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Abstract

Object-oriented programming languages (oopl's) provide important support for today's large-scale

software development projects. Unfortunately, the typing issues arising from the object-oriented fea-

tures that provide this support are substantially di�erent from those that arise in typing procedural

languages. Attempts to adapt procedural type systems to object-oriented languages have resulted in

languages like Simula, C++, and Object Pascal, which have overly restrictive type systems. Among

other things, the rigidity of these systems frequently force programmers to use type casts, which

are a notorious source of hard-to-�nd bugs. These restrictive type systems also mean that many

programming idioms common to untyped oopl's such as Smalltalk are not typeable. One source of

this lack of 
exibility is the con
ation of subtyping and inheritance. Brie
y, inheritance is an imple-

mentation technique in which new object de�nitions may be given as incremental modi�cations to

existing de�nitions. Subtyping concerns substitutivity: when can one object safely replace another?

By tying subtyping to inheritance, existing oopl's greatly reduce the number of legal substitutions

in a system, and hence their degree of polymorphism. Attempts to �x this rigidity have resulted in

unsound type systems, most notably Ei�el's.

This thesis develops a sound type system for a model object-oriented language that addresses

this lack of 
exibility. It separates the notions of subtyping and inheritance, producing a more


exible language. It also supports method specialization, which means that the types of methods

may be specialized in certain ways during inheritance. The lack of such a mechanism is one of the

key sources of type casts in languages like C++ and Object Pascal. The thesis then extends this core

object calculus with abstraction primitives that support a class construct similar to the one found in

languages such as C++, Ei�el, and Java. This formal study explains the link between inheritance and

subtyping: object types that include implementation information are a form of abstract type, and

the only way to get a subtype of an abstract type is by extension (i.e., by inheritance). The study

also suggests that object primitives and encapsulation are orthogonal language features that together

produce object-oriented programming. Hence, adding object primitives to a language that already

supports encapsulation (such as ML) should be su�cient to create an object-oriented language.

Formally, the language is presented as an object calculus and a type system with row variables,

variance annotations, method absence annotations, and abstract types. The thesis proves type

soundness via an operational semantics and an analysis of typing rules.
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Chapter 1

Overview

This thesis develops a sound type system for a model object-oriented language that is more 
ex-

ible than the type systems found in common practical languages. This 
exibility partially stems

from separating the notions of subtyping , a code-substitution principle, and inheritance, an object-

de�nition reuse mechanism. Another source of its 
exibility is its support for method specialization,

a mechanism whereby the types of methods may be re�ned in certain ways during inheritance. The

lack of such a mechanism is one of the key sources of type casts in languages like C++ and Object

Pascal. The formal language presented in this thesis is developed in three stages: (i) an object

calculus to model inheritance, (ii) an extension to this calculus that incorporates subtyping, (iii)

a further extension to model classes. We prove the soundness of the resulting type system via a

subject reduction theorem and an analysis of typing derivations.

1.1 An Object Calculus

There are several forms of object-oriented languages. One of the major lines of di�erence is between

class-based and object-based languages. In class-based languages such as Smalltalk [GR83] and C++

[ES90], each object is created by a class and inheritance is determined by the class. In object-based

languages such as Self [US91, CU89], an object may be created from another object, inheriting

properties from the original. In this stage, we use an untyped lambda calculus of objects with a

functional form of object-based inheritance as a tool for studying typing issues in object-oriented

programming languages. Our main interests lie in (i) understanding how the functionality of a

method may change as it is inherited, intuitively due to reinterpretation of the special symbol self

(or this in C++), and (ii) providing a simple model of object-based inheritance that will serve as a

building block for more complex systems.

In our calculus, the main operations on objects are to send a message m to an object e , written

e(m , and two forms of method de�nition. If expression e denotes an object without method m ,

1



2 CHAPTER 1. OVERVIEW

then he + m = e0i denotes an object obtained from e by adding the method body e0 for m . When

he + m = e0i is sent the message m , the result is obtained by applying e0 to he + m = e0i . This

form of \self-application" allows us to model the special symbol self of object-oriented languages

directly by lambda abstraction. Intuitively, the method body e0 must be a function, and the �rst

actual parameter of e0 will always be the \object itself." To reinforce this intuition, we often write

method bodies in the form �self:(: : :). The �nal method operation on objects is to replace one

method body by another. This provides a functional form of update. As in the language Self, we

do not distinguish instance variables from methods, since this does not seem essential. The untyped

lambda calculus we use bears a strong resemblance to the T object system [RA82, AR88] (although

it was originally developed without prior knowledge of T) and the untyped part of the calculus used

in [Aba94] to model a fragment of Modula 3 [Nel91, CDJ+ 89].

The main goal of this stage is to develop a type system that allows methods to be specialized

appropriately as they are inherited. Intuitively, it may be the case that the types of methods should

become \more speci�c" when they are inherited, re
ecting the fact that they belong to a more

detailed object after the inheritance. This issue is perhaps best explained via an example. Brie
y,

suppose p is a two-dimensional point object with x and y methods returning the integer x- and

y -coordinates of p , and a move method with type int� int! point . Method move has this type

because if we send the message move to p , we obtain a function which given distances to move in the

x and y directions, returns a point identical to p , but with updated x� and y -coordinates. If we

create a colored point cp from p by the object-extension operation, then cp inherits the x; y; and

move methods from p . In an untyped object-oriented language such as Smalltalk, the inherited move

method will change the position of a colored point, leaving the color unchanged. Therefore, in a typed

language, we want the move method of cp to have the \specialized" type int� int! color point .

If the inherited method had its original type int� int! point , then whenever we moved a colored

point, we would obtain an ordinary point without color, making the inherited move function largely

useless. While an imperative version of move could bypass this di�culty by returning type unit (as it

is called in ML, or void in C++), experience with imperative object-oriented languages such as Ei�el

and C++ suggest such self-returning methods are frequently convenient. Ei�el's like Current

construct [Mey92], analyzed in [Coo89b], illustrates the value of specializing the type of a method in

an imperative language. While C++ did not originally include such a construct, its widespread use

is not counter-evidence to the usefulness of method specialization. In fact, it appears to be common

for novice C++ programmers to attempt to specialize the types of methods in derived classes. More

experienced C++ programmers appear to use \down casts" to approximate the e�ects described

here. Additionally, a recent change to C++ adds a form of method specialization that allows the

return types of methods to be re�ned during inheritance.

Formally, in this stage we present an object calculus, an operational semantics, and a type

system for the calculus, although we defer the explanation of some of the technical details regarding
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\variance analysis" to the next stage. Subject reduction and type soundness theorems for this

language follow from the corresponding theorems for the �nal language, which appear in Chapter 7.

1.2 Adding Subtyping

When this study was started, we initially regarded the object-inheritance-based approach, described

above, as a technically simpler method for analyzing inheritance. This impression appeared correct

for the study of method specialization carried out in [Mit90, FHM94], but in [FM95b] we observed

that there appeared to be a fundamental trade-o� between object-based inheritance and subtyping.

Speci�cally, if an object may be extended with new methods, then it is important to know at compile-

time that certain methods have not been de�ned already. This requirement con
icts with the usual

motivation for subtyping, which is to allow code to operate uniformly over all objects having some

minimum set of required methods. (Similar observations appear in [AC96c]; see Section 4.1.1.)

In this second stage, we present one way of resolving this con
ict. Intuitively, the main idea

is to distinguish between objects that may be extended with additional methods (or have existing

methods rede�ned) and those that cannot. This distinction is achieved by giving di�erent uses

of objects di�erent types. In other words, an object may be created and then have new methods

added or existing methods rede�ned. At this point, only trivial subtyping may be used because the

type system must keep track of exactly the set of methods associated with the object. However,

such an object may be \converted" to a di�erent kind of object, whose methods can no longer be

altered. This conversion is done by changing the type of the object to a form which has the expected

subtyping properties. In this way, we allow both object-based inheritance and subtyping, at the cost

of some increase in the complexity of the type system.

Technically, in this stage we present an extension to the type system already developed that sup-

ports object subtyping. We also explain the details deferred above regarding the so-called \variance

analysis" that tracks how type variables may vary in type expressions. Such information is crucial

to determining subtyping relations between partially abstract object types, which will be very useful

in modeling classes. As in the previous stage, subject reduction and type soundness theorems for

this language follow from the corresponding theorems for the �nal language. A preliminary version

of this system appeared in [FM95a].

1.3 Adding Classes

At this point, we have described an object calculus that models object-based inheritance and rich

object subtyping. However, most practical object-oriented languages are class-based languages. This

fact raises the question of how to appropriately model classes. Although a full discussion of the mo-

tivation for object-oriented languages is beyond the scope of this thesis, it is worth considering some
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desirable language characteristics before proceeding. Generally speaking, objects provide a useful

encapsulation mechanism, separating internal implementation details from externally observable be-

havior, and provide a uniform framework for identifying and specifying the interfaces of various data

and system resources. Within this context, classes serve several functions.

� Programming methodology: Classes provide a mechanism for declaring both a hierarchy of

object types and object implementations.

� Implementation considerations: In class-based languages, it is possible to have class-based

protection mechanisms, where the methods of an object may access the private data of another

object of the same class (or of related classes). This access can be statically checked: classes

specify all or part of the implementations of their objects, so all objects of the same class can

be guaranteed to share certain implementation characteristics. This guarantee is useful for

binary operations, such as set union, and for optimizing method lookup (as in C++).

� Static analysis: In comparison with prototype-based languages like Self, where delegation

pointers may be set at run time, classes generally force inheritance to be a compile-time

operation. This restriction greatly simpli�es the static determination of the correctness of

class declarations.

Based on these, and other considerations, we believe that in a typed setting, a class mechanism

should have the following characteristics.

� A class provides an extensible collection of object \parts". The parts may be methods, data,

speci�cations of communication protocols, and so on. Extensibility means that a derived class

can use the object parts de�ned in a base class, possibly adding other parts to be used by

subsequent derived classes.

� A class construct should include some static condition for guaranteeing that the object \parts"

de�ned in the class are consistent with each other. For example, it should not be possible to

de�ne a class where one integer method f requires a string method g , but g is declared to be

an integer method requiring a string method f .

� A class should provide the ability to specify which \parts" are private (for use within the class

implementation) and which are public (for use by client programs). It should be possible to

distinguish private from public parts for the current class and for all derived classes.

� A class should provide control over initialization of objects, both for the current class and

all derived classes. This is essential for establishing invariants of private data structures,

initializing system resources used by the object, and so on.

� A class construct should support incremental changes to its de�nition. In particular, if a given

class is modi�ed, all derived classes should be updated automatically.
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In this third stage, we consider a class construct which resembles the form of class found in

C++, Ei�el, and Java, and has all of the above properties. This class construct may be written

in our object calculus extended with a form of abstract data type declaration. One appeal of this

interpretation is that it clearly shows how classes may be viewed as an orthogonal combination of pure

operations on objects (providing aggregation but no encapsulation) and data abstraction (providing

encapsulation but no aggregation). This analysis provides some insight into the suitability of using

object-inheritance-based systems to support traditional class-based programming. To the best of

our knowledge, this interpretation of classes provides the �rst type soundness proof for the form of

class construct found in Ei�el, C++, and Java.

Furthermore, this analysis sheds light on the long-standing controversy over the proper relation-

ship between subtyping and inheritance. An early and in
uential paper, [Sny86], argues that the

two ideas are distinct. This point is reinforced in [Coo92], which shows that the subtyping and

inheritance hierarchies used in the Smalltalk collection classes are essentially unrelated. We believe

that the arguments in [Sny86, Coo92] are correct for interface types, which are types that specify

the operations of their objects but not their implementations. Such types have been the focus of

recent theoretical studies of object systems, such as [AC96c, Bru93, FHM94, PT94] and the earlier

papers appearing in [GM94]. However, existing object-oriented languages such as Ei�el [Mey92] and

C++ [ES90, Str86] use a form of implementation type that constrains both the interface and the

implementations of objects. We argue that there is a connection between subtyping and inheritance

for implementation types: the only way to produce a subtype of an implementation type, without

violating basic principles of data abstraction, is via inheritance. In addition, we show a connection

between interface types and implementation types: every implementation type is a subtype of the

interface type obtained by \forgetting" its implementation constraints. Our class construct will pro-

vide a mechanism for declaring implementation types, and the subtyping properties of our language

will enable us to prove that implementation types are subtypes of the corresponding interface types

(as long as a technical condition on the variance of the interface type is satis�ed).

Formally, we extend the language developed in the second stage with expressions to de�ne and

use a form of abstract data type. We introduce a new type, a form of bounded existential, to type

abstract data type implementations, and we extend our operational semantics to allow evaluation

of abstract data type uses. Chapter 6 presents the full language in formal detail. We prove that the

resulting language is sound via a subject reduction theorem and an analysis of typing derivations.

1.4 Road Map

The rest of the thesis is organized as follows. Chapter 2 summarizes some of the major issues in

object-oriented programming. Chapter 3 presents the �rst stage described above, a simple prototype-

based calculus for modeling inheritance. In Chapter 4, we introduce subtyping. Chapter 5 extends
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our calculus with an abstract data type mechanism to model classes of the form described above.

Chapter 6 presents the full formal system needed to model this �nal language. Finally, Chapter 7

presents subject reduction and type soundness proofs for the �nal language in detail.



Chapter 2

Introduction to Object-Oriented

Concepts

\Object orientation" is both a language feature and a design methodology. In general, object-

oriented design is concerned with ways in which programs may be organized and constructed. Ob-

jects provide a program-structuring tool whose importance seems to increase with the size of the

programs we build. Roughly speaking, an object consists of a set of operations on some hidden, or

encapsulated, data. A characteristic of objects is that they provide a uniform interface to a variety

of system components. For example, an object can be as small as a single integer or as large as a

�le system or output device. Regardless of its size, all interactions with an object occur via simple

operations that are called \message sends" or \member function invocations." The use of objects to

hide implementation details and provide a \black box" interface is useful for the same reasons that

data and procedural abstraction are useful.

Although this chapter is about language features, not methodology, we describe object-oriented

design brie
y since this design paradigm is one of the reasons for the success of object-oriented

programming. The following programming methodology is taken from [Boo91], one of many current

books on object-oriented design.

1. Identify the objects at a given level of abstraction.

2. Identify the semantics (intended behavior) of these objects.

3. Identify the relationships among the objects.

4. Implement the objects.

This is an iterative process based on associating objects with components or concepts in a system.

The process is iterative because an object is typically implemented using a number of \sub-objects,"

7
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just as in top-down programming a procedure is typically implemented by a number of �ner-grained

procedures.

The data structures used in the early examples of top-down programming (see [Dij72]) were very

simple and remained invariant under successive re�nements of the program. Since these re�nements

involved simply replacing procedures with more detailed versions, older forms of structured pro-

gramming languages, such as Algol, Pascal, and C, were adequate. When solving more complex

tasks, however, it is often the case that both the procedures and the data structures of a program

need to be re�ned in parallel. Object-oriented languages support this joint re�nement of function

and data.

2.1 Basic Concepts

Not surprisingly, all object-oriented languages have some notion of an \object," which is essentially

some data and a collection of methods that operate on that data. There are (at least) two 
avors of

object-oriented languages: class-based and object-based. These 
avors correspond to two di�erent

ways of de�ning and creating objects. In class-based languages, such as Smalltalk [GR83] and C++

[ES90], the implementation of an object is speci�ed by its class. In such languages, objects are

created by instantiating their classes. In object-based languages, such as Self, objects are de�ned

directly from other objects by adding new methods via method addition and replacing old methods

via method override. In the remainder of the chapter, we will focus on the more common class-based

languages.

Although there is some debate as to what exactly constitutes an object-oriented programming

language (besides merely having objects), there seems to be general agreement that such a language

should provide the following features: dynamic lookup, subtyping, inheritance, and encapsulation.

Brie
y, a language supports dynamic lookup if when a message is sent to an object, the method

body to execute is determined by the run-time type of the object, not its static type. Subtyping

means that if some object ob1 has all of the functionality of another object ob2 , then we may use

ob1 in any context expecting ob2 . Inheritance is the ability to use the de�nition of simpler objects

in the de�nitions of more complex ones. Encapsulation means that access to some portion of an

object's data is restricted to that object (or perhaps to its descendants). We explore these features

in more detail in the following subsections.

2.1.1 Dynamic Lookup

In any object-oriented language, there is some way to invoke the methods associated with an object.

In Smalltalk, this process is called \sending a message to an object," while in C++ it is \calling a

member function of an object." To give a neutral syntax, we write

receiver(operation
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for invoking operation on the object receiver . For expositional clarity, we will use the Smalltalk

terminology for the remainder of this section.

Sending messages is a dynamic process: the method body corresponding to a given message

is selected according to the run-time identity of the receiver object. The fact that this selection

is dynamic is essential to object-oriented programming. Consider, for example, a simple graphics

program that manipulates \pictures" containing many di�erent kinds of shapes: squares, circles,

triangles, etc. Each square object \knows" how to draw a square, each circle \knows" how to draw

a circle, etc. When the program wants to display a given picture, it sends the draw message to each

shape in the picture. At compile-time, the most we know about an object in the picture is that it is

some kind of a shape and hence has some draw method. At run-time, we can �nd the appropriate

draw method for each shape by querying that shape for its version of the draw method. If the shape

is a square, it will have the square draw method, etc. 1

There are two main views for what sending a message means operationally. In the �rst view,

each object contains a \method table" that associates a method body with each message de�ned for

that object. When a message is sent to an object at run-time, the corresponding method is retrieved

from that object's method table. As a result, sending the same message to di�erent objects may

result in the execution of di�erent code. In the example above, a square shape draws a square in

response to the draw message, while a circle draws a circle. This behavior is called dynamic lookup,

or, variously, dynamic binding, dynamic dispatch, and run-time dispatch. Both C++ and Smalltalk

support this model of message sending.

The second view of message sending treats each message name as an \overloaded" function.

When a message m is sent to an object ob , ob is treated as the �rst argument to an overloaded

function named m . Unlike the traditional overloading of arithmetic operators, the appropriate code

to execute when m is invoked is selected according to the run-time type of ob , not its static type. In

this view, the methods of an object are not actually part of the object. Each object consists solely

of its state. The methods from all the objects in a program are collected together by name. For

example, the circle and square objects from above would simply contain their local state, i.e., the

circle might contain its center and radius, the square its corner points. The draw methods from

each would be collected into some \method repository". If the draw message were sent to some

object ob , the dynamic type of ob would be determined and the appropriate draw code selected

from the repository. If ob were a circle, the circle draw method would be executed, etc. In this

view, we again get the important characteristic that sending the same message to di�erent objects

can result in the execution of di�erent code. Languages such as CLOS [Ste84] and Dylan [App92]

support this model of message sending. A theoretical study appears in [CGL95].

In the second approach, it is possible to take more than the �rst argument into account in the

1In C++, only member functions designated virtual are selected dynamically. Non-virtual member functions are

selected according to the static type of the receiver object. Needless to say, this distinction is the source of some

confusion.
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selection of the appropriate method body to execute. For example, if we write

receiver(operation(arguments)

for invoking an operation with a list of arguments, then the actual code invoked can depend on

the receiver alone (as explained above), or on the receiver and one or more arguments. When the

selection of code depends only on the receiver, it is called single dispatch; when it also depends on

one or more arguments, it is called multiple dispatch. Multiple dispatch is useful for implementing

operations such as equality, where the appropriate comparisons to use depend on the dynamic type

of both the receiver object and the argument object.

Although multiple dispatch is in some ways more general than the single dispatch found in C++

and Smalltalk, there seems to be some loss of encapsulation. This apparent loss arises because

in order to de�ne a function on di�erent kinds of arguments, that function must typically have

access to the internal data of each function argument. For example, suppose we wanted to de�ne a

same center method that compares the centers of any two shapes and returns true if they match.

Using multiple dispatch, we can write such a function by giving one version of the method for each

pair of shapes we wish to consider: circle and circle, circle and square, square and circle, etc. Notice

that this same center method does not conceptually belong to any one of the shapes, and yet it

must have access to the internal data of each shape object in order to do any meaningful comparisons.

This external access of object internals violates the standard notions of encapsulation for object-

oriented languages. It is not clear that this loss of encapsulation is inherent to multiple dispatch.

However, current multiple dispatch systems do not seem to o�er any reasonable encapsulation of

private or local data for objects. Recent work addressing this issue appears in [CL94].

2.1.2 Subtyping

The basic principle associated with subtyping is substitutivity: if A is a subtype of B, then any

expression of type A may be used without type error in any context that requires an expression of

type B. We will write \A <: B" to indicate that A is a subtype of B.

The primary advantage of subtyping is that it permits uniform operations over various types of

data. For example, subtyping makes it possible to have heterogeneous data structures containing

objects that belong to di�erent subtypes of some common base type. Consider as an example a

queue containing various bank accounts to be balanced. These accounts could be savings accounts,

checking accounts, investment accounts, etc., but each is a subtype of bank account so balancing is

done in the same way for each. This uniform treatment is generally not possible in strongly typed

languages without subtyping.

Subtyping in an object-oriented language also allows functionality to be added with minimal

modi�cation to the system. If objects of a type B lack some desired behavior, then we may wish to

replace objects of type B with objects of another type A that have the desired behavior. In many
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cases, the type A will be a subtype of B. By designing the language so that substitutivity is allowed,

one may add functionality in this way without any other modi�cation to the original program.

An example illustrating this use of subtyping occurs in building a series of prototypes of an airport

scheduling system. In an early prototype, one would de�ne a class airplane with methods such as

position, orientation, and acceleration that would allow a control tower object to a�ect the

approach of an airplane. In a later prototype, it is likely that di�erent types of airplanes would be

modeled. If one adds classes for Boeing 757's and Beechcrafts, these would be subtypes of airplane,

containing extra methods and �elds re
ecting features speci�c to these aircraft. By virtue of the

subtyping relation, all Beechcrafts are instances of airplane and the general control algorithms that

apply to all airplanes can be used for Beechcrafts without modi�cation or re-compilation.

2.1.3 Inheritance

Inheritance is a language features that allows new classes to be de�ned as increments to existing ones.

It is an implementation technique. For every object or class of objects de�ned using inheritance,

there is an equivalent de�nition that does not use inheritance, obtained by expanding the de�nition

so that inherited code is duplicated. The importance of inheritance is that it saves the e�ort of

duplicating (or reading duplicated) code, and that when one class is implemented by inheriting from

another, changes to one a�ect the other. This has a signi�cant and sometimes debated impact on

program maintenance and modi�cation.

Using a neutral notation, we can illustrate by a simple example the form of inheritance that

appears in most object-oriented languages. The two classes below de�ne objects with private data v

and public methods f and g . The class B is de�ned by inheriting the declarations of A , rede�ning

the function g , and adding a private variable w .

class A =

private

val v = ...

public

fun f(x) = ... g(...) ...

fun g(y) = ... original definition ...

end;

class B = extend A with

private

val w = ...

public

fun g(y) = ... new definition ...

end;
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The simplest, but not most e�cient, implementation of inheritance is to incorporate the relationship

between classes explicitly in the run-time representation of objects, as is done in Smalltalk. For the

example classes A and B above, this implementation is shown in Figure 2.1. This �gure shows data

structures representing the

A Class: stores pointers to the A Template and A Method Dictionary.

A Template: gives the names and order of data associated with each A object.

A Method Dictionary: contains pointers to the names and code for methods de�ned

in the A Class.

B Class: stores pointers to the B Template, B Method Dictionary, and base class A .

B Template: gives the names and order of data associated with each B object.

B Method Dictionary: contains pointers to the names and code for methods de�ned

in the B Class.

The �gure also shows an A object a and a B object b . Both of these objects contain pointers to

their class and storage for their data.

We can see how this data structure allows us to �nd the correct methods to execute at run-time

by tracing the evaluation of the expression b(f(). The sequence of events is:

1. We �nd the method dictionary for B objects by following b 's class pointer to the B Class and

then accessing the class's method dictionary.

2. We search the B method dictionary for method name f .

3. Since f is not there, we follow the B Class's base class pointer to the A Class and then access

the A method dictionary.

4. We �nd the function f in the A method dictionary.

5. When the body of f refers to g, we begin the search for the g method with the b object,

guaranteeing that we �nd the g function de�ned in the B Class.

This implementation may be optimized in several ways. The �rst is to cache recently-found

methods. Another possibility is to expand the method tables of derived classes to include the

method tables of their base classes. This expansion eliminates the upward search through the method

dictionaries of more than one class. Since the dictionaries contain only pointers to functions, this

duplication does not involve a prohibitive space overhead. C++ makes this optimization.

A more signi�cant optimization may be made in typed languages such as C++, where the set

of possible messages to each object can be determined statically. If method dictionaries, or virtual

function tables (vtables) in C++ terminology, can be constructed so that all subtypes of a given class

A store pointers to the common methods in the same relative positions in their respective vtables,
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14 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED CONCEPTS

then the o�set of a method within any vtable can be computed at compile-time. This optimization

reduces the cost of method lookup to a simple indirection without search, followed by an ordinary

function call. In untyped languages such as Smalltalk, this optimization is not possible because at

compile-time, all we know about an object is that it is an object. In general, we do not know what

messages it understands, let alone where the corresponding methods are stored.

Figure 2.2 shows a schematic C++ representation of the example classes A and B given above.

This �gure contains an A object a and a B object b . Each of these objects stores its instance

variables and has a pointer to its class's vtable. The A vtable contains pointers to the methods

de�ned in the A class, while the B vtable contains pointers to all the methods de�ned in B and to

those de�ned in A but not rede�ned in B . (The expression A: : f denotes the f function de�ned in

the A Class and the \&" denotes C++'s address-of operator.) By duplicating the f method pointer

in the B vtable, we do not have to access the A vtable when manipulating a B object.

We may see how this data structure works by tracing the evaluation of the expression b(f().

The sequence of events is essentially:

1. We �nd the vtable for B objects by following b 's vtable pointer.

2. At compile-time, we may determine that the f method is the �rst entry in the B vtable, so

we retrieve the f method from the vtable without searching.

3. When the body of f refers to g , we retrieve the g method from b 's vtable, guaranteeing that

we use the g function de�ned in the B class.

For more information, see [ES90, Section 10.7c]. The actual process is somewhat more compli-

cated because of multiple inheritance. See [ES90, Chapter 10] for more details.

2.1.4 Encapsulation

Objects are used in most object-oriented programming languages to provide encapsulation barriers

similar to those given by abstract data types (ADT's). However, because object-oriented languages

have inheritance, object-oriented encapsulation can be more complex than simple data abstraction.

In particular, there are two \clients" of the code in a given ADT: the implementor, who \lives"

inside the encapsulation barrier, and the general client, who \lives" outside and may only interact

with the ADT via its interface. A graphic representation of this relationship appears in Figure 2.3.

Because of inheritance, there are three \clients" of the code in a given object de�nition, not two. The

additional \client," the inheritor, uses the given object de�nition via inheritance to implement new

object de�nitions. Because object de�nitions have two external clients, there are two interfaces to the

\outside": the public interface lists what the general client may see, while the protected interface lists

what inheritors may see. (This terminology comes from C++.) A graphic representation appears in

Figure 2.4. It is typically the case that the public interface is less detailed than the protected one.
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Figure 2.4: In object-oriented encapsulation, the general client interacts with the object implemen-
tation via the public interface, while the inheritors interact via the protected interface.

In Smalltalk, these interfaces are generated automatically: the public interface lists the methods of

an object, while the protected interface lists its methods and its instance variables. In C++, the

programmer explicitly declares which components of an object are public, which are protected, and

which are private, visible only in the object de�nition itself.

The encapsulation provided by object-oriented languages helps insure that programs can be

written in a modular fashion and that the implementation of an object can be changed without

forcing changes in the rest of the system. In particular, as long as the public interface of an object

remains unchanged, modi�cations to its implementation do not force general clients to change their

code. Similarly, if implementation modi�cations preserve an object's protected interface, inheritors

need not update their code, either. In both cases, however, they may have to recompile.

2.2 ADT's vs. Objects

As we saw in the previous section, the encapsulation bene�ts provided by objects are the same as

those realized by abstract data types. Because object-oriented languages provide dynamic lookup,

subtyping, and inheritance in addition to encapsulation, objects may be used more 
exibly than
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ADT's. The importance of these added features becomes apparent when we wish to use related data

abstractions in similar ways. We illustrate this point with the following example involving queues.

A typical language construct for de�ning an abstract data type is the ML abstype declaration,

which we use below to de�ne a queue ADT.

exception Empty;

abstype queue = Q of int list

with

fun mk Queue() = Q(nil)

and is empty(Q(l)) = l=nil

and add(x,Q(l)) = Q(l @ [x])

and first (Q(nil)) = raise Empty

| first (Q(x::l)) = x

and rest (Q(nil)) = raise Empty

| rest (Q(x::l)) = Q(l)

and length (Q(nil)) = 0

| length (Q(x::l)) = 1 + length (Q(l))

end;

In this example, a queue is represented by a list. However, only the functions given in the declaration

may access the list. This restriction allows the invariant that list elements appear in �rst-in/�rst-out

order to be maintained, regardless of how queues are used in client programs.

A drawback of the kind of abstract data types used in ML and other languages such as CLU

[LSAS77, L+ 81] and Ada [US 80] becomes apparent when we consider a program that uses both

queues and priority queues. For example, suppose that we are simulating a system with several

\wait queues," such as a bank or hospital. In a teller line or hospital billing department, customers

are served on a �rst-come, �rst-served basis. However, in a hospital emergency room, patients are

treated in an order that takes into account the severity of their injuries. Some aspects of this kind

of \wait queue" are modeled by the abstract data type of priority queues, shown below:

exception Empty;

abstype pqueue = Q of int list

with

fun mk PQueue() = Q(nil)

and is empty(Q(l)) = l=nil

and add(x,Q(l)) =

let fun insert(x,nil) = [x:int]

insert(x,y::l) = if x < y then x::y::l else y::insert(x,l)

in Q(insert(x,l)) end



18 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED CONCEPTS

and first (Q(nil)) = raise Empty

| first (Q(x::l)) = x

and rest (Q(nil)) = raise Empty

| rest (Q(x::l)) = Q(l)

and length (Q(nil)) = 0

| length (Q(x::l)) = 1 + length (Q(l))

end;

For simplicity, like the queues above, this queue is de�ned only for integer data. Although the

priority of a queue element may come from any ordered set, we use the integer value as the priority,

with lower numbers given higher priority.

Note that the signature of priority queues, the list of available methods and their associated

types, is the same as for ordinary queues: both have the same number of operations, and each

operation has the same type, except for the di�erence between the type names pqueue and queue.

However, if we declare both queues and priority queues in the same scope, the second declarations

of is empty, add, first, rest, and length hide the �rst. This name clashing requires us to

rename them, say as q is empty, q add, q first, q rest, q length and pq is empty, pq add,

pq first, pq rest, pq length.

In a hospital simulation (or real-time hospital management) program, we might occasionally like

to treat priority queues and ordinary queues uniformly. For example, we might wish to count the

total number of people waiting in any line in the hospital. To write this code, we would like to

have a list of all the queues (both priority and ordinary) in the hospital and go down the list asking

each queue for its length. But if the length operation is di�erent for queues and priority queues,

we have to decide whether to call q length or pq length, even though the correct operation is

uniquely determined by the data. This shortcoming of ordinary abstract data types is eliminated in

object-oriented programming languages by a combination of subtyping and dynamic lookup.

Another drawback of traditional abstract data types becomes apparent when considering the

implementation of the priority queue above. Although the priority queue's version of the add

function is di�erent from the queue's version, the other �ve functions have identical implementations.

In an object-oriented language, we may use inheritance to de�ne pqueue from queue (or vice versa),

giving only the new add function.

2.3 Object-Oriented vs. Conventional Organization

Because object-oriented languages have subtyping, inheritance, and dynamic lookup, programs writ-

ten in an object-oriented style are organized quite di�erently from those written in a traditional style.

In this section, we illustrate some of the di�erences between object-oriented and \conventional" pro-

gram organizations via an extended example. We give two versions of a program that manipulates
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several kinds of geometric shapes. One version uses classes; the other does not.

Without classes, we use records (or struct's) to represent each shape. For each operation

on shapes, we have a function that tests the type of shape passed as an argument and branches

accordingly. We illustrate this program structure using a C program, with each shape represented

as a struct (analogous to a Pascal or ML record). The code appears in Appendix A. We will refer

to this program as the \typecase" version, since each function is implemented by a case analysis on

the types of shapes. For brevity, the only shapes are circles and rectangles.

We can see the advantage of object-oriented programming by rewriting the program so that each

object has the shape-speci�c operations as methods. This version appears in Appendix B.

Some observations:

� We can see the di�erence between the two program organizations in the following matrix. For

each function, center, move, rotate and print, there is code for each geometric shape, in

this case circle and rectangle. Thus we have eight di�erent pieces of code.

class function

center move rotate print

circle c center c move c rotate c print

rectangle r center r move r rotate r print

In the \typecase" version, these functions are arranged by column, while in the class-based

program, they are arranged by row. Each arrangement has some advantages when it comes to

program maintenance and modi�cation. In the object-oriented approach, adding a new shape

is straightforward. The code detailing how the new shape should respond to the existing oper-

ations all goes in one place: the class de�nition. Adding a new operation is more complicated,

since the appropriate code must be added to each of the class de�nitions, which could be

spread throughout the system. In the \typecase" version, the reverse situation is true: adding

a new operation is relatively easy, but adding a new shape is di�cult.

� There is a loss of encapsulation in the typecase version, since the data manipulated by rotate,

print and the other functions has to be publicly accessible. In contrast, the object-oriented

solution encapsulates the data in the circle and square objects. Only the methods of these

objects may access this data.

� The \typecase" version cannot be statically type-checked in C. It could be type-checked in a

language with a built-in \typecase" statement which tests the type of an struct directly. An

example of such a language feature is the Simula inspect statement. Adding such a statement

would require that every struct be tagged with its type, a process which requires about the

same amount of space overhead as making each struct into an object.
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� In the typecase version, \subtyping" is used in an ad hoc manner. We coded circle and rectangle

so that they have a shared �eld in their �rst location. This is a hack to implement a tagged

union that could be avoided in a language providing disjoint (as opposed to C unchecked)

unions.

� The complexity of the two programs is roughly the same. In the \typecase" version, there is the

space cost of an extra data �eld (the type tag) and the time cost, in each function, of branching

according to type. In the \object" version, there is a hidden class or vtable pointer in each

object, requiring essentially the same space as a type tag. In the optimized C++ approach,

there is one extra indirection in determining which method to invoke, which corresponds to

the switch statement in the \typecase" version. (Although in practice a single indirection will

frequently be more e�cient than a switch statement.) A Smalltalk-like implementation would

be less e�cient in general, but for methods that are found immediately in the subclass method

dictionary (or via caching), the run-time e�ciency may be comparable.

A similar example appears in [Str86, Sections 7.2.7{8].

2.4 Advanced Topics

2.4.1 Inheritance Is Not Subtyping

Perhaps the most common confusion surrounding object-oriented programming is the di�erence

between subtyping and inheritance. One reason subtyping and inheritance are often confused is

that some class mechanisms combine the two. A typical example is C++, where A will be recognized

by the compiler as a subtype of B only if B is a public parent class of A. Combining these mechanisms

is an elective design decision, however; there seems to be no inherent reason for linking subtyping

and inheritance in this way.

We may see the di�erences between inheritance and subtyping most clearly by considering an

example. Suppose we are interested in writing a program that requires dequeues, stacks, and

queues. One way to implement these three classes is �rst to implement dequeue and then to

implement stack and queue by appropriately restricting (and perhaps renaming) the operations of

dequeue. For example, stack may be obtained from dequeue by limiting access to those operations

that add and remove elements from one end of the dequeue. Similarly, we may obtain queue from

dequeue by restricting access to those operations that add elements at one end and remove them from

the other. This method of de�ning stack and queue by inheriting from dequeue is possible in C++

through the use of private inheritance. (We are not recommending this style of implementation;

we use this example simply to illustrate the di�erences between subtyping and inheritance.) Note

that although stack and queue inherit from dequeue, they are not subtypes of dequeue. To see this

point, consider a function f that takes a dequeue d as an argument and then adds an element to
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both ends of d. If stack or queue were a subtype of dequeue, then function f should work equally

well when given a stack s or a queue q. However, adding elements to both ends of either a stack

or a queue is not legal; hence, neither stack nor queue is a subtype of dequeue. In fact, the reverse

is true. Dequeue is a subtype of both stack and queue, since any operation valid for either a stack

or a queue would be a legal operation on a dequeue. Thus, inheritance and subtyping are di�erent

relations: we de�ned stack and queue by inheriting from dequeue, but dequeue is a subtype of

stack and queue, not the other way around.

A more detailed comparison of the two mechanisms appears in [Coo92], which analyzes the

inheritance and subtyping relationships between Smalltalk's collection classes. In general, there is

little relationship between the two relations. See [Sny86] for more examples.

2.4.2 Object Types

There are two forms of types we might give to objects. The �rst is a type that simply gives the

interface to its objects. The second is an interface plus some implementation information. In the

�rst case, the elements of a type will be all objects that have a given interface. We call such types

\interface types". In the second case, a type will contain only those elements that also have a certain

representation. The type that C++ gives to an object is of the second form, since all objects of the

same type are guaranteed to have the same basic implementation.

Since the �rst form of type is more basic, we begin by discussing it. The following example

uses the syntax of Rapide, an experimental language designed for prototyping software and mixed

software/hardware systems [BL90, MMM91, KLM94, KLMM94].

type Point is interface

x val : int;

y val : int;

distance : Point ! int;

end interface;

Objects of type Point must have two integer methods, called x val and y val, and a method

called distance. This distance method requires only one argument, since the method belongs to

a particular point and therefore may compute the distance between the point passed as an actual

parameter and the particular point to which the method belongs. In other words, the intended

use of the distance method of a point object p is to compute the distance between p and another

point object q, by a call of the form p(distance(q). Of course, since the interface gives only

the names of methods and their types, the distance method is not actually forced to compute the

distance between two points. If we wish to specify that distance must compute distance, then a

more expressive form of speci�cation must be added to the interface. One signi�cant feature of this



22 CHAPTER 2. INTRODUCTION TO OBJECT-ORIENTED CONCEPTS

type interface for Points is that the type name Point appears within it. Hence interface types often

seem to be recursively-de�ned types.

To discuss object types in general, we introduce the syntax fjm1:A1 ; : : : ; mk:Ak jg for the interface

type specifying methods m1; : : : ; mk of types A1; : : : ; Ak , respectively. Using this notation, we may

recursively de�ne the type Point as

Point
def
= fjx val:nt; y val: int; distance:Point! intjg

Objects that have this interface type are guaranteed to have integer x val and y val methods. They

are also guaranteed to have a method distance that returns an integer whenever it is given another

object with the �Point interface. Objects with this interface are not required to have any particular

implementation. For example, an object that stores a point in polar coordinates and implements

x val and y val as functions that convert the stored polar coordinates into their cartesian counter-

parts may be given this interface type, just as the obvious cartesian implementation may. It is also

the case that objects with the Point interface may have more methods than just those listed in the

interface. For example, the polar point object described above must have some �elds storing the

polar coordinates of the point. These �elds are not re
ected in the Point interface.

If the type of an object is its interface, then subtyping for object types is \compatibility" or

\conformance" of interfaces. More speci�cally, if one interface provides all of the methods of another

with compatible types, then every object of the �rst type should be acceptable in any context

expecting an object of the second type. This kind of subtyping is of the form:

fjx:Point; c: colorjg <: fjx:Pointjg

which we call \width" subtyping. (We use the symbol <: to denote the subtype relation between

types.) This subtyping \judgment" says that we may consider any object that has the interface

fjx:Point; c: colorjg to have the interface fjx:Pointjg as well. In other words, we may put an object

with interface fjx:Point; c: colorjg into any context expecting an object with interface fjx:Pointjg

and be guaranteed that no type errors will result. We may see the justi�cation for this guarantee by

considering what a context C[ob] may ask of its argument object ob . Since C expects to be given

an object with the fjx:Pointjg interface, all it \knows" about its argument object is that it has an x

method that returns a Point object. Hence all it may do with ob is ask for its x method and then

treat the result as a Point. Since any object with the fjx:Point; c: colorjg interface has an x method

that returns an Point object, giving such an object to our context cannot result in any type errors.

It is also generally possible to specialize the type of one or more methods to a subtype. We

illustrate this form of subtyping, which we call \depth" subtyping, using type ColorPoint, de�ned

as follows:

ColorPoint
def
= fjx:Point; c: colorjg
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As we saw above, ColorPoint <: Point . Using this fact, we get the depth subtyping relation:

fjx:ColorPointjg <: fjx:Pointjg

This subtyping judgment says that we may consider any object with interface fjx:ColorPointjg to

have interface fjx:Pointjg as well. In other words, we may put any object that supports the more

detailed interface fjx:ColorPointjg into any context expecting a fjx:Pointjg object without producing

any type errors. As above, we may see the justi�cation for this guarantee by considering what such

a context might ask of its argument. Because it expects an object with interface fjx:Pointjg , all it

\knows" about its argument object is that it has an x method that returns a Point object, and hence

that is all it may ask for. If we give such a context some object cp with interface fjx:ColorPointjg ,

the context may only ask cp for its x value, at which point cp returns something with interface

ColorPoint. Because we know that ColorPoint <: Point , we are guaranteed that this resulting

object may be safely treated as a Point object. Hence no type errors may result from putting a

fjx:ColorPointjg object into a context expecting a fjx:Pointjg object.

Combining these two forms of subtyping, we have the subtyping judgment that

fjx:ColorPoint; c: colorjg <: fjx:Pointjg

An alternative form of object type is an interface type with some additional guarantees about

the form of the implementations of objects given that type. The types that C++ gives to its objects

have this 
avor. If we know that a particular object ob has type B, then we know ob has all of the

methods and the associated types de�ned in the class B, even if these methods are not included in

B's public interface . We are also guaranteed that the layout of ob is an extension (perhaps trivial)

of the layout implicitly speci�ed by class B.

