
This tutorial applies to YASK version 4.05.00 and later*

Chuck Yount
Intel Americas, Inc.

April 8, 2024
© 2019-2024 Intel Corporation

*see README.md for any exceptions

2

notices and disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information
about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
http://www.intel.com/benchmarks .

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some
parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware,
software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as property of others.

© 2018 Intel Corporation.

YASK tutorial

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

3

Introduction
▪ What is YASK?

▪ Motivation and example YASK application

▪ Scope of this presentation

Basic features and usage
▪ Download, build, and test

▪ High-level flow

▪ Writing a simple stencil in the DSL

▪ Building the YASK library

▪ Testing and tuning your stencil

▪ Multi-process usage via MPI

Using the APIs
▪ Access, terms, basic usage, examples

▪ Advanced APIs and exceptions

Advanced stencils and tuning
▪ Multiple stencils

▪ Boundary regions (sub-domains)

▪ Temporal conditions

▪ Scratch variables

▪ Vector folding

▪ Misc. settings (FP precision, etc.)

▪ Parts and stages

▪ Temporal tiling

▪ Nested OpenMP in micro-blocks

▪ More on the auto-tuner

GPU Offloading

Wrap-up
▪ Further reading and call to action

Outline

YASK tutorial

4

YASK: “Yet Another Stencil Kit”
YASK is a software framework for the rapid development of HPC stencil-based
applications

▪ Stencil: an iterative kernel that updates elements in one or more N-dimensional vars
using a fixed pattern of computation on neighboring elements

▪ Fundamental algorithm in many scientific simulations, e.g., finite-difference-method
(FDM) approximations of differential equations describing various physical phenomena

Weather SimulationSeismic ModelingImage Processing

Images from https://commons.wikimedia.org

5YASK tutorial

About the name:
• “YASK” is named in the tradition of Linux utilities such as YACC, YAML and YAKL: https://en.wikipedia.org/wiki/Yet_another
• Prior to version 3, “YASK” stood for “Yet Another Stencil Kernel”

https://commons.wikimedia.org/
https://en.wikipedia.org/wiki/Yet_another

6

Technical and business motivation
Rapid Development

▪ Stencils in YASK are coded in a simple DSL (domain-specific language)

– YASK programmer only needs to describe what to do, not how to do it

– YASK compiler generates high-perf code from the DSL description

– Can easily and quickly change the stencil and generate new code

– Supports arbitrary dimensions, complex stencils, boundary conditions, and more

▪ Can easily and quickly try different tuning features and parameters without recoding

– Many complex optimization techniques are available immediately

– Supports cluster scaling, spatial and temporal tiling, vector folding, and more

▪ Generated code compiles into a library with documented C++ and Python* APIs to facilitate
integration into real HPC applications

Performance Portability

▪ Can re-target stencils for different Intel® CPU and GPU platforms by generating multiple libraries
from single DSL description

▪ Future YASK features and supported platforms can be leveraged immediately without recoding

YASK tutorial

7

Example application of YASK
AWP-ODC: Anelastic Wave Propagation-
Olsen, Day, Cui

▪ Software that simulates seismic wave
propagation after a fault rupture

▪ Widely used by the Southern California
Earthquake Center (SCEC) community

AWP-ODC-OS

▪ First ever open-source release in 2016
(BSD-2 license), including port to Intel
Xeon Phi processor, under development by
San Diego Supercomputer Center (SDSC) at
Univ. of CA, San Diego (UCSD)

▪ Demonstrated on >9000 nodes of Cori
supercomputer

• CyberShake Study 15.4 hazard map for 336 sites

around Southern California

• Warm colors represent areas of high hazard

Content on this slide courtesy of UCSD

YASK tutorial

Scope of this presentation
Goals

▪ Give a practical introduction to using YASK—a tutorial

▪ Provide an overview of the major YASK performance techniques

▪ Deliver enough information for someone already familiar with the application of stencil
codes to start using YASK

Non-goals

▪ Not providing a tutorial on

– Finite-difference methods, seismic modeling, brain imaging, etc.

– C++, Linux*, OpenMP*, MPI*, github*, etc.

– Intel® instruction sets, CPU/GPU architecture, etc.

▪ Not explaining in-depth how the YASK performance techniques work

▪ Not providing performance data on all the various trade-offs

▪ Not describing the internal software architecture

▪ Not a reference manual for the APIs

8YASK tutorial

9

Download, build, and test
Code access

▪ Download from Intel’s github* project

– git clone https://github.com/intel/yask

– MIT open-source license

▪ Builds and runs are made from the top-level directory: cd yask

Pre-requisites

▪ See README.md for complete list

▪ Only supported OS is Linux (no specific distribution recommended)

▪ Intel® C++ compiler needed for performance

– Install “Intel® oneAPI HPC Toolkit”

– https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html

▪ Common Linux utilities (gmake, perl, awk, python, etc.)

10YASK tutorial



Watch for this
symbol indicating

steps to try

https://github.com/intel/yask
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html

11

Example 1: Iso3dfd stencil

Description

▪ Isotropic 3D finite-difference code found in seismic-
imaging software used by energy-exploration companies
to predict the location of oil and gas deposits

– Simple stencil with only one updated variable

Image from https://commons.wikimedia.org/wiki/File:PlatformHolly.jpg. Public domain--U.S. DoE.

Recipes for building and running on CPU

▪ Makefile and run script will automatically determine architecture

– make clean; make -j stencil=iso3dfd

– bin/yask.sh -stencil iso3dfd -g 1024

▪ The –g 1024 option sets the global-domain size to a cube, 1024 elements on a
side

YASK tutorial



https://commons.wikimedia.org/wiki/File:PlatformHolly.jpg

12

Example 2: AWP stencil

Description

▪ Primary compute kernel for earthquake simulator described in the
introduction

– More complex problem that consists of 26 vars in a staggered-
grid formulation

Image from https://commons.wikimedia.org/wiki/File:Izmit_11-12-99.gif. Public domain--U.S.G.S.

Recipes for building and running on CPU

▪ Makefile and run script will automatically determine architecture

– make clean; make -j stencil=awp

– bin/yask.sh -stencil awp –gx 1024 –gy 1024 -gz 128

▪ The –g* options set the global-domain size to specific sizes in each dimension

– Compare this to the simpler -g option in the iso3dfd example that set the global-domain
size in all three spatial dimensions

– This is a common technique used for all spatial-dimension command-line options

YASK tutorial



https://commons.wikimedia.org/wiki/File:Izmit_11-12-99.gif

13

High-level tool-chain flow

Variable declarations and
optimized stencil
calculation code

Stencil-
specification code

Stencil compiler

Loop compiler

Nested loops with
OpenMP pragmas and

other optimizations

Other C++ code

Intel C++
compiler

Provided stencil
perf-eval utility

Performance
results

Optimized stencil-
kernel library

Customer
application

Application
results

a
n

d
/o

r

YASK tutorial

14

Stencil specification

Variable declarations and
optimized stencil
calculation code

Stencil-
specification code

Stencil compiler

Loop compiler

Nested loops with
OpenMP pragmas and

other optimizations

Other C++ code

Intel C++
compiler

Provided stencil
perf-eval utility

Performance
results

Optimized stencil-
kernel library

Customer
application

Application
results

a
n

d
/o

r

YASK tutorial

15

Example simple 25-point 3-D stencil

𝑢 𝑡 → 𝑢(𝑡 + 1)
25 points in

3 spatial
dimensions

in u(t)

…are used to
compute 1

point in u(t+1)

𝑢 𝑡 + 1, 𝑖, 𝑗, 𝑘 = 𝑐0𝑢 𝑡, 𝑖, 𝑗, 𝑘

+ ෍

𝑟=1

4

𝑐𝑟ሾ

ሿ

𝑢 𝑡, 𝑖 − 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖 + 𝑟, 𝑗, 𝑘 + 𝑢 𝑡, 𝑖, 𝑗 − 𝑟, 𝑘

+ 𝑢 𝑡, 𝑖, 𝑗 + 𝑟, 𝑘 + 𝑢 𝑡, 𝑖, 𝑗, 𝑘 − 𝑟 + 𝑢 𝑡, 𝑖, 𝑗, 𝑘 + 𝑟

…as specified
by the RHS

of this finite-
difference
equation

YASK tutorial

16

Stencil will be applied over entire problem domain

𝑢 𝑡 → 𝑢(𝑡 + 1)

Repeat for u(t+2), u(t+3), …

“Halo” data
regions

Entire problem
domain—typically
millions of points

YASK tutorial

17

Example stencil DSL code
#include "yask_compiler_api.hpp"

using namespace yask;

namespace {

class MyStencil : public yc_solution_with_radius_base {

public:

 MyStencil(int radius=4) :

 yc_solution_with_radius_base("my_stencil", radius) { }

 MAKE_STEP_INDEX(t);

 MAKE_DOMAIN_INDEX(x);

 MAKE_DOMAIN_INDEX(y);

 MAKE_DOMAIN_INDEX(z);

 MAKE_VAR(u, t, x, y, z);

 MAKE_MISC_INDEX(i);

 MAKE_VAR(c, i);

 virtual void define() {

 auto nu = c(0) * u(t, x, y, z);

 for (int r = 1; r <= get_radius(); r++)

 nu += c(r) * (u(t, x-r, y, z) + u(t, x+r, y, z) +

 u(t, x, y-r, z) + u(t, x, y+r, z) +

 u(t, x, y, z-r) + u(t, x, y, z+r));

 u(t+1, x, y, z) EQUALS nu;

 }

};

REGISTER_SOLUTION(MyStencil);

}

Use EQUALS operator to define
u(t+1)—this is not an

assignment!

