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ABSTRACT

The shape-space l.km whose points a represent the shapes of not totally degenerate /c-ads in IRm is
introduced as a quotient space carrying the quotient metric. When m = 1, we find that Y\ = Sk~2; when
m ^ 3, the shape-space contains singularities. This paper deals mainly with the case m = 2, when the
shape-space I* c a n be identified with a version of CP*~2. Of special importance are the shape-measures
induced on CPk~2 by any assigned diffuse law of distribution for the k vertices. We determine several such
shape-measures, we resolve some of the technical problems associated with the graphic presentation and
statistical analysis of empirical shape distributions, and among applications we discuss the relevance of
these ideas to testing for the presence of non-accidental multiple alignments in collections of (i) neolithic
stone monuments and (ii) quasars. Finally the recently introduced Ambartzumian density is examined
from the present point of view, its norming constant is found, and its connexion with random Crofton
polygons is established.

1. Introduction

As a background to the statistical study of random alignments in archaeology
and related fields, we here select what is relevant from a general theory of "the
statistics of shape"; the present account will also serve as a continuation of the
author's earlier progress report [8] which dealt more particularly with "the diffusion
of shape". The exposition is designed to be self-contained, and the omitted details
should be readily checkable, but for the applications to random alignments which in
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part stimulated the work the reader is referred to Broadbent [3] and to Kendall &
Kendall [9]. Some slight familiarity with these papers will be found helpful for a full
understanding of the practical example chosen here as a typical application.
Elaborations of the topological and differential-geometric aspects of the shape-
spaces Ijj, {k ^ 2,m ^ 1) will be presented in [13] and [14], while [11] contains
particulars of some other applications.

As topologists already have a theory of'shape' (Borsuk [2]), I must apologise for
using the word again with an entirely different meaning. In this paper 'shape' is used
in the vulgar sense, and means what one would normally expect it to mean. Some
papers of Robertson et als [18,19, 20] are much closer to our present approach, but
the thrust of their work is in another direction, even in the geometric context; nearly
all our geometric constructions are different from theirs, and are motivated by
statistical problems and tailored to suit statistical needs.

2. Shape-spaces and shape-manifolds

Let Px,P2,...,Pk (where k is not less than 2) be the vertices of a labelled /c-ad
of points in m dimensions, with m-vector positions summarised by
z* = (zf:i = l,2,...,/c), and with centroid z*. Degeneracies are allowed (and
indeed are of considerable interest) with the sole exception that the k-ad must not
collapse to a single point. This exception gives no trouble in the statistical
applications, where it will normally correspond to an event of probability zero. (The
same is true in the kinematic case, when the points are diffusing, because then we
shall normally assume that k ^ 3 or m ^ 2.) When considering the configuration of
the /c-ad we shall ignore the effects of translations, of (proper) rotations, and of
dilatations in lRm, but we do attach significance to reflections. We here define 'shape'
informally to be 'what is left when the differences which can be attributed to
translations, rotations, and dilatations have been quotiented out'.

Because only the positions of the points relative to their centroid are of interest, it
will often be convenient to work with orthogonally transformed coordinates such as

(1)
j) (1 < ; ^ k-\).

Note that the use of the unstarred coordinates in IRm is equivalent to the
multiplication of the {m x k) data-matrix by a suitable fixed QeO (k), acting on the
right, this being done once and for all. Here by 'suitable' we mean that all the elements
in the first column of Q are to be equal to l/yjk. From any one such Q we obtain all
others if we multiply it on the right by diag(l,Q), where QeO{k — 1). It has
constantly to be borne in mind that there is nothing specially privileged about this
particular choice (1) of such coordinates, and so we shall often pause (as immediately
below) to check that our constructs are independent of it. However the segregation
of z0 is canonical, and it reflects our lack of interest in translations. We shall
therefore frequently ignore z0 and write z = (zr, z2,..., zfc_j), so that z will have only
k — 1 m-vector components, whereas z* had k such components. A construction will
then be canonical if and only if it does not depend on Q.
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We can now give a precise coordinate-free definition of shape by saying that it is
the representing point (i.e. equivalence-class) in the quotient space "Lk

m defined by

m)k-i \ 0 } / S i m , (2)

where Sim denotes the group of similarities generated by the rotations and
dilatations; the 'zero' is excluded here because we have dismissed totally degenerate
/c-ads from consideration. The totally degenerate /c-ads are omitted because from one
point of view they have no shape, and from another they 'almost' have every shape;
in the kinematic problem (which is not our primary concern here) a stage does
however arrive at which it is convenient to introduce an ideal shape-point
representing the totally degenerate /c-ads to serve as an entrance boundary.

We also need a definition of size, and for this we choose ||z||, where

= Z \zj\2 = Z \zf\2~k\z*\2 = Z |zf-z*|2 , (3)

and where | • | : z,- H-> \zt\ is the usual quadratic norm in Um. The last expression makes
it clear that ||z|| is canonical, i.e. is unaffected by our choice of Q. We also use || • || to
define a metric topology in IRm(k"1).

The quotient space E^ with the quotient topology will be called the shape-space
of order (k,m). For many purposes it is convenient to quotient out the dilatation
group first (so replacing z by z/\\z\\ and then applying the rotation group SO(m)
afterwards). If we do this, we find that

Ik
m = SySO(m), (4)

where Sk
m denotes the unit sphere S1"'*"1*""1 with its customary metric topology, and

where the rotations R e SO (m) act from the left on the columns of the
m x (k — l)-matrices W representing the points W of Sj^. Notice that Tr (VKW) = 1.
It will be convenient to call W a pre-shape; the shape itself, a = [_W~\, is the
corresponding equivalence class modulo SO(m). The open sets in E^ are thus the
images of the SO (m)-saturated open sets in Sjj,, and the projection p : W t—> [W] is
continuous, so that E£, is always compact, and is connected unless k = 2 and m = 1.

An elementary group-theoretical argument now shows that these open sets are
exactly the open sets determined by the quotient metric p defined by

0) = inid(RW,W0), (5)
R

where the infimum is taken for all R e SO (m), and where we have written

d{W, Wo) = 2 arcsin±\\W-W0\\,
(6)

= arccosTr {W'W'O) (0 ^ d ^ n),

so that d is the great-circle metric on Sk
m.

The metric d for Sk
m is topologically equivalent to the norm-metric inherited from

Ujwifc-î  a n c | a s j . ^ j a s t of ^ f o r m u i a e (6) makes clear, it is canonical in the sense
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that it does not depend on the choice of coordinates (i.e. it does not depend on Q). In
fact the orthogonal group O(/c —1) (acting on the pre-shapes W from the right) is a
group of isometries for Sk

m with respect to both the rf-metric and the norm-metric. It
commutes with SO(m) (which acts on the left), and so it induces a group G of
isometries on l.km. The intervention of Q in our preferred choice of coordinates is thus
equivalent to the use, once and for all, of a fixed isometry to relabel the points a of
Zfc

Notice that we shall have

p{pW,pW0) = infarccos Tr{RWW'O),
R

(7)
= arccos sup Tr (R W W'o),

R

and that the p-metric is bounded by n. We shall see that this upper bound to p can
be improved if m ^ 2.

When m is even, we can augment the group G of symmetries to

G+ = G ® { 1 , T } , (8)

where x is represented by multiplication on the left by diag (1 ,1 , . . . , 1, — 1). When m
is odd, however, T is equivalent modulo SO (m) to - 1 , which can be identified with
an element of G. We shall call the action of x on Ijj, conjugation.

The shape-spaces £™ + 1 , which we shall call simplicial shape-spaces, are of special
importance, because when k = m +1 then a fe-ad determines a labelled simplex in Um

with the maximal number of vertices. We now show that the shape-spaces Z* for
which k < m+ 1 (called over-dimensioned shape-spaces) are in a sense trivial. For let
W be a pre-shape for such k and m. By use of SO(m) we can arrange (modulo
SO(m)) that the bottom m — (k — 1) rows of W consist entirely of zeros, so that the
pre-shapes W for Z£, can be identified with pre-shapes U for £{[_! supplemented by
one or more rows of zeros. The presence of at least one row of zeros further ensures
that each member of the pair (U, xU) of pre-shapes for Z£_j corresponds to the same
shape for ££,. Accordingly we have

ZJ, = !£_! /{ ! , T} ( fe<w + l ) , (9)

or, in words, ££, for k < m +1 is obtainable from ££ _ x by a process of deconjugation.
Now A. J. Casson has proved (private communication; see [13] for an account of
this) that each simplicial shape-space is homeomorphic to a sphere, and that the
action of x is then such that it interchanges two complementary hemispheres. Thus
each over-dimensioned shape-space is homeomorphic to a hemisphere, and therefore is
contractible.

It must be emphasised that these results associated with Casson's theorem are
concerned strictly with homeomorphy; isometry is not claimed, and the fact that (for
m ^ 3) the simplicial shape-spaces are not isometric with spheres is a principal
theme of [14].

The shape-spaces S£, with k ^ m + 2 ^ 5 will be called anomalous; they are
studied in [13], where their pathologies are exhibited, and where they are classified
up to homology. Pathological or not, it is clear that the spaces Z3, at least, are of
substantial practical importance.
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The remaining shape-spaces ££, are those for which m = 1 or 2, and these will be
called shape-manifolds. (Of course Y\ is over-dimensioned, and E2 and E | are
simplicial, but there is no further overlap in our classification.) These manifolds will
be our main concern in this present paper.

The case m = 1 can be dealt with very simply; we see at once that

L ^ S * " 2 . (10)

In particular, If = S° = { — 1,1}; this is the only shape-space which is not arc-wise
connected. Also Zj = S1; in [13] it is shown that this is the only arc-wise connected
shape-space which is not simply connected. These identifications are of course
isometries, and so we see that max p = n when m = 1.

Now consider the case m = 2. We suppose that k ^ 3, because from (9) and (10)
we already know that I2, — pt. If we wish to make a study of the local geometry
around a basic shape a0, we can obviously take the full group G+ of symmetries into
account in choosing it, and thus an adequately general basic pre-shape will be

n o, ...,
where 1/V2 ̂  A ^ 1, and therefore the nature of the local geometry depends at
most on A. We shall see below that we can improve on this statement.

More generally, if k ^ m + l, the singular-values decomposition enables us to
write an arbitrary pre-shape as

W = RAS (12)

where R e SO (m), S e SO (/c -1) , and

A = ( D , 0 ) , D = diag(XltX2i...tXm.lt ± A J ; (13)

here the A's are the square-roots of the eigenvalues of WW, and so satisfy £ A2 = 1.
It will be convenient always to choose R and S in such a way that A(1 ^ A,2 for
'i ^ h- When discussing shapes the factor R is always irrelevant, and it will be clear
that relative to G+ we can take the basic pre-shape to be

% = (diagai,A2,.. . ,Am),0); (14)

the ± is not required here because of the symmetry T, or indeed because in choosing
the basic pre-shape we can apply an orthogonal factor to the right-hand side of RAS.
Evidently (11) is just a special case of this. In this way we obtain a basic pre-shape
depending on m — 1 parameters, although when k ^ m + l we have

dimXk
m=$(m-l)(m + 2) + {k-l-m)m, (15)

this being the number of parameters required to specify AS. (See also [13] for a
homology proof of (15).)

