QS P¥6

$2.25

ALGOL W

NOTES pp. 1to 40
DECK SET-UP page 1
LANGUAGE DESCRIPTION pp. 1to 49
UNIT RECORD EQUIPMENT pp. 2-1 to
2 - 16
ERROR MESSAGES pp. lto7

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

s e
SIUN el
t £ ;-’y‘..\% <
A A 3
AN
5

ALGOL W NOTES

FOR INTRODUCTORY

COMPUTER SCIENCE COURSES

thy

Henry R. Bauer
Sheldon. Becker
Susan L. Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

r— —_

r—

I ntroduction

The textbook Introduction to AIGOL by Baumann,Feliciano, Bauer,

and Sanel son describes the internationally recognized |anguage ALGOL 60
for algorithm comunication. ALGOL Wcan be viewed as an extension of

ALGOL.
Part | of these notes describes the differences between simlar
constructs of the two |anguages.

, For clarity, Part | is nunbered according to the sections of the
textbook. In general only differences are mentioned;, jtens which are
the same in both |anguages are usually not discussed.

Part |l presents some of the details concerning the new features
of AIGOL W A conplete syntactic and semantic description of these
constructs as well as of all others in the |anguage is available in

"AIGOL W Language Description".

-

—

1

Basic Synbols of the Language

1.1

The basic synbol s

1.1.1. Letters
Only upper case letters are used.

1.1.3. Qher synbols
The following are the sane in ALGOL 60 and ALGOL w

+"/°:

()=

=< >

The following are different in the two languages. qnq

correspondence between the symbols is shown in the follow ng

tabl e:
AIGOL 60 AIGOL W
10 !
X *
t *%
[(
1)
- DV
> no equival ent
v R
2

AIGOL 60 AIGOL W

A AND
— one bl ank space
y, - =
< <=
> > =

:or :: (cf. section 6.1 and 4.2,1)

no equival ent | #

Al characters indicated for ALGOL Ware on the |IBM 029
key- punch.
The significance of spaces in ALGOL Wwi || be discussed in

subsequent sections.

1.2, Nunbers
A nunber is represented in its nost general formwth a scale
factor to the base 10 as in conventional scientific notation.

EXAMPLE 3.164981'-k neans 5.164981x10'h

This is often called the floating point form Certain abbreviations

omtting unessential parts are permssible.

EXAMPLES 77 317.092 126 ' 04
551 538k ok.719'2
'30 0.710 9.123'+1
'.7 0 2'-6
b3 009. 123 '+o1 2.0'-06

To represent a long floating point (cf. Section 2.3.1) nunber an

!
b

R

r—

r— r

r—

—

r-

I. must be added as part of the nunber specified,
EXAMPLES 77L 317. 092L 126°O4L

I n ALGOL W, conpl ex nunbers (short and |ong forms) may be used,
The imaginary part of a conplex nunber is witten as an unsigned real

nunber followed by an I.
EXAMPLES LT 4,81 hi-51
Long imagi nary nunbers are followed by an L.
EXAMPTE, L, 8IL

Numbers MY be written in a variety of' equivalent forms.,
EXAMPLE l2tok = .12'6 = 1,2'05 = 120000.0

No spaces may appear within an unsigned nunber, The magnitude of
an integer or the integer part before the decimal point in a floating
poi nt number nust be less than or equal to 2147483647. The magnitude
of @ non-zerc fioating POi Nt nunber must be between approximately

5.4 X 10777 and 7 x 107° (1/16 x 16'61* and <ﬂ1_16'6} X 1@3 Ve
i.3. ldentifiers

A letter foll owed by a sequence of letters and/or digits constitutes
an identifier, Identifiers may be as short as one letter or as long
as 256 letters and digits,

_ldentifiers may be chosen freely and have no inherent neaning.
However, AIGOL Wrecognizes a set of' reserved words which nust not 'be

used as identifiers,,

RESERVED WORDS
ABS
AND

END
FALSE
FOR

Goro REM
& TO RESULT
IF SHL

| NTEGER SHORT
IS SHR
LOG CAL STEP
LONG STRING
NULL THEN
OF TRUE
R UNTI L
PROCEDURE VALUE
REAL VWH LE
RECORD

REFERENCE

Spaces are used to separate reserved words and identifiers from

each other and from nunbers.

Certain identifiers are predefined for use by the programer but

are not reserved words. Their neaning will

these are three input and output identifiers

(See Sections 2.2.2. and 2.5.)

1.4 Nonarithnetic synbols

be discussed |ater. Anmong

READ, READON,

VRI TE,

The synmbols which are printed in bold type in the text are usually

underlined in typewitten copy,

reserved words (cf.

Section 1.3) for ALGOL W.

They are not

They are contained in the list of

di stingui shed

TR

in any other way but they must not be used for any purpose other than

that for which they are specifically intended, The synbol END, for

exanpl e, nmust not be used as an identifier

2. Arithnetic Expressions

2.1. Nunerical Expressions

The basic arithnetic operators of ALGOL W are

+ - % / ¥ DIV RmM

EXAMPLES

3. 1459 7 pIv 3
(3.477-4 + 9,01'+1) / 4 17 REM 12
9% 8*x7 / (1*2%3) 1.2

(9 +2.7)/ (-3)
(((1.5 *3 -4) *3 +0.19'1) * 3 - 2,6'3) * 3
10 + 2.4/ (1+09/(7-0.4/3))

The synbol * denotes nultiplication while ** denotes exponentiation.

For instance, 4.5 ** 3 neans 4.5°. The exponent nust always be an

integer in ALGOL W. An integer to any exponent gives a real result.