These implementation guarantees are important for objects with binary operations (those that

take another object of the same type as an argument), and they permit more e�cient implemen-

tations of objects. For these types, subtyping must take into account both interface subtyping and

compatibility of implementations. Since the implementation of an object is intended to be hidden,

the second form of type should not give any explicit information about the implementation. Instead,

it appears that \implementation types" are properly treated as a form of partially-abstract types.

We explore these ideas in Chapter 5.

2.4.3 Method Specialization

It is relatively common for one or more methods of an object to take objects of the same type as

parameters or return objects of the same type as results. For example, consider points with the

interface shown in Figure 2.5.

(For simplicity, we work with one-dimensional points.) The move method of a point p returns a

Point. Similarly, the eq method takes as a parameter an object of Point type. When color points
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type Point is interface
x : int;
move : int ! Point;
eq : Point ! bool;

end interface;

Figure 2.5: Point interface declaration.

are de�ned in terms of points, it is desirable that the types of the methods be specialized to return or

use color points instead of points. Otherwise, we e�ectively lose type information about the object

we are dealing with whenever we send the move method, and we are restricted to using only point

methods when comparing color points for equality. If it is possible to inherit a move method de�ned

for points in such a way that the resulting method on color points has type int!ColorPoint , then

we say that method specialization occurs. This form of method specialization is called \mytype"

specialization because the type that changes is the type of the object that contains the methods

[Bru92, Bru93]. It is also meaningful to specialize types other than the type of the object itself when

de�ning a derived class.

Method specialization is generally not provided in existing typed object-oriented languages, but

it is common to take advantage of method specialization (in e�ect) in untyped object-oriented

languages. Therefore, if we are to devise typed languages to support useful untyped programming

idioms, we need to devise type systems that support method specialization. We address some of

these points in Chapter 3.



Chapter 3

Object Calculus

As a �rst step in our study of object-oriented features, we develop a simple, formal model of in-

heritance. In existing languages, inheritance mechanisms are either class-based or object-based. In

class-based systems, such as Simula [BDMN73], Smalltalk [GR83], and C++ [ES90], objects are

de�ned in classes, which are typically static constructs. Objects are instantiated from their de�ning

classes at run-time and are then used in computation via message sending. In object-based lan-

guages such as Self [US91], objects are created directly from other objects via inheritance primitives

such as adding a new method to an existing object (object extension) and replacing an existing

method with a new one (method override). Hence class-based languages require two kinds of entities

for inheritance: classes and objects, whereas object-based languages require only objects. In the

interest of adopting as simple a model of inheritance as possible, we therefore adopt object-based

inheritance primitives. (In Chapter 5, we will use these inheritance primitives in conjunction with

an abstraction mechanism to develop a formal interpretation of classes as the combination of these

two more primitive concepts.) Brie
y, in this chapter our main interests lie in understanding

� how the methods of an object interact with each other, intuitively through the pseudo-variable

self representing the host object,

� how the meanings of methods may change because of the reinterpretation of self that occurs

during inheritance, and

� the typing issues that arise from inheritance.

We are also interested in providing a simple model of object-based inheritance that will serve as a

building block in more complex systems.

In our model, objects support three operations: message sending, method override, and object

extension. Syntactically, the expression e( m denotes sending object e the message m . Our type

system insures that object e actually has an m-method de�ned in it. Expression he1  + m = e2i

25
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denotes the object that is just like object e1 except that it has a new method m with method

body e2 . The type system guarantees that e1 does not already have a method m and hence the

new method body cannot violate any typing assumptions the older methods of e1 may have made.

Finally, the expression he1 m = e2i denotes the object just like e1 except that the new object's

m-method has method body e2 . Here, the type system insures that the type of the new method

body exactly matches the type of the existing method body. This guarantee is essential for type

soundness: if an unrelated or weaker type were given, the new method body could violate typing

assumptions made by the other methods of object e1 . Since these methods are inherited by the new

object, such violations can cause type errors. Notice that the method overriding operation provides

a functional form of update.

In object-oriented languages, the methods of an object can typically refer to the other methods

of their host object, for example via the pseudo variable self in Smalltalk and this in C++. We

model this behavior by making method bodies functions from their host object to the actual code

for the method body. The semantics for message sending then connects the \self" parameter to

the actual method body by extracting the corresponding method body and applying it to the full

object. For example, when we evaluate sending the message m to the object he1  + m = e2i , we

�rst extract the method body e2 and then apply it to the object he1  + m = e2i .

For simplicity, we work in a purely functional model, and in a fashion similar to the language

Self [US91], we do not distinguish �elds from methods. Recent studies such as [AC96a, Bv93,

Pie93, DF96] suggest that imperative features do not present any surprises, at least from a typing

perspective.

3.1 Method Specialization

In typing objects, it is useful to have a type that intuitively means \the type of the host object",

frequently referred to as \mytype". For example, if we have a functional point object of some type

Point , with integer x- and y- coordinates and a move method, the return type of the move method

might be Point , re
ecting the fact that when a Point object is sent the message move , a Point

object is the result. However, this typing is not 
exible enough in the context of inheritance. For

example, consider adding a color method c to our point object via object extension. Then when we

send a ColorPoint object the message move , we will get back a ColorPoint object. Unfortunately

however, the type system will indicate that we have a Point . Hence if we want to use the color of

the resulting object, we will have to insert a type cast to convert the resulting type to ColorPoint .

The solution to this problem is to give as the return type of move not Point but \mytype". Then

when the object is specialized via method extension, the return type will still be \mytype". In the

derived object, the \mytype" will be reinterpreted to mean the type of ColorPoint objects.

Imperative languages reduce the need for this mechanism, as they can work via side-e�ects.
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However, as illustrated by the like Current mechanism in Ei�el [Mey92], method specialization is

still useful in imperative object-oriented languages. Additionally, although C++ did not originally

support such a mechanism, recent additions allow a form of method specialization in return positions

(such as for the move method above).

The phenomenon we are concerned with is called \method specialization" in [Mit90], which

describes a precursor to the calculus used here. The earlier work describes method specialization

and explains its usefulness, but only presents a tentative type system by extending the already

complicated record calculus of [CM91]. In addition, no analysis of the type system is given. This

chapter presents a calculus of objects alone, without recourse to record calculi (although we owe a

substantial debt to previous studies of record calculi), simpli�es the typing rules substantially, and

proves type soundness. A preliminary version of this work appeared in [MHF93].

3.2 Untyped Objects and Object-Based Inheritance

3.2.1 Untyped Calculus of Objects

We extend the untyped lambda calculus with four object-related syntactic forms,

e : : = x j c j �x: e j e1e2 j hi j e(m j he1  + m=e2i j he1 m=e2i

In this grammar, x may be any variable, c is a constant symbol (such as a \built-in" function),

�x: e is a lambda abstraction (function expression) and e1 e2 is function application. The object

forms are described in tabular form for easy reference:

hi the empty object

e( m send message m to object e

he1  + m=e2i extend object e1 with new method m having body e2

he1 m=e2i replace e1's method body for m by e2

We consider he1  + m=e2i meaningful only if e1 denotes an object that does not have an m

method and he1 m=e2i meaningful only if e1 denotes an object that already has an m method.

These conditions will be enforced by the type system. The reason for distinguishing extension from

method replacement is that these two operations will have di�erent typing rules. If a method is new,

then no other method in the object could have referred to it, so it may have any type. On the other

hand, if a method is being replaced, then we must be careful not to violate any typing assumptions

made by other methods of the host object. If we were not concerned with static typing, then we

could use a single operation that adds a method to an object, replacing any existing method with

the same name.
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3.2.2 Examples of Objects, Inheritance, and Method Specialization

To provide some intuition for this calculus, we give a few short examples. The �rst shows how records

may be encoded as objects, while the second and third illustrate method specialization. The latter

examples may be regarded as the motivating examples for the work presented in this chapter; rather

than try to de�ne method specialization in general, we attempt to convey the essential properties

by the examples of points and color points given below.

To simplify notation, we write hm1 = e1; : : : ; mk = eki for h: : : hhi  + m1 = e1i : : : + mk = eki ,

where m1; : : : ; mk are distinct method names. We illustrate the computational behavior of objects in

this section using a simpli�ed evaluation rule that re
ects the operational semantics de�ned precisely

below,

hm1 = e1; : : : ; mk = eki( mi
eval
�! ei hm1 = e1; : : : ; mk = eki

This rule allows us to evaluate a message send by retrieving the appropriate method body from

the object and applying it to the entire object itself. Note that the relation
eval
�! represents one

evaluation step, not full evaluation of an expression.

Record with two components. The �rst example is a form of point object that has constant

x; y-coordinates:

r
def

= hx = �self: 3; y = �self: 2i

If we send the message x to r , we may calculate the result by

r( x
eval
�! (�self:3) r

eval
�! 3

where the second evaluation step is ordinary � -reduction from lambda calculus. This example

may be generalized to show how any record may be represented as an object whose methods are

constant functions. In particular, we may represent the record hl1 = e1; : : : ; lk = eki by the object

hm1 = Ke1; : : : ; mk = Keki , where K = �self: �x: x .

One-dimensional point with move function. A more interesting object, which we will refer to

again, is the following point object with an x-coordinate and move method. We could easily give a

similar two-dimensional point with x- and y-coordinates, but the one-dimensional case illustrates

the same ideas more simply.

p
def
= h x = �self: 3;

move = �self: �dx: hself x = �s:(self( x) + dxi

i

The move method, when applied to the object itself and a displacement dx , replaces the x method

with one returning a coordinate incremented by dx . This behavior is illustrated in the following
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example calculation, where we send the message move with parameter 2 to the object p :

p(move2 = (�self: �dx:h : : : i) p 2

= hp x = �s:(p( x) + 2i

= hp x = �s: 3+ 2i

= hp x = �self: 5i

Using a sound rule for object equality,

hhm1=e1; : : : ; mk=eki mi=e
0

ii = hm1=e1; : : : ; mi=e
0

i; : : : ; mk=eki

we may reach the conclusion

p(move2 = h x = �self: 5;

move = �self: �dx:h: : :i

i

showing that the result of sending a move message with an integer parameter is an object identical

to p , but with an updated x-coordinate.

Inherit move from point to color point. Our third introductory example shows how x and

move are inherited when a color point is de�ned from p by adding a color method.

cp
def

= hp + c = �self: redi

If we send the move message to cp with the same parameter as above, we may calculate the resulting

object in exactly the same way as before:

cp(move2 = (�self: �dx:h : : : i) cp 2

= hcp x = �s:(cp(x) + 2i

= : : :

= hcp x = �self: 5i

with the �nal conclusion that

cp(move2 = h x = �self: 5;

move = �self: �dx:h: : :i;

c = �self: red

i

The important feature of this computation is that the color c of the resulting color point is the

same as the original one. While move was de�ned originally for points, which only have an x-

coordinate, the method body performs the correct computation when the method is inherited by a

more complicated object with additional methods.
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In many cases, it is also useful to rede�ne an inherited method to exhibit more specialized

behavior. This may be accomplished in our calculus by a combination of inheritance and method

rede�nition. For example, if we want an object to change to a darker color when moved, we could

�rst de�ne color points from points as above, obtaining a color point with the right type of move

method. Then, move could be rede�ned (without changing its type) to have the right behavior.

Mutually recursive methods. As a technical simpli�cation, our system is formulated so that

methods are added to an object one at a time. This approach leads us to formulate our typing rules

in a manner that makes it di�cult to write object expressions with mutually recursive functions.

More speci�cally, the static type system will only allow a method body to be added if all the other

methods it refers to are already available from the object. For example, we cannot type the object

expression

hhi  + x plus1 = �self:(self(x) + 1i

which has a method referring to x but does not have an x method. The reason this object expression

is not typeable is that if we send it the message x plus1 , the object will then send the message x

to itself. But since the object does not have an x method, this is an error; it is precisely the error

we aim to prevent with our type system. On the other hand, we may type the expression

hhhi  + x = �self: 3i  + x plus1 = �self:(self(x) + 1i;

which is formed by �rst extending the empty object with an x method, then with the x plus1

method that refers to x .

The typing restriction that no method may refer to a method that the object does not have

is inconvenient if we wish to add mutually-recursive methods m and n to some object. However,

there is a standard idiom for adding mutually recursive methods. Speci�cally, we �rst extend the

object by giving some method body for m that has the correct type but does not depend on n .

Then, the object may be extended with the desired method body for n , referring to m . Finally, we

replace the \dummy" method body for m with the desired method body referring to n . While this

is a programming inconvenience, it is not a limitation in expressiveness. It therefore does not seem

serious enough to merit complicating the typing rules in a way that alleviates the di�culty. In any

\real" programming language based on our object calculus, we would expect there to be convenient

syntactic sugar for simultaneously adding several, possibly mutually recursive, methods to an object.

3.3 Operational Semantics

In de�ning the operational semantics of our calculus, we must give rules for extracting and applying

the appropriate method of an object. A natural way to approach this is to use a permutation rule

hhe1  � n=e2i  � m=e3i = hhe1  � m=e3i  � n=e2i
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where m and n are distinct and each occurrence of  � may be either  + or  . Such a rule would

let us treat objects as sets of methods, rather than ordered sequences. However, this equational rule

would cause typing complications, since our typing rules only allow us to type object expressions

when methods are added in an appropriate order. In particular, if we permute the methods of the

object expression

hhhi  + x = �self: 3i  + x plus1 = �self:(self(x) + 1i

then the subexpression

hhi  + x plus1 = �self:(self(x) + 1i

is not well-typed, as described in the previous section. Therefore, the entire expression cannot be

typed.

We circumvent the problem of method order using a more complicated \standard form" for object

expressions, namely,

hhhm1=e1; : : : mk=eki m1=e
0

1i : : : mk=e
0

ki

where each method is de�ned exactly once, using some arbitrary method body that does not con-

tribute to the observable behavior of the object, and rede�ned exactly once by giving the desired

method body. Even if the two de�nitions of a method are the same, this form is useful since it

allows us to permute the list of method rede�nitions arbitrarily. More formally, in addition to the
eval
�! relation that allows us to evaluate object and function expressions, the operational semantics

includes a subsidiary \bookkeeping" relation
book
�! , which allows each object to be transformed into

the \standard form" indicated above. The relation
book
�! is the congruence closure of the �rst four

clauses listed in Table 3.1. These rules also allow the method rede�nitions to be permuted arbi-

trarily. An important property of
book
�! , proved in Section 7.14, is that if e

book
�! e0 , then any type

for e is also derivable for e0 . This property would fail if we had the more general permutation rule

discussed above.

The evaluation relation is the congruence closure of the union of
book
�! and the two evaluation

clauses, (�) and ((), at the bottom of Table 3.1. In other words, e
eval
�! e0 if we may obtain e0

from e by applying a bookkeeping or basic evaluation step to one subterm.

3.4 Static Type System

3.4.1 Pro Types and Message Send

The type of an object will be called a protype , short for prototype. The intuition is that expressions

with pro type will be extensible objects.

The type de�ned by the type expression

pro t hhm1: �1; : : : ; mk: �kii
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(switch ext ov) hhe1 n=e2i  + m=e3i
book
�! hhe1  + m=e3i n=e2i

(perm ov ov) hhe1 m=e2i n=e3i
book
�! hhe1 n=e3i m=e2i

(add ov) he1  + m=e3i
book
�! hhe1  + m=e3i m=e3i

(cancel ov ov) hhe1 m=e2i m=e3i
book
�! he1 m=e3i

(�) (�x: e1)e2
eval
�! [e2=x]e1

(() he1  � m=e2i( m
eval
�! e2he1  � m=e2i

where  � may be either  + or  .

Table 3.1: Bookkeeping and evaluation rules.

is a type with the property that any element e of this type is an object such that for 1 � i � k ,

the result of e(mi is a value of type �i . A signi�cant aspect of this type is that the bound type

variable t may appear in the types �1; : : : ; �k . Thus, when we say e( mi will have type �i , we mean

type �i with any free occurrences of t in �i referring to the type pro t hhm1: �1; : : : ; mk: �kii itself.

Thus, pro t hh : : : ii is a special form of recursively-de�ned type.

The typing rule for message send has the form

�`e : pro t hh: : : ; m: �; : : :ii

�`e(m : [pro t hh: : : ; m: �; : : :ii=t ]�

where the substitution for t in � re
ects the recursive nature of pro types. This rule may be used

to give the point p with x and move methods considered in Section 3.2.2 the type

pro t hh x: int ; move: int! tii;

since p(x returns an integer and p(move n has the same type as p .

A subtle but very important aspect of the type system is that when an object is extended with

an additional method, the syntactic type of each method does not change. For example, when we

extend p with a color to obtain cp , also given in Section 3.2.2, we obtain an object with type

pro t hh x: int ; move: int! t; c: color ii

The important change to notice here is that although the syntactic type of move is still int! t , the

meaning of the variable t has changed. Instead of referring to the type of p , as it did originally,

it now refers to the type of cp . This e�ect is what we have called method specialization: the type

of a method may change when the method is inherited. For this kind of reinterpretation of type

variables to be sound, the typing rule for object extension must insure that every possible type for a
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new method will be correct. The rule makes this guarantee through a form of implicit higher-order

polymorphism.

Another subtle aspect of the type system is that objects which behave identically when we send

them any sequence of messages may have di�erent types. This di�erence re
ects the fact that adding

and rede�ning methods are also considered operations on objects. A simple example is given by the

following two objects.

p
def
= h x = �self: 3;

move = �self: �dx:

hself x = �s:(self(x) + dxii

q
def
= h x = �self: 3;

move = �self: �dx: (p( move dx)i

It is not hard to see that p and q return the same results for any sequence of message sends.

(Either we send x , which clearly gives the same result for p or q , or we send the message move .

But since q(move uses p(move , any sequence of subsequent messages will produce identical

results.) However, p and q are not equivalent if we extend them with additional methods. The

reason is that the �rst move method will preserve any additional methods added by object extension,

but the second will not. This distinction is re
ected in the type system in the following way. We

can give p the �rst type below and q the second, but cannot give q the �rst type. Indeed, it would

be unsound to do so.

point = pro t hh x: int ; move: int! tii

q point = pro t hh x: int ; move: int! pointii

A similar situation arises in Smalltalk, for example, where it is possible to have two classes that

generate equivalent objects, but behave di�erently when we inherit from them. In adapting our type

system to Smalltalk, we might expect to distinguish two such classes by type. The reason is that we

wish the type of a Smalltalk class to not only give information about the behavior of objects, but

also about the types of methods when they are inherited by other classes.

3.4.2 Types, Rows, and Kinds

The type expressions include type variables, function types, and pro types. It would not change

the system in any substantial way to add type constants, but we will not need them here.
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Types

� : : = t j �1! �2 jpro t R

Rows

R : : = r j hhii j hhR jm: �ii j �t:R jR�

Kinds

kind : : = T j�

� : : = T !M j M

M : : = fm1; : : : ; mkg

Row expressions appear as subexpressions of type expressions. Intuitively, rows list method

names and their associated types. To insure that our method bodies are appropriately polymorphic,

we will need row variables, listed as r in the above table. The row form hhii represents the empty

row, the row containing no method names. The form hhR jm : �ii extends row R with a new method

name m of type � . The kind system will insure that R did not already list an m method. Finally,

because we want our method types to be polymorphic in the type of their host object, we need to

be able to write row functions, functions from types to rows. Intuitively, we will use such functions

to map the type of an object to its list of method name/type pairs, allowing such method types to

depend on the type of their host object. The form R � denotes applying row R to type � . We will

use the term \
at row" (in contrast to \row function") to denote rows of the forms hhii; hhR jm : �ii;

and R� . Row variables will always range over row functions.

We distinguish rows and types by kinds. In this chapter, types will be given kind T . (We re�ne

this kind in the next chapter.) Flat rows have kinds of the form fm1; : : : ;mkg . Such a kind indicates

its row does not include method names m1; : : : ;mk . We must statically know that some method

does not appear to guarantee that methods are not multiply de�ned. Row functions have kinds of

the form T !fm1; : : : ;mkg , indicating that whenever such a function is applied to a type, it will

produce a 
at row guaranteed not to contain methods named m1; : : : ;mk .

The environments, or contexts, of the system list term, type, and row variables.

� : : = � j�; x: � j�; t:T j�; (r <: R : :�)

Note that contexts are ordered lists, not sets.

The judgment forms are:

�` � well-formed context

�` e: � term has type

�` � :T type is well-formed

�`R1 <:w R2 row R1 \subtype" of R2

�` �1 <: �2 type �1 subtype of �2

�`R : : � row has kind
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Although this language does not include a subsumption rule, we list subtyping judgments here

because they are used to extract the types of methods from pro types.

3.4.3 Typing Rules

For expository purposes, the typing rules presented in this section are a simpli�cation of the actual

typing rules. We introduce the additional complexity in the next chapter because subtyping, the

topic of the next chapter, is the source of the complexity. The rules discussed below, which involve

prototype formation and message sending, are largely independent of the additional complexities.

The complete type system appears in Chapter 6, where it is discussed in its entirety.

The empty object hi has the type pro t hhii , as speci�ed in the rule:

(empty pro)
�` �

�` hi : pro t hhii

The empty object has no methods and therefore cannot respond to any messages. However, this

object can be extended with methods to obtain objects of other types.

The typing rule (pro() for sending messages has the form described in the previous section.

More precisely, the rule is as follows:

(pro()

�` e : pro t R

�; t : T `R <:w hhm: �ii

�` e(m : [pro t R=t]�

The substitution for t in � re
ects the recursive nature of pro and obj types. This rule di�ers

from the ones given in [FHM94, FM95a] by requiring only that we may derive �; t : T `R <:w hhm: �ii

instead of the more stringent requirement that R be of the form hhR0jm : �ii . This relaxation permits

us to type message sends to objects whose types may be partially abstract (i.e., types containing row

variables). Another thing to notice about this rule is the subscript w on the subtyping judgment.

This symbol indicates that only width subtyping was used to reach this conclusion. Our system will

eventually support both width and depth subtyping on object types (see Chapter 4); however, it is

essential to keep track of exactly where depth subtyping occurs to insure the soundness of certain

operations.

The most subtle and complicated rule of the system is the (pro  +) typing rule for adding

methods to objects, which appears below. In this rule we assume e1 is an object of some pro type

and that e1 does not include a method m , to be added. The �nal assumption is a typing for e2 ,

the expression to be used as the method body for m . The �rst thing to notice about the typing

for e2 is that it contains a row variable r , which is implicitly universally quanti�ed. Because of

this quanti�cation, e2 will have the indicated type for any substitution of row expression R0 for

r , provided R0 has an appropriate kind and is a subtype of �t:hhR jm : �ii . (See Lemma 7.13.1 in
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Chapter 7.) This 
exibility is essential, since it implies that e2 will have the required functionality

for every possible future extension of he1  + m = e2i . The second important property of the typing

for e2 is that the type has the form t! � , with a pro type substituted for t . Although t is hidden

in the pro type of he1  + m = e2i , t must appear in the hypothesis because sending the message

m to he1  + n = e2i results in the application of e2 to this object. This rule has the side condition

that r 62 FV (�), indicating that row variable r does not appear in the free variables of � .

(pro ext)

�` e1 : pro t R

�; t:T `R : : fmg

�; r <:w �t:hhR jm : �ii : : T!;` e2 : [pro t rt=t](t! �) r 62 FV (�)

�` he1  + m=e2i : pro t hhR jm: �ii

The rule for rede�ning, or overriding, a method body (pro ov) has the same form, but is slightly

simpler. Rule (pro ov) appears in full detail in Appendix D.

3.4.4 Example Typing Derivations

We will present a sample typing derivation at the end of the next section, after the additional

complexity has been introduced and we can use the full typing rules.

3.5 Related Object Models

Early models of object-oriented programming were based on recursive records. This approach, in

which objects are encoded as recursive records of access functions, was developed by William Cook

and others [Coo87, Coo89a, CHC90] using concepts pioneered by Luca Cardelli [Car88, CW85]. The

recursion is necessary to give each of the methods of an object access to the other components.

Although quite useful for developing denotational models of untyped object-oriented languages, it

proved di�cult to extend this model to a typed version re
ecting the intuitive properties of typed

object-oriented languages. An additional problem is that the operation of method override is di�cult

to model, as the new method is in some sense \outside" the recursion.

In [PT94], Pierce and Turner introduced an encoding of objects as elements of existential type.

Each object consists of a record containing the \state" of the object and a record of \methods" that

operate on the state. The existential type then hides the state component, making only the record of

methods externally visible. The advantages of this approach are that the encoding makes the hiding

of private \instance variables" explicit and it renders type recursion non-essential. A disadvantage

is that message sending is not a uniform operation: it depends on the type of the method being

invoked.
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The most closely related work to the material described in this chapter is that of Abadi and

Cardelli. Abadi's Baby Modula-3 [Aba94] introduced a very simple object calculus with method

override and a static form of object extension. Together, Abadi and Cardelli have developed a

family of object calculi, including untyped, �rst-order [AC96c] second-order [AC95], and imperative

versions [AC96a]. Abadi and Cardelli have collected this material into the book [AC96b]. The

crucial di�erence between the object calculi that they have developed and the one presented here is

that their system supports only the operations of message sending and method override, not object

extension. Because of this limitation, their system directly supports width subtyping. In contrast,

adding subtyping to our system is more di�cult. (We will see how it may be accomplished in the

next chapter.) As this comparison suggests, the choice of whether or not to support object extension

has major rami�cations as to the style of the type system required. In particular, supporting

object extension requires method bodies to be much more polymorphic and lends itself to row-based

approaches to typing.

In contrast to the system presented in this chapter, neither the recursive record nor the existential

model provides explicit support for inheritance; instead they requiring complex encodings of class-

like constructs to model object-implementation reuse. The method override operation of the Abadi-

Cardelli calculi provides some direct support for inheritance. In [AC96c], Abadi and Cardelli show

a relatively simple encoding of inheritance without using an object extension operation. We will

discuss this encoding in more detail in Section 5.6.1.

3.6 Summary

We have given a typed calculus of functions and objects with a sound type system, although the

full presentation of that system is deferred to the next chapter. In this \kernel language," we de�ne

objects and their interfaces (called pro types here) directly instead of through some subsidiary

calculus of records. This approach gives an axiomatic presentation of a simple object-oriented

language and its type system in a form that we hope is conducive to further work. A feature of the

calculus is method specialization: using method rede�nition (expressions of the form he n=e0i),

we may de�ne functions whose type and behavior change in a natural and useful way as a result

of inheritance. This capability seems very di�cult to achieve directly with any calculus of records.

While it seems too early to claim that we have captured \the essence of inheritance in a simple

form," it seems that some progress has been made in this direction.

There are many technical open problems, including development of a denotational model and

a proof system for equivalence that is su�ciently powerful to derive nontrivial equations between

method bodies. Hopefully, the calculus presented here will provide a basis for studying these math-

ematical problems in a manner that is faithful to substantial uses of object-oriented programming

in practice.
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Adding Subtypes

In languages that support pure object-based inheritance, such as the one described in the previous

chapter, no subtyping is possible. We did not realize this complication in writing [FHM94]. Consider

the intuitive de�nition of a subtype: A is a subtype of B if we may use an object of type A in any

context expecting an object of type B . If objects of type A are to be used as B 's, then A-objects

must have all of the methods of B -objects. Because method addition is a legal operation on objects

in object-based languages, objects with extra methods cannot be used in some contexts where an

object with fewer methods may. As an example, a colored point object cannot be used in a context

that will add color, but a point object can. For A to be a subtype of B then, A 's must contain

exactly the same methods as B 's. It is not even possible to specialize the types of methods that

appear in both A 's and B 's, since the so-called \depth" object subtyping is unsound when method

override is a legal operation on objects. This observation is made in [AC96c]. The following example,

discussed in [AC96c], illustrates the problem.

Consider the object types A and B :

B
def
= pro t hhx: int ; y: realii

A
def
= pro t hhx: posint ; y: realii

If we allow depth subtyping, then A <: B since posint <: int . Now consider an object a de�ned

as follows:

a
def

= hx = 1; y = �self: ln(self(x)i

We can see that a has type A . By the subsumption rule, we may consider a to have type B . With

this typing, the expression ha x = �1i is legal. But then sending the message y to a produces a

run-time type error.

Because of this complete elimination of subtyping for pure object-based languages, the system

described in [AC96c] does not permit object extension as a run-time operation, instead supporting

width subtyping on object types.

38
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In this chapter, we present a second way of resolving this con
ict. Intuitively, the main idea is to

introduce a phase distinction (on a per object basis) that is enforced by the static type system. (c.f.

Baby Modula-3 [Aba94] for a \baby" form of this phase distinction.) During the initial phase, objects

are created via the inheritance primitives of method override and object extension, as described in

the previous chapter. Only trivial subtyping is permitted between object types during this phase,

for reasons outlined above. When the object is �nished, it may be \converted" to a second form of

object that no longer supports inheritance. Because of this restriction, the second form of object

is free to support rich subtyping. The \conversion" corresponds to changing the type of the object

from the form of object type described in the previous chapter to a form with the expected subtyping

properties for object types.

By introducing this phase distinction, we support both object-based inheritance and subtyping,

at the cost of some increase in the complexity of the type system. In [BL95], Bono and Liquori

develop an alternate way of extending the previous chapter's calculus with subtyping. We review

their approach in Section 4.3.

The two forms of object type used in this chapter highlight the distinction between two inter-

faces: the inheritance-interface and the client-interface of an object. This distinction is essentially

familiar from object-oriented languages and databases, but often not explicitly mentioned in lan-

guage documentation. If we write a C++ class such as stack, then there are really two separate ways

of using this class. The �rst is by calling the constructor of the class to create stack objects and

then calling their member functions. The second use of the stack class is by de�ning a derived class.

(This \reuse" of implementation is traditionally called inheritance.) One way to see that these are

very di�erent uses of a class is to notice that they induce very di�erent notions of class equivalence.

If we just want the objects constructed by a class to behave in the same way, then we can perform

a number of optimizations and program transformations. However, some transformations that pre-

serve the behavior of constructed objects would observably change the behavior of derived classes.

A simple example occurs when a class has two mutually recursive member functions, say f and

g . If we replace these functions by two equivalent non-recursive functions, we do not change the

behavior of constructed objects. However, this transformation may radically alter the behavior of a

derived class if both are virtual functions and one is rede�ned in the derived class. An innovation of

our object calculus, when compared with other recent work such as [AC96c, Bru93, FHM94, PT94]

(summarized and compared in [FM95b]), is the type distinction between these two uses of a class.

The distinction between inheritance and client interfaces leads us to distinguish prototypes and

objects. Intuitively, a prototype is a collection of methods that may be used to implement one or more

objects. The operations on prototypes are (i) sending a message (which results in the invocation

of a method), (ii) adding a new method (method addition), and (iii) rede�ning an existing method

without changing its type (method override). The type of a prototype is called a pro type; we saw

them in the previous chapter. For the reasons described above, only trivial subtyping exists between
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pro types.

Intuitively, an object is created by \packaging" a prototype, an operation that does nothing

except \seal" the prototype so that no methods can be added or rede�ned. In our calculus, the

\sealing" operation only changes the type from a pro type to an object, or obj type. Although

the only operations allowed on objects from the \outside" are message sends, the methods within

an object can override the methods of their host object. This ability to override methods internally

permits methods such as a point object's move method to replace its host object's x method with

a new location. Preventing external method override and method extension by sealing prototypes

is su�cient, however, to make interesting subtyping sound for objects. The internal rede�nitions do

not cause an unsoundness in the type system because they are type-checked with precise knowledge

of the pro type of the expression to which they were added.

In addition to subtyping, the distinction between prototypes and objects provides some useful

insight into the two uses of classes mentioned above. Inheritance on classes will be modeled in our

system (in the next chapter) by operations on prototypes. Similarly, creating an object from a class

will be modeled by \sealing" a prototype to an object. The distinction between pro and obj types

clearly illustrates the di�erence between a derived class's interface to a class and a client program's

view of the objects created from that class. In particular, inheritance depends on the presence and

absence of the methods in a prototype, whereas a client is only concerned with the presence of the

methods it uses.

4.1 Static Type System

4.1.1 Subtyping and Delegation

In this section, we give a type system for the object calculus described in Section 3.2.1 that is

an extension of the one given in the previous chapter. The major change to the earlier system is

the addition of obj types, which permit subtyping in both width and depth. In both the earlier

system and the one we describe here, expressions with pro type may have new methods added via

method addition ( +) and old methods replaced via method override( ). As described above,

only trivial subtyping is sound for such types. In the system presented here, we may decide that we

are no longer interested in modifying the methods of an expression with pro type. At this point,

we may \seal" the expression by converting it to a value with an obj type. Since  and  +

are not valid operations on obj types, width and depth subtyping are sound for these types. We

call expressions given pro type prototypes because they may either be sent messages or modi�ed to

create new kinds of prototypes. Expressions with obj type are called objects since such expressions

may be sent messages or subtyped, but not extended or modi�ed. In the following, we will use the

meta-variable probj to denote either obj or pro .
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4.1.2 Adding Subtyping

To insure that subtyping is sound for obj expressions, we disable object extension and object

override on them, permitting them only to receive messages. Since the methods handling such

messages are de�ned when the expression has a pro type, however, it is possible for these methods

to rede�ne themselves or other methods of the host expression. (The polymorphism requirement

for method bodies prevents them from adding new methods.) These rede�nitions do not cause an

unsoundness in the type system, however, because they were type-checked with precise knowledge

of the pro type of the expression to which they were added. The unsoundness discussed above

arises when the type of an expression is promoted via subsumption and then a method is replaced

by another method with higher type. This scenario cannot occur in our system because once we seal

an expression to a potentially imprecise obj type, methods cannot be overridden from the outside,

where only the imprecise sealed type is available. Internal methods, type-checked with precise pro

type information about the expression to which they were added, are type-safe.

Since sealing a prototype e requires no change to e , we would have liked to be able to use the

following rule in conjunction with a subsumption rule to \seal" prototypes:

(seal-unsound)
�`obj t R : T

�`pro t R <: obj t R

where the judgment �`obj t R : T denotes that type obj t R is well formed. Unfortunately, this

rule is unsound when the variable t appears contravariantly (or invariantly) in R . Hence we need

a more complicated rule, which happens to have the same form as the rule for deriving subtyping

judgments on obj types. Because of this similarity, we may combine the sealing rule and the obj

subtyping rule to produce a typing rule of the form:

(<: obj)

�; t : T `R1 <: R2

t covariant in R2

�`probj t R1 <: obj t R2

We show how to formalize this rule and the condition\t covariant in R2 " in the next section.

The meta-variable probj is pro when this rule is used to seal prototypes. When used simply for

subtyping between object types, probj is obj . Since this rule allows subtyping in both width and

depth between the row expressions R1 and R2 , this rule gives us subtyping in both width and depth

for obj types. This rule has the somewhat unfortunate consequence that we cannot seal prototypes

to obj types containing methods that are contravariant (or invariant) in the bound type variable.

However, this appears to be a fundamental trade-o� and limitation.

4.1.3 Rows, Types, and Kinds

More formally, the type expressions are given by:



42 CHAPTER 4. ADDING SUBTYPES

Types

� : : = t j �1! �2 jpro t R jobj t R

Rows

R : : = r j hhii j hhR j m: �ii j �t: R j R�

Variance Annotations

b : : = + j � j o

a : : = b j ?

Variance Sets

V : : = f~tbg

Method Annotations

M : : = f~mg

Kinds

k : : = V j�

S : : = T a Symbol T is a terminal.

� : : = S ! � j �

� : : = (M ; V )

The type expressions are just those of Chapter 3 extended with obj types. To avoid unnecessary

repetition in our presentation, we use the meta-variable probj to denote either obj or pro. As we

saw in the previous chapter, a row is either a �nite list of method name, type pairs or a function

from a type to such a list. Row expressions appear as subexpressions of type expressions, with rows

and types distinguished by kinds.

The kinds described here are more detailed than those in the previous chapter; in addition to

the method absence annotations, they include variance information. This information, which tells

whether a variable appears covariantly, contravariantly, or invariantly in type and row expressions,

is necessary for subtyping judgments involving types of the form pro t R or obj t R . Such infor-

mation is required because R may contain row variables, making it impossible to infer subtyping

relationships by simply inspecting the types in question. Intuitively, the elements of kind V are

types whose free type variables appear with the variance indicated in V . For example, if t+ appears

in the variance set of a type � , then t appears covariantly in � . Similarly, if t� is in V , then t

appears contravariantly. Finally, an annotation of o indicates the variable appears invariantly in

� . Similarly, the elements of kind (f~mg; V ) are 
at rows whose the free type variables appear with

variance indicated in variance set V . Row functions have kinds of the form T a ! (f~mg; V ). The

annotation a speci�es the variance of the abstracted variable. A value of ? for a indicates that

the given row function ignores its argument. Variance set V re
ects the variances of the free type
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variables in the body of the row function.

The environments, or contexts, of the system list term, type, and row variables.

� : : = � j� ; x: � j� ; t:V j�; r <:w R : : �

Note that contexts are ordered lists, not sets.

The judgment forms are:

�` � well-formed context

�` � :V well-formed type with variance V

�`R : : � row has kind

�` �1 <: �2 type �1 subtype of �2

�`R1 <:B R2 row R1 is a B-subtype of R2

B gives width vs. depth information

�` e: � term e has type �

The only unusual judgment in the above list is the form for writing \subtyping" relations between

row expression, namely �`R1 <:B R2 . (We use the terminology \subtyping", instead of the more

correct term \subrowing," for convenience.) Because width and depth subtyping have very di�erent

properties with respect to our object-inheritance operations, it is crucial that we be able to track

exactly when depth subtyping occurs. To that end, we use the subscript B on the subtype symbol

<: to indicate whether or not any depth subtyping rules were used to infer the subtyping relationship

between R1 and R2 . In particular, if B is w , then only width subtyping rules were used. If B is

w; d , then both width and depth subtyping rules may have been used.

4.1.4 Typing Rules

The key rule in this type system is the rule that allows us to convert from pro to obj types, which

we described informally in the previous section. In full detail, the rule is:

(<: obj)

�; t : ft+g`R1 <:B R2

�`probj t R1 : V1

�; t : ft+g`R2 : : (M ; V2) V ar(t; V2) 2 f?;+g

�`probj t R1 <: obj t R2

The �rst assumption requires that the list of methods for the lower row, R1 , be a subtype of the

list of methods for the upper row, R2 . For purposes of this rule, it does not matter if R1 is a

width-only or a width-and-depth subtype of R2 ; hence the subscript on the subtyping symbol is left

unspeci�ed. The second assumption is a well-formedness condition that helps insure that any type

appearing in a subtype judgment is itself well-formed. The �nal two assumptions assert that the
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type variable t appears covariantly in R2 . The variance of t in R1 is irrelevant for the soundness

of this subtyping.

4.1.5 Variance Analysis

To get a feel for our variance analysis, we present a few of the typing rules related to tracking

variance. The �rst of these, (type arrow), calculates the variance of �1! �2 from the variances of

�1 and �2 :

(type arrow)

�` �1 : V1

�` �2 : V2

�` �1! �2 : Merge(V1; V2)

The function Merge(V1; V2) combines variance sets V1 and V2 so that the variance of each type

variable in the resulting set is the least upper bound of the variance of that type variable in V1 and

V2 , where variance annotations are ordered as follows:

+ � o; � � o; ? � �; ? � +

Pictorially, we have the ordering:

| +

?

o

This de�nition implies, for example, that if t+ is in V1 and t� is in V2 , then to will be in

Merge(V1; V2). The overline function V1 inverts the variance of each type variable in V1 , changing

+'s to � 's and vice versa while leaving ?'s and o 's unchanged. The de�nitions of Merge and the

inversion function appear in Appendix C.

The typing rule for analyzing the variance of pro types, (pro), calculates the variance of pro t R

by �nding the variance of R , removing t (since t becomes a bound variable in pro t R), and then

making all remaining type variables invariant because pro types support only trivial subtyping:

(pro)
�; t: ft+g`R : : (M ; V )

�`pro t R : Invar(V n t)

The function Invar(V ) returns the variance set that contains the same type variables as V; each

annotated with o . The notation V nt indicates the variance set just like V except without type

variable t . The formal de�nitions of these two functions also appear in Appendix C.
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Finally, there are four di�erent versions of the rule for analyzing the variance of applying a row

function to a type argument, one for each possible variance of the abstracted type variable. The

general form of these rules is:

(row fn app a)

�`R : : T a ! (M ; V1)

�` � : V2

�`R� : : (M ; fa(V1; V2))

How the two variance sets V1 and V2 are combined depends on the value of a , the variance of the

abstracted variable. In particular,

f+(V1; V2) = Merge(V1; V2)

f�(V1; V2) = Merge(V1; V2)

fo(V1; V2) = Merge(V1; Invar(V2))

f?(V1; V2) = V1

The other non-routine rules in the type system either generalize those from Chapter 3, keep track

of the variance of type variables in row and type expressions, or show subtyping relations between

rows and types based on the variance analysis. A complete list of the typing rules for the language

fragment described so far appears in Appendix D. This appendix contains all of the typing rules

for the full system; to obtain the system we have described so far, we need only omit the (exist),

(9 <: intro), and (9 <: elim) typing rules.

4.1.6 Soundness

Type soundness for this system follows from the soundness of the next system, whose proof is

presented in Chapter 7.