Declare misc index and 1D
“c” array for coefficients

Write expression for value
at step t+1

Declare 1 time and 3 space
indices and 4D “u” var

𝑢 𝑡 + 1, 𝑖, 𝑗, 𝑘 = 𝑐0𝑢 𝑡, 𝑖, 𝑗, 𝑘

+ ෍

𝑟=1

4

𝑐𝑟ሾ

ሿ

𝑢 𝑡, 𝑖 − 𝑟, 𝑗, 𝑘

+ 𝑢 𝑡, 𝑖 + 𝑟, 𝑗, 𝑘
+ 𝑢 𝑡, 𝑖, 𝑗 − 𝑟, 𝑘
+ 𝑢 𝑡, 𝑖, 𝑗 + 𝑟, 𝑘
+ 𝑢 𝑡, 𝑖, 𝑗, 𝑘 − 𝑟
+ 𝑢 𝑡, 𝑖, 𝑗, 𝑘 + 𝑟

Derive new class from
yc_solution_base (or

yc_solution_with_radius_base to
get radius parameter)

Register this stencil with the YASK
compiler utility

YASK tutorial

Mathematical
description of

finite-difference
approximation

implemented in
DSL code

Overload define() method

18

Building a stencil

Variable declarations and
optimized stencil
calculation code

Stencil-
specification code

Stencil compiler

Loop compiler

Nested loops with
OpenMP pragmas and

other optimizations

Other C++ code

Intel C++
compiler

Provided stencil
perf-eval utility

Performance
results

Optimized stencil-
kernel library

Customer
application

Application
results

a
n

d
/o

r

YASK tutorial

19

Building your example stencil
Build your stencil and the YASK compiler

▪ Put the code from a couple of slides back into a new file src/stencils/MyStencil.cpp

– If you really don’t want to copy the example stencil during this tutorial, just substitute iso3dfd for my_stencil in the
example commands from here on

– If you want to write your own stencil, see the examples in src/stencils and the full DSL documentation for the YASK
Compiler as discussed in the “Using the APIs” section later in this tutorial

▪ Optional: rebuild and run the YASK compiler manually

– Build the compiler: make -j compiler

– Run the compiler: bin/yask_compiler.exe -h
– “my_stencil” should be listed as a valid parameter to the -stencil option
– Lots of other options shown; most of these are passed automatically from the Makefile

Build the YASK kernel for a CPU target

▪ Build the kernel: make -j stencil=my_stencil radius=4

– Targets the instruction-set architecture of your current platform by default
– If you want to cross-compile, specify arch=isa-code, e.g., avx2
– Targeting a GPU device will be covered later

– Uses all the default parameters for static options such as data layout and prefetching

– Dynamic options such as problem size are specified at run-time

▪ If you skipped the step of building the compiler above, it will be done here for you automatically

YASK tutorial







20

Running a stencil

Variable declarations and
optimized stencil
calculation code

Stencil-
specification code

Stencil compiler

Loop compiler

Nested loops with
OpenMP pragmas and

other optimizations

Other C++ code

Intel C++
compiler

Provided stencil
perf-eval utility

Performance
results

Optimized stencil-
kernel library

Customer
application

Application
results

a
n

d
/o

r

YASK tutorial

21

Running a stencil on a CPU platform
Run the provided benchmark utility
▪ bin/yask.sh -stencil my_stencil -g 512 -no-pre_auto_tune

– Problem size is specified as 512 in the 3 spatial dimensions (5123 points) using -g option
(“g” for global-domain)

– Auto-tuner is disabled ; other parameters are set to their defaults

– The script will use MPI to start a separate process on each NUMA node
– The global-domain size is automatically decomposed across the processes
– By default, uses shared-memory (shm) buffers for inter-process communication

– Override communication type with –no-use_shm option, which forces MPI calls between all processes
– May also have to use this if your platform limits the amount of shm that can be allocated

– The utility prints lots of stats about the stencil, memory usage, performance, etc.

– Runs 3 trials for about 10 sec each and reports the best and median time and throughput
(rate) stats

– The most important performance statistic is usually “mid-throughput (num-points/sec)”,
which is printed near the end of the output

– A log file is kept in the “logs” directory, which includes some compilation and platform
information for posterity

YASK tutorial





22

Automatically tuning the size parameters
Use the auto-tuner

▪ bin/yask.sh -stencil my_stencil -g 512

– As on previous slide, but with the block-size auto-tuner enabled (by default)
– The block size determines the amount of work done by each OpenMP thread at any given time
– The utility prints each block size that the auto-tuner tries and its measured performance, e.g.,

auto-tuner: searching block sizes...
auto-tuner: search-dist=16: 3.59 steps/sec (2 steps(s) in 556.7m secs) with size x=96 * y=28 * z=96 -- best so far
auto-tuner: search-dist=16: 3.74 steps/sec (2 steps(s) in 533.7m secs) with size x=32 * y=4 * z=80 -- best so far

…

– When the tuner is done, it prints the final sizes, e.g.,
…
auto-tuner: applying size t=0 * x=96 * y=4 * z=80
auto-tuner: done

Waiting for auto-tuner to converge on all ranks...
Auto-tuner done after 73.62 secs
Final settings:
auto-tuner: mega-block-size: t=0 * x=512 * y=512 * z=512
auto-tuner: block-size: t=0 * x=96 * y=4 * z=80
auto-tuner: micro-block-size: t=0 * x=96 * y=4 * z=80
auto-tuner: nano-block-size: x=96 * y=4 * z=80
auto-tuner: pico-block-size: x=96 * y=4 * z=80

– Note that the tuned block size printed here is different than at the beginning of the run
– Using other auto-tuner options, the other types of blocks (explained later) can be tuned

– Compare output and performance of the two runs with and without the auto-tuner

YASK tutorial



23

Hand-tuning the size parameters
Block size

▪ From the log file of the last run, find the best block size found by the auto-tuner as
highlighted on the previous slide

▪ Specify this manually to bypass the auto-tuner, e.g.,

– bin/yask.sh -stencil my_stencil -g 512 -no-pre_auto_tune \
-bx 96 -by 4 -bz 80

– You should get similar performance

– Play around with block size to see its effect

– Contribution opportunity: github ticket #159 to save and reuse the settings automatically

General usage of size-parameter options

▪ Most domain-dimension sizes can be specified in two ways

– Spatial dims set separately as we did with block size, e.g., -bx, -by, -bz

– Leave off the dimension names to set all domain sizes, e.g., -b

▪ Play around with various problem sizes to see the effect on memory and performance

YASK tutorial





24

Getting a list of options

The YASK test utility is composed of a script driver and a binary

▪ Print script options: bin/yask.sh –h

– There is only a short list of options here

– These are just the ones that control how the binary is launched from the script

▪ Print binary options: bin/yask.sh -stencil my_stencil -help

– Need to specify the stencil because there are different binaries for each

– If you don’t specify a stencil, the script will show the ones that have been compiled

– The long list of options might be overwhelming; we’ll point out the most important
ones in this tutorial

YASK tutorial





25

Scaling out to multiple nodes in a cluster
Domain decomposition

▪ Many HPC problem sizes won’t fit in the DRAM memory of one platform

▪ Most HPC problems can be divided spatially across multiple nodes in a cluster via
domain decomposition

YASK implementation

▪ Data exchanges use two-sided MPI* communication

▪ Important: strong vs. weak HPC scaling

– Global-domain size parameters (-g) apply to the overall problem size
– This implements a strong-scaling model, where the overall problem size remains constant

regardless of the number of MPI ranks

– Local-domain size parameters (-l) apply to the size on each MPI rank
– This implements a weak-scaling model, where the overall problem size increases with the

number of ranks

YASK tutorial

26

Conceptual view of 2D, 2×2 rank domains

Rank 0

Rank 2

Rank 1

Rank 3

Read-only
“halo” regions

Read/write
“domain”
regions

Due to the read-radius
of stencils, halo data

must be read to
calculate some points

in the domain.

