
Mini-C to JVM

CS 452

Due May 4, 2007

1 Introduction

For this programming project you will construct a compiler for a simple C-like language we will call Mini-C.
Your compiler will generate assembler source code that ultimately targets the Java Virtual Machine (JVM).
You will first convert the grammar described in Section 2.2 into a form usable by YACC. Next you will create
the lexical analysis function yylex() by either implementing it directly or using LEX. Once you are confident
your lexical analyzer and parser are working correctly, you will augment this parser so that it generates a
syntax tree for each top-level statement and function declaration in the input source program. The lexical
analyzer should be retaining line number information, so that syntax errors and static semantic errors are
reported (via yyerror()) with line numbers indicating the proximity of the offending code. Finally, once
you have created the appropriate syntax trees, generate assembler source code as described in Section 3.

2 The Language

2.1 Lexical Elements

Table 2.1 lists the lexical elements of Mini-C. Whitespace is ignored, anything following \\ to the end of
the line is treated as a comment, and keywords and identifiers are case sensitive. If you use the -d option,
YACC will generate a header file y.tab.h containing the appropriate constants for multi-character tokens:

yacc -d minic.y

This header file will also define YYSTYPE which is used to define semantic stack attributes for the various
terminals and non-terminals in the language.

2.2 The Grammar

The grammar for Min-C is listed in Figure 1. After either massaging the grammar or using the appropriate
YACC directives to enforce the proper operator precedence and associativity, there should only be one
shift/reduce error resulting from the dangling-else ambiguity; YACC will shift by default which will match
an else with the closest if. Figure 2 lists a simple Mini-C program that reads an integer from the user and
prints out its truncated square root.

3 Target Assembly

There are three directives that specify the Java class name, static fields, and static methods respectively.
Figure 3 illustrates each directive. The assembler source code begins with a class directive:

.class <classname>

Static fields are specified with a field directive:

1

program → decl_list

decl_list → decl_list decl | decl

decl → var_decl | fun_decl

var_decl → type_spec IDENT ; | type_spec IDENT [] ;

type_spec → VOID | BOOL | INT | FLOAT

fun_decl → type_spec IDENT (params) compound_stmt

params → param_list | VOID

param_list → param_list , param | param

param → type_spec IDENT | type_spec IDENT []

stmt_list → stmt_list stmt | ε
stmt → expr_stmt | compound_stmt | if_stmt | while_stmt |
 return_stmt | break_stmt

expr_stmt → expr ; | ;

while_stmt → WHILE (expr) stmt

compound_stmt → { local_decls stmt_list }

local_decls → local_decls local_decl | ε

local_decl → type_spec IDENT ; | type_spec IDENT [] ;

if_stmt → IF (expr) stmt | IF (expr) stmt ELSE stmt

return_stmt → RETURN ; | RETURN expr ;

expr → IDENT = expr | IDENT [expr] = expr

→ expr OR expr

→ expr EQ expr | expr NE expr

→ expr LE expr | expr < expr | expr GE expr | expr > expr

→ expr AND expr

→ expr + expr | expr - expr

→ expr * expr | expr / expr | expr % expr

→ ! expr | - expr | + expr

→ (expr)

→ IDENT | IDENT [expr] | IDENT (args) | IDENT . size

→ BOOL_LIT | INT_LIT | FLOAT_LIT | NEW type_spec [expr]

arg_list → arg_list , expr | expr

in
cr

ea
si

n
g

p
re

ce
d

en
ce

args → arg_list | ε

Figure 1: The Mini-C grammar with the dangling-else ambiguity and the usual operator ambiguities. The
operators are listed in increasing order of precedence; They are left-associative except for the assignment
operator and the unary operators (which are right-associative) and the comparison operators (which are
non-associative).

2

lexeme tokens
(){};,+-*%<>=![] ASCII value
<= >= == != || && LE GE EQ NE OR AND
if else while return break IF ELSE WHILE RETURN BREAK
new size NEW SIZE
void bool int float VOID BOOL INT FLOAT
true false TRUE FALSE
[0-9]+ INT LIT
[0-9]+.[0-9]+ FLOAT LIT
[a-zA-Z_][a-zA-Z_0-9]* IDENT
EOF 0

Table 1: Lexemes and tokens for Mini-C. The first row lists all of the single character lexemes – their
ASCII value is used to encode their token value. The second row lists the two character lexemes and their
corresponding tokens (each token in rows 1 through 8 represent some integer constant greater than 256).
Following this are keywords for control structures, array operations, primitive types, and boolean literals.
Regular expressions are used to describe lexemes for integer literals, floating point literals, and identifiers.
“End of file” is encoded with a token value of 0.

descriptor type
V void (for method return types only)
Z boolean
I integer
F floating point
[Z array of booleans
[I array of integer
[F array of floats

Table 2: Type descriptors.