4.2 Examples

4.2.1 Example Typing Derivation

We claimed earlier that we should be able to prove the following two typings:

p : pro t hh x: int ; move: int! tii

q : pro t hh x: int ; move: int! pointii;

and argued that it is unsound to give q the �rst type. To illustrate the use of the typing rules, we

prove the �rst of these in Table 4.1. The second is proved similarly. In addition, we can prove that

the object expression

cp = hp + c = �self: redi
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Contexts
�1 = r <:w �t:hhx: int ; move: int ! tii : :�min(�)

self : pro t r t
dx : int

�2 = �1; r <:w �t:hhx: int ; move: int ! tii : :�min(�)

p : pro t r0 t

Derivation (assuming �` hx=�self: 3i : pro t hhx: intii)

�2 ` (self( x) + dx : int

�2 � p ` �p:(self( x) + dx : pro t r0t! int

�1 ` hself x=�p:(self( x) + dxi : pro t r t

�1 � dx� self ` �self: �dx:hself x=�p:(self( x) + dxi

: [pro t r t=t](t! int ! t)

� ` hhx=�self: 3i  + move=�self: �dx:hself x=�p:(self( x) + dxii

: pro t hhx: int ; move: int ! tii

Table 4.1: Example typing derivation.

has type

pro t hh x: int ; move: int! t; c: color ii

by similar means. These examples are intended to demonstrate that the type system captures the

desired form of method specialization.

4.2.2 Subtyping Examples

To give some intuition for this calculus, we present two examples, neither of which is appropriately

typeable in the system described in Chapter 3. The �rst example below illustrates the use of

subtyping for code reuse, while the second demonstrates its use for encapsulation.

4.2.2.1 Subtyping for Code Reuse

Consider the function

average
def
= �p1: �p2:((p1( x) + (p2( x))=2

We may give this expression type:

average : obj t hhx: intii!obj t hhx: intii! int

(assuming integer division). With this type, we may apply the average function to any two objects

that both support integer x-method. As an example of this 
exibility, consider the following two
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expressions:

p
def
= h x = �self: 3;

move = �self: �dx: hself x = �s:(self( x) + dxii

cp
def
= h p + c = �self:red i

As in the system from the previous chapter, we may give p and cp the following types:

p : pro t hh x: int ; move: int! tii

cp : pro t hh x: int ; move: int! t ; c: color ii

In the new system, we may seal these expressions and give them both the following common super-

type:

p; cp : obj t hhx: intii

Hence we may give the expression average p cp type int . Without retyping average , we could

also give each of the expressions average p p , average cp p , and average cp cp type int . Thus

this type system allows us to use the function average to calculate the average of color points and

points interchangeably.

4.2.2.2 Subtyping for Encapsulation

Once we change the type of an expression from pro type to obj type, the methods of that prototype

become \read-only," including those methods that are e�ectively data �elds. Hence if the designers

of a prototype wish its users to be able to change the values of some of its methods after it is sealed,

they must provide methods to change those values. This restriction provides a mechanism whereby

prototype designers can guarantee invariants for the objects created from their prototypes.

Suppose, for example, we were interested in color points whose color was guaranteed to be either

blue or green. Then consider the expression:

cp2
def
= h x = : : : ;

move = : : : ;

c = �self: blue;

makeBlue = �self:hself c = bluei;

makeGreen= �self:hself c = greeni;

i

As in the original system, we may give this expression type:

cp2 : pro t hh x: int ; move: int! t ; c: color ; makeBlue: t ; makeGreen: tii

With this type, the user may override cp2 's c method to give cp2 any color. However, we may

prevent this undesired change by sealing cp2 . We may use the rule (<: obj ) and subsumption to
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give cp2 the type:

cp2 : obj t hh x: int ; move: int! t ; c: color ; makeBlue: t; makeGreen: tii

With this type, users may no longer set the color of cp2 by overriding its value for c . Now they may

only change its color by sending the messages makeBlue and makeGreen , a fact which guarantees

that the object only takes on legal colors.

4.3 Related Work: Adding Subtyping to a Language with

Object Extension

The authors of [BL95] approach the trade-o� between delegation and subtyping in a very di�erent

way. Their system, which is an extension of [FHM94], permits a limited form of width subtyping

on expressions with (what we call) pro type. In particular, they consider pro t R a subtype of

pro t R0 so long as R contains all the methods of R0 (with matching types) and none of the

\forgotten" methods are referred to in the methods listed in R0 . This second condition guarantees

that if we forget about the presence of some method m via subsumption and then re-add m with

a potentially unrelated type, we cannot violate any typing assumptions the other methods of the

object may have made about m . This guarantee is essential to the soundness of this approach to

adding subtyping; however, its inability to \forget" methods referred to by \remembered" methods

is somewhat unfortunate. In particular, it cannot type examples such as that given in Section 4.2.2.2,

where desired invariants about an object are maintained by restricting access to certain methods

via subsumption.

4.4 Conclusion

In this chapter, we presented a type system for an object calculus that extends previous work in

[Mit90, FHM94]. The main additions to our previous object calculus are the distinction between

prototypes and objects and the addition of subtyping. The distinction between prototypes, which

allow method addition and override, and objects, which only receive messages, is essential for sub-

typing, since previous studies show an incompatibility between object extension, method override,

and non-trivial subtyping [FM95b].



Chapter 5

Classes

There are several forms of object-oriented languages, including class-based languages such as Sim-

ula [BDMN73], Smalltalk [GR83], C++ [ES90], Java [AG96], and Ei�el [Mey92], prototype-based

languages such as Self [US91] and Obliq [Car95], and multi-method-based approaches such as Com-

monLisp [Ste84] and Cecil [Cha95]. This chapter is concerned with the study of class-based languages

and the relationship between three language constructs: classes, prototype-based object primitives,

and traditional data abstraction of the form found in languages such as Clu [L+ 81], Ada [US 80]

and ML [MTH90]. Speci�cally, we consider a class construct which resembles the form of class found

in C++, Ei�el and Java.

This class construct may be written in our object calculus extended with a form of abstract

data type declaration. One appeal of this interpretation is that it clearly shows how classes may

be viewed as an orthogonal combination of pure operations on objects (providing aggregation but

no encapsulation) and data abstraction (providing encapsulation but no aggregation). Furthermore,

this interpretation of classes sheds some light on a long-standing con
ict in the literature on object-

oriented programming: the connection between subtyping and inheritance.

An early and in
uential paper, [Sny86], argues that subtyping and inheritance are distinct.

This point is reinforced in [Coo92], which shows that the subtyping and inheritance hierarchies

used in the Smalltalk collection classes are essentially unrelated. We believe that the arguments in

[Sny86, Coo92] are correct for interface types, which are types that specify the operations of their

objects but not their implementations. Such types have been the focus of recent theoretical studies of

object systems, such as [AC96c, Bru93, FHM94, PT94] and the earlier papers appearing in [GM94].

However, existing object-oriented languages such as Ei�el and C++ use a form of implementation

type that constrains both the interface and the implementations of objects. We argue that there is

a connection between subtyping and inheritance for implementation types: the only way to produce

a subtype of an implementation type, without violating basic principles of data abstraction, is

via inheritance. In addition, we show a connection between interface types and implementation

49
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types: every implementation type is a subtype of the interface type obtained by \forgetting" its

implementation constraints.

This chapter describes a sound type system, based on accepted type-theoretic principles, that

allows us to write both interface types and implementation types in the same framework. The

system is relatively simple in outline, since it may be viewed as a straightforward combination

of basic constructs that have been studied previously. The main technical idea is that we may

model implementation types by adding an abstract data type mechanism to the object calculus

developed in the previous chapter. While there is a folkloric belief that C++ and Ei�el classes

provide a form of data abstraction, we believe that this study is the �rst technical account giving

a precise correspondence between class constructs and a standard non-object-oriented form of data

abstraction.

The rest of this chapter is organized as follows. Section 5.1 explores in more detail the role of

classes in object-oriented languages and identi�es what properties we believe a class construct should

possess. Section 5.2 considers the connections between classes and the long-standing controversy

surrounding the relationship between subtyping and inheritance. Then Section 5.3 shows how we

may translate a class construct into a combination of our object calculus and a data abstraction

mechanism. We show how this encoding may be generalized in Section 5.4 to capture C++'s protected

level of visibility. Section 5.5 brie
y describes the changes to our formal language necessary to

model classes. (We formally present the full system in Chapter 6; the type soundness proof appears

in Chapter 7). In Section 5.6 we describe other approaches people have taken to model classes.

Finally, we conclude in Section 5.7 with some observations.

5.1 Properties of Classes

Although space considerations preclude a full discussion of the motivations for classes in object-

oriented languages, it is worth brie
y considering their role in existing languages. Typically, classes

serve several functions. One of the most important of these is their role in de�ning both a hierarchy

of object implementations and a hierarchy of object types via inheritance. Commonly, these two

hierarchies are closely related to each other, but need not exactly coincide. In C++, for example,

private inheritance de�nes a relationship in the implementation hierarchy, but not in the subtyping

hierarchy, while abstract base classes may be used to declare a subtyping relationship with only

minimal connections in implementation. As both hierarchies support code reuse, classes provide two

distinct mechanisms for reusing code: the implementation hierarchy supports object-de�nition reuse

while the subtyping hierarchy allows subtyping polymorphism. Such code reuse mechanisms are one

of the reasons object-oriented languages support large-scale programming.

Other roles of classes arise from the fact that classes typically constrain the implementations of

their objects. One rami�cation of these constraints is that class-based protection mechanisms are
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possible. Such protection mechanisms allow the objects of a class to access the hidden components

of other objects of the same class. The implementation constraints speci�ed by the class make it

possible to statically check such accesses. In particular, placing access restrictions at the class level,

instead of at the object level, make it easier to write useful binary methods, which are methods

that take an object of the same type as the receiver object as an argument. Typical examples of

binary methods are equality methods, set union operations, and matrix multiplication. Additionally,

because classes provide a useful and intuitive boundary for access restrictions, they help divide code

into separately maintainable entities. Such separations make it easier to write and maintain large

bodies of code. Another consequence of the implementation constraints imposed by classes is that

compilers can use this information to optimize method lookup (as in C++).

This brief discussion reveals that in class-based object-oriented languages, classes play a funda-

mental role in structuring code, providing both reuse (subtyping and inheritance) and code sepa-

ration (protection mechanisms). Both aspects support large-scale programming. Hence any class

construct should be evaluated with large-scale programming in mind and should support both in-

heritance and encapsulation. Based on these, and other considerations, we believe that a class

mechanism should have the characteristics outlined in the following paragraphs.

Coherent, extensible collection. A class construct should provide an extensible collection of

object \parts." Such parts may include methods, data, local constants, speci�cations of communica-

tion protocols, etc. These parts should be coherent , in the sense that if a class is well-formed, then it

should be guaranteed that all objects instantiated from the class will themselves be well-formed. For

example, if one of the methods of the class requires an integer f method, then the class must contain

an integer f method. The consistency of the parts should be checked when the class is formed, not

when objects are actually instantiated from the class, a timeliness which facilitates debugging. The

extensibility of the collection means that derived classes may reuse object parts from other classes,

possibly adding additional coherent parts.

Access Restrictions. A class construct should allow programmers to specify the level of vis-

ibility for each of the \parts" de�ned in the class. Some common visibilities are private (for use

within the class implementation) and public (for use by client programs). Such visibilities help insure

that separate blocks of code have no hidden dependencies and hence may be separately maintained.

These speci�cations should be enforced by the language. For example, if a programmer speci�es that

a given method is private, the type system should insure that only the implementation of the given

class may access the method in any way. This restriction guarantees that the implementor of a class

may change its private implementation without fear of introducing type errors into clients of the

class. Access controls should clearly indicate the visibility of each of the parts for both the current

class and all derived classes, so if a method is private in a given class, that method is guaranteed to

be private in all derived classes as well.

Initialization. Classes should provide code to initialize their collection of parts when objects
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are instantiated from them. A class-based language should insure that this initialization code is

executed both for objects instantiated directly from a given class and for those instantiated from

its descendents. Running this initialization code is essential for establishing invariants for the var-

ious parts, particularly in light of the private level of visibility. Since derived classes cannot see

private components and are not supposed to be aware of their parents' implementation details, they

should not (and indeed cannot) be responsible for initializing and setting up invariants for inherited

components.

Support for Incremental Development. Because classes are intended to support large

scale programs and because such programs inevitably include program modi�cations, classes should

support code maintenance. In particular, incremental changes to a base class should automatically

be propagated to all derived classes. If any type errors are introduced in derived classes because

of such changes, these errors should be reported immediately. For example, if a programmer adds

a new method to a parent class, that method should then be automatically added to all derived

classes. If the new method con
icts with a method de�ned in a descendent, the con
ict should be

reported immediately, not when objects are instantiated from the given derived class.

The interpretation of classes described in this chapter possesses all of the above desired properties.

5.2 The Connection between Subtyping and Inheritance

5.2.1 Subtyping and Inheritance

As we saw in Sections 2.1.2 and 2.1.3, object-oriented programming languages have two distinct,

powerful mechanisms that support code reuse, namely inheritance and subtyping. We brie
y review

these concepts here. Inheritance is a language feature that allows new objects to be de�ned as incre-

mental modi�cations to the de�nitions of existing ones. It is an implementation technique. For every

object or class of objects de�ned via inheritance, there is in principle an equivalent de�nition that

does not use inheritance, obtained by expanding the de�nition so that inherited code is duplicated.

The importance of inheritance is that it saves the e�ort of duplicating (or reading duplicated) code,

and that when one class is implemented by inheriting from another, changes to one a�ect the other.

This has a signi�cant and sometimes debated impact on program maintenance and modi�cation.

Subtyping is a relation on types. The basic principle associated with subtyping is substitutivity:

if A is a subtype of B , then any expression of type A may be used without type error in any context

that requires an expression of type B . We write \A <: B" to indicate that A is a subtype of B .

The primary advantage of subtyping is that it permits uniform operations over various types of data

that share some basic structure. For example, subtyping makes it possible to have heterogeneous

data structures containing objects that belong to di�erent subtypes of some common base type.

As their de�nitions suggest, and as pointed out in [Sny86] and [Coo92], subtyping and inheritance

are distinct notions. However, in the history of object-oriented programming, they have often been
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Class Pointf

private x : int

public move : int!Point

newPoint : int!Point

g

Class ColorPoint1 : public Point f

private c : color

public turnRed : ColorPoint1

newColorPoint1 : int! color!ColorPoint1
g

Class ColorPoint2 f

private x : int

c : color

public c move : int!ColorPoint2
turnRed : ColorPoint2

newColorPoint2 : int! color!ColorPoint2
g

Figure 5.1: C++-style declarations for Point and ColorPoint classes.

confused. One source of this confusion is that existing languages like C++ [Str86, ES90] and Ei�el

[Mey92] con
ate the two concepts by making inheritance the only way to produce subtypes. For

example, consider the class declarations in Figure 5.1, written in a C++-like syntax. In C++ or Ei�el,

ColorPoint1 is a subtype of Point , but ColorPoint2 is not, despite the fact that ColorPoint2

objects can respond to exactly the same messages as ColorPoint1 objects. To distinguish between

classes and types, throughout this section we will typeset class names in teletype font (ClassName)

and type names in italics (TypeName).

5.2.2 Interface Types

An interface type speci�es a list of operations, generally as method names and return types. If an

object is declared to implement all of the operations, it is considered an element (or member) of

an interface type. As a result, objects with the same interface type may have signi�cantly di�erent

internal representations. Some aspects of interface types may be illustrated using the pseudo-code

in Figure 5.1. Each of the three classes described in Figure 5.1 has an associated interface type,

giving the operations that may be invoked by client programs. We may write the Point interface

type as follows, using a type notation de�ned precisely in Section 4.1.

PointInter
def

= obju hhmove : int!uii

Expressions with this type are guaranteed to be objects that have at least a move method that

takes an integer as an argument and returns an object with the same type as that of the receiver.
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We omit the x method from the interface type, because x is a private method and therefore not

visible to clients of the class. Also, function newPoint does not appear in this type because it is a

special constructor function, distinguished by the syntactic form newClassname . Since all objects

of a class are created by calling a class constructor, it is important to be able to call the constructor

function before any objects have been created. Therefore, unlike the other functions listed in the

class declarations, the class constructor is not a method; it does not belong to objects of the class.

Constructors are included in class declarations primarily as a syntactic convenience. Because the

Point class is recursive, (the return type of Point 's move method is Point), we use a form of

recursive type for the Point class interface type. To that end, we have replaced the Point return

type of the move method in the class declaration with a type variable u .

We may similarly write the interface type for the ColorPoint1 class as follows:

ColorPoint1Inter
def

= obju hhmove : int!u; turnRed : uii

This interface type includes the move method because the ColorPoint1 class inherits it from the

Point class. As above, the c method is omitted because it is private. Finally, the interface type for

the ColorPoint2 class is:

ColorPoint2Inter
def

= obju hhmove : int!u; turnRed : uii

The fact that ColorPoint1Inter and ColorPoint2Inter are identical indicates that the objects in-

stantiated from these two classes will respond to exactly the same messages.

From the point of view of these interfaces, it is straightforward to see that:

ColorPoint1Inter <: PointInter and ColorPoint2Inter <: PointInter

These subtyping relationships re
ect the fact, pointed out by [Sny86] and [Coo92], that interface

subtyping has nothing to do with how objects are implemented. Speci�cally, the ColorPoint2 class

produces an interface subtype of PointInter without inheriting from the Point class.

5.2.3 Implementation Types

A basic principle in statically typed, class-based object systems is that certain aspects of the imple-

mentation of an object may be hidden from client code. Typically, this may include private data,

or private methods that may only be invoked by other methods of the object. Like traditional

data abstraction in languages such as Ada, Clu, and ML, encapsulation in object-oriented languages

makes it possible to enforce representation invariants, such maintaining a sorted array in the imple-

mentation of a priority queue. In addition, encapsulation allows the implementation of an object

(or class of objects) to be changed in various ways, without adversely a�ecting the correctness of

client code. For example, it is possible to construct a geometry library so that the representation of

point objects may be changed from rectangular to polar coordinates, say, without invalidating any

essential properties of the subtype or inheritance hierarchies.
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An implementation type is a form of object type that guarantees both a speci�c public interface

and some aspects of the implementation of objects which are typically hidden from client code.

For example, the type ColorPoint2Imp that would be associated with a C++ class declaration of

the form shown in Figure 5.1 guarantees the public interface written as ColorPoint2Inter and the

implementation property that colored points of this type have private integer and color data, with

x occurring before c in the representation of an object. The private information is not accessible

in client code, but it is an important part of the implementation of C++ that is used in the calling

sequence for public methods. In particular, a C++ program would not work properly if objects with

the same public interface, but di�erent internal representation, were cast to type ColorPoint2Imp .

A fundamental tenet of this thesis is that C++ and Ei�el are based on a sensible and meaningful

notion of implementation type which di�ers from the form of interface type considered in other

studies. These implementation types specify not only the interfaces of objects but also provide con-

trol over how objects of a certain type may be created or represented. This extra implementation

information is useful for several reasons. If we know that all point objects inherit a speci�c repre-

sentation of x and y coordinates, for example, then a program may be optimized to take advantage

of this static guarantee. The usual implementations of C++, for example, use type information to

statically calculate the o�set of member data relative to the starting address of the object. A similar

calculation is used to �nd the o�set of virtual member functions in the virtual function table (vtable)

at compile time [ES90, Section 10.7c]. Such optimizations are not possible in an untyped language

such as Smalltalk [GR83] and would not be possible in a typed language where objects of a single

type could have arbitrarily dissimilar implementations.

A second, more methodological reason that programmers may be interested in implementation

types is that there are greater guarantees of behavioral similarity across subtype hierarchies. More

speci�cally, traditional type systems generally give useful information about the signature (or do-

main and range) of operations. This information is a very weak form of speci�cation and, in many

programming situations, it is desirable to have more detailed guarantees. While behavioral speci�-

cations are di�cult to manipulate e�ectively, we have a crude but useful approximation when types

�x part of the implementation of an object. To return to points, for example, if we know that all

subtypes of point share a common implementation of a basic function like move , then the type sys-

tem, in e�ect, guarantees a behavioral property of points. (This may be achieved in our framework

if move is private or if we add the straightforward capability of restricting rede�nition of protected

or public methods.)

A more subtle reason to use types that restrict the implementations of objects has to do with the

implementation of binary operations. In an object-oriented context, a binary operation on type A is

realized as a member function that requires another A object as a parameter. In a language where

all objects of type A share some common representation, it is possible for an A member function to

safely access part of the private internal representation of another A object. A simple example of
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this access arises with set objects that have only a membership test and a union operation in their

public interfaces. With interface types, some objects of type set might be represented internally

using bit vectors, while others might use linked lists. In this case, there is no type-safe way to

implement union, since no single operation will access both a bit vector and a linked list correctly.

With only interface types, it is necessary to extend the public interface of both kinds of sets to make

this operation possible. In contrast, if the type of an object conveys implementation information,

then a less 
exible but type-safe implementation of set union is possible. In this case, all set objects

would have one representation and a union operation could be implemented by taking advantage of

this uniformity.

5.2.4 Interface Types vs. Implementation Types

From a programming point of view, interface types are often more 
exible than implementation

types. Using interface types, for example, we can de�ne a single type of matrix objects and then

represent dense matrices with one form of object and sparse matrices with another. If the type

only gives the interface of an object, then both matrix representations could have the same type

and therefore be used interchangeably in any program. This kind of 
exibility is particularly useful

when we write library operations on matrices without assuming any particular implementation. Such

library functions may be written using a standard interface type, without concern for how matrices

might be implemented in later (or earlier) development of a software system.

From this discussion, it is clear that interface types and implementation types have opposite

strengths. To summarize:

Implementation types Interface types

Flexibility - +

E�ciency + -

Binary Methods + -

5.2.5 Inheritance Necessary for Subtyping Implementation Types

As mentioned above, the main principle associated with subtyping is substitutivity. Many have

observed that this principle gives solid guidance on the de�nition of subtyping for interface types:

type A is a subtype of interface type B if every public operation guaranteed by B is also a guarantee of

A. We can also apply this principle to implementation types, suggesting the following condition: type

A is a subtype of implementation type B if every public operation and every private implementation

property guaranteed by B is also guaranteed by A. However, this condition is not the whole story

since it does not take principles of data abstraction into account.

The relationship between data abstraction and subtyping may be illustrated by again returning

to the example classes in Figure 5.1. As noted above, the public interfaces of the ColorPoint1 and

ColorPoint2 classes are identical. In addition, under the usual implementations of C++, objects
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of the two classes could be implemented identically. Therefore, one might consider making the

corresponding implementation types (which we will write ColorPoint1Imp and ColorPoint2Imp )

each a subtype of Point , the implementation type for the Point class. However, such a relationship

would violate a basic principle of data abstraction. Speci�cally, if we modify the program by changing

the implementation of class Point , say by adding private y data, then ColorPoint1Imp will remain

an implementation subtype of PointImp , since ColorPoint1 will inherit the added private data.

However, ColorPoint2Imp will cease to be an implementation subtype. With this in mind, we

propose the following provisional condition for subtyping with implementation types:

Type A is a subtype of implementation type B if

(i) every public operation guaranteed by B is also guaranteed by A

(ii) every private implementation property guaranteed by B is also guaranteed by A

(iii) these relationships are preserved by modi�cations to the private implementation of

B, excluding those modi�cations that might invalidate the implementation of A.

The exclusion in clause (iii) is awkward and we would prefer that it not be necessary. However, the

condition is needed for existing languages, as well as our foundational system, to account for the

special case where a extending a parent (or base) class con
icts with the implementation of the child

(or derived) class. This would happen to ColorPoint1 if we extended Point in Figure 5.1 with a

c �eld of type integer.

In the following sections, we present a sound type system that allows us to write both interface

types and implementation types. To our knowledge, this framework is the �rst theoretical study to

incorporate implementation types. An insight provided by this analysis is that there is a connection

between implementation and interface types. In particular, it turns out that a given implementation

type is a subtype of the interface type obtained by \forgetting" the implementation constraints.

For example, the various types arising from the class declarations in Figure 5.1 are related via the

subtyping relations shown in Figure 5.2.

5.3 Overview of Formal System by Example

We introduce our formal system by showing how the Point , ColorPoint1 , and ColorPoint2 classes

presented in Figure 5.1 may be formalized in our language.

5.3.1 Interface Type Expressions

Notice that each method in the classes in Figure 5.1 is declared to be either public or private .

Private methods are only accessible within the implementation of the class, whereas public methods

may be accessible, through objects of the class, in any module of the program. In translating the

pseudo-code in Figure 5.1 above into a more precise form, we write a type expression for both the



58 CHAPTER 5. CLASSES

Pointinter

Pointimp

ColorPoint1inter; ColorPoint2inter

ColorPoint2impColorPoint1imp

Figure 5.2: Subtyping relations between types arising from class declarations in Figure 5.3.

public and private interface of each class, resulting in six distinct but related types. In hopes that this

practice will provide useful mnemonics, we follow a systematic naming convention where, for class

A , we call the type expressions for the public and private interfaces Apub and Apriv ; respectively.

Although each interface is essentially a list of method names and their types, it is necessary to

use a type function instead of a type for each interface. The reason is that the type associated with

the objects instantiated from a given class is recursively de�ned; this type is a �xed-point of a type

function. Pointwise subtyping between such type functions is the critical relation between interfaces

for type-checking inheritance. We may obtain these type functions from the corresponding class

declarations by listing the methods and their types available at each level of visibility. Occurrences

of the class name are replaced by a type variable, which is then lambda abstracted to form a type

function.

For Point , this methodology gives us the following type functions, using the notation from the

previous two chapters:

Ppub
def
= �u hhmove : int!uii

Ppriv
def
= �u hhx : int; move : int!uii

These interface functions are formed from the class declaration for Point by replacing occurrences of

Point by a type variable u and lambda-abstracting to obtain a type function. We use row variables

to range over such type functions.

Because the ColorPoint1 class is de�ned by inheritance from the Point class, the analogous

interfaces for ColorPoint1 are written using a free row variable p . This row variable will be bound
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to the private interface for points Ppriv in the scope where the ColorPoint1 interfaces appear.

CP1pub
def
= � u hhp u j turnRed : uii

CP1priv
def
= � u hhp u j c : color; turnRed : uii

A subtype bound on identi�er p will provide access to the public Point methods, so there is no need

to list the methods inherited from Point . Consequently the ColorPoint1 interfaces list exactly the

same methods as our pseudo-code ColorPoint1 class. Since the variable p will be \existentially

bound" in an abstract data type declaration, the occurrence of p in each expression will guarantee

that the private methods of Point objects are present in ColorPoint1 objects, without exposing

any other information about private Point methods. Kind information in the declaration of p

guarantees that methods named c and turnRed are not present, making it type-safe to extend p

objects with these new methods.

Because the ColorPoint2 class is not de�ned to inherit from the Point class, its interfaces are

not written in terms of p :

CP2pub
def
= �u hhmove : int!u; turnRed : uii

CP2priv
def
= �u hhx : int; c : color; move : int!u; turnRed : uii

5.3.2 Implementations

A class implementation speci�es an object layout and set of method bodies (code for the methods of

the objects). In our approach, the object layout will be given by a type expression and the method

bodies will be part of the constructor function. Following general principles of data abstraction, the

method bodies may rely on aspects of the representation that are hidden from other parts of the

program.

We use a subtype-bounded form of data abstraction based on existential types [MP88, CW85].

Using this formalism, the implementation of points will be given by a pair with subtype-bounded

existential type of the form:

fjp <:w Ppub : : � = Ppriv ; ConsImppjg

consisting of the private interface Ppriv for points and a constructor function ConsImpp that might

use an initial value for the x-coordinate to return a new point object. (Our framework allows any

number of constructor functions, or other \non-virtual" operations to be provided here. However,

for simplicity, we discuss only the special case of one constructor per class.) The kind � will indicate

that we are declaring an abstract type function, list methods that are guaranteed not to be present in

the implementation of points, and describe the variance of point objects. As in the previous chapter,

the variance information is needed to infer subtyping relationships for object types containing row

variable p .
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The implementation of the ColorPoint1 class has the form:

fjcp1 <:w CP1pub : : �
0 = CP1priv; ConsImpcp1jg

Similarly, the implementation of ColorPoint2 has the form:

fjcp2 <:w CP2pub : : �
0 = CP2priv; ConsImpcp2jg

Next, we give de�nitions of appropriate constructor functions.

5.3.3 Constructor Implementations

The Point class constructor Impp may be written as follows:

�initX:h x = �self: initX;

move = �self: �dx:hself x = �s: dx+ self(xii

The ColorPoint1 constructor Impcp2 �rst invokes the Point class constructor newPoint ,

(which is implemented by the above Impp function) then extends the resulting prototype with

the new methods c and turnRed :

�iX: �iC: hhhhnewPoint(iX)  + c = �self: iCi

 + turnRed = �self:hself c = �self0: rediii

By �rst calling the constructor for the Point class, the ColorPoint1 class permits the parent

Point class to build the parts of the ColorPoint1 objects inherited from Point , including the

private components that the ColorPoint1 class cannot directly access.

The ColorPoint2 constructor Impcp2 does not inherit from the Point class, and so is de�ned

independently of newPoint . The constructor for this class may be written as follows:

�initX: �initC:h x = �self: initX;

c = �self: initC;

move = �self: �dx:hself x = �s: dx+ self(xi

turnRed = �self:hself c = redii

5.3.4 Class Declarations

In this formalism, a \class declaration" intuitively corresponds to an abstract data type declaration

of the form:

Abstype r <:
w
R : : � with newClassName : � is e1 in e2

Here r is intuitively the \name" of the class. Function newClassName of type � is the class's

constructor. Expression e1 is the implementation of the class, and e2 contains the program that

uses this class declaration.



5.3. OVERVIEW OF FORMAL SYSTEM BY EXAMPLE 61

Abstype p <:w Ppub : : T
+ ! (fc; turnRedg; ;)

with newPoint : int!pro u p u

is fjp <:w Ppub : : (T
+ ! (fc; turnRedg; ;)) = Ppriv ; Imppjg

in

Abstype cp1 <:w CP1pub : : T
+ ! (;; ;)

with newColorPoint1 : int! color!pro u cp1 u

is fjcp1 <:w CP1pub : : (T
+ ! (;; ;)) = CP1priv ; Impcp1jg

in

Abstype cp2 <:w CP2pub : : T
+ ! (;; ;)

with newColorPoint2 : int!pro u cp2 u

is fjcp2 <:w CP2pub : : (T
+ ! (;; ;)) = CP2priv; Impcp2jg

in

hProgrami

Figure 5.3: Nested abstract data types for point and colored point classes.

5.3.5 Class Hierarchies as Nested Abstract Types

Our basic view of classes and implementation types is that the class-based pseudo-code in Figure 5.1

may be regarded as sugar for the sequence of nested abstract data type (Abstype) declarations

given in Figure 5.3. In order, the three abstract type declarations correspond to the class Point,

the class ColorPoint1, and the class ColorPoint2. In this example, each constructor returns an

object with a pro type. Such types support the operations of method override and object extension,

which are used to model inheritance. For example, the ColorPoint1 constructor will use these

operations to de�ne ColorPoint1 objects as extensions of Point objects. As explained in the

previous chapter, such extensible object types do not directly support subtyping, however. When

programmers wish to manipulate the objects de�ned in a class as traditional non-extensible objects

that support subtyping, they must \instantiate" the objects returned from the constructors. This

\instantiation" seals the objects so that they no longer support method override or object extension,

but now have obj types that provide rich subtyping. As we saw in Chapter 4, it turns out that this

\instantiation" operation is just subsumption; the object expressions themselves are una�ected.

In the example above, the obj types associated with objects returned from the three con-

structors newPoint; newColorPoint1; and newColorPoint2 are obju (p u); obju (cp1 u); and

obju (cp2 u); respectively. Our subtyping rules allow us to verify that we get the subtyping hier-

archy shown in Figure 5.4, which exactly matches the conceptual hierarchy shown in Figure 5.2. It

is possible for our rules to verify these relationships because the ambient environment includes the

assumption that cp1 <:w �u:hhp u j turnRed : uii .
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obj u hhmove : int!uii

obj u (p u)

obj u hhmove : int! u; turnRed : uii

obj u (cp2 u)obj u (cp1 u)

Figure 5.4: Subtyping relations between formal types arising from class declarations in Figure 5.3.

5.4 The Protected Visibility Level

In this section, we show how to model a third level of visibility, the protected level.

5.4.1 Protection Levels

Up to this point, we have only considered two levels of protection: public and private. However, there

is an intermediate protection level: the protected level. Each class in an object-oriented program

has two kinds of external clients: sections of the program that use objects created from the class

and classes that derive new classes from the original. Since the methods of a class may refer to each

other, the class also has an internal \client," namely itself. It is therefore sensible to associate three

interfaces with each class. Using C++ terminology, these may be distinguished as follows:

Private methods are only accessible within the implementation of the class,

Protected methods are only accessible in the implementation of the class and derived classes,

Public methods may be accessible, through objects of the class, in any module of the program.

One goal of this work is to show how we can associate a di�erent type with each interface and

use essentially standard type-theoretic constructs to restrict visibility in each part of a program

appropriately. In doing so, we pay particular attention to the fact that although the private or

protected methods may not be accessible in certain contexts, it is important for the type system to

guarantee their existence.
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5.4.2 Point and Color Point Classes

We introduce a simpler class hierarchy in this section to simplify the exposition. Again, using

a C++-like syntax, we might declare classes of one-dimensional points and color points as shown

below.

Class Pointf

private x : int

protected setX : int!Point

public getX : int

newPoint : int!Point

g

Class ColorPoint : public Point f

private c : color

protected setC : color!ColorPoint

public getC : color

newColorPoint : int! color!ColorPoint

g

Intuitively, the set methods are used to assign to private x-coordinate or color data c, and get

methods are used to read the values of the data. These classes re
ect a common idiom of C++

programming, where the basic data �elds are kept private so that the class implementor may change

the internal representation without invalidating client code. Protected methods make it possible for

derived classes to change the values of private data without providing the same capability outside

of derived classes.

5.4.3 Interface Type Expressions

In translating the pseudo-code above into a more precise form, we write a type expression for each

interface of each class, as we did in the previous section. Because we have a third protection level,

we need a third interface: the protected interface. Following our naming convention, we call the

type expression for the protected interface of class A Aprot .

For the Point class, the public, protected, and private interfaces are:

Ppub
def
= �t:hhgetX : intii

Pprot
def
= �t:hhsetX : int! t; getX : intii

Ppriv
def
= �t:hhx : int; setX : int! t; getX : intii

As in the previous section, the analogous interfaces for the ColorPoint class are written using a

free row variable p , which will be bound to the abstract type-function for points in the scope where



64 CHAPTER 5. CLASSES

Abstype p <:w Pprot : : T
+ ! (fc; getC; setCg; ;)

with newPoint : int!pro u p u

is fjp <:w Pprot : : (T
+ ! (fc; getC; setCg; ;)) = Ppriv ; Imppjg

in

Abstype cp <:w CPprot : : T
+ ! (;; ;)

with newColorPoint : int! color!pro u cp u

is fjcp <:w CPprot : : (T
+ ! (;; ;)) = CPpriv ; Impcpjg

in

Abstype p <:w Ppub : : T
+ ! (;; ;)

with newPoint : int!obj t p t

is fjp <:w Ppub : : (T
+ ! (;; ;)) = p; newPointjg

in

Abstype cp <:w CPpub : : T
+ ! (;; ;)

with newColorPoint : int! color!obj t cp t

is fjcp <:w Ppub : : (T
+ ! (;; ;)) = cp; newColorPointjg

in

hProgrami

Figure 5.5: Nested abstract data types for point and colored point classes, illustrating the protected
visibility level.

the ColorPoint interfaces appear:

CPpub
def
= �t:hhp t j getC : colorii

CPprot
def
= �t:hhp t j setC : color! t; getC : colorii

CPprot
def
= �t:hhp t j c : color; setC : color! t; getC : colorii

Because the subtyping bounds on identi�er p give all of the relevant (protected or public) Point

methods, there is no need to list the methods inherited from Point . Consequently the ColorPoint

interfaces list exactly the same methods as our pseudo-code ColorPoint class. Figure 5.4.3 shows

the interpretation of the above pseudo-code.

In order, the four abstract type declarations give the protected view of Point, the protected view

of ColorPoint, the public view of Point, and the public view of ColorPoint. The nesting structure

allows the implementation of ColorPoint to refer to the protected view of Point and allows the

program to refer to public views of both classes. The two inner declarations hide the protected view

of a class by redeclaring the same type name and constructor and exposing the public view (with

a di�erent type, as discussed below). Since the implementation of the public view, in each case, is

exactly the same as the implementation of the protected view, hiding the protected methods is the

only function of the two inner declarations. We admit reusing bound variables is a bit of a \hack."
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One distinction between the protected and public views is that the constructors for the protected

view return an object with a pro type while the public view constructors return objects with obj

types. This di�erence re
ects the fact that derived clients extend their parents and hence need

the operations of method override and object extension, but do not require subtyping. In contrast,

object clients need rich subtyping but not method override or object extension.

5.4.4 Constructor Implementations

The Impp and Impcp expressions, which implement the constructors for the Point and ColorPoint

classes, respectively, may be de�ned in a fashion similar to the constructor implementations given

in Section 5.3.3.

5.5 Formal Language and Type System

The changes to the formal system described in this section are relatively minor additions to provide

an abstract data type mechanism. To a large extent, these changes are minimal because the previous

two languages were designed to support the constructs added here.

5.5.1 The Language

We extend the calculus from the previous chapter with two encapsulation primitives:

Abstype r <:w R : : � with x : � is e1 in e2

fjr <:w R : : � = R0; ejg

The �rst form provides limited access to implementation e1 in client e2 . Type expression r <:w

R : : � and assumption x : � provide the interface for this access. The type system will require

expression e1 to have the form fjr <:w R : : � = R0; ejg , which is the implementation of the

abstraction.

5.5.2 Operational Semantics

We extend the operational semantics of the previous chapters with a reduction rule (Abstype) for

evaluating abstract data type uses:

Abstype r <:w R : : � with x: � is fjr <:w R : : � = R0; e1jg in e2
eval

�! [R0=r; e1=x]e2

5.5.3 Static Type System

The type systems is just that of the previous chapter, extended with existential types:

Types

� : : = � j 9(r <:w R : : �)�

� : : = t j �1! �2 jpro t R jobj t R
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To reduce the complexity of the type system, these types are divided into two categories. The un-

quanti�ed, monotypes are indicated using metavariables �; � 0; �1; : : : . The quanti�ed types, indicated

using metavariables �; �0; �1; : : : , may contain existential quanti�ers. The row and kind expressions

are the same as in the previous chapter.

The contexts of the system are just as in the previous section. The judgment forms are:

�` � well-formed context

�`�:V well-formed type with variance V

�`R : : � row has kind

�` �1 <: �2 type �1 subtype of �2

�`R1 <:B R2 row R1 is a B-subtype of R2

�` e:� term e has type �

As in the previous section, the B annotation on the row subtyping judgment tracks whether or not

depth subtyping rules were used to infer the subtyping relation. An annotation of w indicates only

width rules were used, while a w; d indicates depth rules may have been used.

5.5.4 Typing Rules

There are only three new typing rules required by the extension presented in this system: a well-

formedness rule for existential types (exists), and introduction (9 <: intro) and elimination rules

(9 <: elim). The rule for forming an expression with existential type is the standard rule for

existential introduction, extended to address kinding and subtyping constraints.

(9 <: intro)

�`R1 : : �

�`R1 <:w R

�` e : [R1=r]�

�`fjr <:w R : : � = R1; ejg : 9(r <:w R : : �)�

The rule for existential elimination is standard as well. The full type system appears in the next

chapter.

5.5.5 Type Soundness

The soundness proof for this type system appears in Chapter 7.
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type p = obj hhgetX : int; setX : int!Pointii

val PointImpl : record : : : end

= record getX = � (self) 0 end; setX = � (self; nwX) : : : end end

fun newPoint : int! p

= � xi: int :hgetX = PointImpl:getX; setX = PointImpl:setXi( setX xi

in

type cp = obj hhgetX : int; setX : int!Point;

getC : color; setC : color!CPointii

val ColorPointImpl : record : : : end

= record getX = PointImpl:getX; : : : end

fun newColorPoint : int! color ! cp

= � xinit: int : � cinit: color :

hgetX = ColorPointImpl:getX; : : : i : : :

in

hProgrami

Figure 5.6: Type and constructor declarations for points and color point classes.

5.6 Related Work: Modeling Classes

5.6.1 Classes as Records of Pre-Methods

In Cook's important early work on the foundations of object-oriented languages [Coo87, Coo89a],

a class was represented by a function, called an object generator. The �xed point of a generator

is a recursively de�ned record that represents an object, with recursion used to resolve references

to self . The reason for object generators is that inheritance cannot work directly on objects that

encapsulate (or hide) the dependence of one method on another. However, inheritance may be

formulated as an ordinary operation on method bodies if we explicitly treat methods as functions

of self .

In the context of object calculi, it seems natural to de�ne inheritance using pre-methods, functions

that are written with the intent of being object methods, but which are not yet installed in an object.

Presumably based on this intuition, Abadi and Cardelli have proposed encoding classes in a pure

object system using records of pre-methods [AC96c]. This is illustrated by example in the next

section. The record of pre-methods can be grouped with a constructor; the object containing both

of these is used as the encoding of a class. In a typed system, we would also associate this object

with the type of objects of the class. A similar approach is used in [RR96].

5.6.2 Example Classes

Figure 5.6 shows six declarations. The �rst three give the object type associated with the point

class obj hhgetX : int; setX : int!Pointii , a record of point pre-methods PointImpl, and a point

constructor newPoint. The next three declarations give a corresponding representation of the color

point class. Note that the implementation of color points, ColorPointImpl, is de�ned from the
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implementation of points, PointImpl. However, this dependency appears to be the extent to which

inheritance can be realized. It does not seem to be possible to reuse the point constructor because

objects are not extensible, and it is therefore not possible to use a point object to create a color

point object (except trivially).