However, when m = 2, we can make a further reduction in the study of the local
geometry. This is because we can then write the pre-shape as W = (z1? z2,..., zk_j)
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where here the z's are complex numbers, and the equivalence relation determining
the shape-space is

W = Wo when W = <xW0, \a\ = 1 . (16)

From this it will be seen that the group G+ of symmetries for *L\ c a n be further
extended to G+ + which is generated by the complex conjugation operator T and the
elements of the quotient U(/c — 1)/U(1) of the unitary group by its centre, acting on
the right; these are all obviously isometries. But this implies that "Lk

2 is homogeneous,
because the group G++ is transitive, and so the local geometry is in fact the same
everywhere. Such metrical homogeneity does not hold when m ^ 3.

In this sketch of the theory of shape-spaces we are taking pains to emphasize as
many as possible of the atypical aspects of the cases m = 1 and 2. We now come to
the most important such feature, and the one that makes the name shape-manifold
appropriate: for m = 1 and 2, but not otherwise, ££, is a C00 riemannian manifold. For
the moment we shall just prove the C00 smoothness. We need only consider m = 2;
when m = 1 there is nothing to prove (see (10)). It will be obvious that, consistently
with the topology, we can cover E* by k — 1 coordinate patches of which the second
(for example) has the coordinates featuring in

a = {zua2,z3, . . . , z k _ y ) ,

where a2 is real and strictly positive, where the z's are complex, and where
a\ + £ \ZJ\2 = 1. It is then a trivial matter to verify that the patch-to-patch
coordinate changes are C°°. In [14] it will be shown that for m ^ 3 there is a Cx

structure on the dense connected open subset of l£, determined by the condition,

WW has not more than one vanishing eigenvalue, (17)

the excluded points being singular. Notice that (17) is necessarily satisfied if m = 1 or
2. Note also that WW is independent of the choice of the reference orthogonal
matrix Q, and that its eigenvalue spectrum is a property of G = [_W~] only. When
m ^ 3 the riemannian geometry (curvatures, geodesies, etc.) on this dense connected
open subset with manifold structure is investigated in [14], where we show that the
sectional curvatures are positive, are bounded away from zero, and that near the
singularities they are unbounded above.

It will be clear from this discussion that the properties of I* c a n be put in a more
familiar context by observing that if the pre-shape W is

then the shape [W~\ can be described by the set of ratios

a = (zj :z2:...:zk.l), (18)

and in fact that (up to a change-of-scale)

a complex projective space. In particular, ~L\ = CP° = pt.
The missing scale factor will be identified in Section 3.
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Thus if we put together the shape-manifolds, the simplicial shape-spaces, and the
over-dimensioned shape-spaces, we see that while only some of these are smooth
manifolds (perhaps with boundary), yet all are topological manifolds, and all have
relatively simple torsion-free homology. In [13], where ££, is examined from the
topological point of view, it is shown that none of the anomalous shape-spaces are
topological manifolds, and that all of them have torsion. It is in this sense that they
are not only metrically but also topologically 'anomalous'.

We have now set the stage for a more detailed study of the spaces Ej (there is
little more to be said about I.\, since all of those spaces are isometric with spheres).
We shall develop their riemannian geometry from a statistical point of view based on
a type of 'procrustes' analysis, and we shall examine them as carriers of model-
determined shape-functions and shape-measures as well as of empirical data-
determined shape-distributions. The groups G,G + , and G++ will play a decisive role
(note, for example, that G includes the permutations associated with relabelling the k
points). In order to focus attention on practical aspects, we invite the reader to
consider from time to time two ways of looking at the data-set studied in [3, 9]. Here
we had 52 points in 2 dimensions, determining 22,100 triangles. We can think of the
shapes of these as specifying (i) 22,100 points in E | , or (ii) a single point in I " -

3. Procrustes analysis, and the invariant (quotient) metric on E*

If z (or z* when we are using the starred coordinates) denotes a fe-ad in U2, then
we shall write [z] (or [z*]) for the corresponding point on the shape-manifold E2.
For present purposes the starred coordinates will be convenient, and we shall
suppose that k ^ 3, because we know that Ef, = pt. Suppose that we want to
compare the shapes of the /c-ads z* and w*; then we must find the minimum value of
a suitable measure of mismatch between the /c-ads <xz* + A and j3w* + ^, where the
greek letters denote complex numbers and a and /? are to be non-zero, so that we
allow a free choice of location, scale, and rotation for each /c-ad. An appropriate
measure of mismatch is obtained by associating similarly labelled vertices, summing
the squares of the distances between associated vertices, and then dividing by the
sum of the squares of the distances of all 2/c vertices from their common centroid. We
clearly lose no generality in assuming that each of z* and w* has its centroid at 0,
and the quotient will then be (with £ summing over 1 ^ i ^ k)

which is equal to

this ratio is least when A = n (for given a and fi) in virtue of the complex-number
inequality |£ — n\2 ^ 2|^|2 + 2|^|2. We are left with the problem of performing the
remaining minimisation over all admissible values of a and /?, but this is now easy
and we find the net coefficient of mismatch to be
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where we have now adapted our formula for use with an arbitrary origin by restoring
the terms in z* and wf.

The reader will recognise in this calculation an example of what has been called
procrustes analysis; there is a large literature centred around this topic, and a recent
review by Sibson [22] makes an excellent reference. Normally in procrustes analysis
one wishes to compare two configurations (not necessarily in 2 dimensions) which
may have been disguised by redundant translations, rotations, dilatations, and
reflections, and one wishes to find (i) a coefficient of mismatch, as above, and (ii) the
transformed version of the second configuration which most closely resembles the
first configuration. In our treatment we have to be careful to exclude the use of
reflections in improving the match. This introduces some important differences
between our formulae and those given by Sibson and appropriate to the comparison
of the output of MD-SCAL plots, where reflections are frequent, irrelevant, and must
be eliminated.

We next draw attention to the fact that the expression for A at (20) is unaltered if
we simultaneously transform z* and w* by complex conjugation, or if we
simultaneously transform them by unitary operators acting in the subspace of Uk

orthogonal to (1 ,1 , . . . , 1). That A depends only on the shapes of z* and w* is clear
from the calculation itself. Thus we have a (canonical) function of the two shapes
which vanishes if and only if these are identical, which depends on them in a
symmetrical way, and which is unaltered if the shapes of the two /c-ads are
transformed by the same member of the extended group of symmetries G++. Finally
we observe that the maximum possible value of A is unity, and that this maximum
degree of mismatch is attained when and only when ]T (zf — z*){w* — w*) = 0.

Now that the canonical status of A has been established we can where convenient
use the unstarred coordinates for its evaluation, and we find that
A = 1 —1£ ZjWjl/lY, \zj\2 X Iwjl2]*' independently of the choice of Q, and with £
summing over 1 ^ j ^ k — 1. This last formula simplifies further if we introduce for
1 < j ^ k — 1 the variables Zj = z,-/VZ IZJ2 anc* W} = w^/VZ \wh\2> f°r then we find
that

, \yr\) = l - (21)

and now the maximum mismatch of unity is attained when and only when
Y,ZjWj = 0 (e.g. when Z1 = 1 = W2). Notice that with these coordinates
Z l z / = YJ\WJ\2 - l> a n d t h a t A is a C00 function of Z and W except when

Consider three /c-ads expressed in our latest notation as U,V, and W. Let
f = YJVJWJ, 9 = Ya WjUj, and h = ]T U-Vy The matrix with components

is non-negative semi-definite hermitian, and so it has a non-negative real
determinant, whence

1 " I / | 2 - M 2 - N 2 ^ -2Rc{fgh)> -2\f\\g\\h\,

(l-\g\2)(l-\h\2)>(\g\\h\-\f\)2,
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We now define angles 0 , <D, and ¥ in the range [ O , ^ ] , by setting

| / | = cos 0 , |0| = cosO>, |/i| = 0 0 8 ^ ;

it follows that cos© ^ cos(<X> + vP), so that 0 ^ $ + ¥ , and so p, where

l [W]) = a rccos( l -A) (0 < p ^ {n), (22)

is a distance-function with \% as its (attained) maximum. From what we know
already about A we see that this distance-function for the shape-manifold is
canonical, and that it is invariant under the group of symmetries G + + . It is readily
checked that p generates a metric topology which is the same as the quotient-
topology already given to Zj ; indeed an elementary calculation shows that, for
m = 2, p at (22) is identical with p in (7), the latter formula being valid for all
values of m. Evidently, then, p is the appropriate invariant metric for I* .

We have seen that max p = % for each k ^ 3 when m = 1, and that max p = \K
for each k ^ 3 when m = 2. We now show that maxp = \n for each k ^ 3 and
m ^ 2. First we observe that for k ^ 3 and m ^ 2 it is possible for WW'O to be the
zero m xm matrix, and then TT(RWW0) = 0 for all R, so that p = \n by (7). For
general W and Wo we can write WW'O = RDS as at (12) and (13) (where however
A:— 1 is to be replaced by m, so that S e SO(m)) and then p = arccos supTr(/?D).
Now R

where the d's can be taken to satisfy dl ^ ... ̂  rfm_x ^ \dm\. From an elegant
theorem of Horn [7] we know that the set of diagonals ( r n , r22,.. . , rmm) of the
matrices R in SO (m) is a compact convex set with the extreme points

{(±1 , ± 1, • • •, ±1) (even number of minus signs)}.

The ordering and signs of the d,'s then make it plain that

cosp = supTr(KD) = TrD ^ 0 ,
R

so that always p ^ j7r, this bound being attained. The exception at m = 1 is due to
the fact that then R = 1 and D = ± 1, so that Tr {RD) can be - 1 .

A by-product of this calculation is the useful fact that, for a = [W] and

p(a,a0) = arccos (Tr v (VT^ ' 0 H^ 0 ^ ' ) -2as) {0 ^ p ^ -J-TT) (23)

where a is the smallest eigenvalue of v'(WW'o ^0 W'

[0 ifdet(l^^o) > 0
s = (24)

[ 1 ifdet(WWo) < 0 .
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The term as in (23) distinguishes this result from one of Sibson [22]; this is because
he can take the supremum over all orthogonal R, and then s can always be taken to
be zero.

We now return to the case m = 2. Many other smooth invariant metrics exist
which are equivalent to p; for example p/(\ + p), and also c sin (p/c) when c ^ 2. A
particularly interesting such metric is that obtained when c = 2; this leads to the
equivalent metric V(2A). However, the metric p is the 'right' one for us because of its
alternative definition as the quotient metric.