.field <fieldname> <descriptor>

The descriptor denotes the field’s type as described in Table 2. Static methods are specified with the method
directive:

.method <methodname> (<param-descriptors>)<ret-desciptor> <num-locals>
...instruction mnemonics...

.end

The parameter descriptors are listed sequentially inside parentheses (e.g., (IZ[F) would denote three pa-
rameters: an integer, a boolean, and an array of floats). These parameters are indexed on the stack frame
beginning with 0. Then number of local variables on the stack frame are then specified; If there are n
parameters, then the first local variable is indexed by n. Each line then contains an optional label and on
optional instruction mnemonic. Labels are alphanumerics strings that represent the address of the current
instruction – they begin are column one and end with a colon. The instruction mnemonics are listed in
Table 3. Everything after a semicolon on any line denotes a comments and is ignored.

3.1 I/O

There are four built-in methods designed for reading input from stdin and writing output to stdout.

int iread(void);

3

int isqrt(int a, int guess) { // tail recursive integer square root
int x;
if (guess == (x = (guess + a/guess)/2)) // guess via Newton’s method
return guess;

return isqrt(a, x); // tail recurse
}

int num;

void main(void) {
num = iread();
iprint(isqrt(num, num/2));

}

Figure 2: Example Mini-C program that reads an integer from stdin, stores it in the variable num, and then
outputs b

√
numc.

float fread(void);
void iprint(int i);
void fprint(float f);

You compiler should enter these method signatures into the symbol table as described in Section ??.

4 Syntax Trees

The parser generates a syntax tree for each function declaration and static variable declaration. Figure 5
shows possible class hierarchies for syntax trees representing statements (which includes static variable
declarations) and expressions. The abstract base classes Stmt and Expr should each specify a virtual method
for generating code that is implemented by each specialized subclass. We also need to record each Expr’s
type so we can perform static type checking and coerce integers into floats when necessary.

4.1 Statement and Expression Classes

Create these bases classes is quite natural to do in a language like C++:

class Stmt { // abstract base class for statements
public:
virtual void gencode(FILE *f) const = 0; // pure virtual method

};

class Expr { // abstract base class for expressions
protected:
Type_ type_; // VOID, BOOL, INT, FLOAT, INT_ARRAY, etc...

public:
Expr(Type_ t) : type_(t) {}
Type_ getType() const {return type_;}
virtual void gencode(FILE *f) const = 0;

};

A concrete subclass for if-statements might then look like the following:

4

.class Sqrt ; Java class name

;; method name = "fsqrt"
;; args: float a (local index 0)
;; locals: float xprev (local index 1)
;; float x (local index 2)
;; returns float sqrt(a)
.method fsqrt (F)F 2 ; name, descriptor, number of local vars

fload 0
fstore 1 ; xprev = a
fconst 0.5
fload 0
fmul
fstore 2 ; x = 0.5*a

top: fload 1
fload 2
fcmp
ifcmpeq bot ; if x == xprev we are done
fload 2
fstore 1 ; xprev = x
fload 0
fload 2
fdiv
fload 2
fadd
fconst 0.5
fmul
fstore 2 ; next guess: x = (x + a/x)*0.5
goto top

bot: fload 2
freturn ; return x

.end

.field input F ; static float field, name = "input"

;; "main" method: no args, returns void
.method main ()V

invokestatic fread ; read float from stdin
putstatic input ; store float in input
getstatic input
invokestatic fsqrt
invokestatic fprint ; print sqrt(num)
return

.end

Figure 3: Hand crafted assembler program that reads a floating point number from stdin, and writes its
square to stdout.