Similarly, at rank
boundaries, each rank

needs to read data
from its neighbors.

This data changes
every time-step and
must be exchanged

between ranks every
time-step to keep the

data consistent.

YASK tutorial

27

Schematic of 2D, 2×2 rank y-edge halo exchanges

Rank 0

Rank 2

Rank 1

Rank 3

Data
calculated in

rank 1 at
time-step n…

…is needed by
rank 3 at

time-step n+1

Halos are
exchanged at
beginning of
run and after

each time-step.

Can get more
complex when

there are
multiple

dependent
stencils.

YASK tutorial

28

Schematic of 2D, 2×2 rank x-edge halo exchanges

Rank 0

Rank 2

Rank 1

Rank 3

Width of halos
is based on

radius of
stencil in each

dim.

YASK tutorial

29

Schematic of 2D, 2×2 rank corner exchanges

Rank 0

Rank 2

Rank 1

Rank 3

Corner
exchanges are
only needed
for halos that
have diagonal

points.
This is

determined
automatically
by the stencil

compiler

For 3D stencils,
exchanges may

be needed
along faces,
edges, and

corners of the
rectangular

solids.

This concept
can be

extended to
any number of

dimensions.

YASK tutorial

30

Running on multiple nodes in a cluster
Running via Slurm

▪ If a Slurm job is requested with the proper number of nodes and MPI tasks, the bin/yask.sh utility should issue the proper mpirun command

Running the test utility with an explicit MPI command

▪ bin/yask.sh -mpi_cmd 'mpirun <…>' -stencil my_stencil -g 1024

– Replace <…> with the specification of host-names, tasks per node, and other needed parameters
– Use the technique for your scheduler, e.g., -f or -hosts option, or whatever is used on your cluster
– Important: specify how many processes to run on each node, e.g., with -ppn, usually corresponding to the number of NUMA nodes in each cluster node

– YASK will automatically partition the global domain and distribute it among the MPI ranks
– Use the -nr* YASK options to control the topology of the MPI ranks
– Example: -nr 2 specifies 2 ranks in each spatial dimension
– Example: -nrx 2 -nry 4 -nrz 8 specifies 2 ranks in the ‘x’ dimension, 4 in the ‘y’, and 8 in the ‘z’, for 64 total ranks

Implementation options

▪ For typical configurations, YASK overlaps communication with some computation using this sequence [simplified]:

1. Only the data needed by another rank is calculated on each rank for a given time-step and packed for delivery

2. Asynchronous (non-blocking) MPI receive and send requests are initiated

3. The remaining data on each rank is calculated while the MPI data is in-flight

4. The MPI requests are completed and the received data is unpacked before the next time-step is begun

– You can disable this feature via -no-overlap_comms to measure the impact

▪ Shared-memory (shm) communication will automatically be applied between ranks that share a virtual address space, but MPI can be forced between all
ranks with -no-use_shm as explained earlier

YASK tutorial





31

32

Making a stencil application

Variable declarations and
optimized stencil
calculation code

Stencil-
specification code

Stencil compiler

Loop compiler

Nested loops with
OpenMP pragmas and

other optimizations

Other C++ code

Intel C++
compiler

Provided stencil
perf-eval utility

Performance
results

Optimized stencil-
kernel library

Customer
application

Application
results

a
n

d
/o

r

YASK tutorial

API overview
Purpose

▪ Define the DSL (Domain-Specific Language) used by the YASK compiler

▪ Facilitate inclusion of stencil code generated by YASK into real applications

Target languages

▪ C++ natively

▪ Python* interface generated via SWIG*

Design principles

▪ Consistent interface

▪ Stable interface with backward-compatibility maintained except in rare cases

▪ Documented

▪ Hidden implementation via C++ pure-virtual classes in most cases

▪ “Factory” pattern: use small number of factory objects to create more objects

33YASK tutorial

34

API documentation
From https://github.com/intel/yask, follow the “API documentation” link in the
Overview section of README.md

There are four main tabs

▪ Main Page contains an overview of the YASK workflow and API sets

– Read this first

▪ Modules lists the API sets

– This is the best place to start looking for the API you want

– YASK Compiler APIs are used to define stencil solutions, i.e., the “DSL”
– Objects in the compiler API start with “yc_”

– YASK Kernel APIs are used to create your own application from a YASK library
– Objects in the kernel API start with “yk_”

– YASK Common Utilities contains some common utility classes like output streams
– Objects here start with “yask_”

▪ Classes lists all the C++ classes in alphabetical order

▪ Files lists the C++ header files

YASK tutorial

https://github.com/intel/yask

35

There are two main steps in using a YASK stencil:

1. Create a library from the YASK DSL via the
“compiler” APIs

2. Use the library in an application via the “kernel” APIs

For each of these steps, there are three options
(making 9 combos):

▪ Use the binary provided in the YASK package

▪ Write your own app in C++

▪ Write your own app in Python

The most common combos:

1. Compiler: Use the provided YASK compiler binary to
create a library for your stencil via the Makefile

2. Kernel:

– Use the provided YASK binary to test and tune your
stencil’s performance by running yask.sh

– Create your own binary using the C++ kernel APIs to
use the stencil library in production

API combinations

YASK tutorial

Start

Write DSL code and
use

bin/yask_compiler

via make

Create your own YASK
compiler via APIs in

C++ or Python
(unusual)

or

Generate stencil
library

Run bin/yask.sh
Create your own app

via APIs in C++ or
Python

and/or

Use stencil
library

Done

36

Access to the APIs
C++

▪ The standard method of writing YASK stencils uses the “DSL” part of the C++ compiler API library

– Many examples in the src/stencils directory

– The provided YASK compiler generates C++ stencil code from the DSL code; this is compiled into a kernel library

– You only need to make your own YASK compiler binary in special situations, such as creating a custom stencil generator; otherwise, just build your
stencil from the Makefile and use the generated library

– The rest of this section in this tutorial covers using the kernel APIs, not the compiler APIs

▪ When you run make as in the previous examples, you have implicitly made a kernel library containing the kernel APIs

– A shared object is created in the lib directory, one for each stencil and target architecture

– The performance-test binaries we’ve been running via yask.sh are just wrappers around the library

▪ The header files are in the include directory

– #include "yask_kernel_api.hpp" in your application

– See src/kernel/tests/yask_kernel_api_test.cpp for an example

Python

▪ Build the APIs for Python* only if you want to make a Python app instead of a C++ app

▪ Download src code as before: git clone https://github.com/intel/yask

– See README.md for SWIG* version requirement

▪ From yask directory, run make -j api

▪ Python APIs are not documented separately—use the C++ docs with appropriate type mapping

▪ Performance-wise, the stencil calculations will be the same speed as in C++, but data access is slower

YASK tutorial

https://github.com/intel/yask

37

Main YASK kernel process steps

Create a YASK
“solution”

object

Set problem
size and other

parameters

“Prepare” the solution:
allocate memory and

sync meta data

Done?

Initialize data
in YASK

variables

Run solution
for n time-

steps

Inject data representing
external stimulus if

needed, etc.
Extract results

from YASK
variables

No

Yes

YASK tutorial

38

Creating a YASK kernel via the APIs
Bootstrap

▪ Declare an object of type yk_factory

▪ Call yk_factory::new_env() to create an “environment” object

– This can be used to provide an existing MPI communicator if desired

▪ Call yk_factory::new_solution() to create a YASK “solution” object

– The solution object provides methods to configure the problem size, access YASK variables,
and run the stencil calculations

FAQ: What’s with all the output?

▪ Calling many APIs results in debug output written to a stream

– By default, this stream is standard output

– Handy for development, but you probably don’t want this in your final application

▪ Call yk_solution::set_debug_output() to change it to a file or yk_solution::
disable_debug_output() to simply discard it

– Use a yask_output_factory to create new output streams

– NB: this mechanism was used instead of raw C++ streams to enable Python usage, but you can
get access to the C++ stream via yk_env::get_debug_output()->get_ostream()

YASK tutorial

39

Key terms related to domain sizes
Overall (global) and rank (local) domain sizes

▪ As with the test utility, each MPI rank can define the local-domain size or the global-domain size in
each dimension

– The size that is not specified will be calculated automatically

– All ranks in a given row must have the same rank-domain height, etc.