There appear to be two ways to incorporate private �elds into this approach, each with its

advantages and disadvantages. The declared type p , for point objects, lists the public operations

on points. The constructor, on the other hand, must return an object that contains the public

and private operations. (For example, we could have a separate x �eld whose value is returned

by getX .) However, by subtyping, we are able to give the constructor a static type that hides the

private operations, exposing only the public ones. There is a choice, however, regarding whether

the private �elds are including in the record PointImpl. If they are, then private methods may be

inherited. But their use is not restricted { they are as public from the point of view of any derived

class as any of the �elds that are intended to be public. The alternative is to de�ne private parts

in the constructor only, as part of a closure, but not include them in the class (record PointImpl of

pre-methods). This would not allow private �elds to be inherited since inheritance cannot be based

on the object constructor. On the other hand, it would preserve them as strictly private.

While there is a technical detail that makes it di�cult to type this example in the system

described in the previous two chapters, it could be done if explicit universal quanti�cation were

added so that we can write a record of polymorphic pre-methods. It appears simpler to use the

system of [AC96c, AC95], since less polymorphism is required for these methods.

5.6.3 Analysis

The primary advantage of the record-of-premethods encoding of classes is that it does not require

a complicated form of basic objects. All that is needed is a way of forming an object from a list of

�eld de�nitions. However, looking back at the list of desiderata in Section 5.1, it appears that only

the �rst of four important criteria are satis�ed. While reasonable people may disagree about the

potential for records of pre-methods in large-scale object-oriented system design, it seems clear to

us that this approach involves a signi�cant loss of language support, in favor of very simple object

primitives. While we readily admit that simplicity is a virtue, it also seems worthwhile to carefully

examine the features that are lost.

The general shortcoming in this approach is the lack of support for inheritance. For example, if a

derived class D is de�ned from a base class B in C++ or related languages, then adding a method to B

will result in an additional method of D , and similarly for every other class derived from B (and there

may be many). This update is important, since one of the goals of object-oriented programming is

to support incremental changes in programs. In the approach shown here, the constructor for the

derived class is written by explicitly naming each of the �elds \inherited" from the base class. This

part of the program needs to be rewritten explicitly whenever the base class is changed. Another
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way of stating this point is to say that the translation from classes to object operations, in this

approach, is not local { the de�nition of the constructor of a class depends on all of the de�nitions

of classes from which �elds are inherited. In summary, the points related to inheritance are:

� There is no way to inherit the constructor from the parent class, only its list of object parts.

Hence the constructor of each derived class must be written explicitly. As a result, base classes

do not have control over the way private parts are to be initialized.

� A base class appears to provide only public (and protected) �elds to derived classes; it does not

seem possible to inherit private methods except by treating methods that are publicly visible

as private.

� Additions to a base class do not result in additions to derived classes, unless the derived classes

are rewritten.

Another issue that we believe is equally signi�cant is that lack of explicit control over the class

hierarchy. This point is largely orthogonal to the ones listed above, according to our analysis below,

since it is an encapsulation issue that may be attributed to the lack of data abstraction mechanism,

not a choice of basic object primitives. (On the other hand, successful use of data abstraction appears

to require extensible objects; perhaps this is a useful area for future research.) One issue here is that

in many existing class-based languages, it is possible to restrict the subtypes of an object type to

classes that inherit all or part of the class implementation. As we discussed in the beginning of this

chapter, this restriction may be useful for optimizing operations on objects, allowing object access in

binary methods and guaranteeing semantic consistency beyond type considerations (some discussion

of these points appears in [KLM94]). A special case of this capabilities the ability to de�ne �nal

classes, as recognized in work on Rapide [KLM94] and incorporated (presumably independently) as

a language feature in Java. This ability is lacking in the record-of-premethods approach since any

object whose type is a structural subtype can be used as an object of that type.

Extensible objects, such as those described in the previous two chapters, provide an alternative

to generators or pre-methods. An advantage of extensible objects is that the methods in question

remain part of an object, and it is therefore possible to impose static constraints on the way one

method may be combined with others. For example, if an object contains two mutually recursive

methods, then we cannot replace one with another of a di�erent type. (In the record-of-premethods

approach, it would be possible to form a class implementation with inconsistent methods, but it

would not be possible to write a type-correct constructor function.) Another advantage arises

with private (or protected) methods, which remain in the object when it is extended but cannot be

accessed except by original methods that were de�ned before the private method became hidden. Of

course, a complication is that extensible objects are generally not as useful to client programs, since

the usual forms of subtyping fail, as explained in detail above. However, as we saw previously, this

problem may be circumvented by using two forms of objects, an extensible form for inheritance and
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a non-extensible form that supports subtyping. A weakness of our current formulation of this idea is

that subclasses must be declared within the scope of their parent classes. We believe this shortcoming

may be overcome by replacing our block-structured construct with modules and a dot notation in the

style of [CL90, HL94]. A further weakness of our interpretation is the need for negative information.

In e�ect, parent classes must currently \guess" what methods their descendants will want to add.

Some form of � -binding to hide private method names and allow descendants to add new method

names freely may be necessary to solve this problem.

5.6.4 Other Approaches

Existential Model. In [PT94], Pierce and Turner interpret classes as object-generating functions.

(Recall that in their model, objects are interpreted as elements of existential type, c.f. Section 3.5).

In this setting, inheritance is interpreted as an extension to the object-generating functions that

model classes. This encoding is somewhat cumbersome, since it requires programmers to explicitly

manipulate get and put functions, which intuitively convert between the hidden state of parent

class objects and derived class objects. Also, because this model provides protection at the object-

level (as opposed to the class-level), binary methods require extra machinery. One such solution

appears in [PT93].

In [HP95], Hofmann and Pierce introduce a re�ned version of F<: that permits only positive

subtyping. With this restriction, get and put functions are both guaranteed to exist and hence

may be handled in a more automatic fashion in class encodings. A disadvantage of this approach

is that no subtyping is possible between existential types because the put functions for existential

types are not meaningful. Since objects have existential type, this model does not currently support

subtyping between object types; some form of explicit coercions are necessary. Extensions that

combine positive subtyping with normal subtyping, addressing this lack of object subtyping, seem

possible.

Direct Models. Kim Bruce has developed a family of type-safe formal languages that model

classes directly instead of via an interpretation as the combination of more basic primitives. In

[Bru93], Bruce describes TOOPL, a functional object-oriented language. PolyTOIL, presented in

[BSv95], incorporates imperative features and introduces the notion of matching , a relationship

between object types that holds whenever the �rst is an extension of the second, regardless of the

variance of the mytype type variable. In these languages, the type of an object re
ects only its public

interface; it cannot convey implementation information.

Scott Smith and the Hopkins Object Group have designed a type-safe class-based object-oriented

language with a rich feature set called I-Loop, [EST95]. Their type system is based on polymorphic

recursively constrained types, for which they have a sound type inferencing algorithm. The main

advantage of this approach is the extreme 
exibility a�orded by recursively constrained types. Cur-

rently, the main problem is that it returns large, di�cult-to-read types. Some form of simpli�cation
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may be required. Work in this area is in progress.

5.7 Conclusion

Pure object systems are simpler than class-based systems; however, most of the empirical evidence

for the utility of object-oriented languages is based on class-based languages, and certain features of

classes seem critical to this success. These features include:

� Explicit support for inheritance (derived classes).

� The ability to specify which methods/�elds are private and which are public (in the current

class and all derived classes).

� Control over initialization of objects (in the current class and all derived classes). This control

is essential for establishing invariants, for example.

� Static checking that guarantees that the object \parts" de�ned in the class are consistent with

each other (for example, all pre-methods must have consistent assumptions about the type of

\self").

� Preservation of relationships between classes when private or public �elds or methods are

added.

We believe it is important to evaluate pure object systems in light of their ability to support class-

based programming styles. The fundamental constructs that seem necessary are (i) an extensible

form of object, or perhaps pre-object, with the characteristics listed above, (ii) a non-extensible

form of object that can be created easily from an extensible form, and (iii) subtyping on the types

of proper objects. Given structural subtyping on object types, we have shown in this chapter how

to gain more precise control over the class hierarchy using standard data abstraction, enhanced with

subtype constraints as described in [CW85].

A further insight from the analysis in this chapter is that the Abadi/Cardelli and Fisher/Mitchell

calculi are incomparable. The Fisher/Mitchell calculi were originally formulated with method spe-

cialization in mind, which has led to speci�c rules for object formation that enforce a strong degree of

polymorphism. This degree of polymorphism is necessary to make each method that is added to an

object suitable for inclusion in any future extension (via inheritance or object extension). However,

it also precludes formation of certain objects that would behave sensibly only if not extended. On

the other hand, the Abadi/Cardelli chain of calculi do not provide any form of extensible object.

This lack makes it di�cult to support class-based programming. A key technical issue for further

exploration is to devise a system with two forms of objects, extensible objects with extension (like

our prototypes, for representing classes) and objects with overriding and width subtyping (like the

Abadi/Cardelli objects), with a natural form of conversion between the �rst and the second. We
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do not see any fundamental impediment to completing a study of this additional part of the design

space. Recent work by Luigi Liquori [Liq96] addresses this issue.

In this chapter, we described a type-theoretic model of various levels of encapsulation and visibil-

ity in object-oriented systems. More speci�cally, we showed that classes, of the form found in C++,

Ei�el, and related languages, may be regarded as the combination of two orthogonal language fea-

tures: a form of objects without encapsulation and a standard form of data abstraction mechanism

(albeit higher-order and including subtype constraints).

Here we brie
y note several implications of our approach.

5.7.1 Representation Independence for Classes

One advantage of our decomposition of classes into object operations and standard data abstraction

mechanism is that a number of properties developed in the analysis of traditional data abstraction

without objects may be applied to object-oriented languages. For example, the results in [Rey83,

MM85, Mit86, Mit91] give various su�cient conditions on interchangeability of implementations.

Put brie
y, we may replace one implementation of a class with another, in any program, as long

as the protect and public interfaces of the new implementation conform to the old ones and the

observable behaviors correspond.

5.7.2 Subtyping and Inheritance

A basic issue in the literature on object-oriented programming is the relation between subtyping

and inheritance. We believe that the arguments in [Sny86, Coo92], discussed earlier in this chapter,

are essentially correct for interface types: subtyping between interface types has nothing to do with

the way objects are implemented. However, the analysis in the present chapter shows that for

implementation types, inheritance may be necessary (although not always su�cient) to produce a

subtype. In short, if a type t is abstract, in the sense that all or part of its implementation is hidden,

then the only safe way to de�ne a subtype of t is by extending the hidden implementation.

Furthermore, we show that implementation types are subtypes of the corresponding interface

types. In fact, this work suggests that implementation types and interface types are actually the

endpoints of a spectrum of types that convey partial implementation types. For example, the type

obju hhp u j turnRed : int!uii speci�es that the initial segment of each of its objects must have

been de�ned in the Point class, but it contains only interface information about the remaining

structure of its objects. Thus this type lies in the middle of a spectrum of types, anchored at

one end with the pure implementation type obju hhcp1 uii and at the other with pure interface

type obj u hhmove : int!u; turnRed : int!uii: We can give a single object many types along this

spectrum, since we may pass from its implementation side to its interface side by \forgetting"

implementation information via subtyping. This spectrum suggests the possibility of a language in

which a type inference system infers for each context in a program the type that maximizes the
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implementation information available for optimization while providing the polymorphism necessary

to cover all of the objects that could appear in the context.



Chapter 6

Formal System

In this chapter, we give an annotated version of the full type system for the language described in

Chapter 5. Appendices C and D include the same formal system, without the annotations.

6.1 Formal System

Expressions

e : : = x j c j �x: e j e1e2 j

hi j e(m j he1 m = e2i j he1  + m = e2i j

fjr <:w R : : � = R0; ejg j

Abstype r <:w R : : � with x : � is e1 in e2

Types

� : : = � j 9(r <:w R : : �)�

� : : = t j �1! �2 jpro t R jobj t R

Rows

R : : = r j hhii j hhR j m: �ii j �t:R j R�

Variance Annotations

b : : = + j � j o

a : : = b j ?

Variance Sets

V : : = f~tbg

Method Absence Annotations

M : : = f~mg

74
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Kinds

k : : = V j�

S : : = T a Symbol T is a terminal.

� : : = S ! � j �

� : : = (M ; V )

Contexts

� : : = � j�; x: � j�; t:V j�; r <:w R : : �

6.1.1 Subtyping Annotation

As discussed in the previous chapters, we use an annotated version of the symbol <: in row subtyping

judgments (de�ned below) to track where depth subtyping occurs. The annotations are:

B : : = w jw; d jB1 +B2 aqB indicates row subtyping forms.

Intuitively, an annotation of w indicates that only width subtyping is used in the given subtyping

judgment. The annotation w; d indicates that both width and depth subtyping may have been

used. Formally, w < w; d and + denotes the least upper bound of B1 and B2 with respect to this

ordering.

6.1.2 Judgment Forms

�` � well-formed context

�`�:V well-formed type with variance V

�`R : : � row has kind

�` �1 <: �2 type �1 subtype of �2

�`R1 <:B R2 row R1 is a B-subtype of R2

�` e:� term e has type �

6.1.3 Judgment Shorthands

We will use the meta-judgment �`A to range over all of the above judgments. In addition, we use

the meta-variable U to range over types � and rows R . The meta-judgment �`U :�
 represents

judgments of the form �` � :V and �`R : : � . Similarly, meta-judgment �`U1 <:(B)
U2 represents

the judgments �` �1 <: �2 and �`R1 <:B R2 . Finally, meta-judgment �`U1
�=(B) U2 is short for

the two judgments �`U1 <:(B)
U2 and �`U2 <:(B)

U1 . We will also use the syntax probj t R as

shorthand for either pro t R or obj t R .
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6.1.4 Context Access Functions

� We use the function dom(�) to denote the set of row, type, and expression variables that are

listed in context �.

� We use the function TV ar(�) to denote the set of type variables t such that the type assump-

tions t : ft+g 2 �.

6.1.5 Ordering on Variance Annotations

The ? variance indicates that the given type variable does not appear in the given expression, so

the type variable is both vacuously covariant and contravariant. Intuitively, this type variable is less

constrained than those with variances of +, � , or o . Hence the ? variance is considered \least".

Variance + indicates the given type variable appears (non-vacuously) covariantly; � indicates

(non-vacuous) contravariance; and o indicates invariance. Variables with o-variance are the most

constrained; hence they are considered \greatest." The + and � variances are incomparable;

however, both are more constrained than ? and less than o . Hence we get the following ordering

on variance annotations, as shown in Chapter 4:

| +

?

o

More formally, we have the ordering

+ � o; � � o; ? � �; ? � +

We will use the notation b to indicate the complement of annotation b with respect to the above

ordering. In other words, o = o , + = � , � = +, and ? =?,

6.1.6 Operations on Variance Sets

V ar(t; V ). This �rst operation looks up the variance annotation of type variable t in

variance set V :

V ar(t; V ) =

(
b if tb 2 V

? if tb
0

62 V for all b0.

D(V1; : : : ; Vn). The function D extracts the type variables from variance sets V1; : : : ; Vn :

D(V1; : : : ; Vn) = ft j t
b 2 Vi for some b ,i 2 1; : : : ; ng
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GV ar(t; V1; : : : ; Vn). The �rst argument to GV ar is a type variable; the remaining

arguments are variance sets. GV ar collects the variance annotations of the given

type variable in the variance sets. It then returns the least upper bound of these

annotations, computed with respect to the ordering on variance annotations given

above:

GV ar(t; V1; : : : ; Vn) = lubfV ar(t; V1); : : : ; V ar(t; Vn)g

Merge(V1; : : : ; Vn). Intuitively, the Merge function \merges" the variance annotations

from a collection of variance sets into a single set. In more detail, it takes a collection

of variance sets V1; : : : ; Vn as arguments and produces a new variance whose domain

is the union of the domains of the argument sets. In the resulting set, each variable's

annotation is the least upper bound of its annotations in the argument sets. For

example, if t has � variance in V1 and + variance in V2 and does not appear in

V3; : : : ; Vn , then t will have variance o in the resulting set:

Merge(V1; : : : ; Vn) = ft
GV ar(t;V1;:::;Vn) j t 2 D(V1; : : : ; Vn)g

V nt. The backslash operator n takes a variance set V and a type variable t and returns

the variance set just like V except it does not contain t :

V nt = ftb1 j t 6= t1 and tb1 2 V g

The backslash operation is useful when a variable becomes bound in a type expres-

sion; since it no longer appears free in the given type, it no longer appears in the

type's variance set.

V . The inversion operation V takes a variance set V and returns the variance set with

the same set of type variables, but with complementary annotations:

V = ftb j tb 2 V g

This operation is useful when a type is placed in a contravariant position; for exam-

ple, the left-hand side of a function type. In this case, covariant positions become

contravariant and vice versa. The inversion operation re
ects this change in the

variance sets.

Invar(V ). The Invar operation returns a variance set with the same type variables as

its argument; however, all the annotations in the new set are o 's, making them all

invariant:

Invar(V ) = fto j t 2 D(V )g

This operation is used when types are placed in invariant positions; for example,

within pro types.
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6.1.7 Generalized Variance

These functions simply extend the variance access function described above to more complex kinds.

They are included as a notational convenience for proofs. The �rst two functions extract the variance

of a particular type variable from row kinds. The �nal three functions extract complete variance

sets from kinds, throwing away any row absence annotations.

V ar(t; (M ; V )) = V ar(t; V )

V ar(t; T a ! �) = V ar(t; �)

V ar(V ) = V

V ar(M ; V ) = V

V ar(T a ! �) = T a!V ar(�)

6.1.8 Variance Shorthand

We will use the notation �min(�) as a shorthand for the kind T o ! (;; Invar(TV ar(�))). This

kind is useful in typing method bodies, as it is the most restrictive with respect to subtyping.

6.1.9 Variance Substitutions

The substitution function given below describes the merging that happens when a type variable in a

given variance set is replaced by a variance set. Intuitively, this arises when a type �2 with variance

V2 is substituted for a type variable t in a second type �1 with variance V1 . If t appears covariantly

in V1 , then the �rst clause below applies. Essentially, t is removed from V1 and the resulting variance

set is merged with V2 . The second clause covers the case when t appears contravariantly in �1 . In

this case, t is removed from V1 and the inversion of V2 is merged with the result. This inversion

corresponds to the fact that the type �2 is being placed in a contravariant position. The third clause

corresponds to the case when t appears invariantly in �1 . In this case, �2 is being placed in an

invariant position. Hence Invar(V2) is merged with the result of removing t from V1 . Finally, if t

does not appear in V1 , then t appears vacuously in �1 . Therefore, the variance of the result is just

V1 .

[V2=t]V1 =

8>>>><
>>>>:

Merge(V 0
1 ; V2) if V1 = V 0

1 ; t
+

Merge(V 0
1 ; V2) if V1 = V 0

1 ; t
�

Merge(V 0
1 ; Invar(V2)) if V1 = V 0

1 ; t
o

V1 if t 62 D(V1)

6.1.10 Ordering on Kinds

We must provide an ordering on kinds (given below) so that we can use expressions with a given

variance in contexts with weaker constraints. Roughly, this relationship on kinds is the analog of

subtyping on types. In more detail, variance set V1 is less than V2 if V1 more tightly constrains
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the variances of its type variables with respect to the ordering on variance annotations given above.

For example, variance set ftog is less than ft+g , because the �rst set requires t to be invariant,

whereas the second allows t to be covariant. This relationship is extended to 
at kinds by ignoring

the method absence annotations. It then lifts to row function kinds by comparing the annotations

on the kind arguments contravariantly and the 
at kinds covariantly.

V1 � V2 i� 8t; V ar(t; V2) � V ar(t; V1)

(M1; V1) � (M2; V2) i� V1 � V2

T b0 ! �1 � T b ! �2 i� b � a and �1 � �2

6.2 Typing Rules

This section presents all of the typing rules of the formal system. They are presented in groups,

according to their function. The �rst group includes the rules for context formation. The second and

third describe how to compute the variance of type and row expressions, respectively. The fourth

contains the rules describing the subtyping relationships between type expressions, while the �fth

does the same for row expressions. The sixth group contains various rules for type equality, while

the seventh (and last) group describes how to type term expressions.

6.2.1 Context Rules

The context rules are the typing rules that govern the formation of contexts. The �rst of these rules,

the only axiom of the system, says that the empty context is well-formed.

(start)
�` �

The (type var) rule says that if a given type variable does not appear in a well-formed context �,

then extending � with t : ft+g produces a well-formed context.

(type var)

�` �

t 62 dom(�)

�; t : ft+g `�

The typing rule for adding row variables to contexts (given below) is one of the most complex in the

system. The �rst hypothesis asserts that the proposed upper bound is well-formed and has functional

kind S1 ! (M1; V1). The second hypothesis asserts that the proposed kind for the new row variable

r is more constrained than the kind of its bound. The next hypothesis is a well-formedness condition

for the kind of r , requiring that all the type variables in its variance set V0 occur in the domain

of �. The constraint M0 � M1 again serves to connect the kind of r to that of its bound; in this
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case requiring that any methods promised to be absent from the bound must also be absent from

r . Finally, the last condition insures that r is a fresh variable.

(row var)

�`R1 : : S1 ! (M1; V1)

S0 ! (M0; V0) � S1 ! (M1; V1)

D(V0) � dom(�) M0 �M1

r 62 dom(�)

�; (r <:w R1 : : S0 ! (M0; V0))` �

The typing rule for adding expression variables to a context � is standard. It requires simply that

the given type is well-formed in �, and that the variable does not already appear in �.

(exp var)

�` � : V

x 62 dom(�)

�; x: � `�

The (weakening) rule is standard. It asserts that if we may derive a judgment A from a small

context �1; �2 , and an expansion to that context �1; a; �2 is well-formed, then we may derive A

from the longer context.

(weakening)

�1; �2 `A

�1; a; �2 ` �

�1; a; �2 `A

where a : : = x: � j t:V j r <:w R : : �

We will see in Lemma 7.2.3 in Chapter 7 that this rule is derivable, and hence need not have been

formally included.

6.2.2 Rules for Type Expressions

This subsection collects together the typing rules used for showing that type expressions are well-

formed. In the process, these typing rules compute the variance of the type expressions. The �rst

rule in this section asserts that any type variable in a well-formed context is well-formed and has

the given variance. (Note that we can only add assumptions of the form t : ft+g to contexts. )

(type proj)

�` �

t : ft+g 2 �

�` t : ft
+g
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The (type arrow) typing rule calculates the variance of a function type by merging the variance of

its components. Since the left-hand side of function types is a contravariant position, we �rst invert

the variance set for type �1 .

(type arrow)

�` �1 : V1

�` �2 : V2

�` �1! �2 : Merge(V1; V2)

To compute the variance a pro type pro t R , the (pro) typing rule �rst computes the variance V

for row R in a context extended with type variable t . Because pro is a type binding operator, it

removes t from V . Finally it makes the resulting set invariant, intuitively because pro types are

invariant.

(pro)
�; t: ft+g`R : : (M ; V )

�`pro t R : Invar(V n t)

The rule for computing the variance of types of the form obj t R is similar to the previous rule. In

this case, however, we must also know the variance of the bound variable t in R . Intuitively, if t

appears either vacuously or (non-vacuously) covariantly then obj t R is covariant. In this case, the

variance annotations for obj t R are just those for R without the t , which is re
ected in the rule

below.

(cov object)

�; t: ft+g`R : : (M ; V )

V ar(t; V ) 2 f+; ?g

�`obj t R : V n t

When t appears contravariantly or invariantly, then obj t R is invariant. However, since techni-

cal restrictions prevent us from forming such objects, we omit the corresponding rule as it is not

necessary.

The �nal typing rule in this section shows that an existential type is well-formed if its modi�ed type

is well-formed under the appropriate assumptions about the bound row variable.

(exist)
�; r <:w: :S ! (M ; V2)` � : V1

�`9(r <:w: :S ! (M ; V2))� : Merge(V1; V2)

6.2.3 Rules for Row Expressions

The rules in this section compute the variance sets and method absence annotations for row expres-

sions. The �rst rule asserts that if we have assumed a given row variable has a given kind, then we

may use that fact.
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(row proj)

�` �

r <:w R : : � 2 dom(�)

�` r : : �

The (empty row) typing rule allows us to conclude the empty row is well-formed in any well-formed

context. In addition, the empty row has the empty variance set (since its normal form contains no

type variables) and is guaranteed not to have any set of method names M .

(empty row)
�` �

�` hhii : : (M ; ;)

The next typing rule is a form of subsumption for method absence annotations. In particular, if row

R is guaranteed not to have methods M , and N is a subset of M , then R is guaranteed not to

have any methods in N either. Here the notation Si ! (M ; V ) is short for S ! (M ; V ) when i

is 1 and (M ; V ) when it is 0.

(row label)

�`R : : Si ! (M ; V )

N �M i 2 f0; 1g

�`R : : Si ! (N ; V )

The (row fn abs) typing rule calculates the variance of a row function from the variance of its

body. Essentially, it looks up the variance of the newly bound variable in the body and annotates

the argument kind with that variance. The 
at portion of the variance is just the variance of the

body minus the newly bound variable. The method absence annotations are una�ected.

(row fn abs)
�; t: ft+g`R : : (M ; V )

�`�t:R : : T V ar(t;V ) ! (M ; V nt)

The next four typing rules calculate the variance of a row function applied to a type from the

variances of the function and the argument. Because the proper combination of these variance sets

depends on the variance annotation of the argument kind, there are four di�erent cases: one for

each possible argument kind annotation. The �rst rule below (row fn app cov) corresponds to the

case where this annotation is +, indicating the given function is monotonic in its argument. In this

case, the variance of the function body and of the type are simply merged.

(row fn app cov)

�`R : : T+ ! (M ; V1)

�` � : V2

�`R� : : (M ; Merge(V1; V2))
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The (row fn app contra) rule corresponds to the case where the row function is anti-monotonic in

its argument. Hence the variance of the function body is merged with the inversion of the variance

of the type argument.

(row fn app contra)

�`R : : T� ! (M ; V1)

�` � : V2

�`R� : : (M ; Merge(V1; V2))

This next rule applies when the row function is invariant in its argument. In this case, the variance

of the application is the combination of the variance of the row function body and the variance of

the type argument made invariant via the function Invar .

(row fn app inv)

�`R : : T o ! (M ; V1)

�` � : V2

�`R� : : (M ; Merge(V1; Invar(V2)))

Finally, the rule (row fn app vac) corresponds to the case when the given row function ignores its

argument. The variance of the application is just the variance of the row function body in this case.

(row fn app vac)

�`R : : T ? ! (M ; V1)

�` � : V2

�`R� : : (M ; V1)

The typing rule (row ext) shows how to give a kind to an extended row of the form hhR jm : �ii

based on the kinds of its constituent parts. In particular, we must show that row R does not already

have a method m by giving it a kind with m in the method absence annotations. Once that fact is

established, we may compute the variance of the extended row by merging the variances of R and

� , the type for the new method. The method absence annotation for the new row is just that of the

old one, minus the new method name m .

(row ext)

�`R : : (f~m;mg; V1)

�` � : V2

�` hhR jm: �ii : : (f~mg; Merge(V1; V2))

6.2.4 Subtyping Rules for Types

The typing rules given in this section de�ne the subtyping relationship between types. The �rst rule

in this section is the standard rule for re
exivity: any well-formed type is a subtype of itself.
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(<: type refl)
�` � : V

�` � <: �

The (<:!) rule is the standard rule for subtyping between function types.

(<:!)

�` � 01 <: �1

�` �2 <: �
0
2

�` �1! �2 <: �
0
1
! � 02

The typing rule (<: obj) plays two roles. In the �rst of these, it de�nes when pro types may

be converted to obj types. The second role de�nes when two obj types are in the subtyping

relationship. This rule is explained in detail in Section 4.1.4.

(<: obj)

�; t : ft+g`R1 <:B R2

�`probj t R1 : V1

�; t : ft+g`R2 : : (M ; V2) V ar(t; V2) 2 f?;+g

�`probj t R1 <: obj t R2

The next typing rule is included for technical reasons; it asserts that two pro types pro t R1 and

pro t R2 are in the subtyping relation if their rows R1 and R2 are mutual width subtypes (and are

well-formed). This rule is intuitively necessary because an important property of the type system

is that if type variable t appears in a type or row expression with ? variance, then regardless of

what we substitute for t , we will get equivalent types. Unfortunately, because variance annotations

describe the variances of the normal forms of type and row expressions, the types resulting from

such substitutions need not be syntactically identical. (Consider, for example, the type expression

pro t r t , where r is a free row-variable that is guaranteed to throw away its argument.) This typing

rule helps insure that the resulting types will, however, be mutual subtypes.

(<: convert)

�; t : ft+g`R1
�=w R2

�; t : ft+g`Ri : : (Mi; Vi) i 2 f1; 2g

�`pro t R1 <: pro t R2

The (<: type trans) rule is the standard transitivity rule for type expressions.

(<: type trans)

�` �1 <: �2

�` �2 <: �3

�` �1 <: �3

We do not conclude any subtyping rules for existential types for the sake of simplicity.
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6.2.5 Subtyping Rules for Rows

The rules collected in this section describe the subtyping relationships between row expressions. Be-

cause width and depth subtyping for row expressions have di�erent variance properties and di�erent

rami�cations for type soundness, it is necessary to closely track where depth subtyping occurs.

The �rst rule in this section is a re
exivity rule for row expressions. It asserts that any well-

formed row expression is a subtype of itself. Furthermore, it may be considered either a width

subtype or a width-and-depth subtype.

(<: row refl)
�`R : : �

�`R <:B R

The (row proj bound) typing rule allows us to conclude that a row variable is a subtype of the

bound given for it in any well-formed context.

(row proj bound)

�` �

r <:w R : : � 2 �

�` r <:w R

The next typing rule allows us to extend the subtyping relationship between 
at rows point-wise to

row functions.

(<: �)

�; t : ft+g`R1 <:B R2

�; t : ft+g `R2 : : �

�`�t: R1 <:B �t:R2

The next four typing rules allow us to show subtyping relationships between row expressions of the

forms R1 �1 and R2 �2 . There are four cases, roughly corresponding to the variance of the argument

kind for R2 . Lemma 7.6.6 in Chapter 7 establishes the soundness of the �rst of these rules, while

Lemma 7.6.7 shows the remaining three are sound.

The �rst of these rules roughly corresponds to the case where R2 's argument kind is o , invariant.

In this case, the necessary relationship between the argument types �1 and �2 is that they are mutual

subtypes, a relationship which implies they are essentially the same type. This essential-sameness

guarantees that we do not need to use depth subtyping to conclude R1 �1 is a subtype of R2 �2 .

Hence, these row applications are in the same 
avor subtyping relationship as R1 and R2 . Because

this relationship between �1 and �2 allows us to show a width subtyping relationship between row

applications, this rule is generalized to allow any variance for R2 's argument kind. (The more

specialized rules for + and � variance, which appear below, can only conclude depth subtyping

judgments.) This rule may be viewed as generalizing re
exivity.
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(<: app cong)

�`R1 <:B R2

�`R2 : : T
a ! �

�` �1 �= �2

�`R1�1 <:B R2�2

In the second of these rules, we must show that the row function R2 is monotonic in its argument

and that �1 <: �2 . Under these conditions, we may conclude that R1 �1 is a subtype of R2 �2 .

However, since depth-subtyping may have been involved, we must add the depth annotation to the

subtyping relation.

(<: app cov)

�`R1 <:B R2

�`R2 : : T
+ ! �

�` �1 <: �2

�`R1�1 <:B+d R2�2

The rule (<: app contra) is dual to (<: app cov).

(<: app contra)

�`R1 <:B R2

�`R2 : : T
� ! �

�` �2 <: �1

�`R1�1 <:B+d R2�2

The �nal rule in this group applies when R2 ignores its argument, i.e., it has ? variance. In this case,

we need not establish any relationship between �1 and �2 ; we require only that they are well-formed.

Additionally, because R2 ignores its argument, we need not use depth subtyping to establish the

desired subtyping relationship.

(<: app vac)

�`R1 <:B R2

�`R2 : : T
? ! �

�` �1 : V1 �` �2 : V2

�`R1�1 <:B R2�2

The next three typing rules show subtyping relationships between 
at row expressions. Intuitively,

the (<: d) rule corresponds to depth subtyping and (<: w) to width subtyping. The third rule

(<: cong) (which is the �rst one given) allows us to conclude width subtyping judgments between

rows that have components that are not syntactically identical, but are mutual subtypes. This rule
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may be viewed as a generalization of re
exivity. In this sense, it is analogous to the (<: app cong)

rule above. The condition that �` hhRi jm: �iii : : �i for i 2 f1; 2g helps us conclude that any types

related via subtyping are well-formed.

(<: cong)

�`R1 <:B R2

�` �1 �= �2

�` hhRi jm: �iii : : �i i 2 f1; 2g

�` hhR1 jm: �1ii <:B hhR2 jm: �2ii

(<: d)

�`R1 <:B R2 �` �1 <: �2

�` hhRi jm: �iii : : �i i 2 f1; 2g

�` hhR1 jm: �1ii <:B+d hhR2 jm: �2ii

(<: w)

�`R1 <:B R2

�` hhR1 jm: �ii : : �

�` hhR1 jm: �ii <:B+w R2

The (<: row trans) rule is essentially the standard rule for transitivity between row expressions;

the only detail is in the subtyping annotations. Intuitively, if depth subtyping were used in either

hypothesis, then the conclusion judgment passes that information on by making the annotation in

the result the sum of the hypothesis annotations.

(<: row trans)

�`R1 <:B R2

�`R2 <:B0 R3

�`R1 <:B+B0 R3

6.2.6 Type and Row Equality Rules

Type or row expressions that di�er only in names of bound variables are considered identical.

Additional equations between types and rows arise as a result of � -reduction, written !� , or � -

conversion, written $� . The two equality rules for subtyping judgments are written in a restricted

form to simplify soundness proofs.

(row �)
�`R : : � R!� R

0

�`R
0 : : �

(type �)
�` � : V � !� �

0

�` �
0 : V
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(type eq)
�` e : � � $� �

0 �`�
0 : V

�` e : �
0

(<: � right)
�`R1 <:B (�t: R2)�2

�`R1 <:B [�2=t]R2

(<: � left)
�` (�t: R1)�1 <:B R2

�` [�=t]R1 <:B R2

6.2.7 Rules for Assigning Types to Terms

The �rst four rules are standard rules for assigning types to terms. The �rst allows us to use

expression variables with their assumed type. The second is the standard (subsumption) rule, while

the third and fourth are standard lambda abstraction and application rules, respectively.

(exp proj)

�` �

x : � 2 �

�`x : �

(subsumption)
�` e : �1 �` �1 <: �2

�` e : �2

(exp abs)
� ; x: �1 ` e : �2

�`�x: e : �1! �2

(exp app)
�` e1 : �1! �2 �` e2 : �1

�` e1 e2 : �2

Typing rule (empty pro) allows us to conclude that the empty object hi has the empty pro type

pro t hhii in any well-formed context.

(empty pro)
�` �

�` hi : pro t hhii
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The next typing rule, (pro ext), shows how to type prototype (or object) extension, i.e., expressions

of the form he1  + m= e2i .

(pro ext)

�` e1 : pro t R

�; t: ft+g`R : : (fmg; V )

�; Ir ` e2 : [pro t rt=t](t! �) r 62 V (�)

�` he1  + m= e2i : pro t hhR jm: �ii

where Ir = r <:w �t:hhR jm : �ii : : �min(�) .

The �rst hypothesis requires e1 to be an extensible object with some list of available methods

R . The second hypothesis insures that R does not already have an m method. Finally, the last

hypothesis guarantees that the proposed method body e2 has the appropriate type for all future

extensions of the current host object, he1  + m= e2i . To that end, we must type e2 under the

assumption that its host object has type pro t r t , where all we know about r is that it is a subtype

of the current row of methods �t:hhR jm : �ii . (It is more convenient to work with row functions than


at rows because we need these lists of method-type pairs to be parametric in the type of the host

object.) Intuitively, type pro t r t captures the notion of \all future extensions of the current host

object." The �nal hypothesis also requires e2 to be a function from its host object to the actual

code for the method body.

The kind assumed for r , �min(�) , which abbreviates T o ! (;; Invar(TV ar(�))), is the \small-

est" kind we can write in context �. This kind guarantees that method bodies cannot add new

method bodies to their host object (a nonsensical operation) by having an empty method absence

annotation set. It also gives the most invariant variance possible for r . In some sense, this variance

makes the minimum commitment to r 's variance, since Lemma 7.13.1 reveals that we may substitute

rows with a given variance into contexts expecting lower variance.

The rule for typing prototype (or object) override is similar to (pro ext).

(pro over)

�` e1 : pro t R

�; t: ft+g`R <:w hhm: �ii

�; Ir ` e2 : [pro t rt=t](t! �)

�` he1 m=e2i : pro t R

where Ir = r <:w �t:R : : �min(�) .

The �rst hypothesis requires that e1 , the object to be overridden, is overridable and has some row

of available methods, R . The second hypothesis determines that e1 already has an m method, with
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type � . The use of width subtyping insures that the new method body has a type that is equivalent

(up to mutual subtyping) to the original type. This equivalence is essential for the soundness of

method override. The �nal hypothesis guarantees that the new method body e2 has the appropriate

type for all possible future extensions of the current host object, in the same manner as the (pro ext)

typing rule.

The (probj() typing rule allows us to type-check message sending to expressions with both pro

and obj type, depending on whether probj is pro or obj .

(probj()

�` e : probj t R

�; t: ft+g`R <:w hhm: �ii

�` e(m : [probj t R=t]�

The �rst hypothesis requires that expression e , the receiver of the m message, be some form of

object and have a list of methods R . The second hypothesis insures that R contains an m method

and that this method has type � . The message send then has type � , with all occurrences of the

\mytype" type variable t replaced by the type of the current host object, probj t R .

The next typing rule is a fairly standard bounded existential introduction rule. It allows us to form

a term of bounded existential type as long as we can show the proper relationships between the

various components.

(9 <: intro)

�`R1 : : �

�`R1 <:w R

�` e : [R1=r]�

�`fjr <:w R : : � = R1; ejg : 9(r <:w R : : �)�

In particular, we must show that R1 , the actual implementation row, has the kind asserted for the

variable r . The second hypothesis insures that R1 is a subtype of the bound assumed for r . Finally,

we must show that the implementation of the abstraction, e , has type � , with all occurrences of r

replaced by R1 .

The �nal typing rule allows us to use expressions with bounded existential type. To do so, we must

show that expression e1 has such a type and that the client expression e2 makes the appropriate

assumptions about the abstract type; namely, that the implementation type is a subtype of the

asserted bound and has the appropriate kind and that the implementation expression has the indi-

cated type, � . The �nal hypothesis essentially shows that the client expression cannot leak any of
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the components of the abstract data type to external views.

(9 <: elim)

�` e1 : 9(r <:w R : : �)�

�; r <:w R : : �; x: � ` e2 : �2

�` �2 : V

�`Abstype r <:w R : : � with x : � is e1 in e2 : �2



Chapter 7

Proofs

We prove the soundness of our type system with respect to the operational semantics given in

Appendix E. We �rst prove that evaluation preserves type; this property is traditionally called

subject reduction. We then show that no typeable expression evaluates to error using the evaluation

rules given in Appendix F. This fact guarantees that we have no message-not-understood errors for

expressions with either pro or obj types. The structure of the proof is similar to that in [Com94].

In particular, Compagnoni's thesis provided the insight that we need not eliminate transitivity to

prove subject reduction. Most of the work in proving type soundness lies in showing the subject

reduction theorem.

The lemmas needed to show subject reduction and type soundness may be grouped as follows:

Variance Lemmas: Section 7.1

The lemmas in this section prove properties about the operations on variance sets.

Context Properties: Sections 7.2 and 7.4

The context lemmas allow us consider (weakening) as a derived rule and to remove extraneous

assumptions from contexts. Some of these lemmas depend upon de�nitions given in the Type

Normal Form section (Section 7.3); hence these lemmas appear in Section 7.4.

Type Normal Form: Section 7.3

The equality rules introduce many non-essential derivations. These extraneous derivations

unnecessarily complicate derivation analysis. We therefore restrict our attention to derivations

of a special form, which we call normal-form derivations. Section 7.3 de�nes normal-form

derivations and proves that the notion is well-de�ned.

Type Substitution: Section 7.5

The lemmas in this section describe various ways of substituting types for type variables. This

section includes the standard type substitution lemma, as well as more general ones involving

connections between subtyping, variance analysis, and type substitution.

92
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Derived Equality Rules: Section 7.6

To eliminate the equality rules in the manner proscribed by normal-form derivations, we must

show we can derive all the necessary equality rules in the weakened system. This section

collects together such lemmas. To establish these derived rules, we must use Lemma 7.6.2,

which intuitively is a Subtyping Characterization Lemma, and Lemmas 7.6.3 and 7.6.4, which

are Subtyping Properties Lemmas. However, because these lemmas are needed to prove the

Derived Equality Lemmas in this section, they appear in this section as well. This slight

disruption to the conceptual grouping allows us to preserve the property that every lemma is

given before it is used.

Normal Form Lemma: Section 7.7

The single lemma in this section reveals that although not all judgments derivable in our

full type system are derivable by normal-form derivations, all judgments whose row and type

expressions are in a particular form (which we call �nf for type normal form) are derivable

via normal-form derivations. Since every expression that has a type must have a type in �nf ,

this lemma shows that we may prove type soundness using only normal-form derivations.

Kinding Properties: Section 7.8

The lemmas in this section show that our kind analysis is sound. In particular, these lemmas

show that each row and type expression has a unique variance in a given context and that the

methods contained in a row cannot be listed in the method absence annotations for that row.