To obtain the associated riemannian metric for D* w e m u s t examine what
happens when [W~\ approaches [ % ] . Now

and that is asymptotically 1 — p2 + o(p2) when p is small, while the right-hand side is
homogeneous in (zl5 ...,zk_i) and in (wl5..., wk_l). The mapping p from Sk

2 to Y.k2 is
a submersion (this is what makes Zj a manifold) and so there is a local section of S2
lying above any small neighbourhood of 1\, and in this section we can do our
asymptotics in terms of the z's and w's. Accordingly we get, after some simple
calculations,

d,2 _ ( I V J g dZj dZj) - (I z, fijff i, dtj)

where £ sums over 1 ^ j ' ^ k — 1, and this (in a patch on which z{ ^ 0) can be
written in the non-homogeneous form

where (, denotes Zj/zx and £ here sums over 2 ^ j ^ k — i. This last formula (26)
identifies the riemannian metric on a typical patch of I j •

The reader will recognise in (25) and (26) the classical Fubini-Study metric
[5,26] for complex projective space CPfc~2, apart from the absence of an overall
factor 4 on the right-hand side. The absence of this 4 in (25) and (26) is associated
with our norming condition, Tr (WW) = 1, and we shall comment further on this at
a later stage.

From (25) or (26) we can compute geodesic distances S on I.km. It is not
superficially obvious that d(a, a0) = p(a, a0) for all a and a0, and so we shall prove
that this is so by a direct calculation which will also provide an exercise in the use of
(26).

We first note that the value of (3([z], [w]) depends only on the points Z and W
(corresponding to z and w) on the unit complex sphere CS in C*"1. Now any two
points of CS can be transformed by a unitary symmetry into the pair of points with
k — 1 complex coordinates in C*"1 equal to

(1,0,0, ...,0) and (acost, a sint, 0, . . . ,0) ,

respectively, where 0 ^ t ^ \n and where a is a complex scalar of unit modulus.
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Thus any pair of points of CPk~2 can be transformed by a unitary symmetry into

and
B(t) = {C:C2 = tant, ,

without loss of geometric generality, although the point B(\n) will require special
consideration. Our procrustean distance (22) is

, . a cos t
p(A, B{t)) = arccos t + snr t

= t (0 ^ t <

and so the parameter u for the smooth curve {B(u): 0 ^ u < \n) is just the
procrustean distance from the end A at u = 0. The end B(^n) is
"zx = 0,z2 = l,Zj = 0(j ^ 3)", and p(A,B(jn)) = \n. A similar argument shows
that the procrustean distance between the points with parameters Uj and u2 is
|u2 —uj, and therefore the procrustean distances are additive along the whole curve
from t = 0 to t = jn.

Now the curve we have been considering is part of a closed geodesic, the whole
loop being parametrised by — \n ^ t ^ \n. To see that this is so it suffices to take
2k — 4 real coordinates by writing £, = £} + i£k~2+J (j = 2,...,k — 1), and then to
calculate the Riemann-Christoffel coefficients r}fc in the differential equations for
geodesies,

We only have to show that <̂ 2 = tan t satisfies these equations when all the other real
coordinates are set identically to zero, and so it is enough to obtain the evaluations
T\2 = — sin2t and T{2 = 0 (for j =£ 2) at all points of this particular curve; the
calculations are straightforward using (26), and the geodesic character of the curve
then follows. Indeed one can see in this way that the parameter must be an affine
function of the arc-length, and the fact that it actually is the arc-length can be
checked by integration: the arc-length from A to B(t) according to the riemannian
metric (26) is

r
(14- tan2 u)(sec2 udu)2 — (tan u sec2 udu)2

( l+ tan 2 u) 2

which is equal to t, as required. In particular it follows that the length of a closed
geodesic loop is n.

To get the geodesic metric we must examine the "focussing" properties of the
geodesies. Now it is clear that we can get a complete family of geodesies through A
by applying symmetries from the group 1 x V(k — 3) to the geodesies

G'p = {C(«):C2 = 0cos0tanu,C 3 = 0s in0 tan u ,

C- = 0 (4 O < fc-1); 0 < u < {n}

where 0 ^ 6 ^ %n and where /? is a complex scalar of unit modulus (i.e. /? € S1). Now
consider G'p or any one of its symmetry-transforms. This will pass through A and it
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will hit B{t) for some t (0 < t < \n) only if both sin 6 = 0 and /? = 1, in which case
it coincides with the original curve. The only other possibility is that the intersection
occurs at t = jn, and then the necessary and sufficient condition is that sin0 = 0. In
this last case we have a one-parameter family of geodesies through A labelled by the
parameter /? e S1 which are again concurrent at B(jn), the length \n being the same
for all (these geodesic arcs can in fact be matched up in pairs so that each pair makes
up one of the closed geodesies through A and B(\n) of length n). From this analysis it
follows that d(A, B(tj) = t is always the minimum geodesic distance from A to B(t)
(though in the case t = \% it can be realised in an infinity of ways). Because A and
B(t) were adequately representative we have proved

THEOREM 1. The procrustean (quotient) metric distance p between two shapes
represented by two points on T.k2 = CPk~2 is equal to the shortest distance along a
geodesic path of the particular Fubini-Study riemannian metric (25). There is only one
such path unless the shapes are maximally remote (p = \n\ in which case there is an
infinity of paths identifiable with points on S1 and obtainable by halving the closed
geodesies of total length n passing through the two shapes.

The shapes [w] maximally remote from [z] are those for which Yazj^j = 0>" ^ey
form a subspace isometric with CPfc~3, and in particular there is only one such shape if

It is important not to confuse the geodesies on the shape-manifold with the
trajectories generated by the algorithms of procrustean theory and practice; these are
in fact complementary to one another. The procrustean algorithms are concerned
with two shapes, each having a pre-image which is an equivalence class. Their
purpose is to enable one to travel efficiently inside the first equivalence class so as to
reach the point in that class nearest to the second equivalence class. In contrast to
this, the geodesies linking the two shapes enable one to travel efficiently from the
class of one to the class of the other through a set of intervening classes.

Some attention in the procrustean literature has been devoted to the problem of
converting measures of mismatch to distance-functions. So far as A is concerned we
have now found the definitive answer to this question, and with its aid it is easy to
generate other solutions. For example, we have noted above that c sin {p/c) will be a
distance-function whenever c ^ 2. If we take c = 2, we find at once that V(2A) is a
distance-function. While p is clearly superior to all other distance-functions for
theoretical purposes, there may be occasions in practice when JA has advantages.

We close this section by examining the important special case k = 3,m = 2.
From (26) we know that there is a coordinate patch covering E3, with the exception
of one point for which

(

U + ICI2)2

is the riemannian metric. Let A denote ( = 0; the excluded point B corresponds to
the compactification point ( = oo for the complex (-plane. Now put ( = rei(t) and we
get

ds2 = d'+\dt M0,^S>).
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Finally put r — t an |0 and we get

ds2 =i{dO2 +sin26d(t>2) (0 ^ 9 < T r ^ e S 1 ) .

Now this is the riemannian metric for the punctured two-dimensional sphere S2(|) of
radius \, and our general arguments about geodesies and homogeneity show at once
that each of I^X/* and ^ \ B is isometric to S2(y) punctured at one point, whence
we have the basic

THEOREM 2. Z | is isometric with S2(y).

As a statement that CP1 = S2(f) this is not new. but its practical significance,
that S2(j) provides the natural home for the shapes of triangles, is far-reaching. The
value } for the radius of the sphere I | is of course related to the absence of the
customary factor 4 in (25). We have here obtained Theorem 2 as a corollary to
Theorem 1. but a direct proof is possible, and instructive; for this, see [12].

4. Shape-measures and shape-densities

The projection p mapping from Sk
m to l£, is measurable (from Borel sets to Borel

sets), and so if Px, P2,..., Pk in Um form a random /c-ad such that

pr(P, =P2 = ... = Pk) = 0, (27)

then the shape a of the /c-ad will be a random variable on Ejj,, and as such will be
distributed there according to a shape-measure determined by the joint law of
(P{, P2,..., Pk). The most interesting case at this stage of the development of the
theory is that in which the points (Pj) are IID in (Rm with individual law n, say, and
we now confine our attention to this. We shall write nk for the joint law of
{PX.P2 Pk)- The induced shape-measure n\ will be unchanged if we vary the
parameters in f.i controlling location, scale, and rotation of axes, so we write [XI for
the equivalence-class of measures n modulo such transformations, and we then call
[//] the generator of the induced shape-measure j / * . We shall suppose throughout
that f.i is absolutely continuous with respect to Lebesgue measure in Um; this will
guarantee that (27) holds. Because n\ = jukp~\ it is clear that ^ will be absolutely
continuous with respect to v* whenever pi is absolutely continuous with respect to v.
Now let y denote an m-spherically symmetric gaussian distribution in Rm. Then any
f.11^ will be absolutely continuous with respect to >•*, and so can be represented by its
Radon-Nikodym derivative

which we shall call the Ar-th shape-density associated with n or [^].
We can now formulate a number of questions concerning the invertibility of the

mapping \_/.i] -• /.i^. These are of interest for any k, but are especially so for
k = m +1.

(1) Is [^] uniquely determined if nt is given?
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(2) Let X I K denote the uniform distribution over the compact convex set K in
Um. If 11 = X | K and ^. = v*, must we have [v] = [A | L] for some compact
convex L; also if [v] = [X | L], must K and L be equivalent modulo the
similarity group?

(3) (The corresponding questions for compact convex polyhedra K and L.)

(4) If a probability measure 6 on the Borel sets of l£, is given, what are the
necessary and sufficient conditions for the existence of a (i such that 6 = /i^ ?

(5) (The corresponding questions when pi is required to be of the form X\K,
with K a compact convex set. or a compact convex polyhedron.)

When m = 1 these reduce to questions about characteristic functions. The case
w = 2 has been investigated by Small; a large amount of information is contained in
his doctoral thesis [25]. parts of which are summarised informally below. When
m ^ 3. virtually nothing is known.

For m = 2. Small first tackles question (1). and he shows that the answer is 'no';
more precisely, if k ^ 3 then there exist two different circularly symmetric generators
[pi] and [v] such that /x* = v*. Here k is fixed; in a complementary theorem he
shows that we must have [JI] = [v] (now without any assumptions of circular
symmetry) if /i* = v* for all k. This is proved by first establishing a continuity
theorem of independent interest. In between these two results Small proves
intermediate theorems which tell us that with pairs of integers (m, n), both not less
than 3, there are associated classes of generators S(m, n) such that

if [pi] e S{m, n), then n™ determines [n] . (29)

In particular it turns out that the gaussian generator [y] belongs to S(3, 3), so
that no generator [/i] ^ [y] satisfies pi\ = y\ on CP7. Finally Small obtains
conditions on /i* which (in the presence of some technical side conditions) are
necessary and sufficient for n to belong to (A | K : K compact convex). It should be
added that Small presents these results both in the context of shape-spaces (where
the problems he solves were originally formulated) and also in the equally
appropriate context of maximal invariant statistics.