EXAMPLES
AIGOL W form Conventional form
4.1 - 3 # 2 b1 - 37
(4.1 - 3) ** 2 (b1 - 3)°
3.2 ¥% 2 4+ 5,2 5.2% + 5.2
oxx 2 _u=

ATGOL Wform Conventional form

(-4) #x 2 (-i)?
L *5 /2 %*3 s
2
5 %% 2 % 3 520 3
Also notice
DXKB KK = (25)u

I'n A1GorL Wthe follow ng two constructs are not allowed because

the exponent is a real nunbers

3.2%%(2 +5 , 2) and 2x*(3**k)

2.202. Assignnent of nunerical values through input

If the value cf an identifier is to be provided by input it is
assumed that this value appears on a data card which is in the card

reader waiting to be read, The statenent
READEN (V)

where V stands for variable identifier, reads the next nunber on the

current input card. |f there are no nore nunbers on the current input

card, subsequent cards are read until a nunmber is found., This statenent

assigns the value of the nunber to the variable whose nane is specified,
READEN (V. ,V V)

_L? E’ooo’n

is equivalent to
READ@N (Vi); READ¢N (VQ);O,O; READYN (Vh) .

The constsnts On the data cards are assigned in the same order as

-3

/
—

the variable names in the READGN statement. (ne or several nunbers

may appear on a single card separated by one or more blank spaces with
colum 80 of one card imediately followed by colum 1 of the succeeding

card.

The st at enent
READ (V)

is simlar to READEN (V) except that scanning for the nunber begins on
a new input card.

The st atenent

READ (Vy,Vo,Vg 50025V)

is equivalent to
READ (V.); READGN (Ve’vy”"vn)

Nunbers are punched into data cards in the forns described in
Section 1.2, and may be prefixed by "-*. Nunbers corresponding to

variabl es of type integer must nov contain decimal fractions or
scal e parts.
EXAVPLES READEN (A2)
In this case the data card nust contain at |east one nunber,
say 1.279'-7 if A2 is not an integer variable.
READ (B10,B11,B12,B15);

The data cards nmust contain four nunbers, say

3. 4121 7. 149 82511 g if Blo, Bll, B12 are not
integer variables, B15 may be an integer variable or a real
variable, One could spread these constants over several cards

if desired,

In general input read into the machine nmust be assignment conpatible

with the corresponding variable (cf. Section 2.3.2).

2.3. Assignment of nunerical values through expressions

Exponenti ation 8" (a**b) is defined by repeated multiplication if
b is a positive integer and by 1/ alb‘ when b is negative. b nust have
type integer. |If one desires the result of A% where Ris real, use

EXP (R * IN (A)).

2.3.1. Evaluation of expressions

The discussion in this paragraph is correct, However, in ALGOL W
the type of a resulting expression is defined for each type and each
operator. The type conplex and the discussion of the long forms is

provi ded for conpleteness and may be ignored by beginning progranmers

I: A+B,A-B

B ,
7?‘\\\\\J integer real conpl ex

I nt eger I nt eger real conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

The result has the quality "long" if both A and B have the
quality "long", or if one has the quality "long" and the other is

i nt eger.

r’r“'"ﬂ

II: A *B
/wl////mwl integer real complex
integer integer long real long complex
real long real long real long complex
complex long complex long complex icng ocsmwmx

A or B having the quality “long" does not affect the resultant

type of the expression.,

III: A /B
Mlllllmll integer real complex
integer real real , ooawwmx
real real real complex
compiex cemplex compLex complex

The specifications for the quality “long" are those given for +

and
IV A *¥* B
B .
A integer
integer real
real real
complex complex

The result has the quality “long’ if and only if A does.,

g asaad

V: ABS A neans the "absolute value of A".

A ABS A

i nt eger i nt eger
real rea
conpl ex real

2.3.2, Type of the variable to which a value is assigned,

The assignment V := Eis correct only if the type of Eis

assignment conpatible with V. That is; the type of V nust be |ower or

on the sane level in the list below as the type of E

i nt eger
real, long rea

conpl ex, long conpl ex

Several transfer functions are provided as standard functions
(cf. Section 2.4). For exanple, to change the type of expression E fr

real to integer either ROUND(E), TRUNCATE(E) or ENTIER(E) may be used,

2.3.4. Miltiple assignnments

The assignment of the value of an expression can be extended to

several variables. As in AIGOL 60, the formin ALGOL Wis

The nmultiple assignment statement is possible only if all the

variables occurring to the left of V.= are assignnment conpatible with

the type of the variable or expression to the imediate right of the :=.

11

om

2.4 Standard Functions

Al the standard functions listed in this section are provided in
AIGOL Wexcept sign and abs. ABS is a unary operator in ALGOL W In

addition the follow ng standard functions are provided.

truncat e(E) if E<O0, then entier(E)

if E<O0, then -entier(-E)

round(E) if E>O0, then truncate (E + 0.5)

if E<O0, then truncate (E - 0.5)

log(E) the logarithmof E to the base 10

(not defined for E < 0)

time(E) if E=1, elapsed time returned in 60'"s of a second
if E= 2, elapsed tine returned in 60th's of a second
and printed in mnutes, seconds, and 60th's of a

second

2.5. output

The identifier "print" should be replaced by "wite". A print
[ine consists of 132 characters.

- EXAMPLES VWRITE(E); WRITE(E,,E,,... E)s

The format of the values of each type of variable is listed bel ow

integer right justified in field of 14 characters and
followed by two blanks. Field width can be
changed by assignment to INTZIELDSIZE.

real same as integer except that field width is

i nvari ant.

12

long rea

conpl ex

[ong conpl ex

| ogi ca

string

bits

right justified in field of 22 characters
foll owed by 2 bl anks,

two adjacent real fields.

two adjacent long real fields.

TRUE or FALSE right justified, in a field of
6 characters followed by 2 blanks.

field large enough to contain the string and
continuing onto the next line if the string is
| onger than 132 characters,,

sane as real.

In order to provide headings or labels for printed results, a

sequence of characters may be printed by replacing any expression in

the wite statement by the sequence of characters surrounded by ". If

the " mark is desired in a string it nust be followed by a ",

EXAVPLES

WRI TE

(HN - lt, N)

This statenment will cause the following line to be printed if

Nis integer and has the value 3.