5

instruction operand stack description

aload <index> ⇒ arrayref Load local array reference
areturn arrayref ⇒ Return array reference
arraylength arrayref ⇒ length Get length of array
astore <index> arrayref ⇒ Store local array reference
dup val ⇒ val, val Duplicate
dup x2 a, b, c ⇒ c, a, b, c Duplicate 2-deep
fadd a, b ⇒ a + b Float add
faload arrayref, index ⇒ value Load float from array
fastore arrayref, index, val ⇒ Store into float array
fcmp a, b ⇒ −1 | 0 | 1 Compare floats (a < b | a = b | a > b)
fconst <float> ⇒ float Push float constant
fdiv a, b ⇒ a/b Float divide
fload <index> ⇒ val Load local float
fmul a, b ⇒ a ∗ b Float multiply
fneg a ⇒ −a Float negate
freturn val ⇒ Return float
fstore <index> val ⇒ Store local float
fsub a, b ⇒ a− b Float subtract
getstatic <var> ⇒ val Get static var
goto <label> Branch.
i2f int ⇒ float Convert int to float
iadd a, b ⇒ a + b Integer add
iand a, b ⇒ a&b Bitwise and
iaload arrayref, index ⇒ value Load integer from array
iastore arrayref, index, val ⇒ Store into integer array.
iconst <int> ⇒ int Push integer constant
idiv a, b ⇒ a/b Integer divide
if cmp<op> <label> a, b ⇒ Compare and branch if equal, not equal, . . .
if<op> <label> int ⇒ Conditional branch

<op>={eq|ne|lt|le|gt|ge}
iload <index> ⇒ val Load local integer
imul a, b ⇒ a ∗ b Integer multiply
ineg a ⇒ −a Integer negate
invokestatic <func> [arg1, [arg2..]] ⇒ [result] Call function
ior a, b ⇒ a|b Bitwise or
irem a, b ⇒ a%b Remainder
ireturn val ⇒ Return integer
istore <index> val ⇒ Store local integer
isub a, b ⇒ a− b Integer subtract
ixor a, b ⇒ a|b Bitwise exclusive-or
newarray {int|float} count ⇒ arrayref New array of int’s or float’s
nop No operation
pop val ⇒ Pop
pop2 val, val ⇒ Pop twice
putstatic <var> val ⇒ Put static var
return Return void.
swap a, b ⇒ b, a Swap operand stack values

Table 3: Instruction set. The first column lists the instruction mnemonics in alphabetical order. The second
column shows the instruction’s effect on the operand stack.

6

.class Sqrt

.method isqrt (II)I 2
iload 1
iload 1
iload 0
iload 1
idiv
iadd
iconst 2
idiv
dup
istore 2
isub
ifeq 001
iconst 0
goto 002

001:
iconst 1

002:
ifeq 000
iload 1
ireturn

000:
iload 0
iload 2
invokestatic isqrt
ireturn

.end

.field num I

.method main ()V 0
invokestatic iread
dup
putstatic num
pop
getstatic num
getstatic num
iconst 2
idiv
invokestatic isqrt
invokestatic iprint

.end

Figure 4: Output assembly code from my compiler for the listing in Figure 2.

7

class IfStmt : public Stmt { // concrete subclass for if-statements
protected:
Expr *cond;
Stmt *thenStmt;
Stmt *elseStmt;

public:
IfStmt(Expr *cond_, Stmt *then_, Stmt *else_) :
cond(cond_), thenStmt(then_), elseStmt(else_) {
if (cond->getType() != BOOL)
yyerror("If-else-stmt condition must be of type bool!");

}
IfStmt(Expr *cond_, Stmt *then_) :
cond(cond_), thenStmt(then_), elseStmt(0) {
if (cond->getType() != BOOL)
yyerror("If-stmt condition must be of type bool!");

}
virtual void gencode(FILE *f) const;

};

void IfStmt::gencode(FILE *f) const {
Label bot(); // new label to mark bottom of stmt
cond->gencode(f); // generate code for condition expr
if (elseStmt) { // if there is an "else" part...
Label mid(); // ...new label for else code
emit(f,"ifEq",mid); // ...emit branch when bool expr is 0
thenStmt->gencode(f); // ...emit code for "then" stmt
emit(f,"goto",bot); // ...emit branch to bottom
emit(mid); // ...emit label for "else" part
elseStmt->gencode(f); // ...emit code for "else" stmt

} else { // otherwise...
emit(f,"ifEq",bot); // ...emit branch when bool expr is 0
thenStmt->gencode(f); // ...emit code for "then" stmt

}
emit(bot); // emit label for bottom

}

Although C does not have much support for OOP techniques we can do something similar. Here are
analogous base “classes” for statements and expressions:

typedef struct Stmt { /* base class for statements */
void (*gencode) (struct Stmt *this, FILE *f); /* ptr to code generation method */

} Stmt;

typedef struct Expr { /* base class for expressions */
TYPE_ type_; /* VOID, BOOL, INT, FLOAT, INT_ARRAY, etc... */
void (*gencode) (struct Expr *this, FILE *f); /* ptr to code generation method */