We now turn to the explicit determination of the 'gaussian' shape-measure y*
when m = 2; the corresponding result for general m will be given in [14]. Let / be
any bounded measurable function

let z = (z1,z2,..., zk_l) be as in (1), so that the z's are complex numbers and
||z||2 = £ \zj\2 has not yet been normalised to unity, let a = pz be the associated
shape, and let g be any element of the symmetry group G + +. We note that

go = gpz = pgz . (30)

Suppose that z arises (via (1)) from a labelled sample of size k from the planar
gaussian distribution with circular symmetry. Then

= \f(pz)yk(dz)
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because of the symmetries of the gaussian distribution yk, and if we write
Zj = Rj exp (JO,) for j = 1,2,..., k -1, we shall have

Hf(g°)} = f(Pz) II ^p (-iR))d$R))d M .
J i \ Z 7 v

Now make the change of variables

r = Rlt rh = Rh + l/r, </> = O l 9 </>,, = Oh + 1 — (f)(mod2n),

where 1 ^ h ^ /c — 2; we find that

:-2 \ - « k - 1 ) k - 2 / ^

But all of rh and (/)h (/i = 1,2,..., k — 2) are shape coordinates, and in fact
C + i = rh Qxp{i(j)h) (h = 1, 2,. . . , k —2) are the usual coordinates for the shape-patch
defined by zx =/= 0. We know however that pr(zx = 0) vanishes for this generator, so
that the induced shape-measure can be defined unambiguously over the whole of Z2

by

i / i \ 2 7 r / '

and it is evidently invariant under G + + .
From the invariant riemannian metric (26) we get another invariant probability

measure on Y\; this is
2k - 3

da)k = CkV(det(0,...: 1 < i,j ^ 2fe-4)) Y] ^ . ( 3 2 )

where gu is the coefficient of d^d^J in (26), and Ck is a constant chosen to make
j dew* = 1. That Ck can be so chosen follows from the compactness and smoothness
of Sj y i a a calculation involving a partition of unity. Now y* and cok are both
absolutely continuous with respect to y% + (bk (which again is invariant), so have
Radon-Nikodym derivatives which are invariant and thus (because G++ is
transitive for m = 2) constant. From this remark we deduce

THEOREM 3. There is a unique G++-invariant probability measure on the Borel
sets of E*,; ^ coincides with the 'gaussian' shape-measure yk and also with the
differential-geometric 'volume' measure (bk, and it is given explicitly by (31).

It is an interesting exercise to compute cofc directly from (26), which we can
rewrite in the form

(1 +Yjr
2)2ds2 = (1 + I r 2 )X(^ 2 + r2#2)-(Xrdr)2-(Xr2#)2. (33)

When m ^ 3, G++ is no longer transitive. It should therefore come as no
surprise that yk =£ ̂ >k when m ^ 3 (this will be proved in [14]). We thus have a
genuine choice between y^ and c5fc when agreeing on the reference measure in the
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definition of mk at (28), and we shall see later that there are considerable advantages
in agreeing to use y*.

When k = 3 and m = 2 we shall see that G++ translates into the group of proper
and improper rotations of S2(y). Thus it follows at once from Theorem 3 that w3 = y^.
can be none other than the classical surface measure on S2(|), normed so as to have
total mass unity. (So far as d>3 is concerned this is obvious from the calculations
preceding the statement of Theorem 2.) We shall often wish to display shape-
functions, shape-measures, and empirical shape-distributions on If, and a useful
device for accomplishing this will be developed in the next section.

5. The manifold carrying the shapes of triangles

We now know that there is a natural isometry between S | , the space whose
points are the shapes of labelled triangles, and the sphere S2(|). The patch on which
Zj ± 0 can be given a coordinate map with a single complex coordinate ( = z2lzx.
For computational purposes we write ( = rei(t>. We now explore the geometrical
details of the mapping.

When measuring up a triangle ABC with A ± B our standard procedure will be
to set ^|/4B| equal to the unit of length, and to let the direction from A to B be the
reference direction. With these conventions let the vector from the mid-point of AB
to the vertex C be Me™. To calculate r and </> we use the fact that the matrix-product

1, 1, Mcos^X
0, 0, MsinVJ

1

73'
1

V3'
1

173'

1

72'
1

72 '

o,

1

76
1

76

must be equivalent to

*, 1, r cos <f>

*, 0, r sin

modulo similarities (cf. equation (1)).
Here the entries at * are of no interest, and the relation between (M, *¥) and (r, </>) is
to be determined by comparing the last matrix with

V3
V2,

o,

MN/2cosvP'

73
MJ2 sin ¥

73

If we discard the first column and then compare the remaining columns we obtain
the basic formulae,

r = M/V3, (p = y¥. (34)
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We next invoke the transformation r = tan^0 used at the end of Section 3. If we
take one of the usual angular coordinate systems for S2(|), the corresponding point
on the sphere will be

{\ cos 9, \ sin 9 cos $, \ sin 9 sin 0 ) ,

but for computational purposes it is preferable to drop the factor j and to write

1-r2

X = cos 9 =

Y = sin 9 cos 0 =

Z = sin 9 sin 0 =

1 + r 2 '

2r cos

1+r
2 '

2r sin
1+r 2 '

(35)

so that X2 + Y2 + Z2 = 1 and the pole of the (0, ^-coordinates is at X = 1. This
will be permissible so long as we remember that great-circle distances on the
(X, V, Z)-sphere must be halved, so that (for example) a complete great circle has
length j{2n) = n, as required by Theorem 1.

When it is necessary to work in the other direction, starting with {X, Y, Z), we
easily compute (r, 4>\ and then the vertices of a typical triangle ABC of the specified
shape will be given by

0, 1, rcoscj)
0, 0, rsincf)

1

73
1

J_ J_
73' 73

Tr '
1 v 2

As we are not interested in size we can multiply the product by v 6, and so we get as
vertices of a triangle of the specified shape

A = - N 3 - re'41,

B = v 3 -n? '< \

C = 2rei(i>.

(36)

Formulae (34), (35), and (36) will be used continuously in what follows. The
reader should now test his understanding of the geometry by constructing triangles
ABC for which

(i) r = 0, (ii) r = — , <\> = ±n, (iii) r = 1, (j) = ^n,
\ 3

and locating the corresponding shape-points on the sphere. He should also verify (iv)
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that ABC is right-angled when r = 1/V3, whatever <p may be, and (v) determine at
which vertex the right angle then lies. Finally (vi) he should determine the locus on
S2(i) of the points representing the shapes of all right-angled triangles. The solutions
to these exercises will be found below.

Most readers will appreciate that these transformation formulae are connected
with classical results about geometrical inversion and the Hopf submersion, but
because those features do not suitably generalise when m ^ 2, we prefer the present
approach based on the procrustean differential geometry of Section 3.

The above discussion does not cover the unique point of E3, omitted from the
patch-map. We can think of this as ( = oo, or indeed as r = oo, which maps to
(— 1,0,0) on the sphere. From symmetry arguments (as below), or by continuity, we
see that this is the shape of the 'triangle' for which A and B coincide.

It is of minor interest that in the representation on S2(|), the coefficient of
mismatch A is equal to twice the 'sagitta', this being the greatest distance in R3

between the shorter geodesic connecting the two points on S2(^) representing the two
shapes, and the chord joining them.

We need to identify the action of the group of symmetries G+ + on the sphere. As
the argument is essentially classical [21, Ch. Ill] we shall not set it out in full detail.
The main points are (a) the elements of U(2)/U(l) correspond to the (proper)
rotations of the sphere (note that O (2) gives only a subset of the proper rotations),
and (b) when we adjoin also the conjugation operator T, this has the effect of adding
the improper rotations. Indeed, T itself is just the operation of changing the sign of $,
that is, reflecting the sphere in the equatorial plane Z = 0. Alternatively we can say
that T replaces a shape by a mirror-image of itself (this is easily checked from (36)).

Within G++ we have as a subgroup the symmetric group of order six which
permutes the labels of the vertices; its action is determined by the following rules.

/ / we wish to look at shape BCA instead of shape ABC, we must rotate our
point of observation about the axis OZ through an angle +2n/3; if we wish
to look at shape BAC instead of shape ABC, we must switch our point of
observation from {X, Y, Z) to (X, —Y, — Z).

For most practical and theoretical purposes the labelling of the vertices is
unimportant. Thus we can usefully identify points on S2(j) which correspond to one
another under the relabelling group G6. The result of this is that S2(^) is split into six
equivalent lunes (see Figure 1). As each of the two semicircular boundaries of a lune
are subject to the identification {X, Y, Z) = {X, Y, -Z), by repeated application of
the above rules, it will be seen that the quotient of S2(^) by the relabelling group G6

is again topologically a 2-sphere. Figure 1 shows the upper halves (Z ^ 0) of the six
lunes. If we fix attention on one of these as it is seen in the Figure, it has two 'straight'
boundaries and one 'curved' boundary. In fact each such 'straight' boundary
coincides under the identifications with the corresponding 'straight' boundary on the
lower half (Z < 0) of S2(|), and the two 'straight' boundaries and the 'curved'
boundary together are to be thought of as an 'equator' for the topological sphere
S2(i)/G6.

In some contexts the distinction between a shape and its reflexion is very
important, and when this is so the whole lune, with its identifications, or some space
equivalent to this, must be used, and topologically the reduced representation space
will then be a sphere as explained above. If we want isometry, however, we must work
with the lune itself.
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But in many problems the effects of reflexion can also be omitted without
significant loss, and then an upper half-lune will suffice. From what we have already
said it will be clear that this is topologically a hemisphere, and that there will be no
residual identifications at the boundary. If we want isometry we must always work
with the geometrical half-lune itself, which we can write as S2(|)/G12, where G12 is
the group of order 12 formed by adjoining the conjugation operator x to G6.

In what follows we shall make considerable use of S2(|)/G12, which shall be
called the spherical blackboard, in the display of theoretical shape-functions and
shape-measures as well as of empirical shape-distributions. Figure 2 shows an
'opened out' cylindrical projection from S2(|)/G12 onto a right circular cylinder
which touches S2(|) along a great circle. If a denotes the acute angle between OZ and
the axis of the cylinder, it will be found convenient to take

tana = 2 / 7 3 , (37)

and this choice will be used throughout, while it will further be arranged that the
plane containing OZ and the axis of the cylinder cuts the sphere S2(|) in the median
great circle of the (half) lune being employed.

It is of course necessary to state which lune is being used, and we can best do this
by specifying the three vertices of the curvilinear triangle LMN which is the result of
the projection process. These are

(1) L = {r = 1/V3, $ = it), A and C coincident;

(2) M = (r = 0, ^ unspecified), C = midpoint of AB;

(3) N = {r = 1, 4> = ±n), ABC equilateral.