▪ Also, each rank can specify the number of ranks in each dimension or let the run-time assign them
automatically

YASK-variable dimensions and sizes

▪ When YASK variables are defined, they can have three types of dims

– Step dim: often “t” for “time”

– Domain dim: often used for spatial dims like “x” and “y”
– Generally, can be any domain-size parameter that may be decomposed over ranks

– Misc dim: an index that is known and fixed at YASK-compile time like a coefficient index

▪ The size of the domain will be used when allocating each variable

– Read the “Detailed Description” section of the yk_var API page for an explanation of each size

YASK tutorial

40

Global view of 2D problem size

Rank 0

Rank 2

Rank 1

Rank 3

Important: Halo
regions are not

considered part of
the domain size

The “domain” is
the region where
the stencils are
calculated and
the YASK vars
are updated

Global-domain
size in y dim

Local-domain size in x
dim in ranks 1 and 3

YASK tutorial

41

Per-rank view of 2D problem sizes

Rank 0

Rank 2

Rank 1

Rank 3

Local-domain
size in y dim in
ranks 0 and 1

Halo size—can be
different for each

variable, dimension,
and side of domain;

determined
automatically by
stencil compiler

YASK may add
extra padding

to ensure
vector data-

alignment, etc.
to each
variable.

Application
programmers

usually don’t need
to set the size of

halos or
padding—YASK
computes them

for you.

YASK tutorial

42

Prepare the kernel solution
Set up the problem sizes and ranks

▪ Call yk_solution::set_overall_domain_size() to set the global-domain sizes
or yk_solution::set_rank_domain_size() to set the local-domain sizes

▪ Call yk_solution::set_num_ranks() to explicitly set the number of ranks if
desired

▪ Call yk_solution::set_rank_index() to explicitly set the position of each rank if
desired

Optional: Set other solution parameters

▪ Call yk_solution::set_block_size() to use the best block size you found during
the tuning process

▪ Alternatively, or in addition, you can use the block-size auto-tuner

– The auto-tuner can be controlled with APIs

– There are several ways to use the auto-tuner, discussed in the advanced section

▪ Other solution parameters, including other tile sizes, can be set via
yk_solution::apply_command_line_options()

YASK tutorial

43

Allocate data and synchronize info across ranks

Call yk_solution::prepare_solution()

▪ Shares MPI positions across ranks or calculates a default position for each rank

– Since prepare_solution() uses MPI calls, it is critical to call it from each rank

▪ Ensures domain-size consistency across ranks

▪ Allocates data for each YASK variable based on halo sizes determined by the
YASK compiler and the local domain sizes

▪ Determines MPI buffer requirements and sizes and allocates data for them

YASK tutorial

44

Initialize data
Access YASK variables

▪ Get a list via yk_solution::get_vars() or find a specific var by name via yk_solution::get_var()

▪ Either one returns pointers to variables of type yk_var

– Used to find all meta data about each var

– Use get_*_index() APIs to determine valid indices

– Use idx_t as a type for indices: size_t and int are not good alternatives.

Data access

▪ YASK uses a non-standard tiled data layout (“vector folding” discussed later)

– Thus, it does not support simple overlay with native row-major or column-major arrays of floating-point
numbers

– NB, github issue #147 requests to support this under certain restrictions for easier integration with legacy
applications

▪ There are several APIs for writing one or more FP elements from and to the variables

– Start with set_element(), set_elements_in_slice(), and set_all_elements_same() in yk_var

– The “slice” versions are threaded for performance and convert to and from row-major layout
– But you’ll probably want to avoid copying whole vars this way to avoid wasting memory

YASK tutorial

45

YASK-variable indices

Rank 0 Rank 1

Important: var
indices are

always global!

Note: some may
be negative.

get_first_rank_domain_index(“x”) → 0

get_last_rank_domain_index(“x”) → 99 get_first_rank_domain_index(“x”) → 100

get_last_rank_domain_index(“x”) → 199

get_rank_domain_size(“x”) → 100

get_left_halo_size(“x”) → 5
get_right_extra_\

padding_size(“x”) → 3

get_last_rank_halo_index(“x”) → 104 get_first_rank_halo_index(“x”) → 95

get_first_rank_\

halo_index(“x”) → -5

get_last_rank_\

halo_index(“x”) → 204

Tip: use an API to
determine each
index instead of
adding sizes or

doing similar math.

YASK tutorial

get_last_local_index(“x”) → 107 get_first_local_index(“x”) → 92

46

Notes on initializing data

Rank 0 Rank 1

Of course, load
data into the
domain areas

Load data into the
outer halos or

initialize them to a
safe value

No need to load data into the
halos between ranks because
they will be copied from the

neighbors during the first halo
exchange

No need to load data into
the extra padding area
because it is never read

YASK tutorial

47

Make the stencil calculations and get results

Advance the simulation through a series of time-steps

▪ Call yk_solution::run_solution()

– General form takes first and last time indices, e.g.,

– run_solution(0, 9) runs the first 10 time-steps

– run_solution(10, 19) runs the next 10

▪ If needed, between time-steps, you can access var data, e.g., for source injection

Access results

▪ Use appropriate var methods analogous to the data-writing ones listed earlier

– Examples: get_element(), get_elements_in_slice(),
reduce_elements_in_slice()

▪ Call yk_solution::get_stats() to collect some performance stats if desired

▪ Call yk_solution::end_solution() when all done to release memory, etc.

YASK tutorial

48

Example applications
2D Wave equation

▪ Stencil DSL: src/stencils/Wave2DStencil.cpp

▪ Application code: src/examples/wave_eq_main.cpp

▪ Illustrates

– Sub-domains and scratch vars (see next section on advanced stencils)

– Using both YASK-library and application-specific options

– Determining global and local domain sizes

– Initializing YASK var data efficiently by slices

– Running the simulation loop, and calculating reductions and reporting simulation stats within the simulation loop

– Retrieving final simulation results and reporting performance

2D Shallow-water equation

▪ Stencil DSL: src/stencils/SWE2DStencil.cpp

▪ Application code: src/examples/swe_main.cpp

▪ Builds upon 2D wave-equation example to additionally illustrate

– Different sub-domains for various vars

– Restricting certain calculations to specific simulation steps controlled by the simulation loop

Run “make examples” to build and “make example-tests” to run validation tests

▪ Use “-bench” and “-g” knobs to run benchmarks of various sizes

▪ Use “mpirun” and “-outer_threads” knobs to tune for number of NUMA nodes and cores per NUMA node

YASK tutorial

49

Advanced APIs
Misc interesting APIs (not exhaustive)

▪ Call yk_var::set_numa_preferred() to set the NUMA node for a given
variable—useful for explicit placement in MCDRAM or DDR on Xeon Phi CPUs

▪ Call yk_solution::new_var() to make variables beyond those used in the
solution; may be useful for checkpoint/restore of vars, etc.

▪ Call yk_solution::apply_command_line_options() to parse a command-
line string—useful for quickly applying options from the test utility in another
application or for setting options that do not have corresponding APIs

▪ Call yk_var::add_to_element() to atomically update a var element—useful
for threaded source injection

YASK tutorial

50

Exceptions

YASK APIs that can trigger errors throw exceptions

▪ Allows applications to catch and process errors

▪ Find exception documentation in the YASK Common Utilities module tab

C++

▪ Throws object of type yask_exception

▪ Call yask_exception::get_message() for a human-readable explanation

▪ See src/kernel/tests/yask_kernel_api_exception_test.cpp

Python

▪ Throws RuntimeError as defined by SWIG*

▪ Call format() for a human-readable explanation

▪ See src/kernel/tests/yask_kernel_api_exception_test.py

YASK tutorial

51

52

Solutions with multiple stencils
Purpose

▪ Many simulations require multiple variables to be updated, each with a different stencil

Independent stencils

▪ Definition: for any two stencils, the input of one stencil does not depend on the output of the other within the same
time-step, and vice-versa

▪ Example: x-stress(t+1) depends on x-stress(t), and y-stress(t+1) depends on y-stress(t), but x-stress(t+1) does not
depend on y-stress(t+1) or vice-versa

– See define_str_TL() in src/stencils/SSGElasticStencil.cpp

– Thanks to contributor Albert Farres from the Barcelona Supercomputing Center!

▪ For independent stencils, YASK applies the stencils simultaneously in one pass over the domain

Dependent stencils

▪ Definition: for any two stencils, the output of one stencil is required for the input of the other stencil in the same
time-step (the opposite cannot also be true)

▪ Example: x-velocity(t+1) depends on x-stress(t), and x-stress(t+1) depends on x-velocity(t+1) –see same DSL file

▪ For dependent stencils, YASK cannot apply the stencils simultaneously and makes multiple passes over the domain,
called “stages”

▪ YASK automatically determines the dependencies between equations in the DSL and schedules their stencils

YASK tutorial

Boundary regions
Used in wave-propagation simulation

▪ Simulation domain covers only a finite block of earth, water, etc.

