of the internal mode. From equation (3.26) we infer that

(h01 − he)η1 + h02η2 = 0. (3.33)

This follows from the realization that ω2/k2 = ghe. The displacement of the surface of the
ocean is h′S = h01η1 + h02η2 and the displacement of the interface between the two layers
is h′I = h02η2. Since he � h01, we have η1/η2 ≈ −h02/h01 from equation (3.33). Appealing
again to equation (3.33), we �nd that

h′S = heη1 = −heη2h02/h01 = −(he/h01)h
′
I . (3.34)

In other words, the surface displacement is a small fraction he/h01 of the displacement of
the interface between the two layers, and is of opposite sign.

This fact turns out to be very useful for remote sensing of the state of the ocean. Satellite-
based radars can measure the vertical displacement of the ocean surface to a high degree of
accuracy. This in combination with equation (3.34) allows the vertical displacement of the
interface between surface and deep water to be inferred.

Equation (3.26) also yields information about the relative �ow velocities in the shallow
and deep layers. In particular, we �nd that

vx1h01 = −vx2h02. (3.35)
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Figure 3.5: Sketch for deriving shallow water equations with terrain.

Thus, the �ows in the shallow and deep layers are opposite in direction. The net horizontal
mass �ux is ρ1vx1h01 + ρ2vx2h02. Since ρ1 ≈ ρ2, we see that the net horizontal mass �ux due
to internal mode transports is nearly zero � transport in the shallow layer in a particular
direction is compensated by transport in the opposite direction in the deep layer. In the
usual case in which h02 � h01, we also see that |vx2| � |vx1|, i. e., velocities in the surface
layer are much stronger than velocities in the deep layer.

This analysis was carried out for the restricted case of linearized gravity waves on the
equator. However, to the extent that (a) the density in the surface layer is only slightly
less than the density of deep water, and (b) the thickness of the deep layer is much greater
than the thickness of the surface layer, the result is much more general. In particular, the
dynamics of the surface layer are essentially the dynamics of a shallow water �ow with depth
equal to the equivalent depth calculated above. The deep ocean layer responds passively to
this mode with only minimal �ow velocity, as governed by the condition of zero net mass
�ux integrated over the depth of the ocean. Under these circumstances, the assumption of a
�at ocean bottom, which is highly unrealistic, has no signi�cant e�ect on the results as long
as the thickness of the deep layer greatly exceeds the thickness of the surface layer.

3.4 E�ects of topography

We now derive the equations for shallow water �ow for the case in which the underlying
surface is not �at, but varies in height, with an elevation above some reference level of
d(x, y), as illustrated in �gure 3.5. The only change from the �at bottom case is that the
elevation of the upper surface of the water is now h + d rather than h. The pressure as a
function of height is thus p = gρ(h + d − z), with the result that the momentum equation
becomes

dv

dt
+ g∇(h+ d) + f ẑ× v = 0. (3.36)

The mass continuity equation (3.7) is unchanged.

3.4.1 Steady, two-dimensional, non-rotating �ow over topography

Let us imagine the special case of time-independent �ow in the x direction over two-
dimensional topography, d = d(x), and where the environment is not rotating, i. e., f = 0.
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In this case the governing equations (3.7) and (3.36) reduce to

∂hvx

∂x
= 0 (3.37)

and

vx
∂vx

∂x
+ g

∂(h+ d)

∂x
= 0. (3.38)

These easily integrate to
hvx = M (3.39)

and
v2

x/2 + g(h+ d) = H, (3.40)

where M and H are constants. Note that these equations are purely algebraic, and can in
principle be solved for vx and h in terms of d(x), M , and H. Unfortunately, the system is
cubic, so analytic solutions, are cumbersome.
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3.6 Laboratory

1. Given your previous density pro�le inferred from TAO mooring data, approximate
this pro�le by a two-layer pro�le, each layer with constant density. Then, compute
the speed of internal gravity waves for this pro�le. Assume that the thickness of the
bottom layer is much greater than the thickness of the upper layer.

3.7 Problems

1. Moving base state:

(a) Solve the steady state shallow water equations for the thickness �eld h0(y) in
geostrophic balance with uniform �ow in the x direction, v = v0 = (vx0, 0),
assuming that h0(0) = hR > 0.

(b) Linearize the shallow water equations about this state, assuming that v = v0 +v′

and h = h0 + h′ where v′ and h′ are small. (Note that these equations no longer
have constant coe�cients!)

2. In the steady case on the equator where f = 0 and ∂v/∂t = 0, show that v · ∇v
can be represented as the gradient of something when ∂vy/∂x = ∂vx/∂y, so that the
momentum equation can be written in the form ∇(stuff) = 0, from which you can infer
that stuff = constant. This constant is called the Bernoulli constant.
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3. Verify equations (3.33), (3.34), and (3.35).

4. Assume an ocean 5 km deep with a surface layer 100 m deep. The density of the deep
ocean is ρ2 = 1028 kg m−3 while the density of the surface layer is ρ1 = 1023 kg m−3.
(Assume that ocean water is incompressible.)

(a) What is the equivalent depth of the internal mode?

(b) Compute the speed of external and internal wave modes on the equator.

(c) If the interface de�ects downward 20 m in the internal wave, how much does the
surface de�ect upward?

(d) What is the magnitude of the surface layer parcel velocity in the internal mode
in this case?

(e) What is the corresponding magnitude of the deep layer parcel velocity?

5. Consider a steady, non-rotating, two-dimensional �ow over topography in which vx = v0

and h = h0 when d = 0, where v0 and h0 are constant.

(a) Compute M and H in equations (3.39) and (3.40) in terms of v0 and h0.

(b) Eliminate vx between these two equations, resulting in a cubic equation for h.

(c) Write h in the form h = h0(1 + η) and assume that d is small in magnitude so
that the above cubic equation for h can be linearized in η. Solve for η.

(d) Using the above approximate solution, �nd the height of the surface of the shallow
water layer, h+d as a function of d. Consider how this height varies as a function
of d, taking the cases v2

0 < gh0 and v2
0 > gh0 separately. How does the �ow

velocity vx vary with d in the above two cases?