N =

3

WRI TE (" SHAKESPEARE WR@TE "“HAMIET""")

Thi s statement will cause the following line to be printed,

SHAKESPEARE WR@TE "HAMLET".

In the statenent

MRYTE(El,EQwQ,yE)

n

13

the type of each Ej; deternines the field in which its value will
be placed. The field for Ei+l follows the field for E br” the current
print line. b ey

If there is not enough space remaining on the current print line, the
line is printed and the field for E;;1 begins at the beginning of a
new print line. The first field of each wite statenent begins on a

new print |ine.

3. Construction of the program

3.1, Sinple Statenents

Note that the sinple assignnent statement takes the formV := E:

and that the input-output statements are respectively

READ (V) and R TE(E)

where V is a variable or a variable list and E is an expression or

expression |ist.

3.2. Conpound Statenents

In later descriptions in these notes "compound statements"” wll be

synononous with "blocks without declarations”.

3.4, Comments
The construction

conment text;
may appear anywhere in an ALGOL Wprogram However, in AIGOL Wt he
conment following an end is limted to one identifier which is not a

reserved word.

14

3.5. Exanple
To clarify the change necessary to forman AIGOL W program from

the program enclosed in the box, the exanple is shown as it would be

punched, Note that an AIGOL W program nust end with a . (period).

BEG N COWENT EVALUATION OF A POLYNOM AL;
REAL AQ, A, A2, A3, XI, P,
READ (A0, Al, A2, A3, X);
P:=((A*X +A) *X +A) *X +AQ
WRI TE (P)
END.

Note that the indentation, although not required, allows the begin
and end to be nmatched easily. In conplicated prograns indentation will

improve readability and therefore reduce the nunber of careless errors.

L, Loops

L.1. Repetition

The variable V of the for statenents described is always of the
type integer and cannot be declared in AIGOL W its declaration is
inplicit (cf. Section 7), and its value cannot be changed by explicit

assignment within the controlled statement. Each expression E of the
for clause must be of type-integer.
The statement of the form

for V:= Hy,Hyyeo o B do 83
is correct for n>1in AIGOL Wonly if HsHyse00 0 are all integer

expr essi ons.

15

The form

for V:=E step 1 until E.do §;

may be abbreviated as

for V:=E

Luntil Eydo S

4.2. Subscripted Variables

In AIGOL Wthe subscript expression nust be of type integer. Any

other type will result in an error detected during conpilation.

4.2.1. Array declarations

In the text, the : in array declarations nust be replaced by ::
for ALGOL W. The word array nust always be preceded by its type.
ARRAY A[1:10,1:20]; is incorrect and should be witten
REAL ARRAY A (1::10, 1::20);
Only one set of subscript bounds may be given in an array declaration.

Hence, the exanpl es should be corrected for AIGOL Wto read

EXAMPLES
real array A B, C(1::10);
real array D, EG(1::10, 1: :20);

integer array N, M(1::4);

L.k.2, Exanple

In ALGOL Wthe exanple in the box would be witten as listed bel ow,

BEG N COWENT DERI VATIVE OF A POLYNOM AL,
| NTEGER N, REAL P, C
REAL ARRAY A(1::20);

READ (N, O;

FOR | := 1 UNTIL N DO READON (A(1));
P ::0;

FORI1 := N STEP -1 UNTIL 1 DO

P =P CH+ I*Al);
VR TE (P)
END.

5. The Conditional Statenent

Condi tional statements are very useful and are used in ALGOL W as
discussed in this chapter for ALGOL 60. Note that the synbols <, >,

and # nust be replaced by <=, > =, and - =, respectively.

6. Junps

6.1. Label s

Al labels in Amcorn, Wmnust be identifiers which are not reserved

wor ds.

6.2. The Junp Statenent

go to may be witten as GO TO or GOI0 in ALGOL W,

6.2.1. Junps out of | oops or conditional statenents

The value of the loop variable is not accessible outside of the

| oop in ALGOL W,
17

o

r

r—— r—

~— —— r M~ rm r— 77 [~/

r—

6.2.2. Inadm ssible Junps

It is not possible to junp fromoutside into a |oop in ALGOL W
Likewise, it is not possible to junp into a conditional statenent.

In general, it is not possible to junp into the niddle of any
statenent, viz, for statement, conditional statement, while statenent,

conpound statement, bl ock.

6.4. Another Form of Loop Statenent

The statenent described in the text does not exist in AILGOL W.
However, A1GOL W has another form of |oop statement which is

useful -- it is called the while statenent.
FORM while B do S;

Bis a condition like that described in Chapter 5. As long as B is
true, the statement S will be repeated. It is possible that Sis

never executed. Mre precisely, this loop may be interpreted

L. if B then
begin S; goto L
end

The exanple in Section 6.3 can be rewitten as fol | ows:

BEGI N COWVENT DETERM NATION OF THE CUBE ROOT;
REAL A, APPROXI MATI ONVALUE, X, Y, T:
READ (A, APPROXI MATI ONVALUE) ;
X = APPROXI MATI ONVALUE; 2 .- ABS X:

18

—

WH LE D> .5'-9 * ABS X DO
BEGI N
Y i=X; X :i= (2% + A/(Y*Y))/3;

D :

ABS (X-Y);
END;
END,

7. - Block Structure

For the purposes of block structure in ALGOL W conpound statenents
nust be considered as blocks, namely blocks without declarations. A
compound statement with a label defined in it is a block. (Reread the
notes in this paper concerning Chapter 6.) In for statenents the scope

of the variable Vin the for clause is the statenent S following the do.

7.4, Dynamic Array Declarations

The expressions specifying the subscript bounds in dynanmic array

declarations nust be of type integer.

8. Propositions and Conditions

The word "Boolean" in the text should be replaced throughout by
"l ogical".