In Figure 1, this is the upper half of the lune marked ABC.
Inspection of Figure 2 will show where the various shapes now lie. Notice that

the 'collinear' shapes are those on the bottom bounding arc LM, while the 'isosceles'
shapes are those which lie on the two lateral bounding arcs LN and MN.
Accordingly the isosceles triangles are here separated into two sets; those with base
angles greater than n/3 and less than 7t/3 respectively.

In theoretical studies the value of the spherical blackboard plot is that it is 'area-
true'; i.e. it preserves (up to a factor 12) the invariant measure a>3( = y^), and while
the projection is not an isometry the metrical distortions are reasonably controlled.
In the context of data-analysis or of simulations there is the further dramatic
advantage of an automatic 12-fold increase in the effective size of the sample. A final
advantage is the prominence given in the projection to

(i) near-equilateral shapes (these will lie near the vertex N),

and

(ii) near-collinear shapes (these will lie near the arc LM).

We now give a few further illustrations in order to enable the reader to become
thoroughly familiar with the geometry. Given a shape ABC, one of the most
interesting shape-functions is the max-angle function, max(y4,B, C). Contours for
this, viewed in three different ways, will be seen in Figures 3, 4, and 5. The reader
should notice the location in each of these displays of the shapes of those triads ABC
for which the max-angle exceeds 175°. These pictures show how the alignment
studies in Kendall & Kendall [9] can be reduced to spherical trigonometry. All the
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contours on S2(^) for the max-angle function are composed of arcs of 'small' circles,
and it is precisely because they are not 'great' circles that the alignment problem is so
complicated. In Figure 4 two singularities of the max-angle function will be seen; one
of these is the point L (at which C = A), and there are two others, one in view (at
which B = C) and the third (at which A — B) lying out of sight at the 'back' of S2(|).
Careful inspection will reveal a 'small' circle passing through the two visible max-
angle singularities and concentric with the circular outline of S2(j). This is part of the
locus max(/4, B, C) = ^n; the complete locus consists of three such 'small' circles
touching one another in pairs.

It may have occurred to the reader that the familiar antipodal involution of the
sphere is not here enjoying the prominent role that might have been expected for it.
Reference back to Theorem 1 will show that the antipode a* of a shape a is that
unique shape which is 'most unlike' a on a procrustean basis, the distance between
the two shapes being -R = j{2n). We may call a* the procrustean transform of a; such
transforms enjoy the following elegant property.

PROPOSITION A. Given three distinct points A, B, and C, let A*, B*, and C* be
defined so that [BCA*], [CAB*], and [ABC*] are the procrustean transforms of
[BCA], [CAB], and [ABC], respectively. Then the triangles ABC*, AB*C, and A*BC
are similar.

This is a simple consequence of the geometry we have developed for S2^-), for if/?
denotes a rotation about OZ by + 2TI/3, and if —1 is the antipodal map, we have
[A*BC] = R2[BCA*] = -R2[BCA] = -[ABC], and [AB*C] = R[CAB*] =
- R[CAB] = - [ABC], and - [ABC] = [ABC*], which completes the proof.

If we 'translate' the proposition by inserting a concrete construction for the
procrustean transforms, we obtain a non-obvious (but equivalent) proposition in
euclidean plane geometry. Figure 6 illustrates this, using the construction:

if C+ lies on CQ produced, Q being the midpoint of AB, and if
CQ . QC+ = %AB2, then C+ = C*.

Proof. The procrustean transform maps z to - 1/z.

6. The use of the 'spherical blackboard'

We next discuss some examples of the use of the 'spherical blackboard' when
presenting and assessing information about shapes derived from calculation, from
empirical data, or from Monte Carlo simulation.

First of all it is desirable to investigate the extent to which errors in the
coordinates of the vertices of a /c-ad give rise to induced errors in the location of the
shape-point on the shape-manifold. We shall do this for general k. Suppose then that
the planar coordinates of the k vertices are subject to small independent errors with
mean zero and with a given variance-covariance matrix (say with principal variances
d\ and d\). Because of the orthogonal relationship at (1) it follows that the
coordinates zl9 z2,..., zk_l will be subject to uncorrelated errors with these same first
and second-order moment properties. From (3) and (25) it is easy to work out the
expectation E(D2), where here D is the geodesic arc-displacement of the shape-point
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on the manifold due to the above random errors. We find that, asymptotically for
small d,

_ l|z||2(/c-l)2</2-Hz||22<f2 _ k-2d2

where Id2 = d\ + d\, and T2 = ||z||2/(2/c-2), so that x is the (linear) standard
deviation of the pattern formed by the k points when calculated with 2/c — 2 degrees
of freedom (appropriate here because of the removal of each component of the
centroid). Thus we have

THEOREM 4. //we assess accuracy of position on the shape-manifold in terms of the
geodesic root-mean-square displacement, using the riemannian metric, then
asymptotically this will be y/{(k — 2)/(k — l)} multiplied by the ratio d/x measuring the
size of the errors in the positions of the vertices relative to the size of the k-ad.

The theorem is closely connected with the stochastic-kinematic results described
in an earlier paper (Kendall [8]), but we shall not dwell on these here beyond
remarking that for d± = d2 the local error distribution for shapes is likewise
isotropic. It could be used as a rational basis for choosing a suitable size for the
symbol to be printed at each shape-point in the representation. In the illustrations to
this paper, however, symbol-size will be chosen solely with regard to legibility.

We now return to the case k = 3. While it is quite interesting to see
representations of data on orthogonal projections of the whole sphere, such as those
used in the construction of Figures 3 and 4, it is often far more instructive to
concentrate attention on the basic region LMN. In this way we can quotient out
what will often be irrelevant symmetries and so concentrate the information on an
adequately representative smaller region. As the obvious reference case will be that in
which the distribution of the vertices of the k-ad is of the gaussian form (though not
always necessarily isotropic), it is most convenient that the 'spherical blackboard'
gives us a plane representation of the region LMN on which the transformed shape-
distribution is uniform for an isotropic gaussian generator. The effect of non-isotropy
of the generator will be of great importance to us, and we shall want to be able to
recognise this, when present, from an inspection of the 'spherical blackboard'
representation.

We therefore show in Figures 7 and 8 scatter plots for 1000 independent shapes
of triangles having IID gaussian vertices with generator N(0; o\, o\), first in the case
of circular symmetry oy = o2, and then with a1 = 5<r2. In Figure 7, as our theory
indicates should be so, the scatter plot is approximately uniform, while in Figure 8
there is a general retreat of points from the vertex N towards the arc LM\ this is
another way of saying that ellipticity of the generator produces a higher proportion
of nearly collinear triads. From Section 7 it will appear that the induced 'gaussian'
shape-density when ox ^ c2 is a function of the cartesian coordinate Z only, and
Figure 8 bears that out. (Remember that Z = 0 on LM, and that Z increases as we
move up towards N). We shalLalso see in Section 7 that the 'Broadbent factor',

gives an appropriate indication of the degree of ellipticity, and indeed (Kendall &
Kendall [9]) there is a usefully wide range of cases in which this factor correctly
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FIG. 7 One thousand triangle-shapes; IID
vertices with generator = N(0; a\, a\) (ax = a2)-
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FIG. 8 One thousand triangle-shapes; IID
vertices with generator = N(0; a\, a\)

t = 5a2). The contour line is drawn at level 1-0
for the empirical shape-density.

adjusts the expected number of triads with max(A,B, C) ̂  n — s (e small). In
Figure 8 we have / = 2-6, and we shall see later that for k = 3 the theoretical shape-
density m3 at (28) is constant along the arc LM for gaussian generators, and is
uniformly enhanced there by this factor 2-6 when aja2 is increased from 1 to 5.

Another class of models which has been much studied is that in which the IID
vertices are uniformly distributed over a compact convex set K (see Kendall &
Kendall" [9], and Small [24]). It is now appropriate to rewrite / at (38) in the form

(39)

thus obtaining an equivalent 'dynamical' measure of ellipticity. Here KX and K2 are
the radii of gyration for a thin plate of uniform density and of form K, the gyration
being about the principal axes of inertia through the centroid and in the plane of the
plate. Even when K = circular disk, the shape-density at (28) is no longer constant
along the arc LM, but we do have the interesting fact that

ellipse)3
 = / a t a l l p o i n t s o f L M

d{X | circle)3.
(40)

This is a special case of one of Small's results, and his generalisation of it is very
important for the alignment problem. Small also computed and drew contours for
the associated shape-densities using numerical integration. Recently (Kendall [12]) it

has proved possible to evaluate the shape-density d{X circle):
dy\

in closed form.

Figure 9 shows contours for this density, which agree well with those obtained from
Small's numerical integrations. The same analytical approach could also in principle
be applied when K is a polygon, but the details would be rather unpleasant, and this
has not yet been done.



104 DAVID G. KENDALL

One suspects that the form of the non-
uniformity of the induced shape-density
d{l | K)l/dyl may betray in a perhaps far from
obvious way the shape of dK (here a circle), and
the uniqueness questions of Section 4 become
relevant. For some theoretical studies of this
problem see Small ([24. 25]).

It is easy to make a scatter-plot of a large
number of independent shape-points obtained by
simulation when K is an (s: l)-rectangle. The
non-uniformity is not particularly marked in a
scatter-plot for s = 1 (K a square), but it can be
detected by vastly increasing the number of
shape-points and drawing rough density con-
tours automatically. This is done in Figure 10
with s = 1 (and in Figure 11 with s = 1-661) for
samples of size 100.000. The long contours are
thought to be meaningful, while the small ones
and the minor crinkles exhibit the statistical
noise level.

If we take as a 52-ad the data-set analysed in
Broadbent [3] and Kendall & Kendall [9], it
supplies us with a total of 22,100 triangle
shapes, and contours for the empirical shape-
density are shown in Figure 12. It should be
borne in mind that these 22,100 shapes are not
independent, although they are 'dissociated'
(Silverman & Brown [23]). There is a slight
ellipticity in the distribution here {62l6l —
1-661, / = 1-13); thus we can fairly compare
Figure 12 with Figure 11, at least as a first
approximation. It appears that the increased
density near the vertex L in Figure 12 may be
attributed to the occurrence of a few pairs of
near neighbours in the generating pattern, while
the change in the prevailing course of the long
contours may reflect the tendency of the 52
generating points to segregate into two groups.
Figure 13 shows contours for 100,000 shape-
points derived from a comparable bimodal
mixed-gaussian generator with an artificial sup-
ply of about the right number of closed pairs,
and this supports the interpretation just offered.

A striking example of a theoretical model in
which the generating mechanism is not one based
on IID sampling is provided by the Poisson-
Delaunay process. Here we start with an infinite
2-dimensional Poisson process, and construct
the Delaunay tessellation (Delone [4]), and

Jl'j:
i-va/vi . J

FIG. 9 Contours for d{/. | circle)J/</yJ
computed from the explicit formula in

(Kendall [12]). The minimum density 3/4
occurs at M, and the maximum 4/3 occurs

at L. The density at N is
3-(27v3)/(8n) = 1-1393.

