
Motif® 2.1
Porting Guide

Document Number 007-3951-001

Motif® 2.1 Porting Guide
Document Number 007-3951-001

CONTRIBUTORS

Written by Richard Offer
Production by Linda Rae Sande
Engineering contributions by Richard Offer and Richard Hess.
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIX are registered trademarks and the Silicon Graphics logo,
Impressario, and IRIS InSight are trademarks of Silicon Graphics, Inc. PostScript is a
registered trademark of Adobe Systems, Inc. Motif is a registered trademark of Open
Software Foundation.

iii

Contents

List of Examples v

List of Figures vii

List of Tables ix

About This Guide xi
What You Need to Know About the Libraries xi
Printing Support xii
Multithreading xii
Road Map xii
Execution Environment xii
Additional Reading xiii

1. Developing With Motif 2.1 1
Default Build Environment 1

Caution for Using the Default Build Environment 2
Explicit Build Environment 2

Imake Tips 3
Make Tips 3

2. Motif API Changes 5
Official Open Group Changes 5
Obsolete Symbols 6
Silicon Graphics Changes 7

XPM 7
Archive Libraries 7
Consistent APIs 7
New #define Statements 9
New Resource: SgNshowVersion 10

iv

Contents

New Widgets 10
Notebook 10
Container 10
Combobox 11
SpinBox 11

Notable Changes to Existing Widgets 11
Toggle Button 11
Scale 11

New Features 12
Vertical Writing 12
POSIX Style Message Catalogs 12

A. Examples 13
Code Examples 13

Index 19

v

List of Examples

Example 1-1 Sample Makefile (src/motifVer) 3
Example 1-2 Sample Makefile Code (src/Makefile) 4
Example 2-1 Sample Code: Vertical Writing 12
Example A-1 Simple Notebook 13
Example A-2 Vertical Writing 17

vii

List of Figures

Figure A-1 Simple Notebook Demo 16
Figure A-2 Vertical Writing Demo 18

ix

List of Tables

Table 2-1 OSF Obsoleted Symbols 6
Table 2-2 New Names for Silicon Graphics Symbols 8
Table 2-3 Silicon Graphics #define Statements 9

xi

About This Guide

This document discusses the new Motif feature release. It is not intended to teach Motif
programming; instead it is aimed at current Motif 1.2 developers who wish to port their
code to the new API.

What You Need to Know About the Libraries

Not all libraries supplied by Silicon Graphics are available in Motif 2.1 versions. The
following libraries are available in Motif 2.1 compatible versions:

• Media Warehouse

• Digital media

• Impressario

• GL Drawing area widget

Because this is available in source, only a single archive library is shipped. It
includes both the 1.2 and 2.1 objects.

• WebViewer

• ViewKit

Versions of the above libraries released before Irix 6.5.2 are known to cause problems.
Installing the 6.5.2 versions should fix this.

The following are known problems with Motif 2.1 in IRIX 6.5.2:

• Display PostScript does not work.

• sgitcl does not work.

• The custom libraries that the Workshop Debugger, cvd, uses are not available.

• The libraries are not completely corded.

Motif 2.1 does not include a library for the O32 ABI. Any applications that are not yet
using the n32 ABI must switch to that ABI before they can use Motif 2.1.

xii

About This Guide

Printing Support

Motif 2.1 supports a print widget for interaction with the X Print Server that comes with
X11R6 (and later). The print server and the print widget are not available in this release.

Multithreading

Motif 2.1 was announced as being thread safe. However, tests run by Silicon Graphics
show that this is not necessarily the case.

Road Map

In the next major release of IRIX, Silicon Graphics will be making Motif 2.1 the default
build environment (while continuing to support Motif 1.2 development much as 2.1 is
supported currently).

Later still, the capability to develop with Motif 1.2 will be removed, but the 1.2 execution
environment will continue to be shipped.

Execution Environment

The execution environments for all Motif 2.1-supported software (Motif, ViewKit,
WebViewer, and so on) are combined, so installing any of the above EOE images from
any release, 6.5.2 and later, will provide you with all the shared libraries you need to run
applications that have been developed with either Motif 1.2 or 2.1.