▪ Simulated waves will erroneously reflect from the arbitrary boundaries

▪ Artificial absorbing boundary conditions (ABC) or boundary layers are used to reduce these
reflections

▪ There are many techniques and papers covering this field of study

Two high-level approaches to use in YASK

▪ Modify the stencil(s) to include simple attenuation factors

– Example: Cerjan sponge layers

– See Iso3dfdSpongeStencil class in src/stencils/Iso3dfdStencil.cpp
– Try modifying your test stencil to use sponge layers and check the impact on performance

– This stencil illustrates the use of combining 3D and 2D variables to save memory

– Tip: this stencil and its parent class also show the recommended practice of creating functions
to return expressions, allowing more flexible composition

▪ Use different stencils in the boundary layers by creating sub-domains

– Examples: Higdon BCs, perfectly-matched-layers (PML), and the convolutional form (CPML)

53YASK tutorial



54

Sub-domain (spatial) conditions
A sub-domain is a subset of the domain in which a stencil is applied

▪ Defining special stencils in boundary regions is a common use-case for sub-domains

A sub-domain is defined in the DSL by a Boolean expression on the domain indices

▪ The DSL includes terms for the left-most and right-most indices in the domain

▪ Example: (x < first_domain_index(x) + 5) defines a sub-domain on the left side of the
domain, 5 elements wide

– (x > last_domain_index(x) – 5) would be the same on the right side

– (x >= first_domain_index(x) + 5) && (x <= last_domain_index(x) - 5)

would be used for the interior sub-domain between the left and right boundary sub-domains

▪ These conditions are placed after the stencil equation using the IF_DOMAIN operator in the DSL

– Example: A(t+1,x) EQUALS A(t,x) + A(t,x+1) IF_DOMAIN x > 10

– Search for TestBoundaryStencil in src/stencils/TestStencils.cpp for simple
synthetic examples

– See src/stencils/FSGElasticStencil.cpp for a more complex real-world example

YASK tutorial

55

Sub-domains on multiple ranks

Rank 0

Rank 2

Rank 1

Rank 3

Halo regions are
not considered

part of any domain
or sub-domain

Sub-domain described by
(x < first_index(x) + 5)

Sub-domain described by
(x >= first_index(x) + 5) &&

(x <= last_index(x) - 5)

Sub-domain described by
(x > last_index(x) - 5)

Sub-domains
always apply

across the overall
problem domain.

(This is one reason
that domain

indices are always
global.)

YASK tutorial

56

Step (temporal) conditions
A step-condition expresses which time-steps are valid for a stencil

▪ Some stencil applications require special processing on regular intervals

▪ Wave-field sub-sampling can be implemented with step conditions

Like sub-domain conditions, step conditions restrict stencil application

▪ Sub-domain expressions can use only the domain indices

▪ Step-condition expressions can use the step index (usually time) or values in other
YASK variables (but not via domain indices)

▪ Example: (t % 8 == 0) is true every 8th time-step

▪ These conditions are written after the equation using the IF_STEP operator in the DSL

– Example: A(t+1,x) EQUALS A(t,x) + A(t,x+1) IF_STEP t > 5;

– Look for TestStepCondStencil in src/stencils/SimpleTestStencils.cpp for a
simple example

– To apply both sub-domain and step conditions, put parentheses around the value
definition and the first condition, e.g.,

– (A(t+1,x) EQUALS A(t,x) + A(t,x+1) IF_DOMAIN x > 10) IF_STEP t > 5;

YASK tutorial

57

Scratch variables
Purpose

▪ Provide a mechanism to calculate intermediate values efficiently

Usage

▪ Often, stencils create intermediate values that do not need to be accessed across simulation steps

– Rather, these intermediate values are then used in subsequent stencils to calculate the final desired values

▪ These intermediate values can be stored in “scratch” variables instead of regular YASK variables

▪ Scratch variables cannot have the step dimension since they do not exist across steps

▪ Unlike regular variables, the values of all possible points must be defined, including those outside of the YASK domain

– When defining scratch values without conditions, this happens normally, but be careful when using conditions on scratch vars

– As a development step or debug aid, the option -init_scratch_vars may be used to set all the values to zero in each scratch var before
calculations are done, but this usually results in poor performance because most values in each scratch var will be written twice

▪ See src/stencils/Wave2dStencil.cpp for example usage, e.g., u_sub1

Implementation

▪ Unlike regular vars, scratch-var memory is not allocated to cover the whole domain

– Memory is automatically allocated by the YASK runtime to cover only a block (more accurately, a micro-block as described later)

– The memory is reused as each micro-block is evaluated sequentially by each thread (actually, each outer thread as described later)

– There is a separate scratch-var memory allocation for each outer thread

▪ YASK can also reuse the same memory allocation for more than one scratch variable when possible

▪ All these implementation details contribute to increasing cache locality and decreasing memory usage when using scratch variables

YASK tutorial

58

Scratch-variable examples
Without sub-domain or step conditions

MAKE_VAR(A, t, x, y);

MAKE_SCRATCH_VAR(S1, x, y);

…

S1(x,y) EQUALS (A(t,x,y) + A(t,x+1,y)) / 2;

A(t+1,x,y) EQUALS (S1(x,y) + S1(x,y+1)) / 2;

With sub-domain conditions

MAKE_VAR(A, t, x, y);

MAKE_SCRATCH_VAR(S1, x, y);

auto d1 = x>=first_domain_index(x) && x<=last_domain_index(x) &&

y>=first_domain_index(y) && y<=last_domain_index(y);

…

S1(x,y) EQUALS (A(t,x,y) + A(t,x+1,y)) / 2 IF_DOMAIN d1;

S1(x,y) EQUALS 0.0 IF_DOMAIN !d1; // Define all possible points

A(t+1,x,y) EQUALS (S1(x,y) + S1(x,y+1)) / 2;

YASK tutorial

59

Vector folding (multi-dimensional vectorization)
Concept

▪ Store small 2D or 3D block of data into each SIMD vector

▪ Pros: reduces memory loads and memory streams compared to traditional 1D in-line vectorization

▪ Cons: requires non-traditional tiled data layout and additional shift and/or permute operations
preceding SIMD arithmetic operations

Results

▪ Significant speedup shown on many systems, esp. those containing high-bandwidth memory (HBM)

▪ Works well paired with tiling and other performance techniques

Implementation

▪ The YASK compiler automatically generates the proper shift and permute instructions

▪ The YASK kernel code automatically generates code to store the tiled data and look up elements by
index when needed

▪ Intel® AVX-512 instruction set is needed for efficient permutes, so only enabled when available

▪ See the paper in the upcoming reading list showing up to 1.5× speedup from vector-folding

YASK tutorial

60

Traditional 1D Vectorization

8 new vectors must
be read for k±r

points
(4 for k+r and 4 for

k-r for r=1..4)

Inner 3D loop iterates
in x direction, i.e., same

dimension as
vectorization

Only 1 new vector
must be read for i±r

points due to
overlap along x axis

Total BW cost for
traditional “in-line” vectors
= 17 new vector inputs for

each vector of output
(some loads will come from

cache with blocking)

8 new vectors must
be read for j±r

points

YASK tutorial

Inner 3D loop
iterates in z

direction, i.e.,
perpendicular
to 2D vector

Only 1 new
vector must be
read for k±r

points

2 new vectors
must be read for

i±r points

4 new 4x2x1 vectors
must be read for j±r

points

Total BW cost for 4x2x1 vector
with z-axis loop= 7 new vector

inputs for each vector of output
(2.4x lower than in-line)

61

2D Vector-Folding

YASK tutorial

62

Vector-Folding Memory Layout and Code Gen
2D “4x2” vector folding

y

x

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 …

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 …

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 …

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 …

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 …

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 1,5 1,6 1,7 1,8 2,5 2,6 2,7 2,8 1,9 …

• 2D vector folding layout (8×1)
• Two aligned vectors are colored
• Unaligned read shown with bold borders done by loading aligned vectors and

then shuffling the requisite elements via an AVX-512 permute instruction

Layout in memory (1D)

Logical indices in 2D with 8-element SIMD in x and y dimensions

Access to elements in
custom memory layout

encapsulated behind
C++ & Python APIs

Load and permute
instructions generated
automatically by YASK

stencil compiler

YASK tutorial

63

Vector-folding customization
Specify the vectorization length in each dimension

▪ Use the fold='x=n,y=n,z=n' argument to the make command-line

– The values are passed to the YASK stencil compiler and used to generate code

– The fold settings are also included in non-generated code during compilation

– Example: make fold='x=1,y=2,z=8' generates code using a 1×2×8 fold

– Try different fold settings on the test stencil and check the impact on performance
– Important: Be sure to run make clean before re-compiling when changing compile-time

options like vectorization

▪ The product of the fold lengths should equal the number of SIMD vector elements in
the target architecture and FP precision (single or double)

– Example: single-precision FP using 512-bit SIMD contains 16 elements per vector

– If the fold is not the right size, the compiler will adjust the requested fold using a
heuristic algorithm (i.e., the fold you specify is a hint)