SOUR

FIG. 10 Simulation contours for
d(). | rectangle^/dy, (sample

size = 100,000; s = 1).

RF.r.T

FIG. 11 Simulation contours for
d(k | rectangle)J,/dy» (sample
size = 100,000; s = 1-661).
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FIG. 12 Contours for an empirical shape-density
(sample size 22,100; s = 1-661): data from

(Broadbent [3]).

FIG. 13 Simulation contours for a bimodal
mixed-gaussian generator (sample size = 100,000;

s = 1-661, 2 groups, 4 close pairs).

then observe the shape of the triangular 'tile' containing the origin. Repetition of this
procec" c yields a random sample from an extraordinary theoretical shape-
distribution discovered and first studied by R. E. Miles, though not from the present
point of view. I have recently shown [11] that its shape-density can be written in the
form

f 2 2 2 C ) 2 , (41)

where A, B, and C are the angles at the vertices of the triangle. This is the Radon-
Nikodym density relative to >'^(= a)3); it is more appropriate for our purposes than
the earlier form for the shape-density obtained by Miles relative to an ad hoc
measure dBdC. Figure 14 shows 5000 such Poisson-Delaunay random shapes, and
Figure 15 shows contours for the function at (41). (The contour-drawing routine fails

FIG. 14 Five thousand Poisson-Delaunay
shapes (from Kendall [11]).

DCK'S P«TZB3 '.HOT
CNTlNr-0.02!> ' i h 'S -
IGWf- .1 CBLC

POL Y
r/r- ' .0 2-3.0/3.1

I 2.9

FIG. 15 Contours for the theoretical Poisson-
Delaunay shape-density (from Kendall [11]).

It is discontinuous at the point marked L.
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in the vicinity of L because the function at (41) is not continuous at this point.) It is
interesting to compare these pictures with shape-plots for all the Delaunay triangles
associated with a. finite Poisson sample, e.g. with a set of N points IID and uniform in
a square. In that case one obtains the theoretical Poisson-Delaunay distribution of
about 2iV triangle-shapes, supplemented by 0{yJN) others associated with 'false'
Delaunay triangles at the boundary, and unless N is very large these tend to fill in
the void near the arc LM. For further details see Kendall [11].

7. The shape-density for a non-isotropic gaussian generator

We now return to I.\ carrying the invariant measure y$.(= a)k); we shall
determine the shape-measure y£s induced by the bivariate gaussian distribution with
principal component variances s and 1/s; here the Broadbent coefficient is defined to
be

We must not expect yk^s to be invariant under G+ + for s > 1, for then it would have
to coincide with y* = y*'1. For this reason we use a more direct method than that
employed in Section 4.

Because of the real-orthogonal nature of the transformation (1) we can assume
that all of zl5 z2,..., zfc_! have the generating gaussian distribution, and that they are
independent. As in Section 4 we write

zx = reltzh + l = rrhe**+M (h = 1, 2,.. . , k-2),

and we shall perform our initial ca lculat ions in the coord inate -patch of C P * ~ 2 for
which zx ± 0 . W e can write the jo int distr ibution of zi}{j = 1 , 2 , . . . , k - 1 ) as

i)exp j- ir2e0- ir2 f r2Q,| {^f-H{^)d (J^j ft d(ri)d

where Qh = s * cos2 (0 + 4>h) + s sin2 (0 + <£,,), and where Qo is defined similarly with
the argument 0 instead of <£ + </v If we re-arrange this and then integrate out the
redundant coordinates r and (f>, we get

k-2

when

C 2 , - , C k - 2 ) - 2 7 l

and

H = (-s-l+s)^xhyhi
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here we have written £h = rhe"t>h = xh + iyh. Now

107

- B) sin

and here (A-B)2 + 4H2 < {A + B)2, so that we can write

with A > 0 and v ^ 1; in fact we shall have A = J{AB-H2) and y = (A + B)/{2X).
Notice that v = 1 and A = 1 + £ (*&+.V2) when s = 1.

We now call in Laplace's 'second' integral representation formula for the
Legendre polynomial Pn(v) and obtain

THEOREM 5. The Radon-Nikodym derivative ofyk^s with respect to yk+l, which is
the factor correcting the invariant measure y*11 = y* = wk on 1\ for the effect of the
ellipticity s, is given by

2v
Pk-2(v),

where

. 1
1 T =

k - l

k-1

(43)

(44)

Notice that v is a symmetric zero-degree complex-homogeneous function of
{zx,z2,..., Zfc-i); this confirms that it is a shape-function, and that our proof is
generally valid although worked out in the special case zx ^ 0. When the generator
is isotropic we shall have s = 1 and v = 1, and the right-hand side of (43) then
reduces to unity as it ought to do.

From Laplace's other ('first') integral for Pn(v) we have

Pn(v) = ^

and if we now expand the binomials, the only terms that remain are positive
multiples of integrals of

u " - V - l ) i r c o s r 0 = i/I(l-tT2)±rcosr0,

for even r, so it is clear that Pn(v) increases monotonically for 1 ^ v | oo. It follows
that the density (43) is least when v = 1, that is (for s > 1) when ]T z2 = 0, that is,
when the /c-ad has dynamical symmetry. On this set the density (43) has the value
I//*"1 where / is the Broadbent factor (42).

In the same way we see that the density (43) has its largest value when v is
greatest, that is, when the ratios
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are all real, so that v = / . The set of shapes on which this happens is the real
projective space RPk~2 naturally imbedded in CPfc~2, and the value of (43) is then

Pk-i(f)- (45)

This is the factor by which a degree of ellipticity s increases the chance of an
approximate multiple alignment, because the Radon-Nikodym derivative (43) is CK

(indeed analytic) everywhere on I*, and so is asymptotically equal to Pk-2(f) on any
small neighbourhood of the multiple-alignment set IRP*"2. It follows (cf. Kendall &
Kendall [9], and W. S. Kendall [15]) that in the gaussian case all multiple alignment
studies 'factorize' into (i) trigonometry on CPfc~2 (evaluating the d)k-measure of the
prescribed neighbourhood of RPk~2), and (ii) multiplication of the 'isotropic'
probability obtained at (i) by the correcting factor (45). Small [24] noted that there
is a similar phenomenon when the generator is the uniform distribution over a
circular disk (elliptic disk).

Another corollary to Theorem 5 is that the Radon-Nikodym derivative (43)
when considered as a function defined over Xk depends on the shape-point only via
the shape-function

r =
k - l

i
fc-1

I \zj\2, (46)

and this remark enables us to determine the subgroup of G + + with respect to which
yk s is invariant when s > 1. First of all it is clear that T leaves (46) unchanged, as
also does O(/c—1); note however that we must here replace O(k— 1) by SO(/c—1)
when k is even because then diag( —1, — 1 , . . . , —1) can be absorbed into SO(2)
(acting on the left). In fact we have

THEOREM 6. The 'skew gaussiari1 measure yk>s on Hk
2 is invariant under (and only

under) the subgroups

O(k — 1) (x) {1, T} when k is odd,

SO(k-l) (x) {1, T} when k is even .

For let U = A + iB be an element of U(/c— 1) which leaves (46) invariant; plainly
it must map the set {£ z2 = 0} into itself, and so must map all (row) z-vectors of the
form (0, . . . , 0 , 1 , . . . , 0, ±i,0, ...,0) into this set. Thus if the complex vectors A and n
denote different rows of U, we must have £ (Xj±ifij)2 = 0 for either uniform choice
of the ambiguous sign, and therefore

X tf ~ H Vj' a n d YJ ^-jV-i ~ 0 •

This however implies that UU' is a multiple pi of the unit matrix with p = ei0.
Without loss of generality we can divide out by el0/2 (which can be absorbed into
SO (2)), and so we get UU' = I = UU', whence U = U, and therefore U is real and
belongs to O(/c —1) as was claimed.

When k = 3, we find that

r 2 _ l 1 + r e I _ i _72
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where Z is the third coordinate in (35), and for a gaussian generator with s = 1 we
know that \Z\ has the uniform distribution on [0,1]. Moreover Z is unaltered by
SO (2) acting on the right (which rotates S2(|) about the Z-axis), and so it depends
only on Xx and k2 in (12). In fact

z= 2
2

X\,
Ai "p Ay

and
;2 ;2

(47)

This suggests that we should try to find a transformation like this when k > 3 which
will enable us to replace f by a statistic having a simple law of distribution in the
null case when s = 1.

Now (47) as it stands is true independently of the value of k, because

f)1x ~ x /V 2 , V 2
I > X- + > V-
v^j -̂ j î  / . y i

where now we have written z-} — Xj + iy-j for 1 ^ j ^ k — 1, and this leads
immediately to (47) when we notice that X\ and X\ are the eigenvalues of WW,
which is essentially the sample variance-covariance matrix. Obviously we are now
very close to classical arguments associated with the Wishart distribution.

We accordingly look for a connexion with work by Mauchly [16] and by
Girshick [6] on 'testing for sphericity'. Mauchly proposed the use of

L = 2 ^ i (48)

as a test-statistic for use in a sphericity problem arising in connexion with terrestrial
magnetism; note that

T2 = 1-L2 . (49)

He obtained the law of distribution

£*dL (0 < L ^ 1) (50)

in the null case when s = 1. (When k = 3 this reduces to the uniform distribution of
|Z|, as noted above.) Girshick then gave the L-distribution in the non-null case
(s > 1 in our notation) in infinite series form as

where $£ is the parameter

It is clear that if we now multiply the Mauchly distribution (50) by our likelihood
ratio (43), we must get the Girshick distribution (51), but in a new form involving a
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closed expression, instead of his infinite series! On carrying out this calculation and
comparing the two results we obtain the mathematical identity,

(53)

which is easily proved independently by expanding the integrand of

in a power-series, rejecting the odd powers of cos$, performing the term-by-term
integration, evaluating the gamma functions, and using the duplication formula.

Those readers who are intrigued by these interrelationships may like to try to
derive the Mauchly distribution (50) directly from our formula (31), of which it must
be a consequence.

At least three different methods have been suggested for testing a single /c-ad for
suspiciously close 'alignment', or an n-ad for the presence of suspiciously many
multiple close 'alignments' of the fc-th order (3 ^ k < n). The present discussion
points rather strongly to yet another method, the use of the statistic

U = Lk~2 (54)

in this role, with L = 0 corresponding to perfect 'alignment'. Its relevance is obvious,
it is uniformly distributed in the null (gaussian) case, and we also know its law of
distribution in the non-null (gaussian) case; indeed something is also known about
non-gaussian cases (see the report on these matters in Muirhead [17]). The Mauchly
distribution is sufficient if we are testing a single fc-ad, for it will give us the exact
P-value in the null gaussian case.