To determine which release of IRIX you have, use the following command:

/bin/uname -R

About This Guide

xiii

Additional Reading

Motif 2.1 Programmer’s Guide, The Open Group, 1997.

Motif 2.1 User’s Guide, The Open Group, 1997.

Motif 2.1 Widget Writer’s Guide, The Open Group, 1997

Motif 2.1 Glossary, The Open Group, 1997.

Motif and Common Desktop Environment: Style Guide, The Open Group, 1997.

Motif and Common Desktop Environment: Style Guide Certification Checklist, The Open
Group, 1997.

Motif and Common Desktop Environment: Style Guide Reference, The Open Group, 1997.

Most of these books are also available using the IRIS InSight viewer.

1

Chapter 1

1. Developing With Motif 2.1

At the start of the Motif 2.1 project, Silicon Graphics made the decision to support
multiple (major) releases of the IRIX Interactive Desktop development environment
installed on the system at the same time. Using the framework that was added as part of
IRIX 6.5, it is now possible to develop both Motif 1.2 and 2.1 versions of an application
side by side (subject of course to application build requirements). This allows you to
move to Motif 2.1 at the rate that is most suited to your own needs.

The framework takes all version-specific files out of /usr/include, /usr/bin/X11, /usr/lib32,
and /usr/lib64 and places them under /usr/Motif-1.2 or /usr/Motif-2.1, as appropriate.

Default Build Environment

To allow for normal (default) compilation, there are symbolic links that point from the
locations used prior to IRIX 6.5 to the correct version of the installed Motif development
environment.

Note: The version-stamped DSOs have not been moved and still reside in /usr/lib32 and
/usr/lib64).

During the installation process, a shell script (/usr/Motif-1.2/lib/mksymlinks) is executed
that sets the default build environment. The default environment is Motif 1.2 and will
remain so until the next major release of IRIX.

If you need to change the default environment to 2.1, enter (as root) the following
command:

/usr/Motif-2.1/lib/mksymlinks

To return the default environment to 1.2, enter:

/usr/Motif-1.2/lib/mksymlinks

2

Chapter 1: Developing With Motif 2.1

To check which version is the default, use the following command:

ls -ld /usr/include/Xm

This command prints out a directory listing that shows to which file /usr/include/Xm is
linked:

lrwxr-xr-x /usr/include/Xm -> ../Motif-1.2/include/Xm

In the case above, anything compiled on this machine (using the default build
environment) will use the Motif 1.2 API.

Caution for Using the Default Build Environment

The main problem with relying on the default build environment is one of
reproducibility; anyone (as root) can change the environment (even during a build), and
you will not know until you start getting random crashes.

For this reason Silicon Graphics does not recommend that the default build environment
be used for production builds, or in environments where there may be some doubt as to
a machine’s state (large multi-user build machines, for example).

It cannot be stressed enough how important it is to ensure that you do not mix code
(either individual .o files or even whole libraries) that uses both 1.2 and 2.1. If you do
successfully get it to build you will see random crashes for which it is very difficult to
determine the cause. It is up to the developers to ensure that they have a consistent
environment throughout all stages of the project build.

Explicit Build Environment

An explicit build environment is one where it can be predicted in advance which set of
libraries and header files will be used. This is done by making use of the structure under
/usr/Motif-1.2 or /usr/Motif-2.1. For example, if you want to ensure that you are building
a Motif 1.2 application, you should add the following to the compile/link line (assuming
that you are building an n32 binary):

-I/usr/Motif-1.2/include -L/usr/Motif-1.2/lib32

Explicit Build Environment

3

This must appear on the command line before /usr/include and /usr/lib32. If your build
process uses make to build its Makefiles, Silicon Graphics has configured mmkmf to
generate the correct arguments. Do not use xmkmf. It is not part of the Motif Software
Development Kit and could not be modified. It will generate Makefiles using the default
environment.

Imake Tips

To build an application that uses the Motif 1.2 SDK, run /usr/Motif-1.2/bin/mmkmf. For
Motif 2.1, use /usr/Motif-2.1/bin/mmkmf.