8.1. Logical Qperations

-Some of the symbols for logical operations are different in

ALGOL w.

19

r

Qperation ALGOL AIGOL W READ AS

negation = - not

conj unction A AND and

di sjunction % R or

equi val ence = = is equivalent to

AIGOL W does not have an equivalent f
synbol, .

, The follow ng hierarchical arran

orm of the AILGOL inplication

genent defines the rank of the

operator with respect to other operators.

Level | Cperation Synbol
1 LONG, SHORT, ABS
2 SHL, SHR **
3 -
b | AND, *, /, DIV, REM
5 OR, +, -
6 <, <=, >, >=, =, 4=, IS

In a particular construct, the operat

ions are executed in a sequence

from the highest |evel (smallest nunber) to the lowest |evel (largest

nunber): Qperations of the sane |evel
to right when |ogical operations are
arithmetic expressions.

The discussion in this section i

hierarchy of operators, In general,

are executed in order from left

invol ved and in undefined order in

S correct except concerning the

the extra parentheses are required

in ALGOL Wwhen using arithmetic expressions with |ogical operators,

The exanpl es bel ow are correct AIGOL Wand correspond to exanples in

20

r—

—

r— r— r—

tne text. All parent heses are necessary.

EXAMPLES
(A>5) R(B>=1)

(A*B>=C + D (ABs (Z1 + z2) > M)

(0<=X AD (X<=1)

(x=3) R(1<=X AD(X<-=2)
means (X = 3) OR((1 <=X AND (X< =2))

9. Designational Expressions

The designational expressions described in the text do not exist
in AIGOL W The chapter may be skipped.
However, ALGOL W provides a designational statenent and expression

which is equivalent to that described by the text.

9.1. The Case Statenent

The form

CASE E OF
BEG N

5,38

PP ey

END
is called a case statement. The expression E nust be of type integer.
The value of the expression, E selects the Sp statement between the
BEG N END pair. Execution is terninated if the value of E is less
than 1 or greater than n. After the designated expression is executed,

execution continues with the statement followi ng the END.

21

4
{
f
(-

— r— r— rr—-

r—

r'—-—‘\ r—-n-‘l\

— r

EXAMPLE
CASE | OF
BEG N
BEGN J :=1; GOT0 L1;
END;
I =1 +1;
IF J < | THEN GOTO Ll
END

If the value of the expression, I, is 3, for exanple, the statenent,
IFJ <1 THEN GOTO 11 is executed, If J > = | then execution continues

fol lowing the END.

9.2. The Case Expression

Anal ogous to the case statement, the case expression has the form
CASE g OF (El,Eg,...,En)

The value of the case expression is the value of the expression selected
by the value of the expression E. If the value of Eis e, then the

val ue of Ee is the value of the case expression. The type of the case
expression is the type of the E, expression whose type is |lowest on the
li st

i nt eger

real

long real
conpl ex

| ong conpl ex

22

s
“

r—

EXAMPLE
CASE 3 OF (4.8, 12, 17, 4.9) has the value 17 in floating

point representation since the type of the case expression is real.

10. Procedures
10.1.1. Gobal and formal paraneters

Label s may not be used as formal parameters. Switches do not exist

in-ALGOL W.
10.1.2.1. Arguments

Argunments serve to introduce conputational rules or values into
the procedure. A rule of conputation can be brought into the procedure
if the conputation is defined by neans of another procedure declaration,
or a statement.

Formal sinple variables, formal arrays, and formal procedures can
be argunents.

Exanple 3 is correct in the text.

A formal array can be used as an argument in only one way, "cal

by name". The discussion concerning "call by value" should be ignored.
10.1.2.3. Exits

Because |abels may not be used as actual parameters to a procedure,
the text's discussion of exits is not correct for ALGOL W. However,
a statement (in particular a GOTO statement) may be used as an actual
paraneter corresponding to a formal procedure identifier. In this way

side exits leading out of the procedure are provided,

25

L

— r— r— r

r—r

r—

10.1.3. Function procedures and proper procedures

From given pieces of prograns, procedures can be derived either
in the formof function procedures or in the formof proper procedures,
The body of a function procedure is either an expression or a
block with an expression before the final END in the procedure body.
The value of the expression is the value of the function procedure,
The way in which a procedure is set up and used is a fixed
characteristic of the procedure and is established directly in the
declaration by nmeans of the introducing-synbols, The declaration of
functions is introduced by the synbols
| NTEGER PROCEDURE
REAL PROCEDURE

LOG CAL PROCEDURE

according to the type of the resulting value. The type of the expression
giving the value of the procedure nmust be assignnent conpatible with
the declared type of the function procedure.

The declaration of the proper procedure begins with the symbo
PROCEDURE

No resulting expression can be placed at the end of the procedure

body.
10.1.4. The procedure head

Al'l necessary assertions about the formal paraneters and the use
of the procedure are contained in the head of the procedure declaration

I n AIGOL Wthe head consists of three parts:

2k

i
-

-

(1) Introductory symbol
(2) Procedure name

(3) List of formal parameters and their specifications

The introductory synbol determ nes the later use of the procedure
(cf. Section 10.1.3.)

The procedure nane can be chosen alnost arbitrarily. The only
restriction is the general limtation concerning some reserved
nanes (cf. Section 1.3).

The type, value specification, and identifier name of formal
paraneters appear in the list of forma'. parameter specifications,
and not separately as in AIGOL 60. The comma serves as the
general separation synbol between formal paranmeter identifiers
of the same type and vaiue specification. The semcolon serves
as the general separation synbol between specifications of fornal

parameters of different types or value specifications.