When we are testing a sample of n points for too many close 'alignments' of the
fc-th order, then we have, as was pointed out by Kendall & Kendall [9], an extra
complication in that we must either (i) test the number N{u) of fc-ads for which
U < u, where u is a fixed small positive number, given in advance, or (ii) test

max N(u), (55)
ue J

where J is a fixed interval [ul,u2] (with 0 < ul < u2 < 1, u2 small), given in
advance. The first case is straightforward, and the second can be resolved by the
'pontogram' technique and the use of laterally perturbed data-based simulations as
developed by Kendall & Kendall.

The obvious snag in the use of U and N(u) as test statistics is that there is no
immediate intuitive interpretation for U, but this would not, I think, be an obstacle
in practice. An example will be found in the next section.

To round off the present discussion we make the following observation which
goes some way towards conferring intuitive status on U.

We have already seen that we can adequately study an arbitrary point of CPk"2

(relative to the symmetry group G+ acting on the right) by confining attention to
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those shape-points of the form [z] = [(zl5 z2,..., zk_l)'] for which

zx = cosO, z2 = isinO, all other z 7 = 0 , (56)

where 0 ^ 6 < \n. (This is just another way of phrasing the argument at (14) in the
special case when m = 2.) We want [z] not to correspond to an aligned /c-ad, so we
here take 6 > 0. Also we can write a general shape-point in the 'aligned' subset
UPk~2 as [w], where

w = (w1,w2,...,wfc_1),

every w} is real, and £ wj = 1. The distance p from [z] to [w] can be calculated from
(22) and (21); it is

arccos \wl cos 0 4- iw2 sin 0| = arccos x/(wi c o s 2 0 + W2 s m 2 0) •

The (uniquely attained) minimum of this distance is d (corresponding to the
equivalent choices wl = +1 and all other Wj = 0). Thus 6 is the shortest geodesic
distance from such a point [z] to the alignment set, and [(1, 0,... 0)] is the (unique)
nearest point in the alignment set. If we now take into account the fact that

| r | = cos 26 and L = sin 29, (57)

we are left with

THEOREM 7. If a shape-point a on £ 2 = CPk~2 has 'ellipticity' L(a), as defined at
(48), where k\ and k\ are the eigenvalues of WW, then its shortest geodesic distance
from the alignment set RPk~2 is ^arcsin L(a), with maximum possible value \n
corresponding to L(a) = l,Xt = |A2| and a shape a having 'dynamical symmetry'.

If the k-ad is generated by an isotropic gaussian distribution for the k IID vertices,
then U(a) = L{a)k~2 is uniformly distributed on [0, 1], while if this gaussian generator
is anisotropic with parameter s, then that distribution ofL(a)k~2 has to be modified by
the likelihood-ratio factor

(58)

where
/

The reader may wonder why L (or U) can be used both as a test for sphericity
(A, = |A2|), and also as a test for collinearity (A2 = 0). Further study of the geometry
of CPk"2 provides an illuminating explanation of this. Let us write Sph for the
(compact) 'sphericity set' where |A2| = Al5 and Coll for the (compact connected)
collinearity set where A2 = 0; let R denote the remaining region
CPf c"2\(Sph u Coll). Then we have

THEOREM 8. Each point a e R has a unique nearest point P in Coll and a unique
nearest point Q in Sph, and a lies on the shortest geodesic arc from P to Q, with
distances

p(a, P) = \ arcsin L(o)

and
p{o,Q) = %n—\ arcsin L(o),

the whole arc PQ having length ^n.
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For the preceding argument shows that

P = [( l ,0 , . . . ,0)]

is the unique point in Coll whose geodesic distance from

a = [(cos 0, i sin 0,0,.. . ,0)]

has the minimum possible value \ arcsin L(a), and the connecting minimal geodesic
arc is the stretch 0 ^ a ^ 0 of the geodesic whose general point is

[(cosa, i sina,0, ...,0)] ,

where the range 0 ^ a ^ n gives the whole of this geodesic (a closed loop of
length n). We now write

for a generic point in Sph, where S is in SO (k — 1) and only the top two rows of S
actually contribute to the definition of Q.

Notice that we do not need the optional sign when k ^ 4, because it is then
adequately catered for by the freedom in the choice of S. The triviality of the case
k = 3 (when Coll is the equator Z = 0, and Sph consists of its two poles Z = ±1)
therefore allows us to omit the optional sign altogether in what follows.

Now the distance from a to Q is given by (22) and (21), and if we write S = (s,,)
then this is

k - l

p = arccos

where
Zx = cos0, Z2 = isin0, ZJ = 0

and

so that p — arccosy/U, where

2U = (cos0s1 1+sin0s2 2)2 + ( — cos6/s21+sin0s12)2

= cos2 0 (s2i + s\ J + 2 sin 0 cos 0 (s{ x s22 - s 2 x sx2) + sin2 0 {s\2 + s2
2) .

For a minimal distance we must make U maximal, and this requires

S l l + S 2 1 = S11S22 ~S21S12 = S22"I"S12 = 1 •

Notice however that SO (2) acting on the left here commutes with
(1/V2, i/V2, 0,..., 0) in the sense that

, s'm(j}\ /1/V2, 0, 0 , . . . 0 \ _ 1 / cos</>, sincj), 0, ...,
), c o s 0 / \ 0, 1/^/2, 0,. . . 0 / V2 \ - s i n 0 , cos<p, 0, . . . , 0 / '
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and so we can 'rotate' the top two rows of S as convenient, replacing them for
example by an array of the form

l » S 1 2 > S 1 3 > •••' S l , f c - 1

S 2 2 ' S 2 3 ' •••' S 2 , k - 1

with s u ^ 0 and s21 = 0. Accordingly the minimality conditions become

S l l = = 1> S 2 1 = ^> S 2 2 = * ' ^ 1 2 = " >

and all other elements in the top two rows of S now necessarily vanish, leaving us
with the unique point

in Sph at the minimum distance \n — 0 from a. This point Q lies on the geodesic
described above at the point a = \it, and arcPQ = \n.

When k = 3 the set Sph is disconnected into two isolated points* but otherwise
there is no change. The arc PQ now becomes the half-meridian through a.

8. Applications

8.1. The collinearity-constants k, ^, and v. In Kendall & Kendall [9] an
asymptotic expression was found for the variance of the number JV(e) of triads aligned
at the angular level s when the n points contributing to the triads form an IID
sample from a given generating law in U2. This expression depends on that law
through three numerical parameters there called A, n, and v, and of these k was
shown in a wide range of anisotropic cases to be proportional to the Broadbent
coefficient /. When the generator is gaussian, the arguments of Section 7 tell us that v
must be proportional to P2(f) = i(3/2 ~ 1); this follows from our remark at (45) for
k = 4. We can make no comparable statement about fi, because here the associated
calculations take us well out into the complement of RPft"2 in CPk~2.

8.2. The Z-distribution. Some of the formulae of Section 7 simplify
considerably when k = 3. We then have L = \Z\, and so in the anisotropic gaussian
case the Z-distribution is

lf TndZ ( - l ^ Z ^ l ) ; (59)

note that this reduces to \dZ when s = 1. If ¥ denotes a rotation angle about OZ,
then ¥ and Z are independent and ¥ has a uniform distribution on [0, 2n) for all
s ^ 1.

The cumulative law for Z is sometimes useful; it is

pr(Z < f) = ! + i/f/V[l + ( / 2 - l ) ' 2 ] - (60)
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Other useful results are

EZ2 =

DAVID G. KENDALL

E|Z| =

/2-r
The last formula is badly behaved near s = 1, / = 1, and then we do better to write
s = e9, f = coshgf, and

ir~? ocoshfl —sinhfl 1 2 ,
E Z = " ^ 3 - = i - T 7 » + - (0 small).

sinhJ0 3 15

These results may be illustrated by considering the situation treated in Figure 8,
where s = 5 , / = 2-6, g = 16094, sinhg = 2-4, E|Z| = 0-2778, EZ2 = 01291, and
rms(Z) = 0-3593. The shape-density 10 is attained when Z = 0-3933; the empirical
contour line for that level is shown and the reader can check its position by referring
to Figure 19.

The law (59) also makes sense for 0 ^ / ^ 1, when it gives a bipolar distribution
on the sphere, instead of one with ?.?_ equatorial mode. Figure 16 shows the Z-density
f o r / = 0-4(005)l-0(0-5)60.

Z---1
Z - D t N S I T Y : F-- 0 , 4 ( 0 , 0 5 1 1 . 0 f 0 . 5 1 6 ?

F I G . 16 The Z-distribution for 0-4 < / ^ 6 0 .
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Let us write, for 0 < g < oo.

r.t. gt
i ) ;

(61)

notice that Tgt increases when t increases, and
Tg(±\) = ± 1 . Also T,= L

and = T
ljg

(62)

Thus we have

THEOREM 9. / / Z has the distribution (59)

with parameter f. then TgZ has the distribution
(59) with parameter f/g. and so TfZ is uniform on
[-1,1].

We leave the (easy) proof of Theorem 9 to the
reader.

Thus if we are to compare two empirical
shape-distributions with anisotropies j \ and f2.
and if we wish to discount differences associated
with / , =/= f2. we can do this by applying T,(/l//2)

to the first distribution and T^l{f2Jf[) to the second.

8.3. >Collinear> quasars'} When examining
empirical data on the 'spherical blackboard' it is
often useful to superimpose the image of a
suitable curvilinear orthogonal fret. Thus
Figures 17. 18. and 19 show the positions and
shapes of triangles in the famous set of 6 quasars
discovered by Arp & Hazard (see Zuiderwijk
[27]). superimposed in Figure 18 on a fret based
on contours for the max-angle C and the ratio-of-
sides AC/BC. and in Figure 19 (quasars
X, Y.Z,B only) on a fret based on contours for Z
and T. There are 3 marked triple collinearities:

(i) XYZ, E = 0°-46?

(ii) XYB, e = 0°-47f

(iii) ABC, s = 0°-59.

Zuiderwijk [27] examined this situation by
making use of the methods of Broadbent [3] and
Kendall & Kendall [9]. He found it not excep-
tional when viewed as one of the 1000 or so
quasar fields which might have been studied.

hRPH

FIG. 17 The positions of the six Arp &
Hazard quasars, with three close

alignments marked. (Coordinates from
Zuiderwijk [27].)

OCX'S PXYZB8 1
CNT1NI N

NTR1R: 28
ESS: EFFS
TUIN: e/ .B28 :

I. QJ

.nm.)
MTSr . . .

IlRlS: 8 "

IOIVE: e £0§£*

mm

QURS

OUOS OflTfl NONE N T R I - .

OUfiS NONE I

FIG. 18 The quasar triangle-shapes:
(C, AC/BC)-fret.

(Quasars A, B, C, X, Y, Z.)