To check which version of Motif an Imake generated Makefiles will use, you can page
through the Makefile, or try the following:

grep XmVersion Makefile

This returns a line like the following:

** XmVersion ** Motif 2.1 Generated Makefile *********************

Make Tips

If you use plain Makefiles for building, you will have to devise your own mechanism,
but if you use smake, you can use the following method:

1. Create a new Makefile (Example 1-1).

2. Include the code in Example 1-2 in every Makefile.

Example 1-1 Sample Makefile (src/motifVer)

This file will append the correct include/lib settings to the various LC*
variables.

This line sets the default build to be 1.2. To build against 2.1
all a Makefile has to do is set MOTIFVERSION to 2.1 *before* this file gets
included (this could also be done on the command line with
make MOTIFVERSION=2.1 <target>

MOTIFVERSION ?=1.2

The rest is automatic....

4

Chapter 1: Developing With Motif 2.1

MOTIFDIR=/usr/Motif-$(MOTIFVERSION)
MOTIFROOTDIR = $(ROOT)$(MOTIFDIR)

LCINCS += -I$(MOTIFROOTDIR)/include
LC++INCS += -I$(MOTIFROOTDIR)/include
LCXXINCS += -I$(MOTIFROOTDIR)/include

Example 1-2 Sample Makefile Code (src/Makefile)

#!smake
#
Id
This is an example Makefile to illustrate how one might construct
a plain Make(not Imake) based build system that can be switched
to use either version of Motif.

include /usr/include/make/commondefs

TARGETS=buildDemo

include motifVer

LLDLIBS = -lXm -lXt -lX11

$(TARGETS): vertical-writing.o

demo.o: vertical-writing.c

This example is for an or-based build, where you need to be able to build both 1.2 and 2.1
versions, but not during the same build. An and-based build (where both versions are
needed concurrently) will probably create two new subdirectories (say obj and obj21),
with a Makefile in each (each setting the MOTIFVERSION as appropriate). And rather
than linking the source files, simply refer to them using “../”.

5

Chapter 2

2. Motif API Changes

Official Open Group Changes

With the introduction of Motif 2.0, the Open Software Foundation, now The Open Group,
cleaned up the APIs. Most of the public (that is, intended for application use) API was
left as it was, but the private (needed by Widget writers) was completely changed. Before
2.0, there were two types of symbols, public (prefixed by Xm), and private (prefixed by
_Xm). Motif 2.0 introduced a new type, (prefixed by Xme), and renamed most of the _Xm
symbols to be Xme. There are still some _Xm symbols, but these are internal to the library
and are not guaranteed to be exported.

Some symbols (EditDone, EditError, EditReject, XmTextStatus) have been moved from
a private header file (Xm/TextStrsoP.h) to a public one (Xm/Xm.h). This can cause some
problems with applications and libraries which use those symbols themselves. In these
cases, there is a namespace conflict at compile time due to redefinition. The problem can
be acute because some of these symbols do not have a Xm prefix.

Because these symbols can break existing applications, they have been moved back to
their old, private locations as the default. To get the standard OSF behavior (with these
symbols in the public header file), define _SGI_OSF_PUBLIC_SYMBOLS before any
Motif header file is included.

6

Chapter 2: Motif API Changes

Obsolete Symbols

The Table 2-1 lists symbols that were in Motif 1.2 but are not in 2.1, along with any
replacement.

a. API has changed.

Table 2-1 OSF Obsoleted Symbols

Motif 1.2 Symbol Motif 2.1 Symbol

_XmOSPutenv()

 _XmGetDefaultTime() XmeGetDefaultTime()

_XmGetColors() XmGetColors()a

_XmDrawShadows() XmeDrawShadows()a

_XmEraseShadow() XmeClearBorder()

_XmGetArrowDrawRects() XmDrawArrow()

_XmOffsetArrow() XmeDrawArrow()a

_XmDrawSquareButton()

_XmDrawDiamondButton() XmeDrawDiamond()

_XmDrawShadowType() XmDrawShadows()a

_XmDrawBorder() XmeDrawHighlight()

_XmMoveObject() XmeConfigureObject()a

_XmResizeObject() XmeConfigureObject()a

_XmVirtualToActualKeysym() XmeVirtualToActualKeysyms()a

Silicon Graphics Changes

7

Silicon Graphics Changes

XPM

Motif 2.x makes use of the Xpm library for colored pixmaps (implemented internally to
the library). ViewKit 1.2 distributed its own copy of this library as well. Silicon Graphics
has consolidated this and now ships a standalone copy of libXpm.so as part of the Motif
2.1 images. Documentation, in the form of the original PostScript report and examples,
may be found in /usr/share/src/X/motif-2.1/xpm.