Subtyping Characterization: Sections 7.9 and 7.6

This group of lemmas show which types and rows can be related via subtyping.

Subtyping Implies Component Subtyping: Section 7.10

The lemmas collected in this section show that if two rows (or types) are related via subtyping,

then their constituent row and type expressions must also be related via subtyping.

Subtyping Properties: Sections 7.11 and 7.6

This section groups proofs that connect the subtyping relation to other parts of the type

system. Although Lemmas 7.6.3 and 7.6.4 �t this description, they appear in earlier sections

because they are needed earlier in the proof. The �rst lemma listed in this section, Lemma

7.11.1, is the most di�cult lemma in the entire proof of type soundness.

Method Extraction: Section 7.12

The lemmas in this section are needed to prove that method bodies in well-typed objects are

themselves well-typed. Essentially, these lemmas show that width supertyping only forgets

about the existence of methods, not any information about the remembered methods.

Row Substitution: Section 7.13

This section contains a fairly standard row-substitution lemma, used to show that polymorphic
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method bodies may be instantiated as necessary. The other lemma in this section is a technical

lemma that allows us to strengthen assumptions about row variables in judgments.

Expression Lemmas: Section 7.14

We �nally reach proofs speci�c to the expression portion of our language. This section includes

a standard expression substitution lemma (Lemma 7.14.10) as well as lemmas that show that

the method bodies inside of well-typed prototypes and objects are themselves well-typed and

appropriately polymorphic (Lemmas 7.14.2,7.14.3, and 7.14.4). These lemmas are then used to

show that each reduction axiom exhibits the subject reduction property (Lemmas 7.14.5, 7.14.6,

7.14.7, 7.14.8, 7.14.9, 7.14.12, and 7.14.13). Lemma 7.14.16 then reveals that a derivation from

a judgment �`N e : � , asserting that expression e has type � , can depend only on the form

of � , not on the form of e . Combining this result with the subject reduction results for

the reduction axioms gives us Theorem 7.14.17 (Subject Reduction) for the full operational

semantics.

Type Soundness: Section 7.15

The �nal section formalizes the notion of message-not-understood errors and shows via the

subject reduction theorem that no well-typed expression encounters such an error during its

evaluation.
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7.1 Variance Lemmas

For reference, the de�nitions used in this section all appear in Appendix C. First some observations

that are immediate from the de�nition of Merge :

Observation 7.1.1 If V1; : : : ; Vn are variance sets and p is any permutation, then

� Merge(V ) = V

� Merge(V1; : : : ; Vn) =Merge(p(V1; : : : ; Vn))

� Merge(V1; V1; : : : ; Vn) =Merge(V1; : : : ; Vn)

� D(Merge(V1; : : : ; Vn)) = D(V1; : : : ; Vn)

Lemma 7.1.2 Merge(Merge(V1; V2); V3; : : : ; Vn) =Merge(V1; V2; : : : ; Vn)

Proof

Merge(Merge(V1; V2); V3; : : : ; Vn)

= ftGV ar(t;Merge(V1;V2);V3;:::;Vn)j t 2 D(Merge(V1; V2); V3; : : : ; Vn)g

= ftlub(V ar(t;Merge(V1;V2));V ar(t;V3);:::;V ar(t;Vn)) j t 2 D(V1; : : : ; Vn)g

Now

V ar(t;Merge(V1; V2)) =

(
lubfV ar(t; V1); V ar(t; V2)g if t 2 D(V1; V2)

? otherwise

If t 62 D(V1; V2); then since t 2 D(V1; : : : ; Vn), there must be some i 2 3 : : : n such that tb 2 Vi .

Hence

lubfV ar(t;Merge(V1; V2); V ar(t; V3); : : : ; V ar(t; Vn)g

= lubflubfV ar(t; V1); V ar(t; V2)g; V ar(t; V3); : : : ; V ar(t; Vn)g

= lubfV ar(t; V1); V ar(t; V2); V ar(t; V3); : : : ; V ar(t; Vn)g

= GV ar(t; V1; V2; V3; : : : ; Vn)

Thus

Merge(Merge(V1; V2); V3; : : : ; Vn)

= ftGV ar(t;V1;V2;V3;:::;Vn) j t 2 D(V1; : : : ; Vn)g

= Merge(V1; V2; V3; : : : Vn)

Lemma 7.1.3 Merge(V; V ) = Invar(V )
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Proof

Merge(V; V ) = ftGV ar(t;V;V ) j t 2 D(V; V )g

= ftlubfV ar(t;V );V ar(t;V )g j t 2 D(V )g

= fto j t 2 D(V )g

= Invar(V )

Lemma 7.1.4 Merge(V; Invar(V )) = Invar(V )

Proof

Merge(V; Invar(V )) = ftGV ar(t;V;Invar(V )) j t 2 D(V; Invar(V ))g

= ftlubfV ar(t;V );V ar(t;Invar(V ))g j t 2 D(V )g

= fto j t 2 D(V )g

= Invar(V )

Lemma 7.1.5 Merge(V1; V2) =Merge(V1; V2)

Proof

Merge(V1; V2) = ftGV ar(t;V1;V2) j t 2 D(V1; V2)g

= ftGV ar(t;V1;V2) j t 2 D(V1; V2)g

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 D(V1; V2)g

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 D(V1; V2)g

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 D(V1; V2)g

= ftGV ar(t;V1;V2) j t 2 D(V1; V2)g

= Merge(V1; V2)

Lemma 7.1.6 Invar(Merge(V1; V2)) =Merge(Invar(V1); Invar(V2))

Proof

Invar(Merge(V1; V2)) = Invar(ftGV ar(t;V1;V2) j t 2 D(V1; V2)g)

= ftInvar(GV ar(t;V1;V2)) j t 2 D(V1; V2)g

= ftInvar(lubfV ar(t;V1);V ar(t;V2)g) j t 2 D(V1; V2)g

= ftlubfInvar(V ar(t;V1));Invar(V ar(t;V2))g j t 2 D(V1; V2)g

= ftlubfV ar(t;Invar(V1));V ar(t;Invar(V2))g j t 2 D(V1; V2)g

= ftGV ar(t;Invar(V1);Invar(V2)) j t 2 D(V1; V2)g

= Merge(Invar(V1); Invar(V2))
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Lemma 7.1.7 Invar(V ) = Invar(V ) = Invar(V ) = Invar(Invar(V ))

Proof Immediate from the de�nition of Invar .

Lemma 7.1.8 [V=t]V1 = [V=t]V1

Proof Since

[V=t]V1 =

8>>>><
>>>>:

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
+

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
�

Merge(V 0
1 ; Invar(V )) if V1 = V 0

1 ; t
o

V1 otherwise

it follows that

[V=t]V1 =

8>>>><
>>>>:

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
+

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
�

Merge(V 0
1 ; Invar(V )) if V1 = V 0

1 ; t
o

V1 otherwise

By Lemmas 7.1.5 and 7.1.7, we then get:

[V=t]V1 =

8>>>><
>>>>:

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
+

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
�

Merge(V 0
1 ; Invar(V )) if V1 = V 0

1 ; t
o

V1 otherwise

=

8>>>><
>>>>:

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
�

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
+

Merge(V 0
1 ; Invar(V )) if V1 = V 0

1 ; t
o

V1 otherwise

= [V=t]V1

Lemma 7.1.9 Invar([V=t]V1) = [V=t]Invar(V1)

Proof Since

[V=t]V1 =

8>>>><
>>>>:

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
+

Merge(V 0
1 ; V ) if V1 = V 0

1 ; t
�

Merge(V 0
1 ; Invar(V )) if V1 = V 0

1 ; t
o

V1 otherwise
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it follows that

Invar([V=t]V1) =

8>>>><
>>>>:

Invar(Merge(V 0
1 ; V )) if V1 = V 0

1 ; t
+

Invar(Merge(V 0
1 ; V )) if V1 = V 0

1 ; t
�

Invar(Merge(V 0
1 ; Invar(V ))) if V1 = V 0

1 ; t
o

Invar(V1) otherwise

=

8>>>><
>>>>:

Merge(Invar(V 0
1 ); Invar(V )) if V1 = V 0

1 ; t
+

Merge(Invar(V 0
1 ); Invar(V )) if V1 = V 0

1 ; t
�

Merge(Invar(V 0
1 ); Invar(V )) if V1 = V 0

1 ; t
o

Invar(V1) otherwise

=

(
Merge(Invar(V 0

1 ); Invar(V )) if Invar(V1) = Invar(V 0
1 ); t

o

Invar(V1) otherwise

= [V=t]Invar(V1)

Lemma 7.1.10 Merge([V=t]V1; [V=t]V2) = [V=t]Merge(V1; V2)

Proof Since

[V=t]Vi =

8>>>><
>>>>:

Merge(V 0
i ; V ) if Vi = V 0

i ; t
+

Merge(V 0
i ; V ) if Vi = V 0

i ; t
�

Merge(V 0
i ; Invar(V )) if Vi = V 0

i ; t
o

Vi otherwise

there are sixteen cases to consider.

Case 1: V1 = V 0
1 ; t

+ and V2 = V 0
2 ; t

+

In this case,

[V=t]V1 = Merge(V 0
1 ; V )

[V=t]V2 = Merge(V 0
2 ; V )

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; V );Merge(V 0

2 ; V ))

= Merge(V 0
1 ; V

0
2 ; V; V )

= Merge(Merge(V 0
1 ; V

0
2); V )

= Merge(Merge(V1; V2)nt; V )

= [V=t]Merge(V1; V2)
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Case 2: V1 = V 0
1 ; t

+ and V2 = V 0
2 ; t

�

Here,

[V=t]V1 = Merge(V 0
1 ; V )

[V=t]V2 = Merge(V 0
2 ; V )

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; V );Merge(V 0

2 ; V ))

= Merge(V 0
1 ; V

0
2 ; V; V )

= Merge(Merge(V 0
1 ; V

0
2);Merge(V; V ))

= Merge(Merge(V 0
1 ; V

0
2); Invar(V ))

= Merge(Merge(V1; V2)nt; Invar(V ))

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = o when V ar(t; V1) = +

and V ar(t; V2) = � .

Case 3: V1 = V 0
1 ; t

+ and V2 = V 0
2 ; t

o

In this case,

[V=t]V1 = Merge(V 0
1 ; V )

[V=t]V2 = Merge(V 0
2 ; Invar(V ))

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; V );Merge(V 0

2 ; Invar(V )))

= Merge(V 0
1 ; V

0
2 ; V; Invar(V ))

= Merge(Merge(V 0
1 ; V

0
2);Merge(V; Invar(V )))

= Merge(Merge(V 0
1 ; V

0
2); Invar(V ))

= Merge(Merge(V1; V2)nt; Invar(V ))

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = o when V ar(t; V1) = +

and V ar(t; V2) = o .

Case 4: V1 = V 0
1 ; t

+ and t 62 D(V2)



100 CHAPTER 7. PROOFS

Here

[V=t]V1 = Merge(V 0
1 ; V )

[V=t]V2 = V2

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; V ); V2)

= Merge(V 0
1 ; V2; V )

= Merge(Merge(V 0
1 ; V2); V )

= Merge(Merge(V1; V2)nt; V )

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = + when V ar(t; V1) = +

and t 62 D(V2).

Case 5: V1 = V 0
1 ; t

� and V2 = V 0
2 ; t

�

In this case,

[V=t]V1 = Merge(V 0
1 ; V )

[V=t]V2 = Merge(V 0
2 ; V )

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; V );Merge(V 0

2 ; V ))

= Merge(V 0
1 ; V

0
2 ; V ; V )

= Merge(Merge(V 0
1 ; V

0
2); V )

= Merge(Merge(V1; V2)nt; V )

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = � when V ar(t; V1) = �

and V ar(t; V2) = � .

Case 6: V1 = V 0
1 ; t

� and V2 = V 0
2 ; t

o

In this case,

[V=t]V1 = Merge(V 0
1 ; V )

[V=t]V2 = Merge(V 0
2 ; Invar(V ))
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so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; V );Merge(V 0

2 ; Invar(V )))

= Merge(V 0
1 ; V

0
2 ; V; V ; Invar(V ))

= Merge(Merge(V 0
1 ; V

0
2);Merge(V ; Invar(V )))

= Merge(Merge(V 0
1 ; V

0
2); Invar(V ))

= Merge(Merge(V1; V2)nt; Invar(V ))

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = o when V ar(t; V1) = �

and V ar(t; V2) = o .

Case 7: V1 = V 0
1 ; t

� and t 62 D(V2)

Here

[V=t]V1 = Merge(V 0
1 ; V )

[V=t]V2 = V2

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; V ); V2)

= Merge(V 0
1 ; V2; V )

= Merge(Merge(V 0
1 ; V2); V )

= Merge(Merge(V1; V2)nt; V )

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = � when V ar(t; V1) = �

and t 62 D(V2).

Case 8: V1 = V 0
1 ; t

o and V2 = V 0
2 ; t

o

In this case,

[V=t]V1 = Merge(V 0
1 ; Invar(V ))

[V=t]V2 = Merge(V 0
2 ; Invar(V ))

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; Invar(V ));Merge(V 0

2 ; Invar(V )))

= Merge(V 0
1 ; V

0
2 ; Invar(V ); Invar(V ))
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= Merge(Merge(V 0
1 ; V

0
2); Invar(V ))

= Merge(Merge(V1; V2)nt; Invar(V ))

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = o when V ar(t; V1) = o

and V ar(t; V2) = o .

Case 9: V1 = V 0
1 ; t

o and t 62 D(V2)

Here
[V=t]V1 = Merge(V 0

1 ; Invar(V ))

[V=t]V2 = V2

so

Merge([V=t]V1; [V=t]V2) = Merge(Merge(V 0
1 ; Invar(V )); V2)

= Merge(V 0
1 ; V2; Invar(V ))

= Merge(Merge(V 0
1 ; V2); Invar(V ))

= Merge(Merge(V1; V2)nt; Invar(V ))

= [V=t]Merge(V1; V2)

The last equation follows from the fact that V ar(t;Merge(V1; V2)) = o when V ar(t; V1) = o

and t 62 D(V2).

Case 10: t 62 D(V1) and t 62 D(V2)

In this case,

[V=t]V1 = V1

[V=t]V2 = V2

so

Merge([V=t]V1; [V=t]V2) = Merge(V1; V2)

Since t 62 D(V1) [D(V2), t 62 D(Merge(V1; V2)). Hence

[V=t]Merge(V1; V2) =Merge(V1; V2)

which implies

Merge([V=t]V1; [V=t]V2) = [V=t]Merge(V1; V2)
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Cases 11 to 16 These cases follow from the symmetry of Merge and cases already presented.

As a notational convenience, it is useful to introduce the following function.

De�nition 7.1.11 (Variance Combination Function)

f+(V1; V2) = Merge(V1; V2)

f�(V1; V2) = Merge(V1; V2)

fo(V1; V2) = Merge(V1; Invar(V2))

f?(V1; V2) = V1

Lemma 7.1.12 [V=t]fa(V1; V2) = fa([V=t]V1; [V=t]V2) .

Proof The proof is a case analysis on the value of a .

Case 1: a =? Follows immediately from the de�nition of f? .

Case 2: a = + Follows from Lemma 7.1.10 and the de�nition of f+ .

Case 3: a = � Follows from Lemmas 7.1.10 and 7.1.8, and the de�nition of f� .

Case 4: a = o Follows from Lemmas 7.1.10 and 7.1.7, and the de�nition of fo .

Lemma 7.1.13 D([V1=t]V2) � (D(V2nt)) [D(V1) .

Proof Immediate from the de�nition of variance substitution.

Lemma 7.1.14 If t 62 D(V1) , then Merge(V1; V2)nt =Merge(V1; V2nt)

Proof

Merge(V1; V2)nt1

= ftGV ar(t;V1;V2) j t 2 D(V1; V2)g � ft
V ar(t1;Merge(V1;V2))
1 g

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 D(V1) [D(V2)g � ft
V ar(t1;Merge(V1;V2))
1 g

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 (D(V1) [D(V2)� ft1g)g [ ft
lubfV ar(t1;V1);V ar(t1;V2g
1 g

�ft
V ar(t1;Merge(V1;V2))
1 g

Since V ar(t1;Merge(V1; V2)) = lubfV ar(t1; V1); V ar(t1; V2)g; we get

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 D(V1) [ (D(V2)� ft1g)g

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 D(V1) [D(V2nt1)g

= ftlubfV ar(t;V1);V ar(t;V2)g j t 2 D(V1; V2nt1)g

Since t1 62 D(V1; V2nt1); for all t 2 D(V1; V2nt1); V ar(t; V2) = V ar(t; V2nt1). Hence, we get

= ftlubfV ar(t;V1);V ar(t;V2nt1)g j t 2 D(V1; V2nt1)g

= ftGV ar(t;V1;V2nt1) j t 2 D(V1; V2nt1)g

= Merge(V1; V2nt1)
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Lemma 7.1.15 If t1 62 D(V ) [ ftg , then

[V=t](V1nt1) = ([V=t]V1)nt1

Proof

Case 1: t1 62 D(V1)

By Lemma 7.1.13, the fact that t1 62 D(V ) [ D(V1) implies that t1 62 D([V=t]V1). Hence

([V=t]V1)nt1 = [V=t]V1 . Since t1 62 D(V1), V1nt1 = V1 , so [V=t](V1nt1) = [V=t]V1 . Thus

([V=t]V1)nt1 = [V=t](V1nt1)

Case 2: t1 2 D(V1)

[V=t](V1nt1) =

8>>>><
>>>>:

Merge(V 00
1 ; V ) if V1nt1 = V 00

1 ; t
+

Merge(V 00
1 ; V ) if V1nt1 = V 00

1 ; t
�

Merge(V 00
1 ; Invar(V )) if V1nt1 = V 00

1 ; t
o

V1nt1 if t 62 D(V1nt1)

=

8>>>><
>>>>:

Merge(V 00
1 ; V ) if V1 = V 00

1 ; t
V ar(t1;V1)
1 ; t+

Merge(V 00
1 ; V ) if V1 = V 00

1 ; t
V ar(t1;V1)
1 ; t�

Merge(V 00
1 ; Invar(V )) if V1 = V 00

1 ; t
V ar(t1;V1)
1 ; to

V1nt1 if t 62 D(V1)

If we let V 0
1 = V 00

1 ; t
V ar(t1;V1)
1 ; then V ar(t; V 0

1 ) = V ar(t1; V1) and V 00
1 = V 0

1nt1: Hence

[V=t](V1nt1) =

8>>>><
>>>>:

Merge(V 0
1nt1; V ) if V1 = V 0

1 ; t
+

Merge(V 0
1nt1; V ) if V1 = V 0

1 ; t
�

Merge(V 0
1nt1; Invar(V )) if V1 = V 0

1 ; t
o

V1nt1 if t 62 D(V1)

=

8>>>><
>>>>:

Merge(V 0
1 ; V )nt1 if V1 = V 0

1 ; t
+

Merge(V 0
1 ; V )nt1 if V1 = V 0

1 ; t
�

Merge(V 0
1 ; Invar(V ))nt1 if V1 = V 0

1 ; t
o

V1nt1 if t 62 D(V1)

= ([V=t]V1)nt1

Lemma 7.1.16 If t1 62 D(V ) [ ftg , then

Invar(([V=t]V1)nt1) = [V=t]Invar(V1nt1)
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Proof By Lemma 7.1.15,

([V=t]V1)nt1 = [V=t](V1nt1)

Hence,

Invar(([V=t]V1)nt1) = Invar([V=t](V1nt1))

By Lemma 7.1.9,

Invar([V=t](V1nt1)) = [V=t]Invar(V1nt1)

Thus,

Invar(([V=t]V1)nt1) = [V=t]Invar(V1nt1)

Lemma 7.1.17 If V1 � V2 , then D(V1) � D(V2) .

Proof If t 2 D(V1), then V ar(t; V1) is strictly greater ?. Since V0 � V1 , V ar(t; V1) � V ar(t; V0).

Hence, V ar(t; V0) is strictly greater than ? and t 2 D(V0).

Lemma 7.1.18 For any variance set V , Invar(V ) � V .

Proof This inequality holds if and only if

8 t V ar(t; V ) � V ar(t; Invar(V ))

Let t be some type variable. If t 2 D(V ), then V ar(t; Invar(V )) = o . Since o is the greatest

value in the variance ordering, the inequality 8 t V ar(t; V ) � V ar(t; Invar(V )) must be satis�ed.

If t 62 D(V ), then V ar(t; V ) =?. Since ? is the least value in the variance ordering, the inequality

8 t V ar(t; V ) � V ar(t; Invar(V )) must again be satis�ed.

Lemma 7.1.19 If V1 � V2 then V1nt � V2nt .

Proof If V1 � V2 , then by de�nition, 8 t0 V ar(t0; V2) � V ar(t0; V1). Let T denote the set of all

type variables not equal to t . Then since the above inequality holds for all type variables, it must

hold for all type variables in T :

8 t0 2 T V ar(t0; V2) � V ar(t0; V1)

In this range for t0 , V ar(t0; Vi) = V ar(t0; Vint). Hence we have

8 t0 2 T V ar(t0; V2nt) � V ar(t0; V1nt)

Since we know that t 62 D(Vint), V ar(t; Vint) =?. Thus in this case we have the inequality

V ar(t; V2nt) � V ar(t; V1nt)

We may combine these last two inequalities to show that

8 t0 V ar(t0; V2nt) � V ar(t0; V1nt)

Hence we have V1nt � V2nt .
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Lemma 7.1.20 If V1 � V2 , then Invar(V1) � Invar(V2) .

Proof If V1 � V2 , then by de�nition, 8 t V ar(t; V2) � V ar(t; V1). Let t be some type variable.

Then there are two cases to consider: either t is in the domain of D(V2) or it is not. If t 2 D(V2),

then V ar(t; V2) > ?. The fact that V ar(t; V1) > ? follows from the de�nition of � for variance

sets. Hence V ar(t; Invar(V2)) � V ar(t; Invar(V1)) as they are both equal to o . In the other case,

V ar(t; V2) = V ar(t; Invar(V2)) = ?, so V ar(t; Invar(V2)) � V ar(t; Invar(V1)) as ? is the smallest

element in the ordering on variance annotations. Hence 8 t V ar(t; Invar(V2)) � V ar(t; Invar(V1)),

which is just Invar(V1) � Invar(V2).

Lemma 7.1.21 If V1 � V2 , then V1 � V2 .

Proof If V1 � V2 , then by de�nition, 8 t V ar(t; V2) � V ar(t; V1). It then follows from the de�nition

of inversion for variance sets that 8 t V ar(t; V2) � V ar(t; V1). Hence we have that V1 � V2 .

Lemma 7.1.22 If ~V � ~V 0 , where the ordering on variance vectors is the point-wise extension of

the variance ordering, then Merge(~V ) �Merge( ~V 0) .

Proof

Vi � V 0
i implies 8 t V ar(t; V 0

i ) � V ar(t; Vi)

implies 8 t lubfV ar(t; ~V 0)g � lubfV ar(t; ~V )g

implies 8 t V ar(t;Merge( ~V 0)) � V ar(t;Merge(~V ))

implies Merge(~V ) �Merge( ~V 0)

where V ar(t; ~V ) is short for fV ar(t; Vi) jVi 2 ~V g .

Corollary 7.1.23 Merge(~V ; V ) �Merge(~V ) .

Proof This lemma follows from Lemma 7.1.22 and the fact that for all variance sets V , V � ;

and Merge(V; ;) =Merge(V ).

Lemma 7.1.24 If V1 � V2 , then for all type variables t and variance sets V , [V=t]V1 � [V=t]V2 .

Proof The proof proceeds by a case analysis on how t appears in V1 and V2 . All cases follow

easily from the de�nition of variance substitution.

Lemma 7.1.25 If a � a0 , V1 � V2 , and V 0
1 � V 0

2 , then fa(V1; V
0
1) � fa0(V2; V

0
2) .

Proof

The proof is a case analysis on the value of a .
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Case 1: a =?

Since a0 � a , the fact that ? is the least element in the variance ordering means that a0 =?.

Then since f?(Vi; V
0
i ) = Vi , the fact that V1 � V2 implies that f?(V1; V

0
1) � f?(V2; V

0
2).

Case 2: a = �

The fact that a0 � a implies that a0 must be either ? or � . Then it follows that

fa(V1; V
0
1) = Merge(V1; V

0
1)

fa0(V2; V
0
2) =

(
Merge(V2; V

0
2) if a0 = �

V2 if a0 =?

Lemmas 7.1.22 and 7.1.21 then reveals that Merge(V1; V 0
1) � Merge(V2; V 0

2). By Lemma

7.1.23, we get the equation Merge(V1; V
0
1) � V2 . Hence f�(V1; V

0
1) � fa0(V2; V

0
2)

Case 3: a = + This case is dual to Case 2.

Case 4: a = o Here

fo(V1; V
0
1) = Merge(V1; Invar(V

0
1 ))

fa0(V2; V
0
2) =

8>>>><
>>>>:

Merge(V2; Invar(V
0
2 )) if a0 = o

Merge(V2; V
0
2 ) if a0 = +

Merge(V2; V
0
2 ) if a0 = �

V2 if a0 =?

Lemma 7.1.22 implies that Merge(V1; Invar(V
0
1 )) �Merge(V2; Invar(V

0
2 )) (Case a0 = o).

Lemmas 7.1.18 and 7.1.22 imply that Merge(V1; Invar(V
0
1 )) �Merge(V2; V

0
2) (Case a

0 = +).

Lemmas 7.1.7, 7.1.18, and 7.1.22 imply that Merge(V1; Invar(V
0
1 )) � Merge(V2; V 0

2) (Case

a0 = �).

Lemma 7.1.23 and Observation 7.1.1 imply that Merge(V1; Invar(V
0
1 )) � V2 (Case a0 =?).

Lemma 7.1.26 [V1=t]V2 = fa(V2nt; V1) , where a = V ar(t; V2) .

Proof The proof is a case analysis on the value of a . Each case follows by routine calculation.
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7.2 Context Lemmas

Lemma 7.2.1 (Well Formed Context) If the judgment �`A is derivable, then the judgment

�`� is also derivable, and in fewer steps if A is not � .

Proof Proof by induction on the derivation of �`� .

The (weakening) rule in the proof system introduces extraneous judgment derivations, which

unnecessarily complicate derivation analysis. We therefore restrict our attention to derivations that

do not contain any occurrences of (weakening).

De�nition 7.2.2 (Weakening-Free Derivation) A `W -derivation is a derivation that does not

contain any occurrences of the typing rule (weakening) .

The following two lemmas establish that all judgments derivable in the full system are derivable

in the restricted one.

Lemma 7.2.3 (Derived Rule Weakening) If the judgments �1;�2 `W A and �1; a;�2 `W � are

both derivable, then �1; a;�2 `W A is also derivable.

Proof Proof by induction on the derivation of �1;�2 `A .

A consequence of this lemma is that we may treat (weakening) as a derived rule.

Lemma 7.2.4 (Weakening-Free Judgments) If �`A is derivable, then �`W A is also deriv-

able.

Proof Proof is by induction on the derivation of �`A . All cases follow immediately from the

inductive hypothesis except for (weakening), which follows from Lemma 7.2.3.

Future analyses of derivations will consider only `W derivations, since removing (weakening) sim-

pli�es later proofs.

Lemma 7.2.5 (Free Variables Appear in Contexts) If the judgment �`W A is derivable, then

FV (A) � dom(�) . Furthermore,

� if � � �1; t : ft
+g;�2; then t 62 dom(�1;�2);

� if � � �1; r <:w R : : S ! (M ; V );�2; then FV (R) [D(V ) � dom(�1) and r 62 dom(�1;�2);

� if � � �1; x: �;�2 then FV (�) � dom(�1) and x 62 dom(�1;�2):

Proof The proof is by induction on the derivation of �`A . The equality rules follow from

the fact that � -reduction does not introduce free variables. The cases for (type arrow), (exist),

(row fn app cov), (row fn app contra), (row fn app inv), and (row ext) follow from the fact

that D(Merge(V1; V2)) = D(V1) [ D(V2). The other cases follow immediately from the inductive

hypothesis.
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7.3 Type Normal Forms

The equality rules in the proof system, namely, (row �), (type �), (type eq), (<: � right), and

(<: � left), introduce many non-essential judgment derivations, which unnecessarily complicate

derivation analysis. We therefore restrict our attention to derivations of the following form.

De�nition 7.3.1 (Normal Form Derivations) A `N -derivation is a `W -derivation in which

the only appearance of an equality rule is as:

1. (<: � right) immediately following an occurrence of a (<: app) rule where the left hand row

function is a row variable.

2. (type eq) immediately before an occurrence of (9 <: intro)

Although not all judgments derivable in the full system are derivable by `N -derivations, we will

see below that all judgments whose row and type expressions are in a particular form, which we will

call �nf (for type normal form), are derivable via `N -derivations. Since every expression that has

a type at all will have a type in �nf , we may prove soundness using only `N -derivations.

De�nition 7.3.2 (Type Normal Form) The �nf of a row or type expression is its normal form

with respect to � -reduction, applied to the row function application redexes within it. Because of our

existential types, we need to extend this de�nition to include term expressions as well. In detail,

�nf(t) = t

�nf(�1! �2) = �nf(�1)! �nf(�2)

�nf(probj t R) = probj t �nf(R)

�nf(9(r <:w R : : �)�) = 9(r <:w �nf(R) : : �)�nf(�)

�nf(r) = r

�nf(hhii) = hhii

�nf(hhR jm : �ii) = hh�nf(R) jm : �nf(�)ii

�nf(�t:R) = �t:�nf(R)

�nf(R�) =

(
�nf([�nf(�)=t]R1) if �nf(R) is of the form �t:R1

�nf(R) �nf(�) otherwise

�nf(x) = x

�nf(c) = c

�nf(�x: e) = �x: e

�nf(e1e2) = e1e2

�nf(hi) = hi

�nf(e(m) = e(m
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�nf(he1  � m = e2i) = he1  � m = e2i

�nf(fjr <:w R : : � = R0; ejg) = fjr <:w �nf(R): :� = �nf(R0); ejg

�nf(Abstype r <:w R : : � with x : � is e1 in e2) =

Abstype r <:w �nf(R): :� with x : �nf(�) is e1 in e2

This notion is well-de�ned since the row and type portion of our calculus is strongly normalizing and

con
uent. We prove this fact by giving a translation function tr from type expressions � and row

expressions R into �!(�), where �!(�) denotes the typed lambda calculus with function types

over signature �, de�ned as follows.

De�nition 7.3.3 ( �!(�) )

Type Constants : typ; row

Term Constants : ar: typ! typ! typ

pr: (typ! row)! typ

ob: (typ! row)! typ

er: row

brm: row! typ! row

for each method name m:

Let the variables of �!(�) contain all of the row and type variables of our calculus. Then de�ne

the translation tr as follows:

De�nition 7.3.4 (Translation Function)

tr(t) = t

tr(�1! �2) = ar tr(�1) tr(�2)

tr(pro t R) = pr (�t: typ:tr(R))

tr(obj t R) = ob (�t: typ:tr(R))

tr(r) = r

tr(hhii) = er

tr(hhR jm : �ii) = brm tr(R) tr(�)

tr(�t:R) = �t: typ:tr(R)

tr(R�) = tr(R) tr(�)

We extend tr to the kinds and contexts of our system:
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De�nition 7.3.5 (Extended Translation Function)

tr(V ) = typ

tr((M ; V )) = row

tr(S!(M ; V )) = typ! row

tr(�) = ;

tr(�; x : �) = tr(�)

tr(�; t : ft+g) = tr(�) [ ftr(t) : tr(ft+g)g

tr(�; r <:w R : : �) = tr(�) [ ftr(r) : : tr(�)g

Note that tr preserves both bound and free variables of expressions, i.e., BV (U) = BV (tr(U))

and FV (U) = FV (tr(U)) for all row and type expressions U . Furthermore, if U1 =� U2 , then

tr(U1) =� tr(U2) under the same renaming of bound variables.

To show that strong normalization for our system follows from strong normalization for �!(�),

we need to establish two properties of tr . First, we need to show that the translations of any two

terms related via !� in our system are related via !� in �!(�) and second, that the translation

of every well-kinded term in our system is a well-typed �!(�) term. Lemma 7.3.6 proves the �rst

of these properties.

Lemma 7.3.6 (Translation Preserves � -Reduction) If U1!� U2 , then tr(U1)!� tr(U2) ,

where U1 and U2 are either both row R or both type � expression in our system.

Proof The proof of Lemma 7.3.6 is by induction on the structure of U1 . Each inductive case is

a case analysis of the possible forms of U2 . The only case which does not follow routinely is when

U1 = (�t:R)� and U2 = [�=t]R . This case follows from the subsidiary lemma that [tr(�)=t]tr(U) =

tr([�=t]U) for all type and row expressions U , a fact which is proved by induction on the structure

of U .

Lemma 7.3.7 establishes that tr produces typeable �!(�) terms.

Lemma 7.3.7 (Well-Typed Terms Translate to Well-Typed Terms) If we may derive the

judgment �`W U :� 
 in our system, where U :�
 is either � : V or R : : � , then tr(�)>tr(U): tr(
)

is derivable in �!(�) . We use > to distinguish �!(�)-derivations from derivations in our system.

Proof The proof of Lemma 7.3.7 is by induction on the derivation of �`W U :� 
 . The cases for

(row �) and (type �) require Lemma 7.3.6 and Subject Reduction for �!(�).

Lemma 7.3.8 (Strong Normalization for Row and Type Portion) If �`W U :� 
 is deriv-

able, then there is no in�nite sequence of !� reductions from U .

Proof This lemma follows from Lemmas 7.3.6 and 7.3.7 and the fact that �nf(9(r <:w R : : �)�) =

9(r <:w �nf(R) : : �)�nf(�).
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The following lemma is crucial to showing that con
uence for �!(�) implies con
uence for the row

and type portion of our calculus.

Lemma 7.3.9 (Inverse Translation) If tr(U)!�W , then there is a unique expression U 0 such

that U!� U
0 and tr(U 0) = W , where U is either a row R or type � and W is an expression of

�!(�) .

Proof The proof of Lemma 7.3.9 is by induction on the structure of U . It is similar in outline to

the proof of Lemma 7.3.6.

The con
uence of the row and type portion of our system now follows from Lemma 7.3.9 and

the fact that all redexes in 9(r <:w R : : �)� occur in R or in � .

Lemma 7.3.10 (Con
uence for Row and Type Portion) If �`U1 :� 
 is derivable and

U1 !!� U2 and U1 !!� U3 , then there exists a U4 such that U2 !!� U4 and U3 !!� U4 .

Since each row and type expression has a unique normal form, the �nf of row and type expres-

sions is a well-de�ned notion. Because any term expression that has a type has a type in normal

form, we may restrict our attention to types and rows in �nf . To this end, we need to extend

the de�nition of �nf to contexts. The �nf of a context � is the context listing the �nf 's of the

elements of �.

To prove that any judgment derivable in the full system has a related, �nf judgment derivable in

`N , we need to establish a number of subsidiary lemmas, which appear in the following few sections.

The lemma in question then appears in Section 7.3.

7.4 Remaining Context Lemmas

The following two contexts lemmas are placed here because the second depends on the form of `N

derivations. In particular, the (row eq) and (type eq) cases cause problems because � -redexes may

contain more free row variables than their reducts.

Lemma 7.4.1 (Extraneous Expression Variables) If the judgment �; x : �; �0 `N B is deriv-

able, where B � � j � : V jR : : � , then �; �0 `N B is derivable as well.

Proof The proof is by induction on the derivation of �; x : �; �0 `N B . The (exp var) case depends

on Lemma 7.2.1. All other cases follow immediately from the inductive hypothesis.

Lemma 7.4.2 (Extraneous Row Variables) If the judgment �; r <:w R : : �; �0 `N B is deriv-

able, where B � � j � : V jR : : � and r 62 FV (�0) [ FV (B) then �; �0 `N B is also derivable.

Proof The proof is by induction on the derivation of �; r <:w R : : �; �0 `N B . All cases follow

immediately from the inductive hypothesis.
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7.5 Type Substitution Lemmas

In this section, we present various type substitution lemmas, including lemmas that describe when

substituting subtypes for a type variable will produce a subtype. Such lemmas are crucial for proving

type soundness because of the rich subtyping supported by the system.

In the following sections, we use meta-variable U to represent either a row R or a type � . We

use the meta-judgment �`N U :�
 to represent judgments of the form �`N � :V and �`N R : : � .

Similarly, we use the meta-judgment �`N U1 <:(B)
U2 represents the judgments �`N �1 <: �2 and

�`N R1 <:B R2 . In the following lemma, the notation [� : V=t]�0 denotes substituting type � for

type variable t in type and row expressions in �0 , and variance set V for t in variance sets in �0 .

Lemma 7.5.1 (Type Substitution) If the judgments �; t : ft+g; �0 `N A and �` � : V are both

derivable, then

� if A � �; then the judgment

�; [� : V=t] �0 `N � is derivable as well.

� if A � R : : �; then the judgment

�; [� : V=t] �0 `N [�=t]R : : [V=t]� is derivable as well.

� if A � �1:V1; then the judgment

�; [� : V=t] �0 `N [�=t]�1 : [V=t]V1 is derivable as well.

� if A � U1 <:(B)
U2; then the judgment

�; [� : V=t] �0 `N [�=t]U1 <:B [�=t]U2 is derivable as well.

Proof The proof is by induction on the derivation of �; t : ft+g; �0 `N A . The type projection

case (type proj) requires a case analysis on whether or not t is the projected variable. The subtype

equality rule (<: � right) requires the substitution property that if t2 62 FV (�) [ ftg , then

[ [� = t]�2 = t2] ([�= t]R2) = [� =t]([ �2 = t2]R2)

The remaining cases either follow routinely from the inductive hypothesis or are similar to the cases

for (type arrow) and (cov object), presented below in full detail.

(type arrow)

In this case, we start with two assumptions, labeled A1 and A2:

A1 �; t : ft+g; �0 `N �1! �2 : Merge(V1; V2)

A2 �`N � : V

By our case analysis, we know that A1 was derived via (type arrow). Hence we must have

previously derived:
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RH1 �; t : ft+g; �0 `N �1 : V1

RH2 �; t : ft+g; �0 `N �2 : V2

Applying the inductive hypothesis to RH1 and RH2, respectively, produces:

C1 �; [� : V=t]�0 `N [�=t]�1 : [V=t]V1

C2 �; [� : V=t]�0 `N [�=t]�2 : [V=t]V2

From C1 and C2, we may derive via (type arrow)

C3 �; [� : V=t]�0 `N [�=t]�1![�=t]�2 : Merge([V=t]V1; [V=t]V2)

Applying Lemmas 7.1.8 and 7.1.10 to C3 and simplifying produces:

C4 �; [� : V=t]�0 `N [�=t](�1! �2) : [V=t]Merge(V1; V2)

which is what we needed to show for (type arrow). The case for (row fn app inv) is similar

but requires Lemma 7.1.9 instead of 7.1.8.

(cov object)

In the this case, we start with the assumptions:

A1 �; t : ft+g;�0 `N obj t1 R1 : V1nt

A2 �`N � : V

Without loss of generality, t1 62 ftg [ FV (�) [D(V ). By the case analysis, we know that A1

was derived via (cov object). Hence we must have previously derived:

RH1 �; t : ft+g; �0; t1 : ft
+
1 g `N R1 : : (M1; V1)

RH2 V ar(t1; V1) 2 f+; ?g

By applying the inductive hypothesis to RH1 and A2, we get:

C1 �; [� : V=t](�0; t1 : ft
+
1 g)`N [�=t]R1 : : [V=t](M1; V1)

Because t1 6= t , this derivation is just:

C2 �; [� : V=t]�0; t1 : ft
+
1 g `N [�=t]R1 : : (M1; [V=t]V1)

The fact that t1 62 D(V ) and RH2 implies

C3 V ar(t1; [V=t]V1) 2 f+; ?g

Applying (cov object) to C2 and C3 produces:

C4 �; [� : V=t]�0 `N obj t1 [�=t]R1 : ([V=t]V1)nt
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By Lemma 7.1.15 and the fact that t1 62 FV (�), C4 is the same as:

C5 �; [� : V=t]�0 `N [�=t]obj t1 R1 : [V=t](V1nt)

which is the judgment we needed to derive. The cases for (non cov object) and (pro) are

similar except they use Lemma 7.1.16 instead of Lemma 7.1.15.

In the following sections, we use the meta-judgment �`N U1
�=(B) U2 as shorthand for the two

judgments �`N �1 <: �2 and �`N �2 <: �1 . We also use �T to denote a context fragment containing

only type variables.

Lemma 7.5.2 (Generalized Type Substitution ) If the judgments �; t : ft+g;�T `N U :�
 and

�`N �1 �= �2 are all derivable, then so is the judgment �; �T `N [�1=t]U �=(w) [�2=t]U .

Proof The proof is by induction on the derivation of �; t : ft+g;�T `N U :�
 . All cases follow

immediately from the inductive hypothesis and Lemma 7.5.1. The case for (pro) relies on the

(<: convert) rule. Similarly, the (row fn app) cases rely on (<: app cong), and (row ext) relies

on (<: cong).

Lemma 7.5.3 (Subtype Substitution I) If the judgments �; t : ft+g; �T `N U :�


and �`N �i : Vi for i 2 f1; 2g are all derivable, then

� if V ar(t; 
) =? then the judgment

�; �T `N [�i=t]U <:
(B)

[�j=t]U is derivable as well.

� if V ar(t; 
) = + and �`N �1 <: �2 then the judgment

�; �T `N [�1=t]U <:
(w;d) [�2=t]U is derivable as well.