The type of the formal paraneter is specified by the synbols

REAL

LONG REAL

| NTEGER

COVPLEX

LONG COWPLEX
LOd CAL

REAL ARRAY
LONG REAL ARRAY
COMPLEX ARRAY
LONG COVPLEXARRAY
INTEGER ARRAY
LOG CAL ARRAY

{
L

r—

p—

r—-

r~

i

REAL PROCEDURE

LONG REAL PROCEDURE
COWPLEX PROCEDURE
LONG COMPLEX PROCEDURE
| NTEGER PROCEDURE

LOG CAL PROCEDURE
PROCEDURE

The val ue specification is used only for parameters called by

value. It is specified by the synbol value. |t pmy only follow the

types |NTEGER REAL, LONG REAL, ILOGICAL, COVPLEX, LONG COVPLEX

EXAVPLES
PROCEDURE P (REAL X, Y; |INTEGER VALUE I; PROCEDURE Q, R);
REAL PROCEDURE Z (LOG CAL L, M, N, REAL PROCEDURE P)

Note that in the case of formal paraneters used as array identifiers
i nformation about the nunber of dimensions nust be given. The
last identifier follow ng each array specification nust be followed

by (followed by one asterisk for each dinension separated by comas

fol l owed by).

EXAMPLE
PROCEDURE P (REAL ARRAY X, Y (*,%); REAL ARRAY Z (*)) .

10.2. The Procedure Cal

The procedure call in ALGOL W is unchanged from ALGOL 60. This
section should be read carefully.
Since labels are not allowed as paraneters, it was earlier suggested

that junp statements be used and that the corresponding formal paraneter

be a proper procedure (cf. 10.1.k. Exanple 8). |p general, any

26

r— r— r—

— -

statement may be used as an actual paraneter corresponding to a fornal

proper procedure which is used w thout paraneters.

EXAMPLE
BEG N
PROCEDURE VECTOROPERATICNS (1 NTEGER J; INTEGER VALUE N;
PROCEDURE P);
BEGNJ := 1;
WHILE J < = N DO
BEGNP, J :=Jd+1
END
END;
REAL PRCD;, | NTEGER I;
REAL ARRAY A, B, C(1::10);
(initialize A and B)
Ll: VECTORCPERATIONS (I, 10, (1) := A(1) + B(1));
PROD := 0.0;
L2: VECTOROPERATIONS (I, 10, PROD := PROD + A(1) * B(1)):
END

The statenent Ll is a procedure call which causes a vector addition

of Aland B to be placed in C The statenent 12 causes the element-by-

el ement vector product of A and B to be cal culated and placed in PROD.

27

10.3. Exanple
REAL PROCEDURE ROMBERGINT (REAL PROCEDURE FCT;

REAL VALUE A, B; | NTEGER VALUE ORD);
BEG N REAL T1, L;
ORD := ENTIER ((ORD + 1) / 2);
BEG N INTEGER F, N, REAL M S
REAL ARRAY U, T (1 :: ORD);
L := B-A
(1) := (FOT(A) + FCT(B)) / 2;
U(1) := FCT ((A + B) / 2);
F:=N:=1;
FOR H :=2 UNTIL orD-1 DO
BEGIN N:=2 * N, S := 0;
M:=1L /(2 *N;
FORJ := 1 STEP 2 UNTIL 2 * N- 1 DO

S :=S+ FCT (A+] *M);

UH =5/
T(H) = (T(H - 1) +U0(H - 1)) /2

F =1,

- FORJ :=H -1 STEP -1 UNTIL 1 DO
BEGN F := 4 * F,

T(J) :

(J + 1) + (D(F + 1) -7(3))/ (F=-1);

UWJ +1) + (UWJ+1) -wJ)) /(F-1);

1]

u(J)
END:;
— I ORD > 1 THEN

28

BEGIN

7(?) := (U(1) + T(2)) /25
T(1) := T(2) +(2(2) - T(1)) /(& * F - 1)
END;
T1 := T(1)
END;
END,
Tl % L
END;
The nanes of standard functions and standard procedures cannot appear

as actual paraneters in AIGOL W Therefore the calls to REMBERGINT

in Section 10.3 are incorrect. However, this situation may be overcome

by declaring a procedure which returns the value of the standard function

or perfornms the conputation of the standard procedure.

EXAMPLE

REAL PR@CEDURE SI NE (REAL VALUE X); SIN(X);
Then a call to R@MBERGINT m ght be

A := R@MBERGINT (SINE, x(1), X(2), 10);

EXAVPLEG
REAL PROCEDURE TRACE (REAL ARRAY A(*,*); | NTEGER VALUE N);
BEGIN REAL S
S := 04
FOR | := 1 unNT IL N DO
S: =S+A(1,1);

END

29

EXAVPLE 7
PROCEDURE COUNTUP (| NTEGER X);

X:=X+1

EXAMPLES
PROCEDURE ROOTEX (REAL VALUE X; REAL Y, PROCEDURE P);
IF X > = OTHEN
Y = SQRT(X)
ELSE
BEG N Y := SQRT(ABS X);
P
END

The actual parameter corresponding to the fornmal paraneter P

shoul d be a junp statenent.

30

PART Il: Sonme Extensions of ALGOL 60 in ALisC o w

1. Pr ocedur es

1.1. Call by Result

Besides "call by value" and "call by nam ~, AIGOL W allows paraneters
to be called by result. The formal sinple variatie i s handled as a |ocal
quantity although no declaration concerning tnis quantity IS present,

The value of the sinple variable is not initiaiized at the procedure
call. |If the procedure exits nornmally, the vaiue correspoinding to the
formal sinple variable is assigned to the corresponding actual paranmeter.
The formal paraneter nust be assignnent compatit:e With the actual
parameter. To specify a result parameter, insert the word RESULT after

the type and before the identifier (as wth VAiE).

EXAVPLE
PROCEDURE P(REAL RESULT X,Y; I NTEGER VAIUE |; LONG COWPLEX RESULT Z);

1.2. Call by Value Result

Formal sinple variables nmay be called betn ty value and result.
Thi s conbines the calls of value and result so that the formal identifier
is initialized to the value of the corresponding actual parameter at
procedure call and the value of the formal identifier is assigned to
the corresponding actual parameter at a normal procedure exit, To
specify a value result parameter, insert the words VALUE RESULT after

the type and before the identifiers.