Archive Libraries

With IRIX 6.5, Silicon Graphics moved the Motif archive libraries (that is, libXm.a) out of
the default installation images. With Motif 2.1, archive libraries are no longer shipped; all
the required libraries are shipped as shared objects (DSOs) in the standard execution
environment.

Consistent APIs

Considerable effort has been made toward tidying up the various Silicon Graphics APIs.
Some symbols have been renamed to better highlight which APIs have been added by
Silicon Graphics. In the past, some of these symbols were mistakenly prefixed with Xm.
These have now been renamed to have a prefix of Sg. Table 2-2 lists these symbols.

To help in porting older code that may have used these APIs, the old symbol names can
be activated by defining _SGIMOTIF_OBSOLETE_API before any Motif header file is
included. By default, this flag is not enabled.

8

Chapter 2: Motif API Changes

Table 2-2 New Names for Silicon Graphics Symbols

Silicon Graphics Motif 1.2 Symbol Silicon Graphics Motif 2.1 Symbol

XmNmenuBarRepeatTimeout SgNmenuBarRepeatTimeout

XmCMenuBarRepeatTimeout SgCMenuBarRepeatTimeout

XmNarrowsAdjacent SgNarrowsAdjacent

XmCarrowLayout SgCarrowLayout

XmNarrowType SgNarrowType

XmRArrowType SgRArrowType

XmRIndPixel SgRIndPixel

XmRSelectPixel SgRSelectPixel

XmRArrowType SgRArrowType

XmNindicatorBackground SgNindicatorBackground

Xm3D_ONE_OF_MANY Sg3D_ONE_OF_MANY

Xm3D_N_OF_MANY Sg3D_N_OF_MANY

XmNOT_ADJACENT SgNOT_ADJACENT

XmLEFT_ADJACENT SgLEFT_ADJACENT

XmRIGHT_ADJACENT SgRIGHT_ADJACENT

XmTOP_ADJACENT SgTOP_ADJACENT

XmBOTTOM_ADJACENT SgBOTTOM_ADJACENT

XmNORMAL_ARROWS SgNORMAL_ARROWS

XmROTATE_ARROWS SgROTATE_ARROWS

XmNO_THUMB_WHEN_EMPTY SgNO_THUMB_WHEN_EMPTY

Silicon Graphics Changes

9

New #define Statements

Table 2-3 lists three basic #define statements used in the various libraries and
applications. They are listed here primarily for information value. The only one that can
be turned off is _SGIMOTIFAPI. _SGIMOTIF and _SGIBUGFIX should never be turned
off.

Table 2-3 Silicon Graphics #define Statements

Statement Effect

#define _SGIMOTIF All Silicon Graphics look and feel changes. This should not be
turned off at application compile time, because internal
structures will be incorrectly sized.

NOTE: If _SGIMOTIF is defined, the application should be able
to count on the full Silicon Graphics look and feel (that is,
Schemes/desktop integration, and so forth). However, because
this has not been fully tested, be cautious in making this
assumption.

#define _SGIBUGFIX A change that has either been sent to TOG for inclusion into the
standard source base, or a change that is required for the Silicon
Graphics build environment that is not directly related to the
look and feel. This is also something that should not be touched
by an application.

#define _SGIMOTIFAPI Wraps extensions to the Motif API. This can be turned off by an
application program by using the following statement before any
Motif headers are included:

#define _NO_SGIMOTIFAPI

Note: Using the #undefine statement with _SGIMOTIFAPI
does not work.

