Collaborative Deep Ranking: a Hybrid Pair-wise
Recommendation Algorithm with Implicit
Feedback

Haochao Ying!, Liang Chen?, Yuwen Xiong!, and Jian Wu'!

! College of Computer Science & Technology, Zhejiang University, Hangzhou, China
{haochaoying, orpine, wujian2000}@zju.edu.cn
2 School of Computer Science & Information Technology, RMIT, Melbourne,
Australia liang.chen@rmit.edu.au

Abstract. Collaborative Filtering with Implicit Feedbacks (e.g., brows-
ing or clicking records), named as CF-IF, is demonstrated to be an effec-
tive way in recommender systems. Existing works of CF-IF can be mainly
classified into two categories, i.e., point-wise regression based and pair-
wise ranking based, where the latter one relaxes assumption and usually
obtains better performance in empirical studies. In real applications, im-
plicit feedback is often very sparse, causing CF-IF based methods to
degrade significantly in recommendation performance. In this case, side
information (e.g., item content) is usually introduced and utilized to
address the data sparsity problem. Nevertheless, the latent feature rep-
resentation learned from side information by topic model may not be
very effective when the data is too sparse. To address this problem, we
propose collaborative deep ranking (CDR), a hybrid pair-wise approach
with implicit feedback, which leverages deep feature representation of
item content into Bayesian framework of pair-wise ranking model in this
paper. The experimental analysis on a real-world dataset shows CDR
outperforms three state-of-art methods in terms of recall metric under
different sparsity level.

1 Introduction

With the growing community value of personalized services, recommendation
techniques have been playing an significant role in online applications [15]. To
provide personalized services, users’ preference from their past feedback of items
is critical. Generally, users’ preference can be classified into two categories: ex-
plicit and implicit feedback. Explicit feedback (e.g the graded ratings 1-5 in Net-
flix) expresses the users’ true preference, which has been well studied in many
literatures. However, users may be compelled to convey their rating values in
some scenarios. Moreover, users just express their behaviors implicitly in many
more situations, such as browsing or not browsing, clicking or not clicking in
Web sites. Regarding binary implicit feedback, unobserved items are ambiguous
because users may not like these items or may be unaware of these items. There-
fore, the scenario of recommendation with implicit feedback is more challenging.



Previous works based on implicit feedback include point-wise regression and
pair-wise ranking preference algorithm [1, 9]. The point-wise regression algorithm
supposes that users don’t like all unobserved items and optimizes the absolute
rating scores, while pair-wise ranking algorithm assumes that users’ preference
of observed items is stronger than unobserved items and then directly convert
the prediction to rank. The latter algorithm actually relaxes assumption and
usually obtains better performance in empirical studies. However, a user typically
observes limited number of items and doesn’t interact with thousands of items.
Therefore, the data sparsity is a big problem for pair-wise ranking algorithm.
With the increasing availability of auxiliary information about items (e.g., movie
plots and item description), referred to as side information, it is wise to explore
the possibility of using such information to improve the performance of pair-wise
ranking algorithm through alleviating data sparsity [4].

Collaborative topic ranking (CTRank) is a recently proposed hybrid method,
which seamlessly combines latent dirchlet allocation and pair-wise ranking model.
Although this model learn the feature of side information associated with items,
LDA is often not effective enough to learn the latent representation especially
when side information is sparse [13]. Alternatively, deep learning, as a set of
representation-learning methods, models multiple levels of representation of raw
input by composing simple but non-linear modules that each transform the rep-
resentation at one level into a representation at a higher, slightly more abstract
level [3]. It has been proved that deep learning methods are expert in automat-
ically mining and representing intricate structures in high-dimensional data.

In this paper, we propose a hybrid pair-wise recommendation approach with
implicit feedback, named collaborative deep ranking (CDR), which integrates
abstract representation of side information about items into Bayesian frame-
work of pair-wise ranking model. Specifically, Stacked Denoising Autoencoders
(SDAE) is exploited to extract the feature representation of item content. Co-
operating with this, pair-wise ranking component can tackle sparsity problem
to some extent and improve the recommendation accuracy. Note that, although
CDR employs SDAE for feature representation, CDR as a generic framework
also can collaborate with other deep learning methods, such as convolutional
neural networks and recurrent neural networks.