– The vector length in any dimension not specified defaults to one (1)

– The default fold varies depending on dimensionality, architecture, and FP precision
– Is 4×4×1 for a 3D problem using SP FP on Xeon Scalable CPUs, for example

YASK tutorial



64

More compile-time settings
Floating-point precision

▪ The default FP size is 4 bytes, which is the norm in seismic modeling

▪ Build with double-precision by adding real_bytes=8 to the make command

Prefetching

▪ Software prefetch instructions can be added by the YASK compiler

– Use make … pfd_l1=n to set the L1 prefetch distance to n iterations ahead

– Use make … pfd_l2=n to set the L2 prefetch distance to n iterations ahead

– Set n to zero (0) to disable generation of any prefetch instructions for a level

▪ The default prefetch depends on the architecture

Time allocation

▪ By default, the YASK compiler tries to determine the minimum number of time-steps that need to
be saved in each variable, but you may want to override it

▪ Override this with make … time_alloc=n (to affect all vars at compile-time)

▪ Override at run-time with the yk_var::set_alloc_size() API

YASK tutorial

65

More compile-time settings
Order of domain dimensions

▪ The order of domain dimensions determines

– The inner-most or “unit-stride” dimension in the memory layout

– The nesting order of loops for the stencil-calculation code

– Default vector-folding and default rank layout

▪ By default, the order of domain dimensions is determined from the variable declarations

– For example, new_var(“A”, {t, x, y, z}) implies domain dimensions are in ‘x, y, z’ order

– If vars have different domain-dimension index orders, dimensions are sorted in the order they are seen by the
compiler

▪ You can explicitly set the order of domain dimensions

– For example, make … domain_dims='z,y,x' creates domain dimensions in ‘z, y, x’ order

– This setting overrides the order of the dimensions specified in the variable declarations and affects memory
layout, looping order, vector-folding, and rank layout

– Try different orders on the test stencil and check the performance impact (remember to make clean)

Misc settings

▪ Any preprocessor macro can be set by make … EXTRA_MACROS='name=value …'

▪ Type make help for examples of settings the C++ optimization level and more

YASK tutorial



66

More grouping terms: parts and stages
You may notice the terms “parts” and “stages” in the YASK debug output

Parts

▪ A part is the term used for independent stencil equations that are grouped into one
C++ function by the YASK compiler

▪ A part cannot contain equations from different sub-domains

▪ The compiler eliminates common sub-expressions between stencils in a part

Stages

▪ A stage is the term used for a group of parts that are not inter-dependent

▪ This can occur when there are equations in different sub-domains that are not
dependent on one another

▪ Multiple stages are scheduled in the correct order based on dependencies (e.g., in a
staggered-grid problem)

▪ The amount of work and performance of each stage is listed in the debug output

YASK tutorial

67

Temporal wave-front tiling
Goal

▪ Increase temporal locality in caches at a package level

▪ Especially useful for large unified cache (such as HBM used for caching DDR
memory)

Technique

▪ In each MPI rank

– Evaluate n time-steps within a subset of the local rank domain
– We refer to this subset as a Mega-block in YASK

– Evaluate each Mega-block sequentially until entire rank domain is evaluated for n
time-steps

▪ Some redundant work is done between ranks to allow halo exchange after every n
time-steps

▪ YASK handles all the temporal tiling complexity automatically

YASK tutorial

68

Temporal wave-front dependencies

• In the first temporal wave-front tile shown here, the number of values that can be
calculated is reduced for each time-step (and/or each stage within a time-step)

• The amount of shift is called the wave-front or temporal angle and is based on the
radius of the largest stencil (shift of 8 shown)

t

x

t=4
t=3
t=2
t=1

○ ○ ○ ○ ○ ○ ○ ○ ○
○ ○
○ ○
○ ○

Tile ends here for t=1

Highest x-value that may be calculated for
t=2 due to the dependencies on t=1 values

Highest x-value that may be
calculated for t=4 due to the
dependencies on t=3 values

○

○

value already known
value not yet known
known value used as input
value being calculated

Key

YASK tutorial

69

Covering a temporal range via multiple tiles

• Wave-front tiles (Mega-blocks) are computed sequentially, but multiple values within one
time-step of a given tile may still be evaluated concurrently

• After last tile is complete, YASK variables contain the same data as they would have without
temporal tiling, so no change is needed when inputting data or reading results

• This concept is directly extended to 2D or 3D stencils by shifting in each spatial dimension

YASK tutorial

70

Using temporal wave-front tiling in YASK
Another level of tiling hierarchy

▪ Earlier, we explained how each rank domain is divided into blocks, set via –b

▪ Ranks may also be divided into Mega-blocks, where each Mega-block is a wave-front
tile

▪ Control the spatial size of a Mega-block with -Mb, -Mbx, -Mby, etc.

– Be sure to use a capital “M”; a lower-case “m” is for micro-blocks, explained later

▪ Control the temporal size of a Mega-block with -Mbt (assuming your time dim is “t”)

▪ By default, the spatial size of a Mega-block is the size of the rank

Selecting values

▪ When using a very large unified cache (e.g., HBM used to cache DDR memory), set the
spatial size to fit within this cache

– See the paper in the upcoming reading list showing ~2× speedup on two stencils

▪ For processors that have much smaller third-level caches (e.g., a Xeon Scalable
processor), values are much more critical, and additional performance is more difficult
to obtain

YASK tutorial

71

Temporal block-level tiling

Goal

▪ Increase temporal locality in caches at a core level, e.g., level-2 caches

Technique

▪ Evaluate n time-steps in each block

– Recall that a rank is composed of Mega-blocks, and a Mega-block is composed of
blocks

▪ Evaluate blocks concurrently until entire Mega-block is evaluated for n time-steps

YASK tutorial

72

Temporal block dependencies

• In one spatial dimension (as shown), this is called triangle or trapezoid tiling (half of diamond tiling)
• Extension into multiple spatial dimensions uses a more complex series of multi-dimensional

shapes (polytopes) to tessellate the space (not shown)
• The amount of shift or temporal angle is based on the radius of the largest stencil (shift of 2 shown)

t

x

t=4
t=3
t=2
t=1

○ ○
○ ○
○ ○

These three “upward” triangle blocks may be evaluated concurrently.
When they are complete, the “downward” triangle blocks are evaluated.

○

○

value already known
value not yet known
known value used as input
value being calculated

Key

YASK tutorial

73

Using temporal block tiling in YASK

Not another level of tiling hierarchy

▪ As before, control the spatial size of a block with -b, -bx, -by, etc.

▪ Control the temporal size of a block with -bt (assuming your time dim is “t”)

▪ By default, there is no temporal block tiling

▪ Temporal block tiling occurs within wave-front rank tiling, so the temporal size of
a Mega-block defaults to the temporal size of a block

– But the default spatial size of a Mega-block is still the spatial size of a rank domain

– You can use both wave-front rank tiling and temporal block tiling, and the temporal
size of the Mega-blocks can be larger than the temporal size of the blocks

Selecting values

▪ When selecting spatial sizes, consider level-2 cache size, number of YASK
variables accessed, the FP-element size, and the number of cores

YASK tutorial

74

Temporal wave-front micro-block tiling
Goal

▪ Observation: block sizes are used as a unit-of-work for OpenMP* threads as well as
level-2 cache targeting

– These objectives can conflict when there are many variables in a stencil, which requires
small blocks to fit in cache

– This can lead to many short OpenMP tasks, which may not be optimal

▪ Also, it may be beneficial in some cases to combine the concepts of trapezoid tiling and
wave-front tiling across different dimensions

▪ Goal is to separate the thread and cache block concepts and provide more tiling
flexibility

Technique

▪ Evaluate n time-steps in a subset of each block

– We refer to this subset as a micro-block in YASK

▪ Evaluate each micro-block sequentially until entire block is evaluated

YASK tutorial

75

Temporal micro-block dependencies

• Blocks are evaluated concurrently as before using OpenMP threads
• Micro-blocks are evaluated sequentially within each block
• Micro-blocks use wave-front tiling, similar to Mega-blocks, but inside blocks instead

of ranks

t

x

t=4
t=3
t=2
t=1

○ ○ ○ ○ ○ ○
○ ○
○ ○

Block boundaries as
shown previously

○

○

value already known
value not yet known
known value used as input
value being calculated

Key

Mini-block boundaries

YASK tutorial

76

Using micro-block tiling in YASK
Another level of tiling hierarchy

▪ Blocks may be divided into micro-blocks, where each micro-block is a wave-front tile

▪ Control the spatial size of a micro-block with -mb, -mbx, -mby, etc.