� if V ar(t; 
) = � and �`N �1 <: �2 then the judgment

�; �T `N [�2=t]U <:
(w;d) [�1=t]U is derivable as well.

where �T is a context fragment listing only type variables.

Proof The proof is by induction on the derivation of �; t : ft+g; �T `N U :�
 . The case for each

typing rule proceeds by a case analysis on the value of V ar(t; 
): Lemma 7.5.1 is used frequently.

The \?" cases are sensitive to the form of the (<: cong) and (<: app cong) rules. In particular,

they require these rules be written with the hypothesis �` �1 �= �2 instead of more simply, using a

single type variable � because ? variance for a type variable t indicates t does not appear in the

�nf of the type � in question; but says nothing about the variance of t in � itself. The (pro) case

requires the existence of the (<: convert) rule to allow for cases of the form U � pro t1 r t where

�; t : ft+g;�T `N r : : T ? ! � . We present the (row ext) case as it is representative of the other

cases.
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(row ext)

We start with two assumptions:

A1 �; t : ft+g;�T `N hhR jm : �ii : : (M ; Merge(VR; V� ))

A2 �`N �i:Vi

Because A1 was derived via (row ext), we must have previously derived:

RH1 �; t : ft+g;�T `N R : : (M;m; VR)

RH2 �; t : ft+g;�T `N � : V�

Now there are three cases to consider depending on the variance of t in Merge(VR; V� ).

Case 1:V ar(t;Merge(VR; V� )) =?

This variance for Merge(VR; V� ) implies

C1 V ar(t; VR) =? and

C2 V ar(t; V� ) =?

Applying the inductive hypothesis once to RH1 and twice to RH2, respectively, produces:

C3 �; �T `N [�i=t]R <:w [�j=t]R

C4 �; �T `N [�i=t]� �= [�j=t]�

Applying Lemma 7.5.1 twice to A1 gives:

C5 �; �T `N [�j=t]hhR jm : �ii : : (M ; [Vj=t]Merge(VR; V� ))

C6 �; �T `N [�i=t]hhR jm : �ii : : (M ; [Vi=t]Merge(VR; V� ))

We may now apply (<: cong) to C3, C4, C5, and C6 to get

C7 �; �T `N [�i=t]hhR jm : �ii <:w [�j=t]hhR jm : �ii

which is what we needed to establish for Case 1.

Case 2:V ar(t;Merge(VR; V� )) = +

This variance for Merge(VR; V� ) implies

C1 V ar(t; VR) 2 f+; ?g and

C2 V ar(t; V� ) 2 f+; ?g

In this case, we may make the additional assumption

A3 �`N �1 <: �2
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Applying the inductive hypothesis to RH1 and RH2 respectively produces:

C3 �; �T `N [�1=t]R <:w;d [�2=t]R

C4 �; �T `N [�1=t]� <: [�2=t]�

Using Lemma 7.5.1 on A1 twice, we may derive:

C5 �; �T `N [�j=t]hhR jm : �ii : : (M ; [Vj=t]Merge(VR; V� ))

C6 �; �T `N [�i=t]hhR jm : �ii : : (M ; [Vi=t]Merge(VR; V� ))

We may then apply (<: d) to C3, C4, C5, and C6 to get:

C7 �; �T `N [�1=t]hhR jm : �ii <:w;d [�2=t]hhR jm : �ii

which is what we needed to show for Case 2.

Case 3:V ar(t;Merge(VR; V� )) = �

This case is dual to Case 2.

Lemma 7.5.4 (Subtype Substitution II) If the judgments �; t : ft+g; �T `N U1 <:(B)
U2 ,

�`N U2:�
2 , and �`N �i : Vi for i 2 f1; 2g are all derivable, then

� if V ar(t; 
2) =? then the judgment

�; �T `N [�i=t]U1 <:(B)
[�j=t]U2 is derivable as well.

� if V ar(t; 
2) = + and �`N �1 <: �2 then

�; �T `N [�1=t]U1 <:(w;d) [�2=t]U2 is derivable as well.

� if V ar(t; 
2) = � and �`N �1 <: �2 then

�; �T `N [�2=t]U1 <:(w;d) [�1=t]U2 is derivable as well.

where �T is a context listing only type variables.

Proof This proof is a case analysis on the variance of t in 
2 . Each case follows from Lemmas

7.5.1 and 7.5.3. We present the V ar(t; 
2) = + case, as it is representative of the others.

Case 1: V ar(t; 
2) = +

By assumption, we have derived

A1 �; t : ft+g;�T `N U1 <:(B)
U2

A2 �; t : ft+g;�T `N U2:�
2

A3 �; t : ft+g;�T `N �i : Vi for i 2 f1; 2g

A4 �; t : ft+g;�T `N �1 <: �2
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We may apply Lemma 7.5.1 to A1 and A3 to produce:

C1 �; �T `N [�1=t]U1 <:(B)
[�1=t]U2

Applying Lemma 7.5.3 to A2 and A4 gives us:

C2 �; �T `N [�1=t]U2 <:(w;d) [�2=t]U2

We may then use (<: trans) on C1 and C2 to derive:

C3 �; �T `N [�1=t]U1 <:(w;d) [�2=t]U2

which is the judgment we needed to derive.

Note the use of transitivity in the above lemma. The more straightforward approach of prov-

ing the lemma via induction on the derivation of �`N U1 <:B U2 fails because of transitivity. In

particular, with depth subtyping, the variances of the sub- and super-types are not related. Hence

the inductive hypothesis is not strong enough to connect the variance of 
2 and the variance of the

intermediate row arising in the hypotheses of transitivity.

7.6 Derived Equality Lemmas

To eliminate the equality typing rules in the manner proscribed by `N -derivations, we must show

that we can derive all the necessary equality rules in the weakened system. This section collects

such lemmas.

Lemma 7.6.1 (Derived Rule Row Equality) If the judgment �`N (�t: R)� : : (M ; V ) is deriv-

able, then so is the judgment �`N [�=t]R : : (M ; V )

Proof The proof is by induction on the derivation of �`N (�t:R)� : : (M ; V ) , to account for the

(row label) case, which then follows immediately from the inductive hypothesis. Otherwise, in a

`N -derivation, the judgment �`N (�t:R)� : : (M ; V ) must have been derived via a (row fn app)

rule. With any of these four rules, we must have previously derived:

RH1 �`N �t:R : : T a ! (M ; V1)

RH2 �`N � : V2

Furthermore, RH1 must have been derived via (row fn abs), so we must also have derived:

RH3 �; t : ft+g`N R : : (M 0; V 0
1)
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where M � M 0 , a = V ar(t; V1), and V1 = V 0
1nt . Note that a indicates which of the four

(row fn app) rules was used to derive �`N (�t: R)� : : (M ; V ). Hence, we know that

V =

8>>>><
>>>>:

Merge(V1; V2) if a = +

Merge(V1; V2) if a = �

Merge(V1; Invar(V2)) if a = o

V1 if a =?

Notice that the right-hand side of this equation is just [V2=t]V
0
1 . By applying Lemma 7.5.1 to RH2

and RH3, we get

C1 �`N [�=t]R : : (M 0; [V2=t]V
0
1)

which is just

C2 �`N [�=t]R : : (M 0; V )

An application of (row label) then produces the judgment we needed to derive.

The next lemma characterizes a portion of the subtype relation; hence it conceptually belongs in

Section 7.9, the subtype characterization section. However, it is needed to establish Lemmas 7.6.5

and 7.6.7 which appear in this section. Hence, it is presented earlier to preserve the property that

all lemmas are proved before they are used.

Lemma 7.6.2 (Row Function Subtype Characterization) If �`N �t:R1 <:B R is derivable,

then R is of the form �t:R2 .

Proof The proof is by induction on the derivation of �`N �t:R1 <:B R . Most cases are either

vacuous or immediate from the inductive hypothesis. The (<: � right) rule cannot occur because

in a `N -derivation, (<: � right) must occur immediately after a (<: app) rule, none of which can

produce a subtype judgment whose left-hand side has the form �t: R1 . The (<: �left) case follows

vacuously, as this rule cannot occur in `N -derivations.

The following two lemmas belong in Section 7.11, the subtyping properties section. However,

they are needed to establish Lemmas 7.6.5, 7.6.6, and 7.6.7. As a result, they appear in this section.

Lemma 7.6.3 (Subtyping Implies Well Formed) If the judgment �`N U1 <:(B)
U2 is deriv-

able, then so are the judgments �`N Ui:�
i for some 
i's, i 2 f1; 2g . Furthermore, 
1 and 
2 are

kind expressions of the same form.

Proof The proof is by induction on the derivation of �`N U1 <:(B)
U2 . Most of the cases follow

immediately from the inductive hypothesis. The (row proj bound) case relies on Lemma 7.2.1 and

the (<: � right) case uses Lemma 7.6.1.

Lemma 7.6.4 (Kind of Rows Related Via Subtyping Via (<: � right)) If the judgment

�`N R1 <:B R2 is derived via (<: � right) , then the judgments �`N Ri : : �i , i 2 f1; 2g are deriv-

able as well, for some 
at row kinds �1 and �2 .
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Proof Because we derived �`N R1 <:B R2 via (<: � right), R2 must be of the form ([�2=t]R
0
2),

and we must have previously derived

RH1 �`N R1 <:B (�t:R0
2)�2

By Lemma 7.6.3, we may derive both

C1 �`N R1 : : �1

C2 �`N (�t: R0
2)�2 : : �2

Furthermore, �1 and �2 must be of the same form. The structure of C2 indicates that it must

have been derived from a (row fn app) rule. Hence �2 must be of the form �2 . (and �1 as well).

Applying Lemma 7.6.1 to C2 produces the judgment

C3 �`N ([�2=t]R
0
2) : : �2

which is the judgment we needed to derive.

Lemma 7.6.5 (Derived Rule Application Equality) If the judgments �`N �t:R1 <:B �t: R2

and �`N � : V are both derivable, then so is the judgment �`N [�=t]R1 <:B [�=t]R2 .

Proof The proof is by induction on the derivation of �`N �t:R1 <:B �t:R2 . Most cases are

vacuously true. The (<: row refl) case follows from Lemma 7.6.1, (<: �) from Lemma 7.5.1, and

(<: row trans) from Lemma 7.6.2. The fact that the (<: � right) case is vacuously true follows

from Lemma 7.6.4.

Note the use of transitivity in the following lemma.

Lemma 7.6.6 (Generalized Derived Rule Application Equality) If we may derive each of

the judgments �`N �t: R1 <:B �t:R2 and �`N �1 �= �2 , then we may also derive the judgment

�`N [�1=t]R1 <:B [�2=t]R2 .

Proof Lemma 7.6.3 implies that we must have previously derived

C1 �; t : ft+g`N R2 : : �2

for some kind �2 . Via Lemma 7.5.2, we may derive

C2 �`N [�1=t]R2 <:w [�2=t]R2

Applying Lemma 7.6.5 to �`N �t: R1 <:B �t:R2 gives us:

C3 �`N [�1=t]R1 <:B [�1=t]R2

Then we may use (<: row trans) on C2 and C3 to produce:

C4 �`N [�1=t]R1 <:B [�2=t]R2
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which is the judgment we needed to derive.

Lemma 7.6.7 (Derived Rule Subtype Application Equality) If �`N �t: R1 <:B �t:R2 ,

�`N �t: R2 : : T
a ! (M ; V ) , and �`N �i : Vi for i 2 f1; 2g are all derivable judgments, then

� if a =? then the judgments

�`N [�i=t]R1 <:B [�j=t]R2 are derivable as well, for j 2 f1; 2g.

� if a = + and �`N �1 <: �2 then the judgment

�`N [�1=t]R1 <:w;d [�2=t]R2 is derivable as well.

� if a = � and �`N �1 <: �2 then the judgment

�`N [�2=t]R1 <:w;d [�1=t]R2 is derivable as well.

Proof The proof is by induction on the derivation of �`N �t:R1 <:B �t:R2 . The (<: row refl)

case follows from Lemma 7.5.3, and (<: �) from Lemma 7.5.4. The trickiest case is the one for

(<: row trans), which follows from Lemmas 7.6.2, and 7.6.5, and the inductive hypothesis. The

structure of the proof is similar to that of Lemma 7.5.4.

7.7 Normal Form Lemma

This section contains the proof that shows that any judgment derivable in our full system has a

related judgment derivable via a `N -derivation.

Lemma 7.7.1 (Normal Form Lemma) If the judgment �`A is derivable, where �`A denotes

any judgment in the system, then the judgment �nf(�)`N �nf(A) is derivable as well.

Proof The proof is by induction on the derivation of �`A . Most of the cases follow immediately

from the inductive hypothesis and the de�nition of �nf . The (row fn app) cases depend on Lemma

7.6.1. The type equality rules follow from the fact that two row or type expressions related via � -

reduction have the same �nf . The (9 <: intro) case requires the use of (type eq) immediately

before the use of (9 <: intro), which is why this possibility is allowed in `N -derivations. The

(<: app) rules are the most subtle. We present the (9 <: intro) and (<: app cong) case in detail.

The other (<: app) share the same structure as (<: app cong).

(9 <: intro)

In this case, we start with the assumption that

A1 �`N fjr <:w R : : � = R1; ejg : 9(r <:w R : : �)�

To reach this conclusion, we must have previously derived

RH1 �`N R1 : : �
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RH2 �`N R1 <:w R

RH3 �`N e: [R1=r]�

Applying the inductive hypothesis to these three judgments in turn produces the judgments:

C1 �nf(�)`N �nf(R1) : : �

C2 �nf(�)`N �nf(R1) <:w �nf(R)

C3 �nf(�)`N e: �nf([R1=r]�)

Notice that since e has a simple type, we are guaranteed that its �nf is just e . It follows

from the de�nition of �nf that

C4 �nf([R1=r]�) $� [�nf(R1)=r]�nf(�)

We may thus apply (type eq) to C3 and C4 to produce the judgment

C5 �nf(�)`N e: [�nf(R1)=r]�nf(�)

We may now invoke (9 <: intro) on C1, C2, and C5 to obtain

C6 �nf(�)`N fj�nf(r <:w R : : �) = �nf(R1); ejg : 9(�nf(r <:w R : : �))�nf(�)

which is just

C7 �nf(�)`N �nf(fjr <:w R : : � = R1; ejg : 9(r <:w R : : �)�)

the judgment we needed to derive.

(<: app cong)

In this case, we start with the assumption that we have derived the following judgment:

A1 �`N R1�1 <:B R2�2

From the form of the (<: app cong) rule, we must have previously derived:

RH1 �`N R1 <:B R2

RH2 �`N R2 : : T
a ! �

RH3 �`N �1 �= �2

Applying the inductive hypothesis to each of these judgments in turn produces the judgments:

C1 �nf(�)`N �nf(R1) <:B �nf(R2)

C2 �nf(�)`N �nf(R2) : : T
a ! �

C3 �nf(�)`N �nf(�1) �= �nf(�2)

From these judgments, we may derive via (<: app cong) the judgment:
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C4 �nf(�)`N �nf(R1)�nf(�1) <:B �nf(R2)�nf(�2)

At this point, there are four cases to consider, depending on whether or not �nf(R1) and

�nf(R2) are lambda abstractions or row function variables.

Case 1: �nf(R1) and �nf(R2) are both row variables.

Then �nf(Ri)�nf(�i) has the form �nf(Ri�i) for i 2 f1; 2g and C5 is the judgment we needed

to show derivable.

Case 2: �nf(R1) and �nf(R2) are both lambda abstractions.

In other words, �nf(R1) has the form �t: �nf(R0
1) and �nf(R2) has the form �t: �nf(R0

2)

for some rows R0
1 and R0

2 . Then C1 is just

C5 �nf(�)`N �t: �nf(R0
1) <:B �t: �nf(R0

2)

Applying Lemma 7.6.6 to C5 and C3 produces the judgment:

C6 �nf(�)`N [�nf(�1)=t]�nf(R
0
1) <:B [�nf(�2)=t]�nf(R

0
2)

Since substituting �nf(�2) for t cannot introduce any new redexes, this judgment can be

written

C7 �nf(�)`N �nf(R1�1) <:B �nf(R2�2)

the judgment we needed to derive.

Case 3: �nf(R1) is a row variable and �nf(R2) is a lambda abstraction.

In this case, �nf(R1)�nf(�1) has the form �nf(R1�1) and �nf(R2) has the form �t:R0
2 for

some row R0
2 , so C4 may be written

C5 �nf(�)`N �nf(R1�1) <:B (�t: �nf(R0
2))�nf(�2)

Applying (<: � right) to this judgment produces:

C6 �nf(�)`N �nf(R1�1) <:B [�nf(�2)=t]�nf(R
0
2)

which is just

C7 �nf(�)`N �nf(R1�1) <:B �nf(R2�2)

which is the judgment we needed to derive.

Case 4: �nf(R1) is a lambda abstraction and �nf(R2) is a row function variable.
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Now, �nf(R1) has the form �t:R0
1 for some row R0

1 . By applying Lemma 7.6.2, we can see

that this case is impossible.

7.8 Properties of Kinding

The lemmas collected in the following section demonstrate properties of the kinding system. The

�rst lemma shows that a given row (or type) has a unique variance in a given context. Intuitively,

that variance re
ects how type variables appear in the normal form of the row (or type).

Lemma 7.8.1 (Unique Variance) If the judgments �`N U :�
1 and �`N U :�
2 are both deriv-

able, where U is either a row expression R or a type expression � , then V ar(
1) = V ar(
2) .

Proof The proof is by induction on the structure of U . The only tricky case is when U has

the form R � , as there are �ve typing rules that could have been the last in a derivation of the

form �`N R � : : (M ; V ) , the four (row fn app) rules and (row label). A simple induction on

derivations that end with �`N R � : : (M ; V ) shows that such a derivation must have included an

intermediate judgment of the form �`N R� : : (M 0; V ) , where the rule used to derive this judgment

was a (row fn app) rule. Hence, we must have derived

A1 0 �`N R � : : (M 0
1; V1)

A2 0 �`N R � : : (M 0
2; V2)

each via a (row fn app) rule. Regardless of which such rule we used, we must have previously

derived:

RH1 �`N R : : T a ! (M 0
1; V

0
1)

RH2 �`N � :V 00
1

RH3 �`N R : : T a0

! (M 0
2; V

0
2)

RH4 �`N � :V 00
2

where V1 = fa(V
0
1 ; V

00
1 ) and V2 = fa0(V 0

2 ; V
00
2 ). Applying the induction hypothesis �rst to RH1 and

RH3 and then to RH2 and RH4 reveals that V 0
1 = V 0

2 , a = a0 , and V 00
1 = V 00

2 . These equalities

imply that V1 = V2 , which gives us that V ar(M1; V1) = V ar(M2; V2).

Lemma 7.8.2 (Grow Method Set) If the judgments �`N R : : �(M1) and �`N R : : �(M2) are

both derivable, where

�(M) : : = T a ! (M ; V ) j (M ; V )

for some annotation a and some variance set V , then the judgment �`N R : : �(M1 [M2) is deriv-

able as well.
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Proof The proof is by induction on the structure of R . The empty row (hhii) and row variable (r )

cases follow routinely from Lemma 7.2.1. The row extension (hhR jm : �ii), row function (�t: R),

and row function application (R � ) cases follow routinely from the inductive hypothesis.

To prove the next lemma about the soundness of the method absence annotations, we need to

be able to collect the names of the methods that actually appear in a given row. Hence the following

de�nition:

De�nition 7.8.3 Given a context � and a row expression R such that the judgment �`N R : : �

is derivable for some kind � , we de�ne the method name function MethNames(� ; R) as follows,

by recursion on the form of R :

MethNames(� ; hhii) = ;

MethNames(� ; hhR jm : �ii) = MethNames(� ; R) [ fmg

MethNames(� ; r) = MethNames(�0 ; R0)

where � � �0; r <:w R0: :�; �00

MethNames(� ; �t:R) = MethNames(�; t : ft+g ; R)

MethNames(� ; R�) = MethNames(� ; R)

Lemma 7.8.4 (Soundness of Method Absence Annotations) If we may derive the judgment

�`N R : : S ! (M ; V ) , then MethNames(� ; R) \M = ; .

Proof The proof is by induction on the derivation of �`N R : : � . All cases follow routinely.

Lemma 7.8.5 (Type Extraction) If �`N [�=t]U :�
 and �`N � : V are both derivable and t 62

dom(�) , then �; t : ft+g`N U :�
1 where 
 = [V=t]
1 .

Proof The proof of this lemma is by induction on the derivation of �` [�=t]U :�
 . Note that

U and � do not range over existential types, so the (exist) case is vacuous. Note also that U is

assumed to be in normal form (as is � ) and that substituting a type in normal form for a type

variable cannot introduce a new redex. Hence if [�=t]U has a certain syntactic form and U is not

t , then U must have the same syntactic form. Thus for each type rule that can produce a judgment

of the form �`N [�=t]U :V , there are two cases to consider: either U is equal to t or it is not.

U is t

By Lemma 7.2.1, we can derive �`N � . Since t 62 dom(�) by assumption, we can derive via

(type var) the judgment �; t : ft+g`N � . By (type proj) we get �; t : ft+g`N t : ft+g , which

is the judgment we need since [V=t]ft+g = V .
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U is not t

Here we proceed by a case analysis on the last rule in the derivation of �` [�=t]U :�
 . We will

present the analysis for (cov obj) in detail, as it is representative of the di�culties encountered

in considering the various typing rules.

In the (cov obj) case, we start with the assumptions:

A1 �`N obj t1 R1:V1nt1

A2 �`N � :V

A3 t 62 dom(�)

where obj t1 R1 is of the form [�=t]U . Because t1 is a bound variable, we may assume without

loss of generality that t1 62 ftg[ dom(�). Note that U must be of the form obj t1 R0
1 . Hence

A1 may be written in the form:

A1 0 �`N obj t1 [�=t]R0
1:V1nt1

By assumption, A1' was derived via (cov obj). Hence we must have previously derived

RH1 �; t1 : ft
+
1 g`N [�=t]R0

1 : : (M1; V1)

RH2 V ar(t1; V1) 2 f+; ?g

By applying Lemma 7.2.3 to A2 and A3, we may produce the judgment

C1 �; t1 : ft
+
1 g`N � : V

Also, since t 6= t1 , A3 implies that

C2 t 62 dom(�; t1 : ft
+
1 g)

We may now apply the induction hypothesis to RH1, C1, and C2 to derive

C3 �; t1 : ft
+
1 g; t : ft

+g`N R0
1 : : (M1; V

0
1 )

where

C4 V1 = [V=t]V 0
1

By a simple induction, we may show that whenever �; t : ft+g; t1 : ft
+
1 g; �

0
`N A is derivable,

then so is �; t1 : ft
+
1 g; t : ft

+g; �0 `N A . Hence we may derive

C5 �; t : ft+g; t1 : ft
+
1 g`N R0

1 : : (M1; V
0
1 )

Since t1 62 D(V ), it follows from the de�nition of variance substitution that V ar(t1; [V=t]V
0
1) =

V ar(t1; V
0
1). Hence,

C6 V ar(t1; V
0
1) = V ar(t1; V1) 2 f+; ?g
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We may now apply (cov obj) to C5 and C6 to produce

C7 �; t : ft+g `N obj t1 R0
1:V

0
1nt1

To see that C7 is the judgment we needed to derive, consider the variance set we get by

substituting V for t in V 0
1nt1 . Because t1 62 D(V )[ ftg , Variance Lemma 7.1.16 implies that

C8 [V=t](V 0
1nt1) = ([V=t]V 0

1 )nt1

concluding the analysis necessary for the (cov obj) case.

The four (row fn app) rules may be handled together by appealing to Lemma 7.1.12. In

general, the cases for the other typing rules proceed via a similar analysis, di�ering only

in which variance lemmas are needed to show that the variance sets are in the necessary

relationship.

7.9 Subtyping Characterization Lemmas

Lemma 7.9.1 (Supertype Characterization for Type Variables) If the judgment �`N t <: �

is derivable, then � is t .

Proof The proof is by induction on the derivation of �`N t <: � . The (<: type refl) case follows

immediately from its hypothesis. The (<: type trans) case follows from two applications of the

inductive hypothesis.

Lemma 7.9.2 (Supertype Characterization for Arrow Types) If we may derive the judg-

ment �`N �1! �2 <: �
0 , then � 0 has the form � 01! � 02 .

Proof The proof is by induction on the derivation of �`N �1! �2 <: �
0 . The (<: type refl) and

(<:!) cases follow immediately from their rule hypotheses. The (<: type trans) case follows from

two applications of the inductive hypothesis.

Lemma 7.9.3 (Subtype Characterization for Arrow Types) If we may derive the judgment

�`N � 0 <: �1! �2 , then � 0 has the form � 01! � 02 .

Proof The proof is by induction on the derivation of �`N � 0 <: �1! �2 The (<: type refl) and

(<:!) cases follow immediately from their rule hypotheses. The (<: type trans) case follows from

two applications of the inductive hypothesis.

Lemma 7.9.4 (Subtype Characterization for Pro Types) If the judgment �`N � <: pro t R1

is derivable, then � must have the form pro t R2
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Proof The proof is by induction on the derivation of �`N � <: pro t R1 . The (<: type refl) and

(<: convert) cases follow immediately from their rule hypotheses. The (<: type trans) case follows

from two applications of the inductive hypothesis.

Lemma 7.9.5 (Supertype Characterization for Obj Types) If we may derive the judgment

�`N obj t R1 <: � , then � must have the form obj t R2

Proof The proof is by induction on the derivation of �`N obj t R1 <: � . The (<: type refl) and

(<: obj) cases follow immediately from their rule hypotheses. The (<: type trans) case follows from

two applications of the inductive hypothesis.

Lemma 7.9.6 (Empty Row is Top) If the judgment �`N R : : � is derivable, then so is the judg-

ment �`N R <:B ER , where ER is hhii if � is of the form � . Otherwise, ER has the form �t:hhii .

Proof The proof is by induction on the derivation of �`N R : : � . Lemma 7.6.1 is needed for the

(row fn app) cases.

Lemma 7.9.7 (Empty Row Supertype Characterization) If the judgment �`N hhii <:B R is

derivable, R must have the form hhii .

Proof The proof is by induction on the derivation of �`N hhii <:B R . The (<: row refl) case is

immediate, and the (<: row trans) case follows immediately from two applications of the inductive

hypothesis. The only other rule that could possibly produce a judgment of the form �`N hhii <:B R

is (<: � right). However, the de�nition of `N -derivations rules this case out, as it limits the use

of (<: � right) to immediately after applications. Since the hhii is not an application, we could not

have used (<: � right) to derive �`N hhii <:B R .

Lemma 7.9.8 (Subtype Characterization For Small Rows) If we may derive the judgment

�`N R1 = hhhhii jm : �ii <:B R2 , then R2 has the form hhii or hhhhii jm : � 0ii , for some type � 0 such

that the judgment �`N � <: � 0 is derivable.

Proof The proof is by induction on the derivation of �`N R1 = hhhhii jm : �ii <:B R2 The (<:

row trans) case requires Lemma 7.9.7. The (<: � right) case is vacuously true, because the only

place the (<: � right) rule may appear in a `N derivation is immediately after a (<: app) rule, in

which case R1 must be of the form R� for some row R and type � .

The following is a technical lemma is used solely to prove the (<: � right) case of the next

lemma, Lemma 7.9.10.

Lemma 7.9.9 (Substitution Preserves Method Names) If the judgments �`N � : V and

�; t : ft+g; �T `R : : � are derivable, where �T is a context fragment listing only type variables, then

MethNames(�; t : ft+g; �T ; R) =MethNames(�; �T ; [�=t]R) .
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Proof The proof is by induction on the derivation of �; t : ft+g; �T `R : : � . All cases follow

routinely from the inductive hypothesis.

Lemma 7.9.10 (Subtyping Implies Method Name Superset) If judgment �`N R1 <:B R2 is

derivable, then MethNames(� ; R2) �MethNames(� ; R1) .

Proof The proof is by induction on the derivation of �`N R1 <:B R2 . All cases follow routinely

from the inductive hypothesis except for (<: � right), which requires Lemmas 7.6.3 and 7.9.9.

Lemma 7.9.11 (Flat Row Supertype Characterization) If we may derive the row-subtyping

judgment �`N hhR
0
1 jm : � 0ii <:B R2 and MethNames(� ; hhR0

1 jm : � 0ii) = MethNames(� ; R2) ,

then R2 has the form hhR0
2 jm : � 02ii .

Proof The proof is by induction on the derivation of �`N hhR
0
1 jm : � 0ii <:B R2 . The (<: row refl),

(<: cong), and (<: d) cases follow immediately from the form of their conclusion judgments. The

(<: w) rule cannot have been the last rule in the derivation of �`N hhR
0
1 jm : � 0ii <:B R2 because

this rule forces R2 to have a strictly smaller method name set, violating the second assumption

above. The (<: row trans) case follows from two applications of Lemma 7.9.10 and the inductive

hypothesis. Lemma 7.9.10 is necessary to show that the method name set for the intermediate row

expression is equal to MethNames(� ; hhR0
1 jm : � 0ii) and MethNames(� ; R2).

To characterize what kinds of rows can be subtypes of row variables, we need the following

de�nition, which essentially calculates the position of row variable r in context �, counting from

the left.

De�nition 7.9.12 Given a context � and a row variable r such that the judgment �`N r : : � is

derivable for some kind � , we de�ne the Rank of r with respect to � as follows:

Rank(r ; �; a) =

(
RowLen(�) + 1 if r = var(a)

Rank(r ; �) otherwise

where RowLen(�) is the number of row variables listed in � and

var(a) =

8>><
>>:

x if a = x : �

t if a = t : ft+g

r if a = r <:w R : : �

Lemma 7.9.13 (Row Variable Subtype Characterization) If the judgment �`N R <:B r is

derivable, then R must be a row variable q such that Rank(q; �) � Rank(r; �) .

Proof The proof is by induction on the derivation of �`N R <:B r . The (<: row refl) case follows

immediately, (row proj bound) follows routinely from Lemma 7.2.5, and (<: row trans) follows

immediately from the inductive hypothesis. The (<: w) rule cannot produce a judgment of this
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form, because all row variables have functional kind, whereas the row expressions related via (<: w)

must have 
at kind. Similarly, by Lemma 7.6.4, the (<: � right) rule cannot have produced the

judgment �`N R <:B r as r has functional kind.

To prove some further properties of subtyping, which are useful in proving Lemma 7.11.1, we

need the following de�nition and two lemmas.

De�nition 7.9.14 Given a context � and a row expression R such that the judgment �`N R : : �

is derivable for some kind � , we de�ne the main row variable rank function MainRank(� ; R) as

follows, by recursion on the form of R :

MainRank(� ; hhii) = 0

MainRank(� ; r) = Rank(r; �)

MainRank(� ; hhR jm : �ii) = MainRank(� ; R)

MainRank(� ; �t:R) = MainRank(�; t : ft+g ; R)

MainRank(� ; R�) = MainRank(� ; R)

The follow technical lemma is needed to prove Lemma 7.9.16.

Lemma 7.9.15 If the judgments �; t : ft+g; �T `N R : : � and �; �T `N [�=t]R : : �0 are derivable,

where �T is a context fragment listing only type variables, then MainRank(�; �T ; [�=t]R) =

MainRank(�; t : ft+g; �T ; R) .

Proof The proof is by induction on the derivation of �; t : ft+g; �T `N R : : � . The (row proj)

case follows from the fact that for any row variable r , Rank(�; �T ; r) = Rank(�; t : ft+g; �T ; r)

and [�=t]r = r . The rank of r is equal in the two contexts because the Rank function only counts

row variables. The (empty row) case follows from the fact that

Rank(�; �T ; hhii) = Rank(�; t : ft+g; �T ; hhii) = 0:

The remaining cases follow immediately from the inductive hypothesis.

Lemma 7.9.16 (Subtyping Implies Greater Main Rank) If the judgment �`N R1 <:B R2 is

derivable, then MainRank(� ; R1) �MainRank(� ; R2) .

Proof The proof is by induction on the derivation of �`N R1 <:B R2 . The (row proj bound) case

follows from the fact that if �`N r <:B R is derived via (row proj bound), then � must have the

form �0; r <:w R : : �; �00 , and we must have derived the �0 `N R : : �0 for some kind � . This judg-

ment implies via Lemma 7.2.5 that MainRank(� ; R) � RowLen(�0), while MainRank(� ; r) =

RowLen(�0) + 1. Hence we have that MainRank(� ; r) �MainRank(� ; R).
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The (<: row refl) case follows from the fact that MainRank(� ; r) =MainRank(� ; r), while

the (<: � right) case follows from the inductive hypothesis and Lemma 7.9.15. We present this case

in detail below. All other cases follow routinely from the inductive hypothesis and the de�nition of

MainRank .

(<: � right)

In this case, our initial assumption has the form

A1 �`N R1 <:B [�2=t]R2

which must have been derived from

RH1 �`N R1 <:B (�t: R2)�2

Lemmas 7.6.3 and 7.6.4 indicate that we must have previously derived

RH2 �`N (�t: R2)�2 : : �

for some kind � . An inspection of the typing rules then reveals that to derive RH2, we must

have previously derived the judgments

RH3 �; t : ft+g`N R2 : : �
0

RH4 �`N �2 : V

for some kind �0 and variance set V . Lemma 7.5.1 applied to RH3 and RH4 allows us to

produce the judgment

C1 �`N [�2=t]R2 : : �
00 .

We may now apply Lemma 7.9.15 to RH3 and C1 to conclude that

C2 MainRank(� ; [�2=t]R2) =MainRank(�; t : ft+g ; R2)

Applying the induction hypothesis to RH1 gives us the inequality

C3 MainRank(� ; R1) �MainRank(� ; [�2=t]R2)

Hence

C4 MainRank(� ; R1) �MainRank(�; t : ft+g ; R2)

By de�nition, the right-hand side of this inequality is just MainRank(� ; (�t:R2)�2). Hence

we get the desired inequality

C5 MainRank(� ; R1) �MainRank(� ; [�2=t]R2)
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Lemma 7.9.17 (Supertype Characterization for Row Variables) If the judgment

�; r <:w R : : �; �0 `
N
r <:B R0

is derivable, then either R0 is r or the free row variables of R0 are contained in the domain of � .

Proof The proof is by induction on the derivation of �; r <:w R : : �; �0 `N r <:B R0 . It is not

di�cult to show that the (<: row refl) case satis�es the �rst possibility, while the (row proj bound)

case satis�es the second. The (<: row trans) case follows routinely from the inductive hypothesis

and Lemma 7.9.16. The (<: � right) case cannot occur because it is only applicable to rows that

have 
at kind (Lemma 7.6.4), whereas r has functional kind.

Lemma 7.9.18 (Subtype Characterization for Row Application) If the judgment

� `
N
R1 <:B R0

2�
0
2 (�)

is derivable, and if MethNames(� ; R1) = MethNames(� ; R0
2 �

0
2) and MainRank(� ; R1) =

MainRank(� ; R0
2 �

0
2) , then R1 must be of the form R0

1 �
0
1 . Furthermore, the last rule in the deriva-

tion of (�) cannot have been (<: � right) .

Proof The proof is by induction on the derivation of (�). The (<: row refl) case follows routinely

from its hypothesis. The (row proj bound) case is vacuously true since the rows it relates must have

functional kind, whereas R0
2 �

0
2 has 
at kind. The (<: app) rules follow immediately from their rule

hypotheses. The (<: w) rule cannot have been the last rule in the derivation of (�) because this rule

forces R0
2 �

0
2 to have a method name set that is strictly smaller than the one for R1 , violating the

second assumption above. The (<: row trans) case follows from two applications of the inductive

hypothesis.

The only other possibility for the �nal rule in the derivation of (�) is (<: � right). We will show

that this case is not possible. For (�) to have been derived via (<: � right) in a `N -derivation, R1

must have the form of a row function application. Furthermore, the analysis in Lemma 7.7.1 reveals

that both R1 and R0
2 �

0
2 must be in normal form. Hence (�) must have the form:

A1 0 �`N r1 �1 <:B r2 �
0
2

for some row variables r1 and r2 and some type �1 . The de�nition of MainRank reveals that

C1 MainRank(� ; r1 �1) =MainRank(� ; r1) = Rank(r1 ; �)

C2 MainRank(� ; r2 �
0
2) =MainRank(� ; r2) = Rank(r2 ; �)

By the third assumption above, these two ranks must be equal. Hence r1 = r2 = r and A1' has the

form

A1 00 �`N r �1 <:B r � 02
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Furthermore, the form of the (<: � right) rule reveals that r � 02 must be of the form [�=t](r � 002 ) for

some types � and � 002 , and we must have previously derived

RH1 �`N r �1 <:B (�t: r � 002 )�

The de�nition of `N -derivations further reveals that RH1 must have been derived via a (<: app)

rule. In any of the four possible rules, we must have previously derived the judgment

RH2 �`N r <:B �t: r � 002

However, Lemma 7.9.17 reveals that any supertype of a row function variable r must be either r

itself, or an expression whose free variables all appear strictly prior to r in context �. Since r

does not appear strictly prior to itself in �, judgment RH2 is not derivable. Hence we cannot have

derived (�) via (<: � right).

7.10 Subtyping Implies Component Subtyping Lemmas

The lemmas in this section show that when two rows or types are related via subtyping, then their

sub-type and sub-row expressions are also in the subtyping relation. These lemmas are primarily

used to in the proof of Lemma 7.11.1.

Lemma 7.10.1 (Arrow Subtyping Implies Component Subtyping) If we may derive judg-

ment �`N �1! �2 <: �
0
1
! � 02 , then the judgments �`N � 01 <: �1 and �`N �2 <: �

0
2 are derivable as

well.

Proof The proof is by induction on the derivation of �`N �1! �2 <: �
0
1
! � 02 . The (<: type refl)

and (<: !) cases follow routinely from their rule hypotheses. The (<: type trans) case follows

from Lemma 7.9.2 and the inductive hypothesis. Lemma 7.9.2 is used to show that the intermediate

type in the transitivity must be a function type.

Lemma 7.10.2 (Probj Subtyping Implies Row Subtyping) If we may derive the judgment

�`N probj1 t R1 <: probj2 t R2 , then the judgment �; t : ft+g`N R1 <:B R2 is derivable as well.

Furthermore, if probj1 and probj2 are both pro , then B must be w and we may derive the

judgment �; t : ft+g`N R2 <:B R1 as well.

Proof The proof is by induction on the derivation of �`N probj1 t R1 <: probj2 t R2 . The

(<: type trans) case requires Lemma 7.9.4 and a subsidiary lemma, easily proved by induction, that

all supertypes of probj types are themselves probj types. The other cases follow routinely from

the inductive hypothesis.

Lemma 7.10.3 (Row Function Subtyping Implies Body Subtyping) If we may derive the

judgment �`N �t: R1 <:B �t:R2 , then the judgment �; t : ft+g`N R1 <:B R2 is derivable as well.
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Proof The proof is by induction on the derivation of �`N �t:R1 <:B �t:R2 . The (<: row refl)

and (<: �) cases follow routinely from their rule hypotheses. The (<: row trans) case follows

from Lemma 7.6.2, which requires the intermediate row expression to have the form �t:R3 , and the

inductive hypothesis. Finally, the (<: � right) rule cannot have been the last rule in the derivation

of �`N �t: R1 <:B �t:R2 because �t: R1 has functional kind and Lemma 7.6.4 reveals that the rows

related via (<: � right) have 
at kind.

Lemma 7.12.4 in Section 7.12 is a more general version of this lemma. However, this weaker

version is needed to prove Lemma 7.11.1, which in turn is used to prove 7.12.4.

Lemma 7.10.4 (Flat Row Subtyping Implies Component Subtyping) If we may derive the

judgment

� `
N
hhR1 jm : �1ii <:B hhR2 jm : �2ii (�)

and establish the equality MethNames(� ; hhR1 jm : �1ii) =MethNames(� ; hhR2 jm : �2ii) , then the

judgments �`N R1 <:B R2 and �`N �1 <: �2 are derivable.

Proof The proof is by induction on the derivation of (�). The (<: row refl), (<: cong), and

(<: d) cases follow follow routinely from their rule hypotheses. The (<: w) rule cannot derive the

judgment (�). (Note that Lemmas 7.8.4 and 7.9.10 reveal that m could not be in the method

set of the hhR2 jm : �2ii .) The (<: row trans) case follows from Lemma 7.9.11 and the inductive

hypothesis. Finally, the (<: � right) rule cannot have produced (�) because this rule can only

appear immediately after a (row fn app) rule, in which case hhR1 jm : �1ii would have to have the

form of an application.

Lemma 7.10.5 (Row Application Subtyping Implies Row Function Subtyping) If we may

derive the judgment

� `
N
R0

1 �
0
1 <:B R0

2 �
0
2 (�)

and if the equalities MethNames(� ; R0
1 �

0
1) =MethNames(� ; R0

2 �
0
2) and MainRank(� ; R0

1 �
0
1) =

MainRank(� ; R0
2 �

0
2) both hold, then the judgment �`N R0

1 <:B R0
2 is derivable.

Proof The proof is by induction on the derivation of (�). The (<: row refl) case follows routinely

from its hypothesis. The (<: app) rules follow immediately from their rule hypotheses. The (<:

row trans) case follows Lemma 7.9.18 from two applications of the inductive hypothesis. Finally, it

follows from Lemma 7.9.18 that the (<: � right) rule cannot have been the last rule in the derivation

of (�), and hence that case is vacuously true.

Note that the above proof says nothing about the subtyping relationship between � 01 and � 02 .

The reason for this silence is that their relationship depends on the variance of R0
2 , and in general,

variance is not preserved by subtyping. In particular, if (�) is derived via (<: row trans), we

cannot show a connection between � 01 and � 02 . We are able to show that the intermediate row in the
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transitivity must have the form R0
3; �

0
3 , but cannot connect the variance of R

0
3 to that of R0

2 . As a

result, we cannot connect � 03 to � 01 , and hence cannot connect � 01 or � 02 . This point is addressed in

the next lemma, and is the source of its complexity.