The main contribution is summarized as follows:

1. We propose a hierarchical Bayesian framework, named as CDR, which com-
bines deep feature presentation of item content and user implicit preference
for sparsity reduction.

2. We conduct experiments on a real-world dataset to evaluate the effective-
ness of CDR. Experimental result shows CDR outperforms three state-of-art
methods in terms of recall metric under different sparsity level.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the related work. Section 3 demonstrates details of our proposed
model. Section 4 shows the experimental results and Section 5 concludes the
paper.



2 Related Work

In many practical recommendation scenarios, users rarely express their explicit
behaviors, while implicit ones are more common (e.g. clicking and browsing
history). This class of collaborative filtering with only positive examples is also
called One-Class Collaborative Filtering (OCCF) [5]. There are mainly two types
of existing approaches for OCCEF: point-wise and pair-wise [14].

Point-wise algorithm directly optimizes the absolute value of binary rating.
Hu et.al [1] estimate user-item pair preference whether the user would like or
dislike the item and then assign a confidence level for this. After defining pref-
erence and confidence level, they join them into traditional probabilistic matrix
factorization. However, the performance of CF-based models degrades signifi-
cantly when facing data sparsity problem. Many models explore side information
about items and users to alleviate this problem. Wang et.al [11] propose collab-
orative topic regression (CTR) for recommending scientific articles. In CTR,
item content based on probabilistic topic model incorporates into traditional
collaborative filtering. Based on this work, Purushotham [7] further study the
influence of users’ social network and propose CTR with SMF model. Recently,
Wang et.al [13] employs deep learning model to automatically learn effective
representation of content of items. From their experiments, we can observe that
deep learning models are more appealing than traditional topic model in feature
representation.

Different from point-wise model with intermediate step of predicting rating
for recommendation, pair-wise algorithm generates a preference ranking of items
for each user. Rendle et.al [9, 15, 8] assume that user prefers observed items than
unobserved items and propose a generic Bayesian Personalized Ranking (BPR)
framework optimization criterion. They also demonstrate matrix factorization
and adaptive kNN learned by BPR are superior to the same model with respect
to other criteria under AUC evaluation. Pan et.al [6] relax individual and in-
dependence assumption in BPR by adding the interaction of users and propose
group Bayesian personalized ranking (GBPR). For sparsity reduction, several
models extend pair-wise ranking techniques via taking extra side information
into consideration. Grimberghe et.al [2] combine social graph and BPR ma-
trix factorization for social network data. Yao et.al [14] propose a hierarchical
Bayesian framework, which integrates latent dirchelet allocation into BPR ma-
trix factorization. However, the topic model is not effective enough when side
information is sparse. Therefore, in this paper, we integrate deep representa-
tion learning of content of items into pair-wise ranking model and propose a
generalized hierarchical Bayesian model, called CDR.

3 Collabrative Deep Ranking

In this section, we present details of our proposed algorithm, CDR, which inte-

grates pair-wise ranking models and side information about the items.
Notation and Problem Definition. Let U/ denote the set of users and Z

denote the set of items. The size of U and Z are n and m, respectively. This



paper focuses on implicit feedback recommendation scenarios, which means the
implicit interaction matrix R € U x 7 is available. Specifically, the elements
ri; = 1 in matrix R denotes user ¢ prefers item j, while r;; = 0 implies that user
1 is not interesting in item j or might not observe item j yet. For a given user
i, pair-wise algorithms [9] suppose that user ¢ prefers item j over item k if and
only if j € Z% and k € Z\Z*, where Z+ = {j : r;; = 1}.

Except the observed binary matrix R, side information about items could
be collected in many scenarios (e.g. item profile in Amazon). Given an m X s
matrix X, presents the side information about all items, the j-th row denotes
the bag-of-words vector of item j based on vocabulary of size S (i.e. X ).
Let u;, v; denote the latent factor with low dimension K of user 7 and item j,
respectively. Our objective is to learn the latent factor U = (u;)?, and V =
(v;)72, from implicit interaction and item information matrix for recommending
an personalized ranking list for users.