▪ The temporal size of a micro-block is always the same as a block, so it is set implicitly
via -bt

▪ By default, the spatial size of a micro-block is the size of a block

Selecting values

▪ The size of a micro-block should normally correspond to the size of a level-2 cache,
considering the number of variables accessed and the FP-element size

– Any scratch-var values are evaluated at the micro-block level, so consider their sizes

▪ The block sizes can now be larger than what would fit in a level-2 cache, considering
the number of cores with thread balancing

▪ By sizing micro-blocks as wide as blocks in one or two dimensions and/or sizing blocks
as wide as Mega-blocks in some dimensions, interesting special-case scenarios may be
created

YASK tutorial

77

Nested OpenMP threads
Goal

▪ Observation: using hyper-threads (SMT) across blocks effectively reduces the usable
size of the level-2 cache available to each thread

▪ This is particularly impactful on Xeon Phi processors with not only 4 hyper-threads per
core but also 2 cores sharing a level-2 cache

▪ Goal: allow multiple threads to use shared caches constructively rather than
destructively

Technique

▪ Evaluate subsets of each micro-block by threads that share caches

– We refer to this subset as a nano-block in YASK

▪ Evaluate nano-blocks concurrently until a single time-step in a mini-block is evaluated
(thus, there is no temporal nano-block tiling)

▪ Since blocking already uses OpenMP threads, nano-blocking is implemented with a
nested level of OpenMP threading

YASK tutorial

78

Using nano-block tiling in YASK
Another level of tiling hierarchy

▪ Micro-blocks may be divided into nano-blocks

▪ Control the spatial size of a nano-block with -nb, -nbx, -nby, etc.

▪ There is no temporal nano-blocking, so there is not an -nt option

Selecting values

▪ By default, the spatial size of a nano-block depends on the number of threads are used per block

– If there is one thread per block (no nested OpenMP), the default size of a nano-block is the size of a micro-block
– In this case, it is recommended to use only one thread per level-2 cache

– If there are >1 threads per block (nested OpenMP active), the default size of a nano-block is a narrow slab the width of
one vector (usually in the first dim) and the size of a micro-block in the other dims

– This setting is intended to increase reuse between hyper-threads while keeping threading overhead as low as possible

▪ Control the number of threads

– By default, the yask.sh script runs one thread per core by passing -outer_threads to the binary, and the default
number of inner threads is one (1).

– If you want to use hyper-threads, use the -inner_threads option, e.g., -inner_threads 2 will use both hyper-
threads on most Intel® Xeon processors, assuming hyper-threading is enabled in the BIOS settings

– You can also override the -outer_threads value to, for example, experiment with multiple cores sharing data across their
L2 caches

▪ Try adjusting threads-per-block and/or nano-block sizes on the test stencil and check performance

YASK tutorial



79

Using pico-block tiling in YASK
Lowest level of tiling hierarchy

▪ Nano-blocks may be divided into pico-blocks

▪ Control the spatial size of a pico-block with -pb, -pbx, -pby, etc.

▪ There is no temporal pico-blocking, so there is not an -pt option

▪ Pico-blocking can be used for level-one (L1) cache-blocking on CPUs, but its use is
more critical on GPUs, explained later in this tutorial

Selecting values

▪ By default, there is only one pico-block per nano-block

▪ Pico-blocking allows each nano-block, which is evaluated by an inner OpenMP
thread, to have even more locality

▪ In some stencils, pico-blocking may be able to take advantage of L1 cache locality

▪ Try adjusting pico-block sizes on the test stencil and check performance

YASK tutorial



80

Review of the CPU tiling hierarchy
Hierarchy level Spatial size

options
Concurrent evaluation? Temporal tiling? Temporal size

options (assuming
time dim is “t”)

Global domain -g* N/A (only one) N/A -trial_steps

Local domains -l* Yes, via MPI No

Mega-blocks -Mb* No Yes, via sequential wave-
front tiling

-Mbt

Blocks -b* Yes, via outer OpenMP
threads

Yes, via concurrent hyper-
trapezoid tiling

-bt

Micro-blocks -mb* No Yes, via sequential wave-
front tiling

-bt (implicitly)

Nano-blocks -nb* Yes, via inner OpenMP
threads

No

Pico-blocks -pb* No (unless on GPU) No

Vectors fold=… Yes, via HW ILP (instruction-
level parallelism)

No

Elements real_bytes=… Yes, via HW SIMD No

YASK tutorial

81

Example tile settings for temporal tiling
The following options were hand-tuned for an Intel® Xeon® Platinum 8352Y CPU

▪ bin/yask.sh -stencil my_stencil -l 1024 \
-mbx 32 -mby 32 -mbz 128 \
-b 256 -bt 12 \
-no-pre_auto_tune

▪ Micro-block settings selected targeting 1MiB

– The Intel® 8352Y has a 1280KiB L2 cache per core, and this gives some extra space

– 32 × 32 × 128 × 4B × 2 = 1MiB (128 ⇒ longer in unit stride; “4B” ⇒ 4 bytes per FP element; “× 2” to keep two time-steps in cache)

▪ Spatial block settings selected for a multiple of number of cores per socket

– The Intel® 8352Y has 32 cores per socket

– Trying 2 blocks per core: 64 blocks (modify for CPU with different core count)
– A small multiple (like 2 or 4) often works better than the exact count because several blocks per core gives more opportunity for dynamic

load balancing

– Trying 4 blocks across each dimension: 4 × 4 × 4 = 64

– 1024 ÷ 4 = 256, so using -b 256

▪ Temporal block setting (-bt 12) was chosen experimentally by iterating manually through several values

▪ Mega-block size not set because L3 blocking is not being targeted in this experiment

▪ Nano-block size not set because only one thread per block is used in this experiment

▪ Pico-block size not set because L1 blocking is not being targeted in this experiment

▪ These settings resulted in about a 40% speedup over default non-temporal tiling; your results may vary

YASK tutorial



82

Controlling when the automatic tuner runs
Pre-calculation mode

▪ Runs before the desired stencil calculations are done

▪ Does not ensure that calculations are done in the proper order

– Thus, important to [re]initialize data after running in this mode for use in deployed applications

▪ Intended for benchmarking to tune block-size before running actual time-steps

▪ Use [-no]-pre_auto_tune option to control in provided test utility (default is on)

▪ Call API run_auto_tuner_now() to activate outside in your application

Intra-calculation mode

▪ Runs during desired stencil calculations

▪ Maintains proper calculations

▪ Intended for deployment, esp. on multiple platforms or when all final platforms are not known a
priori

▪ Use [-no]-auto_tune option to control in provided test utility (default is off)

▪ Call reset_auto_tuner() to turn off or on explicitly

▪ Call API is_auto_tuner_enabled() to determine whether it is [still] running

YASK tutorial

83

Controlling what the automatic tuner does
Tiling levels

▪ By default, the auto-tuner is applied to the “block” tiles only

▪ More generally, you can supply a list of tiling levels via -auto_tune_targets

– The argument is a comma-separated list of level abbreviations: Mb for mega-blocks, b for
blocks, mb for micro-blocks, nb for nano-blocks, and pb for pico-blocks

– The order specified is the order in which the tile sizes are tuned, and targets can be
repeated

– Example: -auto_tune_targets b,Mb,b will tune blocks, then mega-blocks, then
blocks again

Other controls

▪ -auto_tune_radius controls how far the tuner will start exploring from the initial
settings

▪ -auto_tune_trial_secs controls how long a new trial must be run to consider it
better than the current best trial; higher values avoid measurement noise but require
more time to converge

YASK tutorial

85

GPU offload overview
Mechanism

▪ GPU offloading is via OpenMP Device Directives (see OpenMP 5.1 spec)

– Run make offload=1 to build a kernel with GPU offloading
– Add offload_arch=device_name to make command to change the OpenMP target

– Default device name is spir64 to target Intel GPUs when using the Intel compiler
– When targeting spir64, specific device code is generated at run-time with JIT offload compiler

– Run yask.sh -offload to select the GPU offload kernel

▪ The nano- and pico-block loops are offloaded by default

– Nano loops executed via omp target…

– Thread limit set via -device_thread_limit command-line option

– Pico loops are nested within nano loops
– These are the default auto-tuner targets for an offload binary (instead of blocks as for CPU binaries)
– For a solution with N domain dimensions, N-1 dim loops are concurrent; one (1) is sequential

– All higher-level loops are executed on the CPU
– The default number of CPU threads for an offload binary is one (1)
– Using more than one CPU thread allows launching more than one GPU kernel concurrently
– The default sizes of all blocks larger than pico-blocks are the full rank size

YASK tutorial

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf

86

Example offload pseudo-code for a 3D stencil
when using Intel oneAPI
// The “nano” loop distributes the device teams across the 3D space to the “pico”
blocks.
#pragma omp target teams distribute thread_limit(thread_limit)
for (3D-index in manually-collapsed 3D loop over current nano block,

stepping by size of a pico block) {

// The “pico” loops evaluate points in the pico block within each device team.
#pragma omp parallel for collapse(2)
for (y-index over current pico block) {

for (z-index over current pico block) {
Set up pointers for inner loop;
for (x-index over current pico block) {