7.11 Properties of Subtyping

This section, which conceptually includes Lemmas 7.6.3 and 7.6.4, contains lemmas connecting the

subtyping relation to other parts of the type system. The �rst lemma listed in this section, Lemma

7.11.1, is the most di�cult lemma in the entire proof of type soundness. In the following lemma,

we use U to range over rows R and types � . We use the judgment form �`N U :� 
 to denote

either the judgment �`N R : : � or �`N � : V . Note that Lemma 7.6.3 implies that if the judgment

�`N U1 <:B U2 is derivable, then U1 and U2 are either both rows or both types.

Lemma 7.11.1 (Mutual Subtyping Implies Same Variance) If the judgments �`N U1 <: U2

and �`N U2 <: U1 are both derivable, then for some kind 
 we may derive judgments �`N U1 :� 


and �`N U2 :� 
 , as well. Furthermore, if U1 and U2 are rows, then we may also derive the

judgments �`N U1 <:w U2 and �`N U2 <:w U1 .

Proof The proof is by induction on the structure of U1 .

Case 1: U1 � hhii

This case follows routinely from Lemmas 7.9.7 and 7.2.1.

Case 2: U1 � r

In this case, our initial assumptions have the form:

A1 �`N r <:B R2

A2 �`N R2 <:B r

Lemma 7.9.13 applied to A2 reveals that R2 must be a row variable q such that Rank(q ; �) �

Rank(r ; �). Applying Lemma 7.9.13 to A1 further reveals that Rank(r ; �) � Rank(q ; �).

Hence we may conclude that r is q . It follows routinely from A1 and Lemma 7.6.3 that we

may derive the judgments �`N r : : � and �`N r <:w r , just the judgments we needed.

Case 3: U1 � hhR
0
1 jm : � 01ii

In this case, our initial assumptions have the form:

A1 �`N hhR
0
1 jm : � 01ii <:B R2

A2 �`N R2 <:B hhR
0
1 jm : � 01ii

Lemma 7.9.10, applied once to A1 and once to A2, produces the equation

C1 MethNames(� ; hhR0
1 jm : � 01ii) =MethNames(� ; R2)
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We may now invoke Lemma 7.9.11 on A1 and C1 to conclude that R2 must have the form

hhR0
2 jm : � 02ii . Applying Lemma 7.10.4 once to A1 and once to A2 produces the judgments

C2 �`N R0
1 <:B R0

2

C3 �`N � 01 <: �
0
2

C4 �`N R0
2 <:B R0

1

C5 �`N � 02 <: �
0
1

Applying the inductive hypothesis to C2 and C4 allows us to conclude that the judgments

C6 �`N R0
1 <:w R0

2

C7 �`N R0
2 <:w R0

1

C8 �`N R0
1 : : (M ; V 0)

C9 �`N R0
2 : : (M ; V 0)

are derivable, for some method set M and variance set V 0 . Lemma 7.6.3 applied to A1 reveals

that we may derive the judgments

C10 �`N R0
1 : : (M1;m; V 0)

C11 �`N R0
2 : : (M2;m; V 0)

Lemma 7.8.1 reveals that the two variance sets must equal V 0 . It then follows from Lemma

7.8.2 and (row label) that we may derive the judgments

C12 �`N R0
1 : : (M [ fmg; V

0)

C13 �`N R0
2 : : (M [ fmg; V

0)

Now, by applying the inductive hypothesis to C3 and C5 we may derive the judgments

C14 �`N � 01 : V

C15 �`N � 02 : V

for some variance set V . We may now use (row ext) to produce the judgments

C16 �`N hhR
0
1 jm : � 01ii : : (M ; Merge(V 0; V ))

C17 �`N hhR
0
2 jm : � 02ii : : (M ; Merge(V 0; V ))

We may now conclude via (<: cong) that the judgments

C18 �`N hhR
0
1 jm : � 01ii <:w hhR

0
2 jm : � 02ii

C19 �`N hhR
0
2 jm : � 02ii <:w hhR

0
1 jm : � 01ii

are both derivable. Judgments C16, C17, C18, and C19 are just the judgments that we needed

to derive.
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Case 4: U1 � �t: R0
1

This case follows routinely from Lemmas 7.6.2 and 7.10.3 and the inductive hypothesis.

Case 5: U1 � R0
1 �

0
1

In this case, our initial assumptions have the form:

A1 �`N R0
1 �

0
1 <:B R2

A2 �`N R2 <:B R0
1 �

0
1

Lemma 7.9.10, applied once to A1 and once to A2, produces the equation

C1 MethNames(� ; R0
1 �

0
1) =MethNames(� ; R2)

Similarly, two applications of Lemma 7.9.16 to A1 an A2 reveal

C2 MainRank(� ; R0
1 �

0
1) =MainRank(� ; R2)

We may now apply Lemma 7.9.18 to A1, C1, and C2 to conclude that R2 must have the form

R0
2 �

0
2 . Lemma 7.10.5 applied once to A1 and once to A2 produces the derivations

C3 �`N R0
1 <:B R0

2

C4 �`N R0
2 <:B R0

1

Invoking the inductive hypothesis on R0
1 reveals that we may derive the following four judg-

ments:

C5 �`N R0
1 <:w R0

2

C6 �`N R0
2 <:w R0

1

C7 �`N R0
1 : : T

a ! (M ; V )

C8 �`N R0
2 : : T

a ! (M ; V )

for some annotation a , method set M , and variance set V .

Now we encounter the problem that makes this case by far the trickiest in the proof: it is

di�cult to connect via subtyping the types � 01 and � 02 . Notice that Lemma 7.10.5 does not

relate these types. The complication arises when A1 is derived via (<: row trans). Lemma

7.9.18 reveals that the intermediate row must have the form R0
3 �

0
3 , but it says nothing about

the variance of R0
3 . Indeed, unless we are in the context of this induction, there is nothing

to force R0
3 to have the same variance as R0

1 and R0
2 . Hence we must prove via a nested

induction that the types � 01 and � 02 are appropriately related.
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Nested Lemma If the judgments

�`N R0
1 �

0
1 <:B R0

2 �
0
2 (�)

�`N R0
2 �

0
2 <:B R0

1 �
0
1

�`N R0
1 : : T

a ! (M ; V )

�`N R0
2 : : T

a ! (M ; V )

�`N R0
1 <:w R0

2

�`N R0
2 <:w R0

1

are all derivable, and

MethNames(� ; R0
1 �

0
1) = MethNames(� ; R0

2 �
0
2)

MainRank(� ; R0
1 �

0
1) = MainRank(� ; R0

2 �
0
2)

then
if a = +; the judgment �`N � 01 <: �

0
2 is derivable.

if a = �; the judgment �`N � 02 <: �
0
1 is derivable.

if a = o; the judgments �`N � 01 <: �
0
2 and

�`N � 02 <: �
0
1 are derivable.

Nested Proof The proof is by induction on the derivation of (�). The induction is necessary

for the (<: trans) case. The (<: row refl), (<: app cong), (<: app cov), and (<: app contra)

cases all follow routinely from their rule hypotheses. The (<: app vac) is vacuously true, as in

this case a will be ?. Lemma 7.9.18 reveals that (<: � right) cannot have produced judgment

(�). All that remains is the (<: row trans) case.

(<: row trans)

In this case, (�) must have been derived from judgments of the form

IRH1 �`N R0
1 �

0
1 <:B R3

IRH2 �`N R3 <:B R0
2 �

0
2

By two applications of Lemma 7.9.16, we know that

IC1 MainRank(� ; R0
2 �

0
2) �MainRank(� ; R3) �MainRank(� ; R0

1 �
0
1)

By assumption, however, MainRank(� ; R0
2 �

0
2) = MainRank(� ; R0

1 �
0
1). Hence the in-

equalities in IC1 are actually equalities:

IC2 MainRank(� ; R0
2 �

0
2) =MainRank(� ; R3) =MainRank(� ; R0

1 �
0
1)

Similarly, we may conclude via Lemma 7.9.10 and our assumption about MethNames

that

IC3 MethNames(� ; R0
2 �

0
2) =MethNames(� ; R3) =MethNames(� ; R0

1 �
0
1)

We may now invoke Lemma 7.9.18 to reveal that R3 must have the form R0
3 �

0
3 . Further-

more, Lemma 7.10.5 reveals that we may derive the judgments
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IC4 �`N R0
3 <:B R0

2

IC5 �`N R0
1 <:B R0

3

An applications of (<: row trans) give us the judgment

IC6 �`N R0
3 <:B R0

1

We may now apply the outer inductive hypothesis to IC5 and IC6 to produce the judg-

ments

IC7 �`N R0
3 <:w R0

1

IC8 �`N R0
1 <:w R0

3

IC9 �`N R0
1 : : T

a0

! (M 0; V 0)

IC10 �`N R0
3 : : T

a0

! (M 0; V 0)

for some annotation a0 , method set M 0 , and variance set V 0 . By Lemma 7.8.1, a0 = a

and V 0 = V . By Lemma 7.8.2 then, the derivations i 2 f1; 2; 3g are all derivable:

IC10 �`N R0
i : : T

a ! (M 00; V )

where M 00 =M[M 0 . Two applications of (<: row trans) now reveal that the judgments

IC11 �`N R0
3 <:w R0

2

IC12 �`N R0
2 <:w R0

3

are derivable. Two more applications of (<: row trans) allow us to derive the judgments

IC13 �`N R0
3 �

0
3 <:B R0

1 �
0
1

IC14 �`N R0
2 �

0
2 <:B R0

3 �
0
3

We may now apply the inner inductive hypothesis to IHR1, IC13, IC10, IC7, IC8, IC2,

and IC3 to conclude:

if a = +; the judgment �`N � 01 <: �
0
3 is derivable.

if a = �; the judgment �`N � 03 <: �
0
1 is derivable.

if a = o; the judgments �`N � 01 <: �
0
3 and

�`N � 03 <: �
0
1 are derivable.

Similarly, we may apply the inner inductive hypothesis to IHR2, IC14, IC10, IC11, IC12,

IC2, and IC3 to conclude:

if a = +; the judgment �`N � 03 <: �
0
2 is derivable.

if a = �; the judgment �`N � 02 <: �
0
3 is derivable.

if a = o; the judgments �`N � 03 <: �
0
2 and

�`N � 02 <: �
0
3 are derivable.
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Putting these subtyping relations together via (<: type trans), we get the relationships:

if a = +; the judgment �`N � 01 <: �
0
2 is derivable.

if a = �; the judgment �`N � 02 <: �
0
1 is derivable.

if a = o; the judgments �`N � 01 <: �
0
2 and

�`N � 02 <: �
0
2 are derivable.

which are just the connections we needed to show. 2

Returning to the outer induction, we now have two cases to consider: either a =? or it does

not. In the �rst case, we may apply (<: app vac) twice to conclude

C9 �`N R0
1 �

0
1 <:w R0

2�
0
2

C10 �`N R0
2 �

0
2 <:w R0

1�
0
1

and (row fn app vac) twice to produce:

C11 �`N R0
1 �

0
1 : : (M ; V )

C12 �`N R0
2 �

0
2 : : (M ; V )

These four judgment, C9, C10, C11, and C12, are just the judgments we need to derive in the

a =? case.

For the a 6=?, we may invoke the inner lemma twice to show that we may derive the judgments

C13 �`N � 01 <: �
0
2

C14 �`N � 02 <: �
0
1

By the inductive hypothesis applied to C13 and C14, we get the judgments

C15 �`N � 01 : V
00

C16 �`N � 02 : V
00

for some variance set V 00 . We may now apply (<: app cong) twice to conclude that the

judgments

C17 �`N R0
1 �

0
1 <:w R0

2�
0
2

C18 �`N R0
2 �

0
2 <:w R0

1�
0
1

are derivable. Rule (row fn app cong) gives us:

C19 �`N R0
1 �

0
1 : : (M ; Merge(V; V 00))

C20 �`N R0
2 �

0
2 : : (M ; Merge(V; V 00))

Judgments C17, C18, C19, and C20 are the judgments we needed to show derivable in the

a 6=? case.
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Case 6: U1 � t

The desired result follows routinely from Lemmas 7.9.1 and 7.6.3 and the inductive hypothesis.

Case 7: U1 � �1! �2

Here, Lemmas 7.9.2 and 7.10.1 and the inductive hypothesis produce the desired judgments.

Case 8: U1 � pro t R0
1

This case follows routinely from Lemmas 7.9.4 and 7.10.2.

Case 9: U1 � obj t R0
1

Finally, this case follows routinely from Lemmas 7.9.5, 7.10.2, and 7.8.1.

Lemma 7.11.2 (Width Subtyping Implies Lower Kind) If �`N R1 <:w R2 is derivable, then

�1 � �2 where �i is the unique variance of Ri in � for i 2 f1; 2g .

Proof The proof is by induction on the derivation of �`N R1 <:w R2 . All of the cases rely on

Lemmas 7.2.3 and 7.6.3. The (<: app cong) and (<: cong) cases rely on Lemma 7.11.1 to show

that congruent types have the same variance. The (<: app) cases require Variance Lemma 7.1.25,

while the (<: cong) and (<: w) case use Variance Lemmas 7.1.22 and 7.1.23, respectively. All other

cases, except (<: � right), which is presented below, follow routinely from the inductive hypothesis.

(<: � right)

In this case, the judgment we are assumed to have derived has the form:

A1 �`N R1 <:w [�2=t]R2

To reach this conclusion, we must have previously derived

RH1 �`N R1 <:w (�t: R2)�2

Lemma 7.6.3 reveals that we may derive

C1 �`N R1 : : (M1; V1)

C2 �`N (�t:R2)�2 : : (M2; V2)

for some method sets M1;M2 and variance sets V1; V2 . Invoking the inductive hypothesis on

RH1 reveals that

C3 V1 � V2

We now need to establish the relationship between V2 and the unique variance of [�2=t]R2

in �. An analysis of the rules that must have been used to conclude C2 shows that we may

derive the judgments

C4 �; t : ft+g `N R2 : : (M2; V
0
2)
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C5 �`N �2 : V

Furthermore, V2 = fa(V
0
2nt; V ), where a = V ar(t; V 0

2 ). Applying Lemma 7.5.1 to C4 and C5

yields the judgment

C6 �`N [�2=t]R2 : : (M2; [V=t]V
0
2)

Variance lemma 7.1.26 reveals that fa(V
0
2nt; V ) = [V=t]V 0

2 ; hence we have that V1 � [V=t]V 0
2 ,

which is the needed relationship between the variance of R1 and [�=t]R2 .

7.12 Method Extraction Lemmas

The lemmas in this section are needed to prove Lemma 7.14.2. Essentially, they show us that width

supertyping only forgets about the existence of methods, not any information about the present

methods. To prove this property, we need to introduce some de�nitions.

De�nition 7.12.1 Given a context � and a row expression R such that the judgment �`N R : : �

is derivable for some kind � , we de�ne the method extraction function Methm(� ; R) as follows, by

recursion on the form of R :

Methm(� ; hhii) = hhii

Methm(� ; hhR jm
0 : �ii) =

(
hhm : �ii if m = m0

Methm(� ; R) otherwise

Methm(� ; r) = Methm(�
0 ; R0)

where � � �0; r <:w R0: :�; �00

Methm(� ; �t: R) = �t:Methm(�; t : ft
+g ; R)

Methm(� ; R�) = [�=t]R0

if Methm(� ; R) = �t:R0

Lemma 7.12.2 (Characterization of Extracted Methods) If �`N R : : � is derivable, then

so is �`N Methm(� ; R) : : � where � � �0 . Furthermore,

� if � = �; then

Methm(� ; R) =

(
hhii if m 62MethNames(� ; R)

hhm : �ii otherwise

� if � = S ! �; then

Methm(� ; R) =

(
�t:hhii if m 62MethNames(� ; R)

�t:hhm : �ii otherwise
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Proof The proof is by induction on the derivation of �`N R : : � . The (row proj) case requires

Lemma 7.2.3. The (row ext) case depends on Variance Lemma 7.1.23. We present in detail the

(row fn app) cases, as they are the most involved. The other cases follow routinely from the

inductive hypothesis.

(row fn app)

In each of the (row fn app) cases, our assumption is of the form:

A1 �`N R� : : (M ; fa(V1; V2))

where a is + for the covariant application rule, � for the contravariant, o for the invariant,

and ? for the vacuous. To reach this judgment, we must have previously derived

RH1 �`N R : : T a ! (M ; V1)

RH2 �`N � : V2

Applying the inductive hypothesis to RH1 produces

C1 �`N Methm(� ; R) : : T
a0

! (M 0; V 0
1)

C2 a0 � a and V1 � V 0
1

C3

Methm(� ; R) =

(
�t:hhii if m 62MethNames(� ; R)

�t:hhm : � 0ii otherwise

Having derived C1 and RH2, we may invoke the (row fn app) rule corresponding to a0 to get

C4 �`N Methm(� ; R)� : : (M ; fa0(V 0
1 ; V2))

There are now two cases to consider: either m 2Methm(� ; R) or it is not.

Case 1: m 2Methm(� ; R)

In this case, we know by C3 that Methm(� ; R) = �t:hhm : � 0ii , so C4 has the form

C5 �`N (�t:hhm : � 0ii)� : : (M ; fa0(V 0
1 ; V2))

Lemma 7.6.1 allows us to derive the judgment

C6 �`N [�=t]hhm : � 0ii : : (M ; fa0(V 0
1 ; V2))

By the de�nition of Methm , this judgment may be written

C7 �`N Methm(� ; R�) : : (M ; fa0(V 0
1 ; V2))

Since Lemma 7.1.25 applied to C2 shows that
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C8 fa(V1; V2) � fa0(V 0
1 ; V2).

C7 is just the judgment we needed to derive.

Case 2: m 2Methm(� ; R) This case is analogous to Case 1.

The following is a technical lemma needed to establish the (<: � right) case of Lemma 7.12.4.

Lemma 7.12.3 (Substitution Characterization for Method Search) If both of the judgments

�; t : ft+g; �T `N R : : � and �`N � : V are derivable, where �T is a context fragment containing

only type variables, then for all method names m ,

[�=t]Methm(�; t : ft
+g; �T ; R) =Methm(�; �T ; [�=t]R):

Proof The proof is by induction on the derivation of �; t : ft+g; �T `N R : : � . The (row proj)

case uses Lemma 7.12.2. The (row fn app) cases require Lemmas 7.5.1 and 7.12.2 and standard

properties of substitution. The case for the (row ext) rule proceeds by a case analysis on whether

or not m is the method added to the row. All other cases follow routinely from the inductive

hypothesis.

The following lemma is the key step in showing the soundness of (probj().

Lemma 7.12.4 (Row Subtyping Implies Method Subtyping) If judgment �`N R1 <:B R2 is

derivable, then for all method names m , the judgment �`N Methm(� ; R1) <:B Methm(� ; R2)

is derivable as well. Furthermore, if B = w and m 2 MethNames(� ; R2) , then the judgment

�`N Methm(� ; R2) <:w Methm(� ; R1) is also derivable.

Proof The proof is by induction on the derivation of �`N R1 <:B R2 .

The (<: row refl) case requires Lemma 7.12.2. The case for (row proj bound) needs Lemmas

7.12.2 and 7.2.3. The (<: app cong) case follows routinely from Lemmas 7.12.2 and 7.6.6. The

(<: app cov) and (<: app contra) cases follow routinely from Lemmas 7.6.3, 7.12.2 and 7.6.5. The

cases for (<: cong) and (<: d) follow easily from the inductive hypothesis. The case for (<: w)

relies on Lemmas 7.9.10, 7.6.3, 7.8.4, and 7.9.6. The (<: row trans) case follows easily from Lemma

7.9.10.

Somewhat surprisingly, the case for (<: app vac) is quite tricky; it is presented below in full

detail. Less surprisingly, the (<: � right) case also requires some work. It is described below in

detail as well.

(<: app vac)

In this case, our initial assumption has the form



7.12. METHOD EXTRACTION LEMMAS 145

A1 �`N R1�1 <:B R2�2

To reach this conclusion, we must have previously derived the judgments

RH1 �`N R1 <:B R2

RH2 �`N R2 : : T
? ! �2

RH3 �`N �i : Vi

Invoking the inductive hypothesis on RH1 produces the judgment

C1 �`N Methm(� ; R1) <:B Methm(� ; R2)

We must now transform this subtyping judgment on the row functions to the corresponding

judgments on the row function applications. To that end, we need to know the general form

of Methm(� ; R1) and Methm(� ; R2). By invoking Lemma 7.12.2 for R1 and Lemmas 7.6.3

and 7.12.2 for R2 , we obtain the judgments

C2 �`N Methm(� ; R1) : : T
a ! �01 , where Methm(� ; R1) = �t:R0

1

and

C3 �`N Methm(� ; R2) : : T
? ! �02 , where Methm(� ; R2) = �t:R0

2

Note that since R2 's argument variance is ? (in RH2), the argument variance of Methm(� ; R2)

must be ? as well. (This conclusion follows from Lemma 7.12.2 and the de�nition of variance

ordering.)

We may now invoke (row fn app vac) on C1, C3, and RH3 to produce the judgment

C4 �`N (�t:R0
1)�1 <:B (�t: R0

2)�2

Applying Lemma 7.6.5 to C4 yields

C5 �`N [�1=t]R
0
1 <:B [�2=t]R

0
2

which is just

C6 �`N Methm(� ; R1�1) <:B Methm(� ; R2�2)

If we also know that B = w and m 2 MethNames(� ; R2�2), then the induction hypothesis

also reveals that we may derive the judgment

C7 �`N Methm(� ; R2) <:w Methm(� ; R1)

It also follows from Lemma 7.11.2 that the a in judgment C2 must be ?. Then by the same

analysis as above we may derive the judgment
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C8 �`N Methm(� ; R2�2) <:w Methm(� ; R1�1)

(<: � right)

In this case, our assumption has the form

A1 �`N R1 <:B [�2=t]R2

To conclude A1, we must have previously derived

RH1 �`N R1 <:B (�t: R2)�2

From the de�nition of `N -derivations, RH1 must have been derived via a (row fn app) rule.

Hence R1 must be of the form R0
1 �1 , for some row R0

1 and type �1 . The fact that the desired

judgment

D1 �`N Methm(� ; R1) <:B Methm(� ; [�2=t]R2)

is derivable then follows from a case analysis on which of the (row fn app) rules was used to

derive RH1, the inductive hypothesis, and Lemmas 7.12.2 and 7.6.5.

If we also know that B = w and m 2MethNames(� ; R2�2), then we also need to derive the

judgment

D2 �`N Methm(� ; [�2=t]R2) <:w Methm(� ; R1)

To this end, we apply Lemmas 7.6.3 and 7.9.9 to RH1 to conclude that

C2 MethNames(� ; [�2=t]R2) =MethNames(� ; (�t:R2)�2)

Hence we know that

C3 m 2MethNames(� ; (�t:R2)�2)

We may now invoke the inductive hypothesis on RH1 and C3 to produce the judgment

C4 �`N Methm(� ; (�t:R2)�2) <:w Methm(� ; R1)

Since Methm(� ; �t: R2) = �t:Methm(�; t : ft
+g ; R2), it follows from the de�nition of Methm

that

C5 Methm(� ; (�t: R2)�2) = [�2=t]MethNames(�; t : ft+g ; R2)

Applying Lemmas 7.6.3 and 7.12.3 to RH1 reveals that

C6 [�2=t]MethNames(�; t : ft+g ; R2) =Methm(� ; [�2=t]R2)

Hence C4 is just

C4 0 �`N Methm(� ; [�2=t]R2) <:w Methm(� ; R1)
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which is D2, the judgment we needed to show derivable.

Lemma 7.12.5 (Extracted Method is Mutual Subtype of Width Supertype) If judgment

�`N R <:w hhm : �ii is derivable, then the judgment �`N Methm(� ; R) �=w hhm : �ii is derivable as

well. Furthermore, Methm(� ; R) = hhm : � 0ii for some type � 0

Proof It follows from Lemma 7.12.4 that we may derive the judgments

C1 �`N Methm(� ; R) �=w hhm : �ii

From Lemma 7.9.10, we may conclude that m 2MethNames(� ; R), and Lemma 7.6.3 reveals that

judgment

C2 �`N R : : �

is derivable for some kind � . We may now conclude via Lemma 7.12.2 that for some type � 0 ,

Methm(� ; R) = hhm : � 0ii .

Lemma 7.12.6 (Width Supertypes are Mutual Subtypes) If we may derive the judgments

�`N R <:w hhm : �1ii and �`N R <:w hhm : �2ii , then we may derive the judgments �`N �1 �= �2 as

well.

Proof It follows from Lemma 7.12.5 that Methm(� ; R) = hhm : �ii for some type � , and that the

judgments

C1 �`N hhm : �ii �=w hhm : �1ii

C2 �`N hhm : �ii �=w hhm : �2ii

are derivable. By two applications of (<: row trans), we may derive the judgments

C3 �`N hhm : �1ii �=w hhm : �2ii

We may now invoke Lemma 7.9.8 twice to obtain the judgments

C4 �`N �1 �= �2

7.13 Row Substitution

This section contains a fairly standard row-substitution lemma, used to show that polymorphic

method bodies may be instantiated as necessary. The other lemma in this section is a technical lemma

that allows us to strengthen assumptions about row variables in judgments. In this section and in

the following, we will use the shorthand �min(�) to stand for the kind T 0 ! (;; Invar(TV ar(�))).

Intuitively, this is the \least" well-formed kind possible in context �. It is this kind we use to

type check method bodies, since it makes the least assumptions about the subtyping possible in

future extensions of the host object. In the following lemma, we must consider the possibility of

substituting a row with lesser variance for r because of the (pro ext) and (pro ov) typing rules.
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Lemma 7.13.1 (Row Substitution)

If �; r <:w R0 : : �r; �
0
`N A; �`N R : : �; �`N R <:B R0; and �r � �

then �; [R=r]�0 `N A0;

where

� if A � �; then A0 � �

� if A � U :�
; then A0 � [R=r]U :�
0

where 
 � 
0 (and 
 = 
0 if � = �r)

� if A � �:V; then A0 � [R=r]� : V 0

where V � V 0 (and V = V 0 if � = �r)

� if A � U1 <:(B0)
U2; then A0 � [R=r]U1 <:(B+B0)

[R=r]U2

� if A � e : �; then A0 � e : [R=r]�

� if A � e : �; then A0 � [R=r]e : [R=r]�

Proof

The proof is by induction on the derivation of �; r <:w R0 : : �; �0 `N A . The row projection

cases (row proj) and (row proj bound) require a case analysis on whether or not r is the projected

variable. The subtype equality rule (<: � right) and rules (probj() and (9 <: intro) require the

substitution property that if u 62 FV (R), then

[[R=r]U 0=u]([R=r]U) = [R=r][U 0=u]U

where U is either a row or type expression and u either a row or type variable. The remaining

cases either follow routinely from the inductive hypothesis or are similar to the case for (pro ext),

presented below in full detail.

(pro ext)

We start with three assumptions, labeled A1, A2, and A3:

A1 �; r <:w R0 : : �r; �
0
`N he1  + m = e2i : pro t hhR1 jm : �ii

A2 �`N R <: R0

A3 �`N R : : �

Note that we may assume without loss of generality that t 62 dom(�). Since we know that A1

was derived via (pro ext), we must have previously derived the rule hypotheses RH1, RH2,

RH3, and RH4:

RH1 �; r <:w R0 : : �r; �
0
`N e1 : pro t R1
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RH2 �; r <:w R0 : : �r; �
0; t : ft+g`N R1 : : (fmg; V )

RH3 �; r <:w R0 : : �r; �
0; p <:w P : : �p `N e2 : [pro t p t =t ](t! �)

where P = �t:hhR1 jm : �ii and �p = �min(�; r<:
w
R0 ::�r;�0)

RH4 p 62 FV (�)

Applying the inductive hypothesis to RH1, A2, and A3, we get:

C1 �; [R=r]�0 `N e1 : [R=r]pro t R1

Because t 62 FV (R), C1 is just:

C2 �; [R=r]�0 `N e1 : pro t [R=r]R1

This judgment is the �rst hypothesis of the (pro ext) typing rule we will use to build the

desired judgment. To get the second and third such hypothesis judgments, we need to apply

the inductive hypothesis �rst to RH2, A2, and A3 and then to RH3, A2, and A3:

C3 �; [R=r]�0; t : ft+g `N [R=r]R1 : : (fmg; V )

C4 �; [R=r](�0; p <:w P : : �p)`N e2 : [R=r]([pro t p t =t ](t! �))

Because t 62 FV (R) and TV ar(�; r <:w R0 : : �r; �
0) = TV ar(�; [R=r]�0), C4 is just

C5 �; [R=r]�0; p <:w P 0 : : �p `N e2 : [pro t p t =t ](t![R=r]�)

where P 0 = �t:hh[R=r]R1 jm : [R=r]�ii and �p = �min(�; [R=r]�0)

The �nal hypothesis that we need to establish is that p 62 FV ([R=r]�). From RH4, we know

that p 62 FV (�). By applying Lemma 7.2.5 �rst to A3 and then to RH3, we learn that

FV (R) � dom(�) and that p 62 dom(�). Hence p 62 FV (R). Thus we get

C6 p 62 FV ([R=r]�)

Applying (pro ext) to C2, C3, C5, and C6 produces

C7 �; [R=r]�0 `N he1  + m = e2i : pro t hh[R=r]R1 jm : [R=r]�ii

Because t 62 FV (R), C7 is just

C8 �; [R=r]�0 `N he1  + m = e2i : [R=r]pro t hhR1 jm : �ii

which is what we needed to show.

Lemma 7.13.2 is crucial to the proofs of Lemma 7.14.2 and Lemma 7.14.9.
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Lemma 7.13.2 (Bound Transformation) If the judgments

�; p <:w P : : T o ! (Mp; Invar(TV ar(�)));�
0
`
N
B

�; r <:w R : : T o ! (Mr; Invar(TV ar(�)))` �

and

� `
N
R <:w P

are all derivable, r 62 dom(�0) and Mp �Mr , then the judgment

�; r <:w R : : T o ! (Mr; Invar(TV ar(�))); [r=p]�
0
` [r=p]B

is also derivable, where B is any judgment not involving strictly � -types.

Proof The proof is by induction on the derivation of

�; p <:w P : : T o ! (Mp; Invar(TV ar(�)));�
0
`
N
B

All cases except those that require a row variable in their contexts follow immediately from the

inductive hypothesis. The (row var), (pro ext), and (pro ov) cases follow routinely from the in-

ductive hypothesis. The (row proj) and (row proj bound) cases follow routinely from the inductive

hypothesis and a case analysis on whether or not p is the projected variable.

The proof of this lemma is very sensitive to the form of the (pro ext) proof rule.

7.14 Expression Lemmas

Finally, we reach proofs speci�c to the expression portion of our language. This section includes

a standard expression substitution lemma (Lemma 7.14.10) as well as lemmas that show that the

method bodies inside of well-typed prototypes and objects are themselves well-typed and appropri-

ately polymorphic (Lemmas 7.14.2,7.14.3, and 7.14.4). These lemmas are then used to show that

each of the operational semantics reduction axioms exhibit the subject reduction property (Lem-

mas 7.14.5, 7.14.6, 7.14.7, 7.14.8, 7.14.9, 7.14.12, and 7.14.13]). Lemma 7.14.16 then reveals that

a derivation from a judgment e`N � can only depend on the form of � , not on the form of e .

Combining this result with the subject reduction results for the reduction axioms gives us Theorem

7.14.17 (Subject Reduction) for the full operational semantics.

The section starts with a lemma showing that any type we can give to an expression must be a

well-formed type.

Lemma 7.14.1 (Expression Types are Well-Formed) If �`N e : � is derivable, then �`N � : V

is as well, for some variance set V .
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Proof The proof is by induction on the derivation of �`N e : � . The (exp proj) case follows from

Lemma 7.2.3. The (subsumption) case uses Lemma 7.6.3. The case for (exp abs) relies on Lemmas

7.4.1 and 7.2.1. The (probj() case depends on Lemmas 7.6.3 and 7.5.1. The case for (pro ext) is

presented in detail below. All other cases follow immediately from the inductive hypothesis.

(pro ext)

The judgment we are assumed to have derived has the form

A1 �`N he1  + m = e2i : pro t hhR jm : �ii

To reach this conclusion, we must have previously concluded (among other things)

RH1 �; t : ft+g`N R : : (fmg; V )

RH2 �; r <:w �t:hhR jm : �ii : : �min(�) `N e2 : [pro t r t=t](t! �)

RH3 r 62 FV (�)

Applying the inductive hypothesis to RH2 allows us to derive

C1 �; r <:w �t:hhR jm : �ii : : �min(�) `N [pro t r t=t](t! �) : V1

for some variance set V1 . As this judgment must have been derived via (type arrow), we must

have previously derived

C2 �; r <:w �t:hhR jm : �ii : : �min(�) `N [pro t r t=t]� : V2

Note that without loss of generality, we may assume that t 62 dom(�) [ frg and that we may

derive the judgment

C3 �; r <:w �t:hhR jm : �ii : : �min(�) `N pro t r t : V3 .

Hence we may apply Lemma 7.8.5 to C2 to produce the judgment

C4 �; r <:w �t:hhR jm : �ii : : �min(�); t : ft
+g`N � : V4

The fact that variance sets do not contain row variables and RH3 allow us to apply Lemma

7.4.2 to conclude

C5 �; t : ft+g `N � : V4

To this judgment and RH1, we may �rst apply (row ext) and then (pro) to produce the

necessary judgment:

C6 �`N pro t hhR jm : �ii: V5

for some variance set V5 .
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The following two lemmas are used to show that the method bodies that appear within expres-

sions of pro type are type correct.

Lemma 7.14.2 (Method Bodies Type Correct) If the judgment �`N he1  � m=e2i : pro t R

is the conclusion of a `N derivation in which the last rule was not (type eq) , then there exists a

type � and a row variable r such that the judgments

�; t : ft+g `
N
R <:w hhm : �ii

and

�; r <:w �t:R : :�min(�) `
N
e2 : [pro t r t=t](t! �)

are derivable. Furthermore, if  � is  , then the judgment �`N e1 : pro t R is derivable as well.

Proof

The proof is by induction on the derivation of �`N he1  � m=e2i : pro t R . The induction is

necessary for the (subsumption) case, which I will present in detail. The (pro over) and (pro ext)

cases follow routinely from their hypotheses.

(subsumption)

In this case, our initial hypothesis has the form

A1 �`N he1  � m=e2i : pro t R

To reach this conclusion via (subsumption), we must have previously derived

RH1 �`N he1  � m=e2i : �

RH2 �`N � <: pro t R

Lemma 7.9.4 reveals that � must be of the form pro t R0 . Hence, RH1 has the form:

C1 �`N he1  � m=e2i : pro t R
0

Now, recall that in a `N -form derivation, the only occurrences of (type eq) must immediately

precede an occurrence of (9 <: intro). Since the derivation of RH1 preceded an instance of

subsumption, it could not have been derived via (type eq). Hence we may invoke the inductive

hypothesis to conclude that there exists a type � 0 such that the judgments

C2 �; t : ft+g `N R0 <:w hhm : � 0ii

C3 �; r <:w �t: R0: :�min(�) `N e2 : [pro t r t=t](t! � 0)

are derivable, and if  � is  , then the judgment

C4 �`N e1 : pro t R
0
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is derivable as well. Type � 0 will be the type we are interested in. Applying Lemma 7.10.2 to

RH2, we may reach the judgments

C5 �; t : ft+g `N R0 �=w R

By invoking (<: trans), we may conclude

C6 �; t : ft+g `N R <:w hhm : � 0ii

We may now invoke Lemma 7.2.1 on A1, Lemma 7.6.3 on C5, and the fact that �min(�) is the

least variance �t: R can have in � to derive via (row var) the judgment

C7 �; p <:w �t: R : : �min(�) `N �

where p 62 dom(�) [ frg . We may now apply Lemma 7.13.2 to C3, C7, and C5 to derive

C8 �; p <:w �t: R : : �min(�) `N e2 : [pro t p t=t](t! � 0)

(Note that Lemma 7.2.5 implies that p 62 FV (� 0).) Finally, we may derive from C5 and Lemma

7.6.3 via (<: convert) the judgment

C9 �`N pro t R0 <: pro t R

We may now conclude via (subsumption) applied to C4 and C9 that if  � is  , then we may

derive the judgment

C10 �`N e1 : pro t R

Conclusions C6, C8, C10 are just the judgments we needed to derive for type � 0 .

Corollary 7.14.3 If the judgment �`N he1  � m=e2i : pro t R is the conclusion of a `N deriva-

tion in which the last rule was not (type eq) , then there exists a type � such that the judgments

�; t : ft+g`N R <:w hhm : �ii and �`N e2 : [pro t R=t](t! �) are derivable.

Proof If we have derived �`N he1  � m=e2i : pro t R , then by Lemma 7.14.2, there exist type �

and row variable r such that we may derive the judgments

C1 �; t : ft+g`N R <:w hhm : �ii

C2 �; r <:w �t:R : : �min(�) `N e2 : [pro t r t=t](t! �)

It follows from Lemma 7.6.3, (<: row refl), and the fact that �min(�) is the least variance �t:R

can have in � that we may apply Lemma 7.13.1 to C2 to produce the judgment

C3 �`N e2 : [�t:R=r]([pro t r t=t](t! �))

Since Lemma 7.2.5 implies that r 62 FV (�), C3 may be rewritten as
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C4 �`N e2 : [pro t (�t:R) t=t](t! �)

Lemma 7.7.1 applied to C4 reveals that we may derive the judgment

C5 �`N e2 : [pro t R=t](t! �)

Conclusion C5 is the judgment we needed to show derivable.

The following lemma is used in conjunction with Lemma 7.14.2 to show that method bodies that

appear in expressions with obj type may be given the appropriate types.

Lemma 7.14.4 (Object Types Come From Pro Types) If �`N he1  � m=e2i : obj t R is the

conclusion of a `N derivation in which the last rule was not (type eq) , then there exists a type

pro t R0 such that the judgments �`N he1  � m=e2i : pro t R
0 and �`N pro t R0 <: obj t R are

both derivable. Furthermore, the last rule in the derivation of �`N he1  � m=e2i : pro t R
0 is not

(type eq) .

Proof The proof is by induction on the derivation of �`N he1  � m=e2i : obj t R . The form of

this judgment reveals that the last rule in its derivation must have been (subsumption). Hence we

must have previously derived the judgments

RH1 �`N probj t R00 <: obj t R

RH2 �`N he1  � m=e2i : probj t R
00 .

There are now two cases to consider: either probj is pro or it is obj . In the �rst case, RH1 and

RH2 are exactly the judgments we needed to derive. The second case requires more work. Because

RH2 is not immediately used in as the hypothesis to (9 <: intro), we cannot have derived RH2 via

(type eq). Hence we may apply the inductive hypothesis to obtain the judgments

C1 �`N pro t R000 <: probj t R00

C2 �`N he1  � m=e2i : pro t R
000 .

The inductive hypothesis also reveals that the last rule in the derivation of C2 was not (type eq).

A simple application of (<: type trans) to C1 and RH1 now produces the desired result.

Lemma 7.14.5 (Subject Reduction for Message Sending) If the judgment

�`N he1  � m=e2i(m : � is derivable, then so is the judgment �`N e2he1  � m=e2i : � .

Proof The proof is by induction on the derivation of �`N he1  � m=e2i(m : � . The induction

is necessary for the (subsumption) and (type eq) cases, which then follow routinely. The (pro()

case follows from the inductive hypothesis and Lemmas 7.14.3, 7.12.6, 7.14.1, and 7.5.1. The most

complex case is the one for (obj(). In this case, the proof amounts to going back to the pro

type that we must have derived for the expression he1  � m=e2i , using the fact that we had this

typing to prove e2 has the necessary type, and then using subsumption to get the needed type for

e2 he1  � m = e2i . In more detail:
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(obj()

In this case, our initial hypothesis has the form:

A1 �`N he1  � m = e2i(m : [obj t R=t]�

Since A1 was derived via (obj(), we must have previously derived the judgments

RH1 �`N he1  � m = e2i : obj t R

RH2 �; t : ft+g`N R <:w hhm : �ii

Lemma 7.14.4 reveals that the judgments

C1 �`N he1  � m = e2i : pro t R
0

C2 �`N pro t R0 <: obj t R

are derivable in such a way that the last rule in deriving C1 was not (type eq). Hence by

Lemma 7.14.3, the following judgments are also derivable:

C3 �; t : ft+g `N R0 <:w hhm : �2ii

C4 �`N e2 : [pro t R
0=t](t! �2)

We may now apply (exp app) to C4, C1 to produce the judgment

C5 �`N e2he1  � m = e2i : [pro t R
0=t]�2

By Lemma 7.10.2 and (<: row trans), we may conclude

C6 �; t : ft+g `N R0 <:B hhm : �ii

Applying Lemma 7.12.4 to C3 and C6 respectively produces the judgments

C7 �; t : ft+g `N Methm(� ; R
0) �=w hhm : �2ii

C8 �; t : ft+g `N Methm(� ; R
0) <:B hhm : �ii

By (<: row trans), we may derive

C9 �; t : ft+g `N hhm : �2ii <:B hhm : �ii

By Lemma 7.9.8, we may conclude

C10 �; t : ft+g`N �2 <: �

Now we need to know the variance of t in � to establish the needed subtyping judgment. To

that end, we invoke Lemma 7.6.3 on C2 and RH2, respectively, to reveal that the judgments

C11 �`N obj t R : V1
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C12 �`N hhm : �ii : : (M ; V2)

are derivable, for some variance sets V1 and V2 . The form of judgment C11 indicates it must

have been derived via (cov obj). Hence we must have previously derived

C13 �; t : ft+g`N R : : (M ; V 0
1)

C14 V ar(t; V 0
1 ) 2 f+; ?g

where V1 = V 0
1nt .