10

Chapter 2: Motif API Changes

New Resource: SgNshowVersion

To further help in porting, Silicon Graphics has added a new resource SgNshowVersion
(type Boolean). If SgNshowVersion is True (the default is False), a message will be
printed out to stdout indicating that the application is linking against Motif version 2.1
library. The following message will be printed out:

SGI Irix Indigo Magic 2.1, based on OSF/Motif 2.1.10

New Widgets

For a quick introduction to the new widgets, compile and run either sampler2_0 demo (in
/usr/share/src/X/motif-2.1/osf_demos/programs/sampler2_0) or periodic (in
/usr/share/src/X/motif-2.1/osf_demos/programs/periodic). Each shows the new widgets, and
how they can be used. (Sampler2_0 is probably preferable, because it is straight C code,
rather than a mix of C and UIL.)

The following sections give a brief overview of the new widgets:

• “Notebook”

• “Container”

• “Combobox”

• “SpinBox”

Notebook

The Notebook is the Motif version of a tabbed-dialog (in Windows terms) widget. It is a
generic solution, where any widget that holds the XmQactivatable trait can be used as
the button. Currently, XmPushButton, XmDrawnButton, XmArrowButton,
XmPushButtonGadget, and XmArrowButtonGadget hold this trait.

Container

The container is a layout widget suitable for use as an outliner (where it is possible to
expand or contract individual items). It may also be used as a base on which to place
icons that can then be dragged around.

Notable Changes to Existing Widgets

11

The file /usr/share/src/X/motif-2.1/osf_demos/programs/sampler2_0 shows an example of
how to use this widget.

Combobox

This is a drop down list. It may be configured to be editable or not.

SpinBox

A combination of a text field and arrow buttons, a SpinBox is commonly used to step
through an array of known values (for instance, the months of the year).

Notable Changes to Existing Widgets

The following sections briefly describe changes to existing widgets.

Toggle Button

The toggle button has a new resource XmNtoggleMode to allow the selection of a simple
on/off toggle (XmTOGGLE_BOOLEAN) or a three state on/off/not set toggle
(XmTOGGLE_INDETERMINATE).

Scale

The scale has a new visual mode, XmNslidingMode, which allows a thermometer type
look (using XmTHERMOMETER) as well as the existing slider look (XmSLIDER).

12

Chapter 2: Motif API Changes

New Features

Vertical Writing

IRIX 6.2 (and later) allow an application to use vertical writing (for use by Asian
languages). This is set with the XmNlayoutDirection resource.

Note: Not all the widgets support XmNlayoutDirection; XmTextField for example, does
not.

The code fragments in Example 2-1 illustrate the use of these widgets. Figure A-2 (in
Appendix A) shows the resulting dialog box.

Example 2-1 Sample Code: Vertical Writing

/* vertical text widget */

vert = XtVaCreateManagedWidget(“vertical”,xmTextWidgetClass,form,
 XmNtopAttachment, XmATTACH FORM,
 XmNleftAttachment, XmATTACH FORM,
 XmNbottomAttachment, XmATTACH FORM,
 XmNlayoutDirection, XmTOP TO BOTTOM,
 XmNrows, 10,
 NULL);

/* horizontal text widget */

horiz = XtVaCreateManagedWidget(“horizontal”,xmTextWidgetClass,form,
 XmNtopAttachment, XmATTACH FORM,
 XmNleftAttachment, XmATTACH WIDGET,
 XmNleftWidget, vert,
 XmNrightAttachment, XmATTACH FORM,
 NULL);

POSIX Style Message Catalogs

All of the Motif error messages are now stored in a POSIX style message catalog to allow
for easy localization.

13

Appendix A

A. Examples

Code Examples

The following are the full listings for two examples. Example A-1 builds a simple
notebook widget (shown in Figure A-2). Example A-2 builds an example of vertical
writing (shown in Figure A-2).