EXAMPLE

PROCEDURE Q(INTEGER VALUE RESULT 1,J,k);

31

L

r— r— r—

r—— r—

r—-b"-

2. Procedure Calls

2.1. Sub-arrays as Actual Paraneters

In AIGOL W it is possible to pass any rectangular sub-array of an
actual or formal array to a procedure, Those dinensions which are to be
passed to the procedure are specified by *'s, and those which are to
remain fixed are specified by integer expressions. The nunber of

di mensi ons passed must equal the number of dinensions specified for

the corresponding formal array.

EXAMPIF,
The actual paraneter may be a sub-array of a three dimensional
real array A, Exanples of possible actual paraneter specifications and

corresponding fornmal parameter specifications are listed bel ow

Actual Paraneter Correspondi ng Formal Parameter Specification
A or A(*,*,x real array B(¥,*,*)
A{T,*,%) real _array B(%,*)
Af*, T, %) real array B(*,*)
A(*,%,T) real array B(*,*)
A(T,T,%) real _array B(*)
CA(1,*,T) real array B(*)
EXAVPLE

Read in the size of one dimension of a cubic array X, then
read in the elements g K. - e

Calculate and wite cut the sumof the traces of all possible
two dinensional arrays in A using the previously defined real

procedure TRACE.
32

BEG N
REAL SUM
REAL PROCEDURE TRACE (REAL ARRAY Af*,%); INTEGER VALUE N);
BEGIN COMMENT THE B(DY ¢F TH' S PROCEDURE IS GIVEN IN A
PREVIOUS EXAMPLE: ;
END;
| NTEGER N,
READ(N) ;
BEG N
REAL ARRAY X(i:sN, 1::N, 1::N);
FOR | := 1 UNTIL N DG
FOR J := 1 UNTIL N DC.
FOR K := 1 UNTIL N D0 READON(X(I,J,K));
SUIM := O;
FOR | := 1 UNTIL N DO
SUM := SUM + TRACE(X(I,*,*),N) + TRATE {X{*,I,%),N)
+ TRACE (x(*,*,1),N);
VWRI TE (suM}
ENT

END.

3. String Vari abl es

Frequently, it is desirable to manipulate sequences of characters.
This facility is available in AZGCL win the formof string variabl es,
Fasn variable has a fixed length specified in the string declaration.

The form of ' the declaration is

33

string (<integer nunber>) <variable |ist>

The integer nunber nust be greater than 0 and less than or equal to
2560 The specification "(<integer nunber>)'" may be onitted; a default

length of 16 is assigned to the variables. Arrays of strings also may

be decl ared,
EXAMPLE
STRING A B, C
STRING (24) X Y, Z
STRING {10) ARRAY R, S{0::10, 5::15)

In order to be able to inspect elements of the string or to

mani pul ate portions of the string, a substring operation is provided.
FORM <string identifier> (E | <integer number>?

The expression E nust be of type integer, This string expression
selects a substring of the Iength specified by the integer nunber from
the string variable beginning at the character specified by the integer

expression, The first character of the string has position o.

EXANPLE
BEG N STRING (5) A
A : ='@RSTU"§
A (3]2) := A (0|2);
WRI TE (A
END

In this exanple the constant string "QRSTU', is assigned to the
variable A which is declared to be of Iength 5. Then the character

positions 0 and 1 of A are assigned to positions % and 4 of A

34

Consequently, when the string & is writhten its vaiue 1S QRQR It
should be noted that the assignments are made coaracier DYy character.

If the second assignment statement IN the exampie above had been
A (2133 s= A(0]3)

the resulting value of A would have been QRIEQ.

L, Records and References

Rezords are structured guantities composed of quanbities of any
of the simpie types such as EEAL, INTEGER, STRING, etc. Records
themselives do noht have values; only the quanblities which compose the

records may have values.

4.1. ,Recora O ass Declarations

Record declarations indicate the conposition of a record. Unlike
simpie type declarations or array declarations no storage is reserved
for a record when the record decl ara%ion is encountered. Essenti ally,
the record declaration only describeS the form of records to ' be created,

T

Tae receord deciarations appear wibh all othe r declaratl ons,
FORM:
RECORT V (<declaratioas of variables of sinple type>);
The nane V is the name of the record class . The var iat . es
declared between the parentheses are called tne f ie 1ds of the record.
EXAMPLES
RECORD A{INTHGER I,J; REAL Z; STRING (5Y 3);

RECCRD B/REAL X; IONG REAL IK; EZAL Y);

35

L

[

The punctuation of the exanples should be noted carefully, The
names in the list of identifiers following the indication Of the simple
type are separated by ",”. The listis ended with a ";" unless the

"N

;" woul d immediately precede the closing " -,

4,2, Reference Declarations

In order to specify a record of sone record ciass, REFERENCE is a
sinple type in ALGOL W. The value Of @ variable Of type reference
is an address of a record, This address is sonetimes called a pointer
to a record..

Ref erence decl arations appear in a programwhere ail other declarations

appear.
FORM

REFERENCE (V) V_;

Vis a nane of a record class, Vl is a nane of a reference

variable or a list of names of reference variables separated by “,*,

EXAMPLE

REFERENCE (A) R1, k2, R3;

The name V of a record class may al so be a 1ist of Tames
separated 'by ",", This list indicates the record classes t0 which

records referenced by the reference variables nust ' bel ong.
EXAMPLE

REFERENCE (A,B) 34, 35;

Rk ard R5 may point, only to records of record class A or B,

36

The reserved word NULL stands for a reference constant which

fails to designate a record,
Arrays of references are declared and used anal ogously to arrays
of other sinple types.
FORM
REFERENCE (V) ARRAY v, (<subscript buunds>);
REFERENCE (A,B) ARRAY ARl, AR2 (1::10, 3::7);
The inplenentation requires that all reterence arrays declared in
a biock be declared in the sane reference array declaraticn or
imediately following a reference array declaration.
EXAMPLE
REFERENCE (A) ARRAY ARl, AR2 (1::10, 3::77%;
REFERENCE (B) ARRAY AR3 (2: :17);
In the exanpl e above, any other declaratica except a reference

array declaration IS not aliowed between the two reference array

decl arati ons,

4.3, Reference Expressions

Quantities of sinple type reference may be used in assignmeni;

statements and conparisons,

EXAMPLES
!\/ R..L o= R2
Rl := NULL
kil = R2
R2 - =R3

37

L

r— r

r—

—

—

—

—

r—

Only the relations = and - = are allowed between references. In

order to inquire to which record class a reference expression is bound

the IS operator is provided.