OCX'S PXYZB8 (.nC2.)

ESS: EFFSEI=1.B88
THIN: 8/.829 SPLIT=8
1NTRRN: 8 1GIVE: 8

QUPS

OURS OBTB NONE NTRI.->i

OUBS NONE I

FIG. 19 The quasar triangle-shapes:
(Z, ^-fret.

(Quasars X, Y, Z, B.)



116 DAVID G. KENDALL

However he missed the alignment (ii). and so underestimated the significance. Let
us here avoid the uncertainty in the choice of the 'selection factor' 1000. and base our
argument on the fact that Arp & Hazard first investigated this plate because they
noticed the collinearity (iii); they then subsequently noticed (i). but not (ii). So it seems
fair to test (i) and (ii). with the collinearity (iii) omitted (because it was the 'signal'
determining the selection). We therefore ask. how remarkable is the quartet XYZB as
one of the 12 quartets which one can form from the set of six quasars when we omit the 3
quartets involving all of A. B, and C?

We can answer this question using Theorem 7. We find that L = 001327. and
U = 00001761. so the P-value on this basis is

15x00001761 =000264 .

(Here we have used 15 = (4) as a cautious overestimate of the combinatorial factor.)
The situation is therefore quite surprising, and the astronomers were right to take

it seriously. Notice however that the significance would be eroded if more quasars
were found on the plate. Such an erosion sets in quite quickly; for example
(2

4
4) = 10626. It would be therefore wise to allow for 'optional stopping' as well as

for 'selection'.

8.4. Connexions with integral geometry. Ambartzumian has recently [1]
drawn attention to a remarkable shape-measure on I | which we shall call Amb, and
whose differential for right-handed triangle-shapes, i.e. on the upper hemisphere of
Z | , takes the form

, A , sin A sin B sin C , ,„
d Amb = K , dBdC, 63

(£ sin Af

where the vertical angles A, B, and C of the triangle are non-negative and sum to n.
The measure Amb is to have exactly the same form for left-handed shapes, and so the
constant K is to be chosen to make the integral of (63) over the 'right-handed'
domain equal to one half. This formula (63) forms the basis of Ambartzumian's
attack on the problem of deciding by statistical tests whether a given finite planar set
of points has been obtained by observing an infinite planar Poisson process through
some unspecified 'window'. We now investigate Amb on Z | from the standpoint of
the present paper, and in particular we seek a sampling process yielding Amb as the
resulting shape-measure.

Now in [11] I show that the Miles distribution for the shapes of the Poisson-
Delaunay triangles,

0

\ — sin A sin B sin C dBdC
371

(with the same conventions about 'handedness' as before), can be identified with the
shape-measure

on the whole of 2^. so that we can write

dyl, (64)
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and it will be more convenient to work with (64), which is now to be understood as
defining Amb over the whole of the shape-space.

Ambartzumian arrived at (63) as the fourth (shape) factor in a decomposition of
the differential form for the vertices,

dPldP2dP2 = Yl dXjdyj,

into four factors, the other three accounting respectively for location, rotation, and
size. He measures size by the perimeter h of the triangle PtP2P3, where Pj = (x,-, y,),
so that h = £ lA^I- He is only concerned with measure-theoretic questions, and
does not topologise the shape-space, but we shall of course identify it with S2(^) in
accordance with Theorem 2. The angles B and C do not form an ideal pair of shape-
coordinates, but this does not matter in the present measure-theoretic discussion, in
which all the associated singularities in the description of S2(|) will form a set of
measure zero.

As usual we fix attention on one vertex Pt and one side P^P2. Let this side be of
length 2M and have direction 6. For the six-dimensional volume element dP1dP2dP2

we find the expression

dxxdyx • dO • 4u3du • Irdrdfi ,

where now r and (j) refer to our standard notation as explained in Section 5.
Here, without incurring any additional Jacobian factor, we can replace

dP{ = dx{dyx by dP = dxdy whenever we wish, P being the centroid (x, y). Also
from (31) for k = 3 we have

, rdrd(j)

7r(l+r2)2 (65)

The variables u and h both describe size, but as usual we prefer for metrical reasons
to work with $, where $2 = X l A ^ I 2 = 3HZH2; w e have

2 =6w2=6w 2 ( l+r 2 ) , and h =

In this way we get our preferred form of Ambartzumian's decomposition, namely

dPtdP2dP3 = \n • dxdy -dd-$3d$- dy\ , (66)

and also an equivalent form for it,

(Y sin2 A)2

dP,dP2dP3 = |;r • dxxdyx • dd • h3dh • yf± . ; dyl, (67)
(ZJ s i n ™>

which corresponds to the one given by Ambartzumian up to a numerical constant.
The reader will find it interesting to check that (66) integrates to unity when
multiplied by g{Px)g{P2)g{P3), where g{x, y) = (In)-1 e\p{-jx2-b'2l and also
that limiting the integration to the subset of variables (x, y, 9, $) confirms the
identity of yj with the induced 'gaussian' shape-density.
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We now construct a sampling situation appropriate to the decomposition (67),
which we can write as

\- • dx.dy, • dd • h3dh • d Amb , (68)

in order to interpret Amb in an operational way. We invest the plane U2

simultaneously and independently with two probabilistic structures; a Poisson point-
process of intensity a, and a Poisson line-process of intensity /?, so that for any
rectifiable Jordan curve F with interior G we shall have a probability exp( —a|G|) of
there being no random point in G, and a probability exp(-/?|F|) of there being no
random line which cuts F. Here \G\ is the area of G, and |F| is the length of F.

We then define a random scoring function T(f; F) whose value is £/(<r), where
/ is a bounded non-negative Borel map from £2 to the reals, and where the
summation is over the shapes a of all triangles Px P2 P3 such that

(i) each vertex belongs to the realisation of the point-process,

(ii) Px lies in a Borel set F of finite positive Lebesgue measure |F | ,

(iii) none of the realised lines of the line-process cut the perimeter of the

triangle Px P2 P3.

We shall evaluate E T ( / ; F) in two different ways, using Fubini's theorem, and then
equate the results.

In the first evaluation we begin by averaging over the randomness in the line-
process, keeping the realisation of the point-process fixed. This contributes a factor
e~ph. We then average over the randomness in the point-process, and thus get

F) = |F|27r
A p

where Amb (/) denotes integration of / with respect to the measure Amb.
In the second evaluation we reverse the order of the two averaging operations.

The realised line-process will divide the plane up into countably many compact
convex 'Crofton polygons' II, each of which has associated with it a shape-measure
for triangles, ( / | n ) ^ . We hold the realisation of the line process fixed for the
moment, and let M be the (random) number of (point-process) points in n n F, and
N the number of such points in all of II. There are thus M(N — 1)(N — 2) ways of
choosing Pl5 P2, and P3 in II, with P^ also in F, and this is the number of triangles
associated with II which contribute to the score. (Remember that rule (iii) forces all of
the triangles to lie in a single Crofton polygon!) Each one of these triangles will yield
a shape a and a value for f{a). Of course M = 0 if II does not meet F, and almost
surely M will vanish for all but finitely many IPs. Plainly we shall have

ET(/;F) = E £ M(N-\)(N-2)mU;Pl€F)l(f)
n meets F

in an obvious extension of the notation of Section 4 which includes the additional
requirement lP1 e F\ The symbol E on the right denotes the operation of averaging
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over M,N, and II. So long as the line-process is held fixed we shall have

E{M(N-l)(N-2) | n} = | F < 2 n | E{JV(N-l)(N-2) | n}

= a 3 |FnI I | | n | 2

because of the formulae for Poisson factorial moments. We therefore have

ET(/ ; F) = a3E X IF n n| |O|2 (A | n ; Pt e F)3(/),

and so

Amb (/) \dP1 = -4 - P E S IF n U\ \U\2 (A | n ; Px e F)J(/).
J l2n

F

Now (A | n ; Pt e F) 3 ( / ) is equal to

ndP, \\f(a)dP2dPJ(\F nU\\n\2),

F n n

and so, because two equal absolutely convergent indefinite integrals must have
'almost' the same integrand, we see that

Amb(/ ) = —-jS4E \f{a)dP2dP3 (69)

n, n,

for any fixed Plt where now IIY denotes that Crofton polygon II which contains this
fixed point PXEF. We do not need to say 'for almost all Px\ because both sides are
now independent of the position of Pj. Also we can now ignore F. Obviously it does
not matter where Px is, so we may as well fix it at the origin, referring thereafter to 0
and II0 instead of Px and Tl1.

In particular (69) holds if / = 1, and so we are able to evaluate the
Ambartzumian constant as

l2n 2 1 (70)

where we have used the evaluation E|no|2 = E|n|3/E|II| = 4n2/(lp*). Of course we
can check this value for K by numerical integration of (63), and this has been done.

If we substitute the first expression for K in (69) we now get

. _ . u _ I E { i n o i 2 ( ' H n o ; f i =<»•}
A m b

However we can here appeal to the rather delicate principle (a consequence of
stationarity) that 'relative to II0, supposed given, the origin is uniformly distributed
within n0 ' , and so (A | n o ; Px = 0)3 is the same as (A | II0)3 . Also the 'anchored'
character of n o , requiring it to be that Crofton polygon which contains the origin,
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can be dropped providing that we select a Crofton polygon n using a selection rule
which weights the cells into which the plane is divided according to their areas. These
considerations give

THEOREM 10. The Ambartzumian shape-measure at (64) can be expressed in the
form

= E{|n|3-(A|n)J}/E(|n|3). (71)

Here U denotes a 'typical' cell of the Crofton dissection of the plane, and E(
the limit of a 'spreading average' over all the cells of the dissection.

denotes

The weighting in Theorem 10 is important, and the possibility of interaction
between the cell area |I1| and shape-variables such as (A | Yl)l, which can be
expressed in terms of the shape a(U) of FI, can be illustrated by noting that

when V denotes the number of vertices of II.
If we insert the value of K at (70) into (68), to get

dPldP2dP3 =
ndxldyld6

21
h2dhd Amb, (72)

we can now formulate other operational interpretations of Amb. For example let
Fj. P2, and P3 be distributed uniformly and independently in the circular disk of radius
R centred at the origin, and let them be selected
subject to the restrictions.

(a) >/(x? + y?)<U-iHf

(b) h < H.

This procedure, for any 0 < H < 2R, will ge-
nerate triangles with Amb as shape-measure; it
has already been outlined in [1], and exhibits
Amb in close relation to (A | circular disk)^, but
differing from the latter because of the restric-
tions at (a) and (b).

Contour lines for the density d Amb/dyl a r e

shown in Figure 20.

a-ee/e i <-e 'n :
RMBN

FIG. 20 Contours for the Ambartzumian
density.

In closing this paper I should like to acknowledge helpful advice from many
colleagues, especially Frank Adams, Adrian Baddeley, Simon Broadbent, Andrew
Casson, Wilfrid Kendall, and Christopher Small.
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