Evaluate stencil equation at x, y, z indices;
} } }

}

YASK tutorial

87

Example offload using Intel oneAPI
Build for offload device

▪ make -j stencil=iso3dfd offload=1

– Note the CPU-target.offload-target arch string that is printed at the end of the build

– By default, the Intel compiler is used for a spir64 target

Run via yask.sh

▪ bin/yask.sh -stencil iso3dfd -offload -g 1024 \

-no-pre_auto_tune -pb 32 -pbx 256

▪ bin/yask.sh -stencil iso3dfd -offload -g 1024

▪ Use the -device_thread_limit option to set the number of OpenMP device
threads per team

▪ The script will attempt to find the number of Intel GPUs on the current system and
use that to determine how many MPI ranks to start; use -ranks to override

YASK tutorial





88

Example offload pseudo-code for a 3D stencil
when using a non-Intel compiler
// The “nano” loop assigns workers across the 3D space to the “pico” blocks.
#pragma omp target teams distribute parallel for collapse(3) \
thread_limit(thread_limit)
for (x-index over current nano block) {

for (y-index over current nano block) {
for (z-index over current nano block) {

// The “pico” loops evaluate points in the pico block in each device thread.
for (y-index over current pico block) {

for (z-index over current pico block) {
Set up pointers for inner loop;
for (x-index over current pico block) {

Evaluate stencil equation at x, y, z indices;
} } }

} } }

YASK tutorial

89

Example offload using the Nvidia* HPC SDK
Build for offload device

▪ make -j stencil=iso3dfd offload=1 mpi=0 YK_CXX=nvc++

– This command disables MPI and sets the C++ compiler

– For MPI support (for more than 1 GPU), build with mpi=1 YK_CXX=mpic++

Run via yask.sh

▪ bin/yask.sh -stencil iso3dfd –offload -g 1024 \

-no-pre_auto_tune -pb 1 -pbx 128

▪ bin/yask.sh -stencil iso3dfd –offload -g 1024

▪ The script will attempt to find the number of Nvidia GPUs on the current system
and use that to determine how many MPI ranks to start; use -ranks to override

Note: it is not suggested that these build configurations and run options are
optimum for any particular stencil or device

YASK tutorial





90

91

Read more about YASK features and applications
▪ “Vector Folding: improving stencil performance via multi-dimensional SIMD-vector representation.”

C Yount. 17th International Conference on High Performance Computing and Communications
(HPCC), 2015

▪ “YASK—Yet Another Stencil Kernel: A Framework for HPC Stencil Code-Generation and Tuning.” C
Yount, J Tobin, A Breuer, A Duran. Domain-Specific Languages and High-Level Frameworks for High
Performance, 2016

▪ “Effective use of large high-bandwidth memory caches in HPC stencil computation via temporal
wave-front tiling.” C Yount, A Duran. 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance, 2016

▪ “Accelerating seismic simulations using the Intel Xeon Phi knights landing processor.” J Tobin, A
Breuer, A Heinecke, C Yount, Y Cui. International Supercomputing Conference, 2017

▪ “Performance Optimization of Fully Anisotropic Elastic Wave Propagation on 2nd Generation Intel®
Xeon Phi (TM) Processors.” A Farres, C Rosas, M Hanzich, A Duran, C Yount. 2018 IEEE International
Parallel and Distributed Processing Symposium

▪ “Multi-level spatial and temporal tiling for efficient HPC stencil computation on many-core
processors with large shared caches.” C Yount, A Duran, J Tobin. Future Generation Computer
Systems, March, 2019

Please use one or more of the above citations in any publication submissions

YASK tutorial

Call to action

Work through this tutorial

Code your own stencil

▪ Use it in a real application

▪ Please feel free to contact the developers with questions

▪ Contribute your stencil for others to use: create a fork on github* and submit a
pull request

▪ Please tell the developers about your experience, maybe even co-publish results

Contribute to the project

▪ See the “issues” database on github* for the to-do list

▪ Talk to the developers about something you’d like to work on

– Probably some good academic projects in there!

92YASK tutorial

https://github.com/intel/yask

https://github.com/intel/yask

	Front matter
	Slide 1: Developing HPC Stencil Code using the YASK Framework
	Slide 2: notices and disclaimers
	Slide 3: Outline

	Intro
	Slide 4: Introduction
	Slide 5: YASK: “Yet Another Stencil Kit”
	Slide 6: Technical and business motivation
	Slide 7: Example application of YASK
	Slide 8: Scope of this presentation

	basic
	Slide 9: Basic features and usage
	Slide 10: Download, build, and test
	Slide 11: Example 1: Iso3dfd stencil
	Slide 12: Example 2: AWP stencil
	Slide 13: High-level tool-chain flow
	Slide 14: Stencil specification
	Slide 15: Example simple 25-point 3-D stencil
	Slide 16: Stencil will be applied over entire problem domain
	Slide 17: Example stencil DSL code
	Slide 18: Building a stencil
	Slide 19: Building your example stencil
	Slide 20: Running a stencil
	Slide 21: Running a stencil on a CPU platform
	Slide 22: Automatically tuning the size parameters
	Slide 23: Hand-tuning the size parameters
	Slide 24: Getting a list of options
	Slide 25: Scaling out to multiple nodes in a cluster
	Slide 26: Conceptual view of 2D, 2×2 rank domains
	Slide 27: Schematic of 2D, 2×2 rank y-edge halo exchanges
	Slide 28: Schematic of 2D, 2×2 rank x-edge halo exchanges
	Slide 29: Schematic of 2D, 2×2 rank corner exchanges
	Slide 30: Running on multiple nodes in a cluster

	APIs
	Slide 31: Using the apis
	Slide 32: Making a stencil application
	Slide 33: API overview
	Slide 34: API documentation
	Slide 35: API combinations
	Slide 36: Access to the APIs
	Slide 37: Main YASK kernel process steps
	Slide 38: Creating a YASK kernel via the APIs
	Slide 39: Key terms related to domain sizes
	Slide 40: Global view of 2D problem size
	Slide 41: Per-rank view of 2D problem sizes
	Slide 42: Prepare the kernel solution
	Slide 43: Allocate data and synchronize info across ranks
	Slide 44: Initialize data
	Slide 45: YASK-variable indices
	Slide 46: Notes on initializing data
	Slide 47: Make the stencil calculations and get results
	Slide 48: Example applications
	Slide 49: Advanced APIs
	Slide 50: Exceptions

	advanced
	Slide 51: Advanced stencils and tuning
	Slide 52: Solutions with multiple stencils
	Slide 53: Boundary regions
	Slide 54: Sub-domain (spatial) conditions
	Slide 55: Sub-domains on multiple ranks
	Slide 56: Step (temporal) conditions
	Slide 57: Scratch variables
	Slide 58: Scratch-variable examples
	Slide 59: Vector folding (multi-dimensional vectorization)
	Slide 60: Traditional 1D Vectorization
	Slide 61: 2D Vector-Folding
	Slide 62: Vector-Folding Memory Layout and Code Gen
	Slide 63: Vector-folding customization
	Slide 64: More compile-time settings
	Slide 65: More compile-time settings
	Slide 66: More grouping terms: parts and stages
	Slide 67: Temporal wave-front tiling
	Slide 68: Temporal wave-front dependencies
	Slide 69: Covering a temporal range via multiple tiles
	Slide 70: Using temporal wave-front tiling in YASK
	Slide 71: Temporal block-level tiling
	Slide 72: Temporal block dependencies
	Slide 73: Using temporal block tiling in YASK
	Slide 74: Temporal wave-front micro-block tiling
	Slide 75: Temporal micro-block dependencies
	Slide 76: Using micro-block tiling in YASK
	Slide 77: Nested OpenMP threads
	Slide 78: Using nano-block tiling in YASK
	Slide 79: Using pico-block tiling in YASK
	Slide 80: Review of the CPU tiling hierarchy
	Slide 81: Example tile settings for temporal tiling
	Slide 82: Controlling when the automatic tuner runs
	Slide 83: Controlling what the automatic tuner does

	GPU
	Slide 84: GPU Offloading
	Slide 85: GPU offload overview
	Slide 86: Example offload pseudo-code for a 3D stencil when using Intel oneAPI
	Slide 87: Example offload using Intel oneAPI
	Slide 88: Example offload pseudo-code for a 3D stencil when using a non-Intel compiler
	Slide 89: Example offload using the Nvidia* HPC SDK

	back matter
	Slide 90: Wrap-up
	Slide 91: Read more about YASK features and applications
	Slide 92: Call to action
	Slide 93
	Slide 94