Stacked Denoising Autoencoders. Generally, a good representation of
side information about items can improve performance of Recommender System.
Denosing Autoencoders (DAE) [10] learns an compressed representation from
corrupted input to recover the clean input through a feedforward neural network.
SDAE stacks DAE to form a deep network by feeding the output code of DAE
found on the layer below as input to the current layer and the highest level
output representation is used as item feature. An SDAE network is to minimize
the regularized optimization problem as below:
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where W, and b; is the weight matrix and bias vector of layer [, L is the number
of layers, and \,, is the regularization hyperparameter.

Supposing that the corrupted input X, and the clean input X, are observed
variables, SDAE can be generalized as a probabilistic model [12]. The generative
process is as follows:

1. For each layer [ of the SDAE network,
(a) For each column n of the weight matrix W, draw W, ., ~ N (0, A\, I k,).
(b) Draw the bias vector b; ~ N'(0, A\, I, )
(c) For each row j of X;, draw X j. ~ N (0(X;—1 ;Wi + by), Ay M k,)

2. For each item j, draw a clean input,

Xegu ~ N(XL s, Ay )

where Ik, is a K-dimensional identity matrix of layer [, A, As, A, is the hyper-
parameters and o(.) is the sigmoid function Through maximizing a posteriori
estimation, the model will degenerate to be the original SDAE if A; goes to infin-
ity (i.e. Xj—1,j+ = 0(Xj—1jx * Wi+ b;)). After this process, X% could effectively
present the latent feature representation of side information about all items.
Collabrative Deep Ranking. CDR exploits pair-wise preferences and content-
based items feature together for collaborative filtering. Fig. 1 shows the graphic
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Fig. 1. The graphic model of CDR. SDAE with L = 4 is presented inside the dashed
rectangle. Note that W™ denotes the set of weight matrices and bias vectors of all
layers.

model of CDR.. Obviously, there are two generative processes in our model. First,
the original SDAE process (in the red dashed rectangle) extracts feature repre-
sentation from side information about items and then integrates them into latent
factor of items in pair-wise ranking model. Second, the pair-wise ranking model
captures special relationship 6;;; = r;; — 73, which delegates the preference of
user ¢ on item j and k. Unlike the point-wise approach directly predicting the
value r;;, pair-wise approach instead classifies the difference of r;; — r; [9]. The
generative process of CDR is as follows:

1. For each layer [ of the SDAE network,
(a) For each column ¢, draw the weight matrix and bias vector Wﬁ7 draw
Wi, ~ N2 k).
(b) For each row j of X, draw X j. ~ N (o(X;—1, ;W + by), A\; Hk,)
2. For each item j,
(a) Draw a clean input X j. ~ N(X jx, A\, )
(b) Draw a latent item offset vector €; ~ N (0, \; ' Ix)and then set the latent
item vector to be:
V= €5 + Xjé,j*

3. For each user i,
(a) Draw user factor vector u; ~ N (0, \; 1 Tx)
(b) For each pair-wise preference (j, k) € P;, where P; = {(j, k) : rij — rix, >
0}, draw the estimator,

T T, -1
Sije ~ N (u; vj — uj vk, cijp)

Where confidence parameter c;;; denotes how much user ¢ prefers item j
than item k. For simplicity, we set ¢;j, = 1 in the experiments. Note that the
linkage between SDAE and pair-wise ranking model is the middle layer X L -
In the extreme case, if €; = 0, the latent factor of items completely generates
from content information, which will ignore the information contained in user
preference matrix.



For learning model parameters, maximum a posterior probability (MAP)
estimator can be utilized. Through Bayesian inference, we have

P(U7 ‘/7 Xl7 W+‘67 X07 Xc> >\uv )\’Uu )\57 )\w; )\n) X
P(U| )P (V| Ay, X%)P(W+|/\w)P(6|U, V)P(X.| XL, \n)P(X1| X214, VVlJr, As)
2)
Because we place Gaussian priors on user, item and wight matrix, corre-
sponding conditional probability is

PN =TT Mo, A7 )
PV X ) = [T Nyl X5 A k) 3)
PW*|A,) = H;N(o, Aot g,

Similarly, we have below corresponding conditional probability based on assump-
tion of Gaussian distribution:

P(Xe| X1, An) = HFIN(XCJ-*|XLJ*, A )
PGX, W) = [ VX elo (X o Wi 00,0 ) (g

PO V) = [ [N Gijelud v; — wf vk, i)

ijk

Similar to the generalized SDAE, A; goes to infinity and maximization of
posterior probability is equivalent to maximizing the joint log-likelihood of U,
V, X;, X, W, and § given Ay, Ay, Ap,

