

Australian Government Department of Defence Defence Science and **Technology Organisation**

Airframe Life Extension by Optimised Shape Reworking

Overview of DSTO Developments

M. Heller¹**, M. Burchill**¹**, R. Wescott** 2**, W. Wal dma ⁿ**1**, R. Kaye**¹**, R. Evans**¹**, M. McDonald**¹

1 Air Vehicles Division, DSTO, **2** QinetiQ Aerostructures

Presented at the 25th ICAF Symposium – Rotterdam, 27-29 May 2009

Context – Airframe life extension

- Airframes contain many stress raising features
- \bullet Most shapes consist of straight lines & circular arcs
- •Traditional shapes have localized peak stresses
- \bullet Cracking at only a few locations can define the economic fatigue life for an aircraft structure
- Hence reducing stresses at a few locations can provide significant benefits to the RAAF
	- *safety, aircraft availability, cost saving*

Context – Standard blend repairs

- \mathbb{R}^n Very common approach for removal of damage
- $\mathcal{C}^{\mathcal{A}}$ Applied to flat or curved surfaces
- \mathbb{R}^n May extend fatigue life
- **I** Stresses higher than original shape

Australian Government **Department of Defence** Defence Science and **Technology Organisation**

Concept of optimal reworking

- •Optimal shape removes the damaged material and minimises stresses
- •For many practical problems there are no analytical solutions

Outline

Australian Govern **Department of Defence** Defence Science and **Technology Organisation**

- *Context / concept*
- $\mathcal{L}^{\mathcal{A}}$ **Numerical approach**
- **F-111 WPF application & lessons learned**
- $\mathcal{L}_{\mathcal{A}}$ **Fatigue life trends**
- \mathbb{R}^n **Other design studies / applications**
- \mathcal{L}_{max} **Transitioning issues**

Numerical approach

Department of Defence Defence Science and **Technology Organisation**

- •Aim is constant local stress
- •Iterative FE method based on biological growth
- •Net material removal only
- •Remeshing algorithms used – DSTO code

Numerical approach

2D multi-peak stress minimisation

Department of Defence Defence Science and **Technology Organisation**

2:1 elliptical hole 2:1 optimal rework

- **21%** stress reduction compared to elliptical hole
- \bullet **43%** stress reduction compared to circular hole

Numerical approach 3D multi-peak stress minimisation

Department of Defence Defence Science and **Technology Organisation**

2:1 aspect ratio Remote stresses, S $_{2}$ = -S $_{\rm 1}$ /4

• 14 % stress reduction compared to elliptical hole

F-111 wing pivot fitting application

Australian Government Department of Defence Defence Science and **Technology Organisation**

Requirement:

- • Improve shapes for fatigue prone holes and runouts
- •• Achieving PWD & extend inspection intervals

Stiffener runouts

Australian Government Department of Defence Defence Science and **Technology Organisation**

- 30-40% reduction in peak stress
- 4 unique optimal shapes for 4 different locations
- buckling strength considered

Fuel flow vent holes

- П ■ 25 - 50 % stress reductions
- П 4 unique optimal shapes for 4 different locations

Manufacturing rework shapes

- \blacksquare ■ Electrical discharge machining
- \blacksquare Worked - but complex with difficult access

Department of Defence Defence Science and **Technology Organisation**

Experimental validation

Australian Government Department of Defence Defence Science and **Technology Organisation**

Static tests

Fatigue tests

- durability
- damage tolerance

F-111 WPF application Lessons

Australian Government **Department of Defence** Defence Science and **Technology Organisation**

Reshaped holes

Reshaped SRO

Requirements:

- 1.Account for variations in fleet nominal geometry
- 2. Increased understanding re interaction of:
	- •Hole size & aspect ratio
	- •Manufacturing constraints
	- •NDI constraints
	- •Fatigue lifing philosophy
- 3. Need simpler in-situ manufacturing methods

Fatigue life trends Safe life approach

Shape optimisation increases life by reducing stress concentration

$$
\ln(\sigma K_t) = A \ln(t_t) + B \qquad \qquad \underline{t_{t2}}
$$

$$
\frac{t_{t2}}{t_{t1}} = \left(\frac{K_{t2}}{K_{t1}}\right)^{1/A}
$$

Fatigue life trends

Crack growth / SBI

Baseline is initial circular hole, r = 20mm

where $\beta = 1.12(\sigma_y/\sigma_{\text{remote}})$

Fatigue life trends Crack growth / SBI

Technology Organisation

where $K_{ref} = 1.12(\sigma)$ $y - y$ $\sigma/\sigma_{\rm remote}$) $\sigma_{\rm ref}\sqrt{\pi a}$