} Expr;

The gencode field is a pointer to the appropriate function that generates code for the instance of a specific
subclass. Now we can create a concrete subclass IfStmt by creating a structure whose first field is exactly
the same as Stmt’s first field – extended fields follow this:

typedef struct {

8

void (*gencode) (Stmt *this, FILE *f); /* must be first field! */
Expr *cond;
Stmt *thenStmt;
Stmt *elseStmt; /* may be NULL */

} IfStmt;

Now we build a “constructor” for IfStmt’s by first defining a specific code generation routine:

static void ifStmt_gencode(Stmt *this, FILE *f) {
IfStmt *s = (IfStmt *) this; /* cast generic Stmt* to IfStmt* */
char *bot = newLabel();
s->cond->gencode(s->cond, f); /* invoke gencode method on s->code */
if (s->elseStmt != NULL) {
char *mid = newLabel();
fprintf(f,"\tifeq %s\n", mid);
s->thenStmt->gencode(s->thenStmt, f);
fprintf(f, "\tgoto %s\n", bot);
fprintf(f, "%s:\n", mid);
s->elseStmt->gencode(s->elseStmt, f);

} else {
fprintf(f,"\tifeq %s\n", bot);
s->thenStmt->gencode(s->thenStmt, f);

}
fprintf(f, "%s:\n", bot);

}

Note how we “manually” pass the reference to the specific instance as the first argument to the gencode
method. Our “constructor” code is as follows:

Stmt *createIfStmt(Expr *cond, Stmt *thenStmt, Stmt *elseStmt) {
IfStmt *s = (IfStmt *) myalloc(sizeof(IfStmt));
if (cond->type_ != BOOL_)
yyerror("Condition for if statement must be of type bool!");

s->gencode = ifStmt_gencode;
s->cond = cond;
s->thenStmt = thenStmt;
s->elseStmt = elseStmt; /* might be NULL if no else-part */
return (Stmt *) s; /* cast to base class type */

}

The central idea is that we can treat an “object” of type (IfStmt *) as an object of type (Stmt *).

5 Syntax Directed Translation

The parser first constructs syntax trees for function definitions and static variable declarations, and then
(if all goes well) invokes their respective code generation routines. We can either generate code for each
function definition and variable declaration as we encounter them, or place them all in a list and generate
code only when we have parsed the entire input file.

As YACC performs its bottom-up parse we can associate attribute information with each grammar symbol
stored on YACC’s parser stack. These attributes are created when YACC performs a reduction using some
production’s right-hand-side (RHS) to match the handle on top of the stack. When a reduction is performed,
YACC first invokes the production’s associated semantic action routine.

9

Stmt

NullStmt

ExprStmt

IfStmt

WhileStmt

ReturnStmt

BreakStmt

CompoundStmt

FuncDeclStmt

StaticVarDeclStmt

Expr
ConstExpr

NewArrayExpr

CallExpr

VarExpr

ArrayLookupExpr

UnaryOpExpr

BinaryOpExpr

VarAssignmentExpr

ArrayAssignmentExpr

IntToFloatExpr

bool, int, and float literal

newly created array

function call

variable r-value

array cell content

unary !,+,-

ArraySizeExpr

||,&&,=,!=,<,<=,>,>=,+,-,*,/,%

var = expr

var[expr] = expr

widen integer to a float

size of array

Figure 5: Statement and expression syntax tree class hierarchies.

5.1 Attribute types stored on YACC’s stack

Most of our semantic actions create a new attribute and store it on the stack. In the following simple
example, we store a constant from an enumerated type on the stack which represents one of our primitive
types:

type_spec : VOID {$$ = VOID_;}
| BOOL {$$ = BOOL_;}
| INT {$$ = INT_;}
| FLOAT {$$ = FLOAT_;}
;

We can then use this and the semantic string attribute associated with the terminal IDENT (this string
attribute was created by the lexical analyzer) to create variable and array declaration statements

var_decl : type_spec IDENT ’;’
{$$ = createStaticVarDeclStmt($1, $2);}

| type_spec IDENT ’[’ ’]’ ’;’
{$$ = createStaticArrayDeclStmt($1, $2);}

;

Here $1 and $2 represent the attributes associated with the first and second symbols (type_spec and IDENT)
on each production’s right hand side. We call these synthesized attributes since they were “synthesized” when
either YACC reduced to type spec or when LEX generated the IDENT token. In YACC’s preamble, I define
the following union type to hold any of the various attributes I will want to store on the stack:

%union {
char *s;
int i;
float f;
Symbol *sym;

10

TYPE_ type_;
Expr *expr;
List *list;
Stmt *stmt;

}

I then tell YACC which field to associate with each grammar symbol that has an associated attribute. For
example, the s field points to IDENT’s string and the type field holds type spec’s constant:

%token <s> IDENT
%type <type_> type_spec

5.2 Semantic Actions

Most of the work involves creating the appropriate syntax trees which is triggered by the semantic actions
we define. It is usually best to perform static semantic checks as soon as possible so that you can report
line number information retained by the lexical analyzer. If you wait until all the trees are built to perform
these checks, you will not be able to tell the programmer the location of the offending code. 1

Most semantic actions are quite straight forward. For example, the following actions generate IfStmt
trees:

if_stmt : IF ’(’ expr ’)’ stmt {$$ = createIfStmt($3,$5,NULL);}
| IF ’(’ expr ’)’ stmt ELSE stmt {$$ = createIfStmt($3,$5,$7);}
;

Some situations are more subtle. For example, a break statement is used to exit the innermost while loop.
In order to do this, we need to know the address of the instruction following the while loop. Unfortunately,
the action associated with a break statement can not obtain this address via synthesized attributes only.
To remedy this situation we embed a semantic action in the body of the while-loop that is invoked before
the reductions for the trailing non-terminals occur (expr and stmt in the following):

while_stmt : WHILE {wtop();} ’(’ expr ’)’ stmt
{$$ = createWhileStmt($4, $6, wbot_label); wbot();}

;

The function wtop() creates a new label that will be used to mark the instruction following the body of the
loop. Since while loops can be nested, we need to push and pop this label on and off a stack:

void wtop(void) {
wbot_label = newLabel(); /* create label marking the loop bottom */
wpush(wbot_label); /* preserve label on stack */

}

Note that wbot label is a global variable that is used by the while-loop constructor. After we are done
building the syntax tree, we restore wbot label to its previous state.

void wbot(void) {
wbot_label = wpop(); /* restore wbot_label */

}

When we construct a break-statement tree, we first check to see if the stack is empty – if so, then we have
an error since the break statement is not nested inside a while loop. Otherwise, we build a tree that will
eventually generate code to branch to the address corresponding to wbot label.

1Your lexical analyzer could store all of the lexemes and their corresponding line numbers in the symbol table for later error
reporting.

11

6 The Symbol Table

The symbol table will be used to store information associated with variable and function names. For variables,
we will want to know if the symbol is a global variable (i.e., a static field), a formal parameter, or a local
variable. For parameters and local variables we want to know their index or offset in the local stack frame.
For each function, we want to know the return type, the number of parameters and each of their types, and
the number of local variables it used.

The symbol table must also be designed to handle the static scoping rules of the language. Each function
and each compound statement introduce a new scope wherein new local variables can be declared. This is
typically handled by nesting symbol tables and searching for symbols starting with the innermost table. For
example, we can define a semantic action that is invoked just as we ender a new scope:

compound_stmt : ’{’ {newScope();} local_decls stmt_list ’}’
{$$ = createCompoundStmt(symtab, $3, $4); endScope();}

;

We use a global variable offset to index the location of the next parameter or local variable in the stack
frame. The newScope() function preserves this offset on a stack and creates a new nested symbol table.
Another global variable symtab is used to reference the current (i.e., innermost) symbol table.

void newScope() {
opush(offset); /* preserve local variable offset */
symtab = createSymbolTable(symtab); /* create new nested symbol table */

}

When we leave the current scope we restore offset and symtab.

void endScope() {
symtab = symtab->parent; /* restore to parent symbol table */
offset = opop(); /* restore old variable ofset */

}

There are three semantic actions associated with the following function declaration:

fun_decl : type_spec IDENT ’(’ {newScope();} params ’)’
{returnType=$1; funcProto($2, $1, $5, symtab->parent);} compound_stmt
{endScope(); $$ = createFuncDeclStmt($2, $8, symtab);}

;

We first enter a new scope before the formal parameters are processed (we will also enter a new scope when
the function body, which is a compound stmt, is translated). The second set of semantic actions first sets the
global variable returnType so that we can perform type-checking (and possible integer to float coercion) for
return-statements in the function body; Second, the routine funcProto enters function prototype information
into the root symbol table so that the function can be called recursively in its body. The third and last
semantic action ends the parameter scope and builds the appropriate syntax tree for a function declaration.
We could avoid “doubly nesting” symbol tables by not reusing compound stmt and creating a similar new
non-terminal body that is structurally equivalent to compound stmt but did not create a new nested symbol
table.