FORM
EISV

E is a reference expression and Vis a name of a record class. The

value of the IS operator is logical, either TRUE or FALSE

" EXAMPLE

4.4, Record Designators

A particular type of reference expression is the record designator.

A record designator is the name of a record class when used as an

expression

EXAMPLE

i
>

R1 :

R4

Wen the record class name is encountered, the value is a pointer
to a new record of that class. The values of the fields of the new

record are undefined.

4,5. Field Designators

In order to manipulate the values of the fields of a record, the
expressi on
FORM
v, (E)
38

wir

exists in AIGOL W. E is a reference expression. v, is afield of the
record class of the record pointed to by E. The type of the field

designator is the type of the variable LT

EXAMPLES
Z(R1)

ILX(RL)

EXAMPLE 1
BEGIN RECORD H (INTEGER C,D; STRING (2) S);

REFERENCE (H) R1;

Rl := H

C(R1) := 5;
D(R1) := 8;
S(R1) := "Az"

EN-D.

Exanple 1 is a short program which declares a record class H and
one reference -variable Rl whose values may point to records of class H.
tne record of class His created and each field of the record pointed
to by Rl is initialized,

AiGoL, Woprovides a short notation for creating a record and

initializing its fields, This nodified record creatcr has the form

V(EL) .

V is the name of the record class. The expression |ist E between the
parentheses is the 1ist of the values of the fields specified in the

order they appear in the record. class declaration.

39

r

r — r— r

—

EXAMPLE

B{L.8, 3.14159%, 8'&}

Example 1 may be rewriitten ag foliows:

EXAMPIE 2

BEGIN RECORD H (INTEGER C,0; STRING

KEFERENCE {H) R1;
RL := H(5, 8, “AZ")

END.

{
\

2!

S

)3

\

—

[

r r— rr— r— r-

-

Algol W Deck Set-Up

< .Job Card >
//JOBLIE DD DSNAME=SYS2.,PROGLIB,DISF-{OLD,PASS
// EXEC ALGOLW
//ALGOLW .SYSIN DD *
%ATGOL

¥ < program >

%EOF
= < data >

%HEOF

!

%
.

* Optional

*¥ May be repeated

=

r—

—

— r—-

~ r— r— r— rm

——

—

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R.Bauer
Sheldon Becker
Sizan L., Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

—

r— r

-

—

"A Contribution to the Devel opnent
of ALGOL" by N klaus Wrth and ¢c. A R
Hoar el) was the basis for a conpiler de-
vel oped for the 1BM 360 at Stanford Univer-
sity. This report Is a description of the
i mpl emented | anguage, ALGOL W Histori cal
background and the goals of the |anguage

may be found in the wirth and Hoare paper.

L) Wrth, Niklaus and Hoare, ¢. A R., "A
Contribution to the Deveiocpment of ALGOL"',
Conmm ACM 9, 6(June 1966), pp. 413-431.

CONTENTS

TERMINOLOGY, NOTATI ON AND BASI C DEFINITIONS::.ocoeeevsos .
1.1 Notation «ceeoeoeccsacsans . heeeeeseesaacaansoo. 1
1.2, Definitions .e.icecesnesooonconsns Mo e e e emoae .1

SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. no

2.1. Basic SymbOls + ¢ ¢ ¢ cesieriatacacaracesoaoss e 4
2.2. gyntactic Entities.......... Ceeusessseeroases s 5
TDENTIFIERS . ¢+ ceceeoscoooosoacsososansooosonass ceeoessesen s
VALUES AND TYPES....... s et st cen e recescacsesoanes
.1, NUmbers «c.ooeecoceeeess tiecere e rr e beeco e 10
4.2, Logical ValuesS «:cevcoccencvorsassuonso B |
L.3., Bit S€QUENCES «+etovcosoaes cetioeo st e oo 11
L., SErings «ceecerreorooveaiiinoiotnonnannncanas ceeel12
4.5, RefErences «:sceseconesconconvsconsusons Weenaoo .13
DECLARATIONS : cvoseeooeso csevosan B ..
5.1. Simple Variable Declarationsc..... R
5.2, Array Declarationscovvvuenooss Ceoieseeeeas 15
5.3 Procedure Declarations «+.ceenvesnoeveannanons ... 16
5.4, Record Cass Declarationsccovuue e 20
EXPRESSIONS .ccececco esosoevuoesano ceoeesn e cvoso oo e s cesaoe
6.1. Variables +ccosocoosooovoscsvasnonsossssoss Goeaeo 22
6.2. Function Designators e eo e cee. 23

6.3,
6.,
6.

\Ji

6.6
6.7.
6.8.

SONTENTS {eont.)

Arithmetic Expressions

Logical Expressions ...

Bic Expressilons

String Expressions

Reference Expressions

ence of COperators

e

STATEMENTS . . oo v vcnscoan von

7.1

~
~

C
N

STANDARD FUNCTICNS AND FREDECLARED IDENTIFIERS

8.1.

BlOCKS avvvvorvu . ows oo

Assignment Statements
Procedure Statements

Goto Statements
LaSs STALEMENES. v o en e o
Tterative Statements ...