The form of judgment C12 reveals that it must have been derived via (row ext). Hence we

must have previously derived the judgment

C15 �; t : ft+g`N � : V2

Then Lemma 7.11.2 applied to RH2 implies that

C16 V 0
1 � V2

By the de�nition of variance inequality, then, we get that

C17 V ar(t; V2) 2 f+; ?g

By Lemma 7.5.4, applied to C10, C15, C14, C2, we may derive

C18 �`N [pro t R0=t]�2 <: [obj t R=t]�

Now we may derive via (subsumption) applied to C5 and C18

C19 �`N e2he1  � m = e2i : [obj t R=t]�

which is the judgment we needed to derive.

Lemma 7.14.6 (Subject Reduction for Cancel Over Over) If we may derive the judgment

�`N hhe1 m3 = e2i m3 = e3i : � , then we may derive judgment �`N he1 m3 = e3i : � as well.

Proof The proof is by induction on the derivation of �`N hhe1 m3 = e2i m3 = e3i : � be-

cause of the (type eq) and (subsumption) cases, which then follow immediately from the inductive

hypothesis. The (pro over) case follows routinely from Lemma 7.14.2.

Lemma 7.14.7 (Subject Reduction for Add Over) If �`N he1  + m2 = e2i : � is derivable,

then judgment �`N hhe1  + m2 = e2i m2 = e2i : � is derivable as well.

Proof The proof is by induction on the derivation of �`N he1  + m2 = e2i : � because of the

(type eq) and (subsumption) cases. The (pro ext) case follows routinely from Lemmas 7.14.1 and

7.9.6.
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Lemma 7.14.8 (Subject Reduction for Permute Over Over) If we may derive the judgment

�`N hhe1 m2 = e2i m3 = e3i : � , then we may derive �`N hhe1 m3 = e3i m2 = e2i : � as

well.

Proof The proof is by induction on the derivation of �`N hhe1 m2 = e2i m3 = e3i : � be-

cause of the (type eq) and (subsumption) cases, which then follow immediately from the inductive

hypothesis. The (pro ov) case follows routinely from Lemma 7.14.2.

Lemma 7.14.9 (Subject Reduction Switch Extend Over) If we may derive the judgement

�`N hhe1 m2 = e2i  + m3 = e3i : � , then �`N hhe1  + m3 = e3i m2 = e2i : � is derivable as

well.

Proof The proof is by induction on the derivation of �`N hhe1 m2 = e2i  + m3 = e3i : � . The

induction is necessary for the (subsumption) and (type eq) cases, which then follow routinely. The

only other possibility is (pro ext), which we present in detail below.

(pro ext)

In this case, we assume we have derived

A1 �`N hhe1 m2 = e2i  + m3 = e3i : pro t hhR jm3 : �3ii

via (pro ext). Hence we must have previously derived the judgments

RH1 �`N he1 m2 = e2i : pro t R

RH2 �; t : ft+g`N R : : (fm3g; V )

RH3 �; r <:w �t:hhR jm3 : �3ii : :�min(�) `N e3 : [pro t r t=t](t! �3)

RH4 r 62 FV (�3)

By applying Lemma 7.14.2 to RH1, we may derive the judgments

C1 �`N e1 : pro t R

C2 �; t : ft+g `N R <:w hhm2 : �2ii

C3 �; p <:w �t: R : :�min(�) `N e2 : [pro t p t=t](t! �2)

for some type �2 and some row variable p 62 dom(�). We may now apply (pro ext) to C1,

RH2, RH3, and RH4 to derive the judgment

C4 �`N he1  + m3 = e3i : pro t hhR jm3 : �3ii

To override this object's m2 method, we need to know some subtyping properties of R . To

obtain the �rst of these properties, we invoke Lemma 7.6.3 on A1 to show that hhR jm3 : �3ii

is well-formed in context �; t : ft+g and then apply (<: w) to C2 to derive the judgment
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C5 �; t : ft+g `N hhR jm3 : �3ii <:w hhm2 : �2ii

Similarly, to obtain the second needed subtyping property, we may use (<: row refl), (<: w),

and (<: �) to derive the judgment

C6 �`N �t:hhR jm3 : �3ii <:w �t: R

We may obtain the �nal preliminary judgment that we need by applying Lemma 7.2.1 to RH3

to derive the judgment

C7 �; r <:w �t:hhR jm3 : �3ii : :�min(�) `N �

We may now invoke Lemma 7.13.2 on C3, C7, and C6 to derive

C8 �; r <:w �t:hhR jm3 : �3ii : :�min(�) `N e2 : [pro t r t=t](t! �2)

(Note that Lemma 7.2.5 implies that p 62 FV (�2)). Applying (pro ov) to C4, C5, and C8

allows us to derive

C9 �`N hhe1  + m3 = e3i m2 = e2i : pro t hhR jm3 : �3ii

the judgment we needed to show derivable.

Lemma 7.14.10 (Expression Substitution) If both of the judgments �; x : �2; �
0
`N e1 : �1

and �`N e2 : �2 are derivable, then so is the judgment �; �0 `N [e2=x]e1 : �1 .

Proof The proof is by induction on the derivation of �; x : �2; �
0
`N e1 : �1 . The (exp proj) case

follows from a case analysis on whether or not x is the projected variable. It requires Lemmas 7.4.1

and 7.2.3 to appropriately adjust the contexts. The other cases follow routinely from the inductive

hypothesis and Lemma 7.4.1.

Lemma 7.14.11 (Function Body Substitution) If the judgment �`N �x: e2 : �1! �2 is the re-

sult of a `N -derivation in which the last rule was not (type eq) and the judgment �`N e1 : �1 is

derivable, then the judgment �`N [e1=x]e2 : �1 is derivable as well.

Proof The proof is by induction on the derivation of �`N �x: e2 : �1! �2 . The (subsumption)

case follows from Lemmas 7.9.3 and 7.10.1 and two applications of the (subsumption) typing rule.

The (exp abs) case follows routinely from Lemma 7.14.10.

Lemma 7.14.12 (Function Application Subject Reduction) If judgment �`N (�x: e1) e2 : �

is derivable, then the judgment �`N [e2=x]e1 : � is derivable as well.

Proof The proof is by induction on the derivation of �`N (�x: e1) e2 : � because of the (subsumption)

and (type eq) rules, which then follow immediately from the inductive hypothesis. The (exp app)

case follows immediately from Lemma 7.14.11.
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Lemma 7.14.13 (Class Subject Reduction) If the judgment

� `
N
Abstype r <:w R : : � with x : � is fjr <:w R : : � = R0; e1jg in e2 : �

is derivable, then so is the judgment �`N [R0=r; e1=x]e2 : � .

Proof The proof is by induction on the derivation of

� `
N
Abstype r <:w R : : � with x : � is fjr <:w R : : � = R0; e1jg in e2 : �

to handle the (subsumption) and (type eq) cases, which then follow immediately from the inductive

hypothesis. The only other possible case is (9 <: elim), which we describe in detail.

(9 <: elim)

In this case, we must have previously derived the judgments

RH1 �`N fjr <:w R : : � = R0; e1jg : 9(r <:w R : : �)�

RH2 �; r <:w R : : �; x : � `N e2 : �

RH3 �`N � : V

Because (subsumption) and (type eq) rules do not apply to proper � -types, the last rule in

the derivation of RH1 must have been (9 <: intro). Hence we must have previously derived

the judgments

RH4 �`N R0 : : �

RH5 �`N R0 <:w R

RH6 �`N e1 : [R
0=r]�

By applying Lemma 7.13.1 to RH2, RH4, and RH5, we may derive the judgment

C1 �; x : [R0=r]� `N [R0=r]e2 : [R
0=r]�

We may now apply Lemma 7.14.10 to C1 and RH6 to derive the judgment

C2 �`N [e1=x][R
0=r]e2 : [R

0=r]�

Lemma 7.2.5 applied to RH3 implies that r 62 FV (�); hence [R0=r]�2 is just � . Since x 62

FV (R0) and r 62 FV (e1), C2 is just

C3 �`N [R0=r; e1=x]e2 : �

which is just the judgment we needed to show derivable.

Lemma 7.14.14 (Axiom Reduction Subject Reduction) If the judgment �`N e : � is deriv-

able, and e
axm
�! e0; then the judgment �`N e0 : � is also derivable.
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Proof The proof is a case analysis on which of the reduction axioms e
axm
�! e0 is an instance of.

Depending on the case, the desired result follows from Lemma 7.14.5, 7.14.6, 7.14.7, 7.14.8, 7.14.9,

7.14.12, or 7.14.13.

Lemma 7.14.15 (Subexpressions are Typed) If we may derive the judgment �`N C[e] : � ,

then we must have previously derived a judgment of the form �0 `N e : �0 ,

Proof The proof is by induction on the structure of C . All cases follow routinely from the inductive

hypothesis.

Lemma 7.14.16 (Typing Depends only on Expression Types) If the judgment �`N C[e] : �

is derived from the judgment �0 `N e : �0 and the judgment �0 `N e0 : �0 is derivable, then the judg-

ment �`N C[e0] : � is derivable as well.

Proof The proof is by induction on the derivation of �`N C[e] : � . All cases follow immediately

from either the assumptions or the inductive hypothesis because the typing rules do not assume

anything about the form of the expressions they manipulate; the rules only make assumptions about

the types of their hypothesis expressions.

Theorem 7.14.17 (Subject Reduction) If the judgment �`N e : � is derivable, and e
ceval
�! e0 ,

then the judgment �`N e0 : � is derivable as well.

Proof From the de�nition of reduction, this theorem can be restated as follows: If the judgment

�`N C[e1] : � is derivable, and e1
axm
�! e2 , then the judgment �`N C[e2] : � is derivable as well. To

prove this restated theorem, we �rst invoke Lemma 7.14.15 to show that the judgment �`N C[e1] : �

must have been derived from a judgment of the form �0 `N e1 : �
0 . Lemma 7.14.14 then allows us to

derive the judgment �0 `N e2 : �
0 . Finally, we may use Lemma 7.14.16 to show that the judgment

�`N C[e2] : � is derivable.

7.15 Type Soundness

Now that we have subject reduction, we need to formalize the notion of message-not-understood

errors to show that our type system prevents them. Intuitively, a message-not-understood error

occurs when a message m is sent to an expression that does not de�ne an object with an m-method.

To formalize this notion, we de�ne mutually recursive functions eval and getm via proof rules in the

style of structured operational semantics. The ideas behind this proof system are discussed below.

The full system is given in Appendix F.

The eval function is the standard lazy evaluator from lambda calculus, extended to our object

calculus in the following way. Object expressions other than message sends evaluate to themselves.

On expressions of the form e(m , eval uses the function getm to extract the m method from
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e . This behavior is speci�ed in the (ev () proof rule, shown below. In the rule, meta-variable z

represents either an expression or the special \value" error and ev stands for either getm or eval .

(ev ()

getm(e) = he1 m = e2i

ev(e2he1 n = e2i) = z

ev(e(m) = z

We may read this rule as follows. Once getm has extracted the m method from e by returning an

expression of the form he1 m = e2i , we \send" the message m to this expression by applying e2

to the object. This resulting expression is then recursively evaluated to z , which is then returned

as the value of the original message send.

How does getm extract an m-method from its expression? There are two di�erent forms of

expressions from which getm may immediately extract an m method: he1 m = e2i and he1  +

m = e2i . The corresponding axioms are:

(getm  ) getm(he1 m = e2i) = he1 m = e2i

(getm  +) getm(he1  + m = e2i) = hhe1  + m = e2i m = e2i

The second of these rules converts its object he1  + m = e2ito the equivalent object hhe1  +

m = e2i m = e2i so that getm returns objects in a standard form.

To extract an m method from more complicated expressions, we recursively use the eval and

getm functions. The (ev () rule given above, when ev has the value getm , is representative of

these cases.

How could getm fail to �nd an m method? There are four di�erent ways in which getm may

immediately \realize" that its object does not have the required method m . Its object could be a

variable, a lambda abstraction, an abstract data type, or the empty object hi . These possibilities

are described by the following four axioms:

(getm var) getm(x) = error

(getm �) getm(�x: e) = error

(getm 9) getm(fjr <:w R : : � = R0; e1jg) = error

(getm hi) getm(hi) = error

When called on more complicated expressions, getm fails to �nd its desired method if one of its

recursive calls fails. The (ev ( err) rule
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(ev ( err)
getn(e) = error

ev(e(n) = error

and the (ev () give above (when z is error ) are representative of these cases. These rules re
ect

the fact that there are two ways we could fail to �nd an m-method in an expression of the form

e(n . The �rst, described by (ev ( err), occurs when we cannot �nd an n-method in e . The

second, described by the (ev () rule, occurs when we cannot �nd an m method in the expression

obtained by invoking e 's n-method.

We need to de�ne these mutually recursive functions instead of using a single eval function

because the notion of a value changes within the context of a message send. In particular, when we

are not looking for a method, any object expression of the form he � m = e0i is a value. If we are

looking for an m method, then expressions of the formhe m = e0i are still values. However, if we

are looking for an n method, he � m = e0i is not a value and must be evaluated further.

Our speci�c eval and getm functions are designed so that we may demonstrate that our type

system prevents message-not-understood errors in programs. The same technique would allow us

to show that terms typed as function expressions in programs either diverge or reduce to lambda

abstractions. To do this, we would need to add a third evaluation function, get� , that \looks" for

lambda abstractions and returns a tagged error value function-error when called on an expression

that cannot reduce to a lambda abstraction. To simplify the presentation, we consider only message-

not-understood errors here.

Using the proof rules, we may show formally that typeable programs of our object calculus do

not produce message-not-understood errors.

Lemma 7.15.1 If ev(e1) = e2 , then e1
ceval
!! e2 .

Proof The proof is by induction on the derivation of ev(e1) = e2 . The base case for the (getm  +)

axiom follows from the (add ov) bookkeeping rule. The other base cases are either vacuous, since

error is not an expression, or immediate.

The inductive case for the (ev () proof rule is given below since it is representative of the non-

vacuous inductive cases. If we have derived ev(e(n) = e0 via (ev (), then we must previously

have derived that

ev(e) = he1 n = e2i

and

ev(e2he1 n = e2i) = e0:

Note that ev(e2he1 n = e2i) cannot equal error , since we know that ev(e(n) = e0 and e0 is an
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expression, not error . Thus

e(n
ceval
!! he1 n = e2i(n
ceval
! e2he1 n = e2i
ceval
! e0

The �rst step above follows from the inductive hypothesis and fact that the reduction rules are a

congruence relation. The second step follows from the (()-reduction rule, and the �nal one via the

inductive hypothesis.

It remains to show that if we may derive ; ` e : � , then eval(e) 6= error . Because there are two

ways in which eval(e) could not equal error , either by returning an expression or being unde�ned

(which happens when e diverges under lazy evaluation), it is simpler to prove the contrapositive:

Lemma 7.15.2 If ev(e) = error , then

� if ev is getm , then ; 6` e : probj t R for any row R and type � such that the judgment

t : ft+g`N R <:w hhm : �ii is derivable.

� if ev is eval , then ; 6 ` e : � for any type � ,

where � 6 ` A indicates that the judgment �`A is not derivable.

Proof The proof is by induction on the derivation of ev(e) = error . The base cases are either

vacuous or follow by inspection of the typing rules. We give the inductive cases for the (ev ( err)

and (ev () rules, since they are representative of the non-vacuous inductive cases.

(ev ( err)

If we derive ev(e) = error via (ev ( err), then e must be of the form e0(n , and we must

have previously derived that getn(e
0) = error . Applying the inductive hypothesis, we get that

either

; 6 ` e0 : probj t R

for any row R such that the judgment t : ft+g `N R <:w hhm : �ii is derivable, or

; 6 ` e : �

for any type � , depending on whether ev is actually getm or eval . Then an inspection of the

typing rule for message send (probj() reveals that

; 6 ` e0(n : � 00

for any type � 00 . A fortiori,

; 6 ` e0(n : probj t R

for any row R and type � such that the judgment t : ft+g `N R <:w hhm : �ii is derivable,

which is what we needed to show.
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(ev ()

If we derive ev(e) = error via (ev (), then e must be of the form e0(n . Also, we must have

previously derived that getn(e
0) = he1 n = e2i and ev(e2he1 n = e2i) = error . Applying

the inductive hypothesis to the second of these equations, we get that either

; 6 ` e2he1 n = e2i : probj t R

for any row R such that the judgment t : ft+g `N R <:w hhm : �ii is derivable, or

; 6 ` e2he1 n = e2i : �

for any type � , depending on whether ev is actually getm or eval . By Lemma 7.15.1,

e0
ceval
!! he1 n = e2i , so

e0(n
ceval
!! he1 n = e2i(n
ceval
! e2he1 n = e2i:

Hence we get by Subject Reduction (Theorem 7.14.17) that either

; 6 ` e0(n : probj t R

for any row R such that the judgment t : ft+g `N R <:w hhm : �ii is derivable, or

; 6 ` e0(n : �

for any type � , depending on whether ev is actually getm or eval , which is what we needed

to show.

The contrapositive of the above lemma then gives us type soundness:

Theorem 7.15.3 (Type Soundness) If the judgment ; ` e : � is derivable, then eval(e) 6= error .



Appendix A

Shape Program: Typecase Version

The following program, written in C, illustrates how a shape-manipulating program might be written

in a conventional programming language. In Section 2.3, we compare this organization to that of

the object-oriented program in Appendix B.

#include <stdio.h>

#include <stdlib.h>

/*

* We use the following enumeration type to ``tag'' shapes.

* The first field of each shape struct stores what particular

* kind of shape it is.

*/

enum ShapeTag {Circle, Rectangle};

/*

* The following struct Pt and functions newPt and copyPt are

* used in the implementations of the Circle and Rectangle

* shapes below.

*/

struct Pt {

float x;

float y;

};

struct Pt* newPt(float xval, float yval) {

165
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struct Pt* p = (struct Pt *)malloc(sizeof(struct Pt));

p->x = xval;

p->y = yval;

return p;

};

struct Pt* copyPt(struct Pt* p) {

struct Pt* q = (struct Pt *)malloc(sizeof(struct Pt));

q->x = p->x;

q->y = p->y;

return q;

};

/*

* The Shape struct provides a flag that is used to get some static

* type checking in the operation functions (center, move, rotate,

* and print) below.

*/

struct Shape {

enum ShapeTag tag;

};

/*

* The following Circle struct is our representation of a circle.

* The first field is a type tag to indicate that this struct

* represents a circle. The second field stores the circle's

* center point and the third field holds its radius.

*/

struct Circle {

enum ShapeTag tag;

struct Pt* center;

float radius;

};
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/*

* The function newCircle creates a Circle struct from a given

* center point and radius. It sets the type tag to ``Circle.''

*/

struct Circle* newCircle(struct Pt* cp, float r) {

struct Circle* c = (struct Circle*)malloc(sizeof(struct Circle));

c->center=copyPt(cp);

c->radius=r;

c->tag=Circle;

return c;

};

/*

* The function deleteCircle frees resources used by a Circle.

*/

void deleteCircle(struct Circle* c) {

free (c->center);

free (c);

};

/*

* The following Rectangle struct is our representation of a rectangle.

* The first field is a type tag to indicate that this struct

* represents a rectangle. The next two fields store the rectangle's

* top-left and bottom-right corner points.

*/

struct Rectangle {

enum ShapeTag tag;

struct Pt* topleft;

struct Pt* botright;

};

/*

* The function newRectangle creates a rectangle in the location
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* specified by parameters tl and br. It sets the type tag to

* ``Rectangle.''

*/

struct Rectangle* newRectangle(struct Pt* tl, struct Pt* br) {

struct Rectangle* r = (struct Rectangle*)malloc(sizeof(struct Rectangle));

r->topleft=copyPt(tl);

r->botright=copyPt(br);

r->tag=Rectangle;

return r;

};

/*

* The function deleteRectangle frees resources used by a Rectangle.

*/

void deleteRectangle(struct Rectangle* r) {

free (r->topleft);

free (r->botright);

free (r);

};

/*

* The center function returns the center point of whatever shape

* it is passed. Because the computation depends on whether the

* shape is a Circle or a Rectangle, the function consists of a

* switch statement that branches according to the type tag stored

* in the shape s. If the tag is Circle, for instance, we know

* the parameter is really a circle struct and hence that it has

* a ``center'' component which we can return. Note that we need

* to insert a typecast to instruct the compiler that we have a

* circle and not just a shape. Note also that this program

* organization assumes that the type tags in the struct are

* set correctly. If some programmer incorrectly modifies a type tag

* field, the program will no longer work and the problem cannot

* be detected at compile time because of the typecasts.

*/
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struct Pt* center (struct Shape* s) {

switch (s->tag) {

case Circle: {

struct Circle* c = (struct Circle*) s;

return copyPt(c->center);

};

case Rectangle: {

struct Rectangle* r = (struct Rectangle*) s;

return newPt((r->botright->x - r->topleft->x)/2,

(r->botright->x - r->topleft->x)/2);

};

};

};

/*

* The move function receives a Shape parameter s and moves it

* dx units in the x-direction and dy units in the y-direction.

* Because the code to move a Shape depends on the kind of shape,

* this function inspects the Shape's type tag field within a switch

* statement. Within the individual cases, typecasts are used to

* convert the generic shape parameter to a Circle or Rectangle as

* appropriate.

*/

void move (struct Shape* s,float dx, float dy) {

switch (s->tag) {

case Circle: {

struct Circle* c = (struct Circle*) s;

c->center->x += dx;

c->center->y += dy;

};

break;

case Rectangle: {

struct Rectangle* r = (struct Rectangle*) s;

r->topleft->x += dx;

r->topleft->y += dy;

r->botright->x += dx;
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r->botright->y += dy;

};

};

};

/*

* The rotate function rotates the shape s ninety degrees. Like

* the center and move functions, this code uses a switch statement

* that checks the type of shape being manipulated.

*/

void rotate (struct Shape* s) {

switch (s->tag) {

case Circle:

/* Rotating a circle is not a very interesting operation! */

break;

case Rectangle: {

struct Rectangle* r = (struct Rectangle*)s;

float d = ((r->botright->x - r->topleft->x) -

(r->topleft->y - r->botright->y))/2.0;

r->topleft->x += d;

r->topleft->y += d;

r->botright->x -= d;

r->botright->y -= d;

};

break;

};

};

/*

* The print function outputs a description of its Shape parameter.

* This function again selects its processing based on the type tag

* stored in the Shape struct.

*/

void print (struct Shape* s) {

switch (s->tag) {
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case Circle: {

struct Circle* c = (struct Circle*) s;

printf("circle at %.1f %.1f radius %.1f \n",

c->center->x, c->center->y, c->radius);

};

break;

case Rectangle: {

struct Rectangle* r = (struct Rectangle*) s;

printf("rectangle at %.1f %.1f %.1f %.1f \n",

r->topleft->x, r->topleft->y,

r->botright->x, r->botright->y);

};

break;

};

};

/*

* The body of this program just tests some of the above functions.

*/

void main() {

struct Pt* origin = newPt(0,0);

struct Pt* p1 = newPt(0,2);

struct Pt* p2 = newPt(4,6);

struct Shape* s1 = (struct Shape*)newCircle(origin,2);

struct Shape* s2 = (struct Shape*)newRectangle(p1,p2);

print(s1);

print(s2);

rotate(s1);

rotate(s2);

move(s1,1,1);

move(s2,1,1);
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print(s1);

print(s2);

deleteCircle((struct Circle*)s1);

deleteRectangle((struct Rectangle*)s2);

free(origin);

free(p1);

free(p2);

};
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Shape Program: Object-Oriented

Version

#include <stdio.h>

// (The following is a running C++ program, but it does not represent

// an ideal C++ implementation. The code has been kept simple so

// that it can be understood by readers who are not well-versed in C++).

// The following class Pt is used by the shape objects below. Since

// Pt is a class in this version of the program, the ``newPt'' and

// ``copyPt'' functions may be implemented as class member functions.

// For readability, we have in-lined the function definitions and

// named both of these functions ``Pt''; these overloaded functions

// are differentiated by the types of their arguments.

class Pt {

public:

Pt(float xval, float yval) {

x = xval;

y = yval;

};

Pt(Pt* p) {

x = p->x;

y = p->y;

};
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float x;

float y;

};

// Class Shape is an example of a ``pure abstract base class,''

// which means that it exists solely to provide an interface to

// classes derived from it. Since it provides no implementations

// for the methods center, move, rotate, and print, no ``shape''

// objects can be created. Instead, we use this class as a base

// class. Our circle and rectangle shapes will be derived from

// it. This class is useful because it allows us to write

// functions that expect ``shape'' objects as arguments. Since

// our circles and rectangles are subtypes of shape, we may pass

// them to such functions in a type-safe way.

class Shape {

public:

virtual Pt* center()=0;

virtual void move(float dx, float dy)=0;

virtual void rotate()=0;

virtual void print()=0;

};

// Class Circle consolidates the center, move, rotate, and print

// functions for circles. It also contains the object constructor

// ``Circle,'' corresponding to the function ``newCircle'' and the

// object destructor ``~Circle, corresponding to the function

// ``deleteCircle'' from the typecase version. Note that the

// compiler guarantees that the Circle's methods are only called on

// objects of type Circle. The programmer does not need to keep an

// explicit tag field in the object.

class Circle : public Shape {

public:

Circle(Pt* cn, float r) {

center_ = new Pt(cn);
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radius_ = r;

};

virtual ~Circle() {

delete center_;

};

virtual Pt* center() {

return new Pt(center_);

};

void move(float dx, float dy) {

center_->x += dx;

center_->y += dy;

};

void rotate() {

/* Rotating a circle is not a very interesting operation! */

};

void print() {

printf("circle at %.1f %.1f radius %.1f \n",

center_->x, center_->y, radius_);

};

private:

Pt* center_;

float radius_;

};

// Class Rectangle consolidates the center, move, rotate, and print

// functions for rectangles. It also contains the object constructor

// ``Rectangle,'' corresponding to the function ``newRectangle'' and the

// object destructor ``~Rectangle, corresponding to the function

// ``deleteRectangle'' from the typecase version. Note that the

// compiler guarantees that the Rectangle's methods are only called on
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// objects of type Rectangle. The programmer does not need to keep an

// explicit tag field in the object.

class Rectangle : public Shape {

public:

Rectangle(Pt* tl, Pt* br) {

topleft_ = new Pt(tl);

botright_ = new Pt(br);

};

virtual ~Rectangle() {

delete topleft_;

delete botright_;

};

Pt* center() {

return new Pt((botright_->x - topleft_->x)/2,

(botright_->x - topleft_->x)/2);

};

void move(float dx,float dy) {

topleft_->x += dx;

topleft_->y += dy;

botright_->x += dx;

botright_->y += dy;

};

void rotate() {

float d = ((botright_->x - topleft_->x) -

(topleft_->y - botright_->y))/2.0;

topleft_->x += d;

topleft_->y += d;

botright_->x -= d;

botright_->y -= d;

};

void print () {

printf("rectangle coordinates %.1f %.1f %.1f %.1f \n",
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topleft_->x, topleft_->y,

botright_->x, botright_->y);

};

private:

Pt* topleft_;

Pt* botright_;

};

/*

* The body of this program just tests some of the above functions.

*/

void main() {

Pt* origin = new Pt(0,0);

Pt* p1 = new Pt(0,2);

Pt* p2 = new Pt(4,6);

Shape* s1 = new Circle(origin, 2 );

Shape* s2 = new Rectangle(p1, p2);

s1->print();

s2->print();

s1->rotate();

s2->rotate();

s1->move(1,1);

s2->move(1,1);

s1->print();

s2->print();

delete s1;

delete s2;

delete origin;
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delete p1;

delete p2;

}



Appendix C

Full Formal System

In this appendix, we summarize the syntax of the formal system presented in Chapter 6.

Expressions

e : : = x j c j �x: e j e1e2 j

hi j e(m j he1 m = e2i j he1  + m = e2i j

fjr <:w R : : � = R0; ejg j

Abstype r <:w R : : � with x : � is e1 in e2

Types

� : : = � j 9(r <:w R : : �)�

� : : = t j �1! �2 jpro t R jobj t R

Rows

R : : = r j hhii j hhR j m: �ii j �t: R j R�

Variance Annotations

b : : = + j � j o

a : : = b j ?

Variance Sets

V : : = f~tbg

Method Absence Annotations

M : : = f~mg

Kinds

k : : = V j�

S : : = T a Symbol T is a terminal.

� : : = S ! � j �

� : : = (M ; V )
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Contexts

� : : = � j�; x: � j�; t:V j�; r <:w R : : �

C.1 Subtyping Annotation

B : : = w jw; d jB1 +B2 B indicates row subtyping forms.

Here, w < w; d and + denotes the least upper bound of B1 and B2 with respect to this ordering.

C.2 Judgment Forms

�` � well-formed context

�`�:V well-formed type with variance V

�`R : : � row has kind

�` �1 <: �2 type �1 subtype of �2

�`R1 <:B R2 row R1 is a B-subtype of R2

�` e:� term e has type �

C.3 Judgment Shorthands

We will use the meta-judgment �`A to range over all of the above judgments. In addition, we use

the meta-variable U to range over types � and rows R . The meta-judgment �`U :�
 represents

judgments of the form �` � :V and �`R : : � . Similarly, meta-judgment �`U1 <:(B)
U2 represents

the judgments �` �1 <: �2 and �`R1 <:B R2 . Finally, meta-judgment �`U1
�=(B) U2 is short for

the two judgments �`U1 <:(B)
U2 and �`U2 <:(B)

U1 . We will also use the syntax probj t R as

shorthand for either pro t R or obj t R .

C.4 Context Access Functions

� We use the function dom(�) to denote the set of row, type, and expression variables that are

listed in context �.

� We use the function TV ar(�) to denote the set of type variables t such that the type assump-

tions t : ft+g 2 �.
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C.5 Ordering on Variance Annotations

+ � o; � � o; ? � �; ? � +

Pictorially,

| +

?

o

We will use the notation b to indicate the complement of annotation b with respect to the above

ordering. In other words, o = o , + = � , � = +, and ? =?.

C.6 Operations on Variance Sets

V ar(t; V ) =

(
b if tb 2 V

? if tb
0

62 V for all b0.

D(V1; : : : ; Vn) = ft j tb 2 Vi for some b,i 2 1; : : : ; ng

GV ar(t; V1; : : : ; Vn) = lubfV ar(t; V1); : : : ; V ar(t; Vn)g

Merge(V1; : : : ; Vn) = ftGV ar(t;V1;:::;Vn) j t 2 D(V1; : : : ; Vn)g

V nt = ftb1 j t 6= t1 and tb1 2 V g

V = ftb j tb 2 V g

Invar(V ) = fto j t 2 D(V )g

C.7 Generalized Variance

V ar(t; (M ; V )) = V ar(t; V )

V ar(t; T a ! �) = V ar(t; �)

V ar(V ) = V

V ar(M ; V ) = V

V ar(T a ! �) = T a!V ar(�)
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C.8 Variance Shorthand

We will use the notation �min(�) as a shorthand for the kind T o ! (;; Invar(TV ar(�))).

C.9 Variance Substitutions

[V2=t]V1 =

8>>>><
>>>>:

Merge(V 0
1 ; V2) if V1 = V 0

1 ; t
+

Merge(V 0
1 ; V2) if V1 = V 0

1 ; t
�

Merge(V 0
1 ; Invar(V2)) if V1 = V 0

1 ; t
o

V1 if t 62 D(V1)

C.10 Ordering on Kinds

V1 � V2 i� 8t; V ar(t; V2) � V ar(t; V1)

(M1; V1) � (M2; V2) i� V1 � V2

T b0 ! �1 � T b ! �2 i� b � a and �1 � �2
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Typing rules

This appendix summarizes the typing rules given in Section 6.2.

D.1 Context Rules

(start)
�` �

(type var)

�` �

t 62 dom(�)

�; t : ft+g `�

(row var)

�`R1 : : S1 ! (M1; V1)

S0 ! (M0; V0) � S1 ! (M1; V1)

D(V0) � dom(�) M0 �M1

r 62 dom(�)

�; (r <:w R1 : : S0 ! (M0; V0))` �

(exp var)

�` � : V

x 62 dom(�)

�; x: � `�

183
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(weakening)

�1; �2 `A

�1; a; �2 ` �

�1; a; �2 `A

where a : : = x: � j t:V j r <:w R : : �

D.2 Rules for Type Expressions

(type proj)

�` �

t : ft+g 2 �

�` t : ft
+g

(type arrow)

�` �1 : V1

�` �2 : V2

�` �1! �2 : Merge(V1; V2)

(pro)
�; t: ft+g`R : : (M ; V )

�`pro t R : Invar(V n t)

(cov object)

�; t: ft+g`R : : (M ; V )

V ar(t; V ) 2 f+; ?g

�`obj t R : V n t

(exist)
�; r <:w: :S ! (M ; V2)` � : V1

�`9(r <:w: :S ! (M ; V2))� : Merge(V1; V2)

D.3 Rules for Row Expressions

(row proj)

�` �

r <:w R : : � 2 dom(�)

�` r : : �
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(empty row)
�` �

�` hhii : : (M ; ;)

(row label)

�`R : : Si ! (M ; V )

N �M i 2 f0; 1g

�`R : : Si ! (N ; V )

(row fn abs)
�; t: ft+g`R : : (M ; V )

�`�t:R : : T V ar(t;V ) ! (M ; V nt)

(row fn app cov)

�`R : : T+ ! (M ; V1)

�` � : V2

�`R� : : (M ; Merge(V1; V2))

(row fn app contra)

�`R : : T� ! (M ; V1)

�` � : V2

�`R� : : (M ; Merge(V1; V2))

(row fn app inv)

�`R : : T o ! (M ; V1)

�` � : V2

�`R� : : (M ; Merge(V1; Invar(V2)))

(row fn app vac)

�`R : : T ? ! (M ; V1)

�` � : V2

�`R� : : (M ; V1)

(row ext)

�`R : : (f~m;mg; V1)

�` � : V2

�` hhR jm: �ii : : (f~mg; Merge(V1; V2))
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D.4 Subtyping Rules for Types

(<: type refl)
�` � : V

�` � <: �

(<:!)

�` � 01 <: �1

�` �2 <: �
0
2

�` �1! �2 <: �
0
1
! � 02

(<: obj)

�; t : ft+g`R1 <:B R2

�`probj t R1 : V1

�; t : ft+g`R2 : : (M ; V2) V ar(t; V2) 2 f?;+g

�`probj t R1 <: obj t R2

(<: convert)

�; t : ft+g`R1
�=w R2

�; t : ft+g`Ri : : (Mi; Vi) i 2 f1; 2g

�`pro t R1 <: pro t R2

(<: type trans)

�` �1 <: �2

�` �2 <: �3

�` �1 <: �3

D.5 Subtyping Rules for Rows

(<: row refl)
�`R : : �

�`R <:B R

(row proj bound)

�` �

r <:w R : : � 2 �

�` r <:w R
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(<: �)

�; t : ft+g`R1 <:B R2

�; t : ft+g `R2 : : �

�`�t: R1 <:B �t:R2

(<: app cong)

�`R1 <:B R2

�`R2 : : T
a ! �

�` �1 �= �2

�`R1�1 <:B R2�2

(<: app cov)

�`R1 <:B R2

�`R2 : : T
+ ! �

�` �1 <: �2

�`R1�1 <:B+d R2�2

(<: app contra)

�`R1 <:B R2

�`R2 : : T
� ! �

�` �2 <: �1

�`R1�1 <:B+d R2�2

(<: app vac)

�`R1 <:B R2

�`R2 : : T
? ! �

�` �1 : V1 �` �2 : V2

�`R1�1 <:B R2�2

(<: cong)

�`R1 <:B R2

�` �1 �= �2

�` hhRi jm: �iii : : �i i 2 f1; 2g

�` hhR1 jm: �1ii <:B hhR2 jm: �2ii

(<: d)

�`R1 <:B R2 �` �1 <: �2

�` hhRi jm: �iii : : �i i 2 f1; 2g

�` hhR1 jm: �1ii <:B+d hhR2 jm: �2ii



188 APPENDIX D. TYPING RULES

(<: w)

�`R1 <:B R2

�` hhR1 jm: �ii : : �

�` hhR1 jm: �ii <:B+w R2

(<: row trans)

�`R1 <:B R2

�`R2 <:B0 R3

�`R1 <:B+B0 R3

D.6 Type and Row Equality Rules

(row �)
�`R : : � R!� R

0

�`R
0 : : �

(type �)
�` � : V � !� �

0

�` �
0 : V

(type eq)
�` e : � � $� �

0 �`�
0 : V

�` e : �
0

(<: � right)
�`R1 <:B (�t: R2)�2

�`R1 <:B [�2=t]R2

(<: � left)
�` (�t: R1)�1 <:B R2

�` [�=t]R1 <:B R2

D.7 Rules for Assigning Types to Terms

(exp proj)

�` �

x : � 2 �

�`x : �
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(subsumption)
�` e : �1 �` �1 <: �2

�` e : �2

(exp abs)
� ; x: �1 ` e : �2

�`�x: e : �1! �2

(exp app)
�` e1 : �1! �2 �` e2 : �1

�` e1 e2 : �2

(empty pro)
�` �

�` hi : pro t hhii

(pro ext)

�` e1 : pro t R

�; t: ft+g`R : : (fmg; V )

�; Ir ` e2 : [pro t rt=t](t! �) r 62 V (�)

�` he1  + m= e2i : pro t hhR jm: �ii

where Ir = r <:w �t:hhR jm : �ii : : �min(�) .

(pro over)

�` e1 : pro t R

�; t: ft+g`R <:w hhm: �ii

�; Ir ` e2 : [pro t rt=t](t! �)

�` he1 m=e2i : pro t R

where Ir = r <:w �t:R : : �min(�) .

(probj()

�` e : probj t R

�; t: ft+g`R <:w hhm: �ii

�` e(m : [probj t R=t]�



190 APPENDIX D. TYPING RULES

(9 <: intro)

�`R1 : : �

�`R1 <:w R

�` e : [R1=r]�

�`fjr <:w R : : � = R1; ejg : 9(r <:w R : : �)�

(9 <: elim)

�` e1 : 9(r <:w R : : �)�

�; r <:w R : : �; x: � ` e2 : �2

�` �2 : V

�`Abstype r <:w R : : � with x : � is e1 in e2 : �2
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Operational Semantics

Axioms:

(switch ext ov) hhe1 m2=e2i  + m3=e3i
book
�! hhe1  + m3=e3i m2=e2i

(perm ov ov) hhe1 m2=e2i m3=e3i
book
�! hhe1 m3=e3i m2=e2i

(add ov) he1  + m2=e2i
book
�! hhe1  + m2=e2i m2=e2i

(cancel ov ov) hhe1 m3=e2i m3=e3i
book
�! he1 m3=e3i

(�) (�x: e1)e2
eval
�! [e2=x]e1

(() he1  � m=e2i(m
eval

�! e2he1  � m=e2i

where  � may be either  + or  .

(Abstype) Abstype r <:w R : : � with x: �
eval
�! [R0=r; e1=x]e2

is fjr <:w R : : � = R0; e1jg in e2

Evaluation Contexts:

C[ ] : : = [ ] j �x: C[ ] j C[ ] e2 j e1 C[ ] j C[ ] (m j

hC[ ]  � m=e2i j he1  � m=C[ ] i j

fjr <:w R: :� = R0; C[ ] jg

Abstype r <:w R : : � with x : � is C[ ] in e2

Abstype r <:w R : : � with x : � is e1 in C[ ]

Congruence Closure:

In the following rule, we write
axm
�! to denote either

eval
�! or

book
�! .

e
axm
�! e0

C[e]
ceval
�! C[e0]
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De�nition of Evaluation Strategy

Axioms

(getm var) getm(x) = error

(getm hi) getm(hi) = error

(getm �) getm(�x: e) = error

(getm 9) getm(fjr <:w R : : � = R0; e1jg) = error

(getm  ) getm(he1 m = e2i) = he1 m = e2i

(getm  +) getm(he1  + m = e2i) = hhe1  + m = e2i m = e2i

(eval var) eval(x) = x

(eval hi) eval(hi) = hi

(eval �) eval(�x: e) = �x: e

(eval  ) eval(he1 m = e2i) = he1 m = e2i

(eval  +) eval(he1  + m = e2i) = he1  + m = e2i
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(eval 9) eval(fjr <:w R : : � = R0; e1jg) = fjr <:w R : : � = R0; e1jg

Inference Rules In the following, meta-variable z represents either an expression or error and ev

represents either eval or getm .

(ev app err)
eval(e1) = error

ev(e1e2) = error

(ev app)

eval(e1) = �x: e01

ev([e2=x]e
0
1) = z

ev(e1e2) = z

(ev ( err)
getn(e) = error

ev(e(n) = error

(ev ()

getn(e) = he1 n = e2i

ev(e2he1 n = e2i) = z

ev(e(n) = z

(ev 9 err)
eval(e1) = error

ev(Abstype r <:w R : : � with x : � is e1 in e2) = error

(ev 9)

eval(e1) = fjr <:w R : : � = R0; e3jg

ev([R0=r; e3=x]e2) = z

ev(Abstype r <:w R : : � with x : � is e1 in e2) = z

(getm  err)

n 6= m

getm(e1) = error

getm(he1 n = e2i) = error

(getm  )

n 6= m

getm(e1) = he3 m = e4i

getm(he1 n = e2i) = hhe3 n = e2i m = e4i
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(getm  + err)

n 6= m

getm(e1) = error

getm(he1  + n = e2i) = error

(getm  +)

n 6= m

getm(e1) = he3 m = e4i

getm(he1  + n = e2i) = hhe3  + n = e2i m = e4i
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