Ciik /\w
L=— Z %(&jk = (uj v; — ujo))* — 3 (Wi +b7)
ijk J (5)
Au Ao An
-5 > ufu;— 5 > (v - XL )7 - 5> D (Xpje = Xe )
i J j

J

In the generative process, we assume that the preference d;;;, follows Gaus-
sian Distribution. However, similar loss function can be obtained with different
assumption on J;;; (e.g. Bernoulli distribution in [14]). Note that the model
CTRank, proposed in [14], is analogous to our model, which also combines
pair-wise ranking and side information about items. The big difference is that
CTRank extracts topic proportions from content of items to conduct the learn-
ing of latent factors for ranking, while CDR exploits deep network to mine effec-
tive feature representation of items. Note that prior distribution of LDA-based
models is difficult to define. What’s worse, topic proportions can not effectively
represent the latent feature of items when side information is very sparse. As
showed in the experiments, CDR gets better performance.

The first term in Equ. 5 extracts user preference from implicit matrix R
to construct pair-wise ranking loss, while the fourth term integrates content of



items. Therefore, if two item j and k have similar side information (i.e. similar
X L ), the distance between v; and vy will be reduced. As we have mentioned,
X L Serves as a bridge between pair-wise ranking and SDAE model. When A, /A,
goes to positive infinity, the disappeared reconstruction error will lead to invalid
feature representation X L, meanwhile X L dominate the learning process of V.
On the other hand, when A, /), approaches to zeros, CDL will decouple into
two models and the learned V' is not influenced by side information about items.
Both extreme cases demonstrate bad performance in the experiments.

Parameter Learning. Similar to [13, 1, 14], we optimize this function using
coordinate ascent by alternatively optimizing latent factors w;, v; and weight
matrix & bias vector WT. Given a current estimate of W, we update u;, v;
and vy based on the following stochastic Newton-Raphson rules:
. Aty — CijkEijk(Vj — k)

A+ ciji(v; — ve) T (v — o)

Ao(vj = XT ) — cijrijru
V=V —a 2 = (6)

)\v + CijkU; U

T
/\U(Uk — X% k*) + Cz’jkgijkui

U; = Uy

Vp =V —
>\v —+ Cijku?ui

where « is learning rate and &;jx = ;1 — (ulv; — ul'vg). Note that when up-

dating, bootstrap sampling is applied to sample observed item j and unobserved
item k of user 4 [9].

Given U and V, wight matrix W; and bias vector b; for each layer update by
back-propagation learning algorithm. The gradient of £ with respect to W; and
b; is as follows:

Vw, £ = =XoWi — Ay ZVWZX;J,*(X%J* —0;) = An >V X1 (XL je — Xe j)

J J

VL= —Aub = Ay > vblxgj*(xgd* —0;) = An > Vo, X1 (XL s — Xej)

J J

(7)

Prediction. After learning the optimal parameters U,V , W™, we predict R;;
from its expectation:

E[Rile7 v, W+’ } ~ uzT(X% + Ej) = U;Vy,

and then a ranked list of items is generated for each user based on these predic-
tion values.

Complexity Analysis. According to updating rules, the complexity of com-
puting U is approximately O(nrK) where r is the average number of items a
user interacts. The complexity of computing the output of encoder is controlled
by the computation of first layer. Therefore, the complexity of updating V' is
O(nrK + sK7), where K; is the dimension of first layer. The complexity of
updating all the wights and bias is O(msK;). Hence, the total complexity is
O2nrK + sKy +msKy).



4 Experiments

In this section, we compare performance of our approach with some state-of-
art algorithms. All experiments are conducted on a server with 2 Intel E5-2620
CPUs and 1 GTX Titan GPU.

Datasets. To effectively illustrate the performance of CDR, we use the same
dataset in [13,14, 11]. The dataset is collected from CiteULike®, which provides
service for managing and discovering articles for users. In this dataset, if a user
has collected an article in his library, we consider that the user implicitly prefers
the article, rating as ’1’ otherwise ’0’. The preliminary statistics shows that the
dataset contains 5,551 users and 16,980 articles with 204,986 user-item preference
pairs. Note that the sparsity is 99.78% and each user has at least 10 articles in
their preference library. To obtain the side information about articles, the title
and abstract of articles are exploited. After removing stop words, we extract
8000 distinct words through sorting their TF-IDF values. As a result, the size
of X, is 16980 x 8000 as clean input of SDAE.