Reduced rate of crack growth – typically gives longer inspection intervals

Non-circular hole in steel stiffener –F-111 FFVH test case

- **I** Precise templates in conjunction with air-powered tooling
- $\mathcal{C}^{\mathcal{A}}$ Two main steps: 1. Coarse sanding drum, 2. Fine abrasive drum, followed by polishing

Non-circular hole in steel stiffener

coupon wing pivot fitting

Non-circular hole in closely spaced al. alloy stiffeners

Department of Defence Defence Science and **Technology Organisation**

- **For difficult to access locations**
- **Two main steps:**
	- 1. Carbide burr cutting tool,
	- 2. Diamond coated abrasive tool, followed by polishing

Oversized circular hole in closely spaced al. alloy stiffeners

Australian Government Department of Defence Defence Science and **Technology Organisation**

- Oversized circular hole
- ■ Height above skin of 0.01″

Non-circular runout in steel stiffener

Improved NC machining: F-WELD example

Australian Government **Department of Defence** Defence Science and **Technology Organisation**

- ٠ Shape has many circular arcs
- П radius of curvature shown

before

after

Robustness for optimised shapes

Department of Defence Defence Science and **Technology Organisation**

- • Robust optimal has **constant** and **minimised** peak stress over expected 10 degree load misalignment range
- •For variation of load orientations or multiple load cases

Other design studies & applications

Australian Gover **Department of Defence** Defence Science and **Technology Organisation**

- **1. Generic optimal solu tions for loaded plates with:**
	- \bullet Single holes
	- •Interacting holes
	- •Edge notch coupons
	- Surface damage removal (3D)
	- •Shoulder fillets
	- •Crack stop h oles

Other design studies & applications

2. Applications / demonstrators with optimal reworks:

- $1. F-111$ four fuel flow vent holes in WPF
- $2. F-111:$ four stiffener runouts in WPF
- $3. F-111:$ fuel pilot valve hole in upper skin **FEA, full scale tests**
- $4. F-111$ F-111: gravity r efuel hole in upper skin **FEA, full scale tests**
- 5. F-111
- 6. $F/A-18$: . F/A-18: aileron hinge **FEA**, static tests
- 7. F-111
- 8. AP-3C: fuel flow hole in stiffener
- 9. B707: surface damage removal **FEA, manuf. demo**
- 10.F/A-18: vertical tail stub attachment
- 11. PC9/A: **PEA** lower wing skin at up-lock **FEA**
- 12.F/A-18: FS 470 bulkhead **FEA**
- $13. F 35:$ bulkhead access holes test case
- 14.Otherlow kt coupon design

- **FEA, full scale tests, fleet**
-
-
- wing pivot fitting bush **FEA, full scale tests**
	-
- revised FFVH, SRO **FEA, manuf. demo**
	- **FEA, manuf. demo**
	-
	- **FEA, manuf. demo**
		-
		-
	- **FEA**
	- **Fatigue tests, pending**

Australian Cowernment **Department of Defence** Defence Science and **Technology Organisation**

Design study

Generic interacting optimal holes

(loading $S_i = S_i$)

- no interaction effects after optimisation
- optimal shapes approach half-circle as e/h approaches zero

Practical application example

F-111 WPF bush fillet redesign

Australian Government **Department of Defence** Defence Science and **Technology Organisation**

nominal

redesign

- used on F-WELD fatigue test
- •30% stress reduction

•

• Test life 12000 hrs, versus fleet replacement at least every 1025.

Design study Robust hole in a shear panel

Australian Government Department of Defence Defence Science and **Technology Organisation**

31% reduction in peak stress

Transitioning issues

Repair if re-crack occurs at optimal

Options:

- 1. A family of morphed shapes,
	- negligible increase in peak stress

- 2. A local circular arc blend
	- small increase in in peak stress
	- partial or full thickness

Acknowledgements

Technology Organisation

- RAAF ASI DGTA (Sponsorship)
- Staff working on F-111 Sole operator program, including F-WELD
- Other DSTO staff
- RAAF Amberley
- \mathbb{R}^2 **Industry**
	- $\mathcal{L}^{\text{max}}_{\text{max}}$ Boeing, TAE, Amiga Eng., QinetiQ AeroStructures:
- p. Rework shape optimisation a useful approach for life extension
	- p. Shapes either:
		- -- Generic (symmetric)
		- One off optimal shapes
	- p. Key technical impediments overcome
	- p. DSTO keen to transition approach more widely
- $\frac{1}{2}$ Approach applicable to initial design

Conclusions