Example A-1 Simple Notebook

/* include init */
#include <Xm/XmAll.h>

#define NUM_PAGES 8
#define APPNAME “Notebook”

void pageChangeCB(Widget w, XtPointer client, XtPointer call);

/* end init */

int
main(int argc, char ** argv)
{

XtAppContext AppContext;
Widget TopLevel = XtVaOpenApplication(&AppContext,

APPNAME,
NULL, 0,
&argc, argv,
NULL,
sessionShellWidgetClass,
NULL);

/* include notebook */
Widget notebook = XtVaCreateWidget(“notebook”,

xmNotebookWidgetClass,
TopLevel,

14

Appendix A: Examples

NULL);
int i;
XmString xmstr;
char labelString[32];

for (i=0; i< NUM_PAGES; i++) {

sprintf(labelString,”Page %d\n”,i);
xmstr = XmStringCreateLocalized(labelString);

(void) XtVaCreateManagedWidget(“label”, xmLabelWidgetClass,
notebook,
XmNpageNumber, i+1,
XmNlabelString, xmstr,
NULL);

XmStringFree(xmstr);
}

for (i=0; i< NUM_PAGES; i+=4) {
int j;

sprintf(labelString,”Major\nTab %d\n”,i);
xmstr = XmStringCreateLocalized(labelString);

(void) XtVaCreateManagedWidget(“button”,
xmPushButtonWidgetClass,
notebook,
XmNpageNumber, i+1,
XmNlabelString, xmstr,
XmNnotebookChildType,
XmMAJOR_TAB,
NULL);

XmStringFree(xmstr);

for (j=i; j<i+4; j++) {

sprintf(labelString,”Minor\nTab %d\n”,j);
xmstr = XmStringCreateLocalized(labelString);

(void) XtVaCreateManagedWidget(“button”,
xmPushButtonWidgetClass,
notebook,
XmNpageNumber, j+1,
XmNlabelString, xmstr,

Code Examples

15

XmNnotebookChildType,
XmMINOR_TAB,
NULL);

XmStringFree(xmstr);
}

}

XtAddCallback(notebook, XmNpageChangedCallback,
(XtCallbackProc) pageChangeCB, NULL);

XtManageChild(notebook);
/* end notebook */

XtRealizeWidget(TopLevel);

XtAppMainLoop(AppContext);

}

/* pageChangeCB - comment */
static void
pageChangeCB(Widget w, XtPointer client, XtPointer call)
{

}

Figure A-1 shows the widget that results from the code in Example A-1.

16

Appendix A: Examples

Figure A-1 Simple Notebook Demo

Code Examples

17

Example A-2 Vertical Writing

#include <Xm/XmAll.h>

#define APPNAME “Vertical”

XtAppContext AppContext;
Widget TopLevel;

main(int argc, char ** argv)
{
 Widget form, vert, horiz;

 XtSetLanguageProc(NULL, NULL, NULL);

 TopLevel = XtVaOpenApplication(&AppContext,
APPNAME, NULL, 0,
&argc, argv,

 NULL,
 sessionShellWidgetClass,
 NULL);

 form = XtVaCreateWidget(“form”, xmFormWidgetClass, TopLevel, NULL);

/* vertical text widget */

 vert = XtVaCreateManagedWidget(“vertical”,
 xmTextWidgetClass, form,
 XmNtopAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNlayoutDirection,
 XmTOP_TO_BOTTOM,
 XmNrows, 10, NULL);

/* horizontal text widget */

 horiz = XtVaCreateManagedWidget(“horizontal”,
 xmTextWidgetClass, form,
 XmNtopAttachment, XmATTACH_FORM,
 XmNleftAttachment,
 XmATTACH_WIDGET,
 XmNleftWidget, vert,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);

18

Appendix A: Examples

/* manage form */
 XtManageChild(form);

 XtRealizeWidget(TopLevel);

 XtAppMainLoop(AppContext);
}

Figure A-2 shows the results of the code in Example A-2.