Evaluation. Similar to [7,11], we employ the metric recall to quantize the
performance of recommendation, since the metric precision is not suited to im-
plicit feedback datasets. Because the meaning of zero entry in the user-item
matrix is ambiguous, which represent either user don’t like item or is unaware
of item. Instead, the positive rating (e.g. r;; = 1) only hints the user ¢ likes
the item j, we focus on recall metric. Specifically, after predicting the ratings in
the test dataset, we sort them and recommend top M items for each user. The
recall@M is defined as follows:

number of items the user likes in Top M

QM =
reca total number of items the user likes

Average recall from all users points out the performance of method.

Baselines and Experiments Setting. In order to evaluate effectiveness of
our approach, CDR, we compare it with three state-of-art hybrid recommenda-
tion algorithm for implicit feedback as follows:

— CTR. Collaborative Topic Regression is a point-wise algorithm, which com-
bines probability matrix factorization and latent dirchelet allocation [11].

— CTRank. Collaborative Topic Ranking, a pair-wise algorithm, which in-
tegrates side information of items into Bayesian personalized ranking [14].
With different assumption of preference, Two algorithms, CTRank-log and
CTRank-squared, have been proposed. We choose CTRank-squared as our
compared approach, because it has higher performance than CTRank-log.

— CDL. Collaborative deep learning is a point-wise hierarchical Bayesian model,
which first tightly couples deep representation feature of content information
and collaborative filtering [13].

— CDR. Collaborative Deep Ranking is our proposed model described in Sec-
tion 3.

3 http:/ /www.citeulike.org/
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Fig. 2. Performance comparison of CDR, CDL, CTRank, CTR under different P.

Similar to [13], we randomly choose P items from each user to consist of
train set and take all the rest as test set in the experiments. In particular,
we vary train set sparsity is 0.006%, 0.03%, 0.06% (i.e. P = 1,5,10). Each
approach is performed 5 times with different random seeds for each sparsity
and the average performance is reported. The grid search is applied to find
optimal hyperparameters for each approach. For CTR, A\, = 0.1, A, =10, a =1,
b =0.01, K =50, and o = 1 can reach good performance (note that « is the
dirchelet prior). For CTRank, we find A\, = 0.025, positive A\, = 0.25, negative
Ay = 0.025, K = 200, and ¢ = 1 can achieve best results. For CDL, we set the
same parameters of a = 1, b = 0.01, K = 50, A, = 0.0001, and a 2-layer SDAE
architecture ’8000-200-50-200-8000’ for different P. Otherwise, A\, = 1, A\, = 10,
and A, = 1000 when P = 1 and 5, while A\, = 0.1, A\, = 1, and \,, = 100 when
P =10.

In the pretrain of CDR, SDAE employs a mixture of edge detectors and
grating filters (i.e. masking noise) with a noise level of 30% to obtain the cor-
rupted input Xy from the clean input X.. Meanwhile, dropout rate is set to 0.1
for achieving adaptive regularization when the number of layers is more than 2.
The number of hidden units K; is set to 1000 (I # £), while the number of mid-
dle layer is 200. That is, the dimension of feature representation and latent factor
u;, v;5 is 200. Note that Ky and K, are equal to the size of vocabulary. After grid
searching, we find that the hyperparameters A, = 0.01, A, = 0.1, A\, = 5, and
Aw = 0.0001 can achieve good performance when P = 5 and P = 10, while we
set larger hyperparameters (i.e. A, = 1, A\, = 10, A,, = 1000, and A,, = 0.0001)
to prevent overfitting when P = 1.