Each function parameter and local variable declaration is processed in the context of the current, most
deeply nested, symbol table. For example, here is how I translate local variable declarations:

local_decl : type_spec IDENT ’;’ {$$ = localDecl($1,$2);}
| type_spec IDENT ’[’ ’]’ ’;’ {$$ = localArrayDecl($1,$2);}
;

The function localDecl() makes sure we do not declare multiple variables with the same name, warns
the user about “shadowed variables,” inserts the appropriate symbol into symtab using the current offset
(which is incremented) and returns this newly inserted symbol.

12

6.1 I/O Function Symbols

Before parsing starts, we need to enter prototypes for the I/O functions from Section 3.1 into the top-level
symbol table so that we can call these functions without the parser complaining.

7 Code Generation Issues

The JVM uses an operand stack to hold temporary values and instruction operands. This stack is separate
from the stack frame used to hold local variables. Table 3 lists the instructions we will use along with their
use of the operand stack. The various “load” instructions push local variables onto the operand stack, while
the “store” instructions pop the values into a local variable. Note that istore and fstore do the exact
same thing, but allow the JVM to verify that the instructions are “type safe.” putstatic and popstatic
move data between the operand stack and “static field” variables.

7.1 Boolean expressions

Besides the type information that is stored as descriptors in the class file, boolean values are simply repre-
sented as integers (0 for false and 1 for true) in the JVM. Since the JVM does not have any comparison
routines that push “false” (0) or “true” (1) on the stack, we need generate several lines of code to do this
ourselves. For example, the function

bool less(int a, int b) {
return a < b;

}

could be translated as follows

.method less (II)Z 2
iload 0
iload 1
isub ; push a - b
iflt 000 ; if result negative (i.e., a < b) then branch
iconst 0 ; else push "false"
goto 001

000:
iconst 1 ; push "true"

001:
ireturn

.end

Here we used integer subtraction to push either a negative value, zero, or a positive value on the stack. We
then branch to the code that pushes either a 0 or a 1 on the stack. A floating point comparison would look
the similar, except that we would use fcmp in place of isub (and the other i’s would become f’s).

7.2 Assignment as an expression

Assignment statements are really expressions which means we need to leave the result of the assignment
on the operand stack. Use the dup instruction to make a duplicate of the r-value before storing it. When
an expression is treated as a statement, we can discard the value using the pop instruction. Consider the
following source code which uses a chain of assignments: 2

2In languages like C, = is right associative to support assignment chaining, but this is not critical in Mini-C.

13

int x;
void assign1(int y) {
int z;
z = x = y = 123;

}

Below is the corresponding generated code that use dup for each assignment expression; pop is used to toss
the result when the expression is finally treated as a statement (via expr stmt).

.field x I

.method assign1 (I)V 1
iconst 123 ; r-value = 123
dup ; duplicate r-value
istore 0 ; pop duplicate 123 into y (local 0)
dup ; duplicate 123 again
putstatic x ; pop duplicate into x (field)
dup ; duplicate 123 again
istore 1 ; pop duplicate into z (local 1)
pop ; expression statement removes extra duplicate

.end

We use assignment expressions for the side effect of storing a result in a variable. Other expression statements
have no net effect as in the following example:

void blah(void) {
3*5+6;

}

Here is the resulting generated code:

.method blah ()V 0
iconst 3
iconst 5
imul
iconst 6
iadd
pop

.end

When assigning values to array elements, we can use the dup x2 instruction to place the duplicate below
the three operands of the iastore instruction:

void assign2(int y, int z[]) {
y = z[5] = 123;

}

.method assign2 (I[I)V 2
aload 1 ; push array z reference
iconst 5 ; push index 5
iconst 123 ; push r-value 123
dup_x2 ; dup 123 but place it before the iastore operands
iastore ; store 123 at z[5]
dup ; dup 123 again
istore 0 ; store 123 in y (local 0)
pop ; remove extra 123 duplicate

.end

Of course our code could be optimized to avoid the extra dup and pop instructions.

14

8 What to submit

The minimum functioning compiler must be able to handle bool and int data types (arrays not mandatory).
You will electronically submit an archive file containing the following:

• A README File that contains the author’s contact information, a brief overview of the project, a de-
scription of how to build and run your program, and a list of files contained in the archive.

• All source code.

• Useful test programs.

Your project is due at midnight on the due date.

15