Figure A-2 Vertical Writing Demo

19

Symbols

_SGI_OSF_PUBLIC_SYMBOLS, 5
_SGIBUGFIX, 9
_SGIMOTIF, 9
_SGIMOTIFAPI, 9
_XmDrawBorder(), 6
_XmDrawDiamondButton(), 6
_XmDrawShadowType(), 6
_XmDrawSquareButton(), 6
_XmEraseShadow(), 6
_XmGetArrowDrawRects(), 6
_XmGetColors(), 6
_XmGetDefaultTime(), 6
_XmMoveObject(), 6
_XmOffsetArrow(), 6
_XmOSPutenv(), 6
_XmResizeObject(), 6
_XmVirtualToActualKeysym(), 6

B

build
default environment

check, 2
How to set, 1

explicit environment, 2

C

commands
imake, 3
mmkmf, 3
periodic, 10
sampler2_0, 10
smake, 3

E

EditDone, 5
EditError, 5
EditReject, 5

I

imake, 3

M

mksymlinks, 1
mmkmf, 3

Index

20

Index

O

obsolete symbols
_XmDrawBorder(), 6
_XmDrawDiamondButton(), 6
_XmDrawShadows(), 6
_XmDrawShadowType(), 6
_XmDrawSquareButton(), 6
_XmEraseShadow(), 6
_XmGetArrowDrawRects(), 6
_XmGetColors(), 6
_XmGetDefaultTime(), 6
_XmMoveObject(), 6
_XmOffsetArrow(), 6
_XmOSPutenv(), 6
_XmResizeObject(), 6
_XmVirtualToActualKeysym(), 6
XmDrawArrow(), 6
XmDrawShadows(), 6
XmeClearBorder(), 6
XmeConfigureObject(), 6
XmeDrawArrow(), 6
XmeDrawDiamond(), 6
XmeDrawHighlight(), 6
XmeDrawShadows(), 6
XmeGetDefaultTime(), 6
XmeVirtualToActualKeysyms(), 6
XmGetColors(), 6

P

periodic, 10

S

sampler2.0, 10
Sg3D_N_OF_MANY, 8
Sg3D_ONE_OF_MANY, 8

SgBOTTOM_ADJACENT, 8
SgCarrowLayout, 8
SgCMenuBarRepeatTimeout, 8
SgLEFT_ADJACENT, 8
SgNarrowsAdjacent, 8
SgNarrowType, 8
SgNindicatorBackground, 8
SgNmenuBarRepeatTimeout, 8
SgNO_THUMB_WHEN_EMPTY, 8
SgNORMAL_ARROWS, 8
SgNOT_ADJACENT, 8
SgNshowVersion, 10
SgRArrowType, 8
SgRIGHT_ADJACENT, 8
SgRIndPixel, 8
SgROTATE_ARROWS, 8
SgRSelectPixel, 8
SgTOP_ADJACENT, 8
smake, 3

X

Xm3D_N_OF_MANY, 8
Xm3D_ONE_OF_MANY, 8
XmArrowButton, 10
XmArrowButtonGadget, 10
XmBOTTOM_ADJACENT, 8
XmCarrowLayout, 8
XmCMenuBarRepeatTimeout, 8
XmDrawArrow(), 6
XmDrawnButton, 10
XmDrawShadows(), 6
XmeClearBorder(), 6
XmeConfigureObject(), 6
XmeDrawArrow(), 6

21

Index

XmeDrawDiamond(), 6
XmeDrawHighlight(), 6
XmeDrawShadows(), 6
XmeGetDefaultTime(), 6
XmeVirtualToActualKeysyms(), 6
XmGetColors(), 6
XmLEFT_ADJACENT, 8
XmNarrowsAdjacent, 8
XmNarrowType, 8
XmNindicatorBackground, 8
XmNlayoutDirection, 12
XmNmenuBarRepeatTimeout, 8
XmNO_THUMB_WHEN_EMPTY, 8
XmNORMAL_ARROWS, 8
XmNOT_ADJACENT, 8
XmNslidingMode, 11
XmNtoggleMode, 11
XmPushButton, 10
XmPushButtonGadget, 10
XmQactivatable, 10
XmRArrowType, 8
XmRIGHT_ADJACENT, 8
XmRIndPixel, 8
XmROTATE_ARROWS, 8
XmRSelectPixel, 8
XmSLIDER, 11
XmTextField, 12
XmTextStatus, 5
XmTHERMOMETER, 11
XmTOGGLE_BOOLEAN, 11
XmTOGGLE_INDETERMINATE, 11
XmTOP_ADJACENT, 8

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3951-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