Comparison. Figure 2 provides comparison results of CDR, CDL, CTRank
and CTR under different sparsity. A 3-layers CDR ’8000-1000-200-1000-8000’ is
used. It can be observed that our proposed approach outperforms other three
methods at all sparsity levels. As a whole, baseline CDL performs better than
CTR and CTRank. That is, deep learning approach (e.g. SDAE) can admire
better feature quality of side information about items than topic model (e.g.
LDA). Otherwise, CTRank outperforms CTR in most case (both models use
LDA model) and CDR outperforms CDL ( both model employ deep learning
architecture). Therefore, pair-wise algorithm with directly optimizing ranking
has advantage over point-wise method which optimizes rating. Concretely, when
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Table 1. Impact of #layers at recall@300 under different P(%)

#layers 1 2 3 4
P=1 9.74 13.43 30.32 30.89
P=5 49.62 49.26 51.84 47.07
P =10 61.09 59.03 60.96 59.41

X, =0.00001 a2, —000001
®ov oA, =00 -4 ® v oA, =0.000
N ; ez
2

(a) Pi (b) P=5 (c) P=10

Fig. 3. The impact of A, /A, under different P.

recommending 300 articles CDR relatively improves 36.58%, 66.96%, 9.22% than
CTR, CTRank, CDL respectively at P = 1 while the value is 13.44%, 11.34%,
5.25% at P = 10. Thus, when data is sparse, the relative improvement is more
significant. That is, CDR can alleviate data sparsity to some extent.

Impact of #laysers. Table 1 presents the recall@300 under different P with
various #layers. As we can observe, when the number of layers is 1 and 2, the
recall is quite low at P = 1, while the performance significantly enhance with the
number of layers growing. That is, the performance of recommendation depends
on the quality of feature representation of side information about items when
the data is extremely sparsity. As reducing the sparsity degree, the effective of
pair-wise ranking component begins to present and CDR starts to overfit when
#layers = 4 and P = 5. We also can find that the recall value is similar when
P = 10 in different number of layers. That means with increasing of train set
size, pair-wise ranking model can guide the further learning of features in CDR
model.

Impact of \,/\,. Figure 3 shows the impact of A, /A, under different P, via
changing )\, and fixing other hyperparameters. We can observe that as increasing
or reducing the A, from the optimal \,, the performance degrades gradually.
This result is consistent to the explanation in Section 3. When A, /A, is large,
the side information about items dominates the learning process of V' and the
performance purely depend on X L. When A, /A, is small, the performance purely
generates by the pair-wise ranking component. The experimental result indicates
that appropriately combining pair-wise ranking and content of items can achieve
better performance than in above two extreme case.

Latent Factor Interpretability. To demonstrate the validity of CDR deeply,
Table 2 show one example users of top 3 topic of his all articles and the top 10
recommended articles under the setting P = 10. From the top 2 topics, we can
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Table 2. An example of validity of CDR.

1. users-user-semantic-similarity-collaborative-filtering-
items-recommendations-recommender-implicit
top 3 topics 2. so01al-1er1v1c.1uals—tags—tagglng—tag-nawgatlon—
networking-ties-emergent-popularity
3. web-search-pagessearching-page-engine-
engines-google-searches-pagerank
1. getting our head in the clouds toward evaluation studies of tagclouds Eiluss
2. usage patterns of collaborative tagging systems False
3. tagbased social interest discovery
. . . . . . . True
4. recommending scientific articles using citeulike
. . True
. 5. collaborative filtering recommender systems
top 10 articles . True
6. open user profiles for adaptive news systems help or harm True
7. can all tags be used for search True
8. optimizing web search using social annotations
. . R True
9. evaluating collaborative filtering recommender systems True
10. can social bookmarking improve web search True

speculate the user focus on tag recommendation research, while the user also
study web search based on the third topic. CDR successfully captures all three
topics and reach 80% recall when recommending top 10 articles. It is worth men-
tioning, the rank of recommended articles of the first topic is higher than the
third topic.

5 Conclusion

In this paper, we propose a hybrid recommendation approach (CDR) with im-
plicit feedback. Specifically, CDR employs SDAE to extract deep feature repre-
sentation from side information and then integrates into pair-wise ranking model
for alleviating sparsity reduction. Our study presents that CDR outperforms
other three state-of-art algorithms at all sparsity level. In the future, we plan to
use other deep learning methods to replace SDAE for boosting further perfor-
mance in our hierarchical Bayesian framework. For example, the convolutional
neural network which considers the context and order of words may improve the
performance. Beyond that, we also consider how to incorporate other side infor-
mation into our framework, such as users social network and items relationship.
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