20 0

Standard Fro

7.8.4L. Read Statements......

Voo ooy

Write Statements...

Standard Transfer Function§ PN

Standard Functions of Analysis ...

Over flow and Underfiow

8.5.1.

3

pe

Predeciared Variabies.....

>0 0 066

L2k
.28
. %0
.31
.32
- 33

.40

L.l

o 42

s

46
7

.48

cee b

8]

8.4.
8.5.

CONTENTS_(cont .)

8.3.2. Standard Message Function........... 4 8
Qutput Field Sizes 49

Tine Function

, e

¥

1. TERM NOLOGY, NOTATI ON AND BASIC DEFI NI TI ONS

The Reference Language is a phrase structure |angauage, defined by
a formal system This formal system makes use of the notation and
definitions explained below. The structure of the |anguage ALGOL W
is determined by three quantitites:

(1) v, the set of basic constituents of the |anguage,
(2) U, the set of syntactic entities, and
(), the set of syntactic rules, or productions

1.1. Notation
A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A Syntactic rule has the form

where <& is a nenber of U, x is any possible sequence of basic con-
stituents and syntactic entities, sinply to be called a "sequence".

The form
B> ni=x |y | ...]z

is used as an abbreviation for the set of syntactic rules

<& 1= X
<A =y
<& 1= Z

1.2. Definitions

1. A sequence x is said to directly produce a sequence y if and

o

r

r— r I

— I

only if there exist (possibly empty) sequences u and w, so that
either (i) for some <& in U, X = wbw, Y = UWW, and<& ::=
viisarulein®;or (ii) x =uw, y =uw and v is a "coment"

(see bel ow).

2. A sequence x is said to produce a sequence y if and only if
there exists an ordered set of sequences s[0], s[1), . . . , s[n],
so that x = s[0], s[n] =y, and s[i-1] directly produces s[i] for

all i =1, ..., n

3. A sequence x is said to be an ALGOL Wprogramif and only if
its constituents are menbers of the set If, and x can be produced

from the syntactic entity <program>.

The sets v and U are defined through enunmeration of their nmenbers
in Section 2 of this Report (cf. also 4.4.). The syntactic rules are
given throughout the sequel of the Report. To provide explanations
for the meaning of ALGOL W programs, the letter sequences denoting
syntactic entities have been chosen to be English words describing
approximately the nature of that syntactic entity or construct. \ere
wor ds whi ch have appeared in this manner are used el sewhere in the
text, they refer to the corresponding syntactic definition. Al ong
with these letter sequences the symbol T may occur. |t js understood
that this symbol must be replaced by any one of a finite set of English
words (or word pairs). Unless otherwi se specified in the particular
section, all occurrences of the synbol 7 within one syntactic rule

nust be replaced consistently, and the replacing words are

i nt eger | ogi ca

real bits

| ong real string
conpl ex ref erence
| ong conpl ex

For exanple, the production
<T term> ::= <J factor> (cf. 6.3.1.)

corresponds to

<i nteger term> ::= <integer factor>
<real term> ::= <real factor>

<long real term> ::= <long real factor>
<conpl ex term> ;= <conplex factor>

<l ong conpl ex term> ::= <long conplex factor>

The production

<J, primary> ::= |ong <I, primry> (cf. 6.3.1. and
table for long
corresponds to 6.3.2.7.)
<long real prinmary> ::= long <real primry>

<long real primarv> ::= long <integer primry"

<long conpl ex primry> ::= long <conplex prinary>

It is recognized that typographical entities exist of |ower order
than basic synbols, called characters. The accepted characters are
those of the |BM System 360 EBCDI C code

The synmbol comrent followed by any sequence of characters not
contai ning senicolons, followed by a semicolon, is called a coment.
A comment has no effect on the meaning of a program and is ignored

during execution of the program An identifier (cf. 3.1.) immediately

3

fol lowing the basic symbol end is also regarded as a connent.

The execution of a program can be considered as a sequence of
units of action. The sequence of these units of action is defined as
the evaluation of expressions and the execution of statenents as de-
noted by the program In the definition of the inplenented |anguage
the evaluation or execution of certain constructs is either (1) de-
fined by System 360 operations, e.g., real arithnetic, or (2) left
undefined, e.g., the order of evaluation of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTI C ENTI TI ES

2.1. Basic Synbols

Alslc|o|E|F|le|lu]I]|o|xk|L|M|N]|]O]|P]
elr|s|T|ulv|iw]|x|Y]|z]

olrla]|z|s]s|6]7]8]9]

true | false [" | null |#]|

integer | real | conplex | logical | bits | string |
reference | long real | long conplex | array

procedure | record |

s s el -1 (])] begin|end| it | then | else |
case | of | + |- | *| /| = | aiv | rem|shr | sh | is |
abs | long | short J and J or | = |} | ===]<]

<= 1> >= |

1= | goto | go to | for | step | until | go | while |

comment | val ue | resul t

Al underlined words, which we call "reserved words", are repre-

sented by the same words in capital letters in an actual program

L

Adj acent reserved words,

separated by at

| east one bl ank space.

identifiers (of. 3.1.) and nunbers nust be

Otherwise bl anks have no mean-

ing and can be used freely to inprove the readability of the program

2.2, Syntactic Entities

(with corresponding section nunbers)

<actual paraneter list>
<actual paraneter>

<pi t
<bit primry",
<pi t
<bit sequence>
<bit term>

<bl ock boday>

<bl ock head>
<block-

<bound pair iist>
<bound pair>
<ease clause>

factor>

secondary>

<case statement>

<control identifier>
<declaratior>

<digit3

<dimension specificatiomn>
<equal ity operator>
<expression list>

<field list>

<for clause>

<for list>

<formal array paraneter>
<f or mal

parameter list>

<formal parameter segnment3

(N I, R BN |

A,)

A al

VAN 1w

o) Mo N, BEE VIR, VIR B'e AL BT, B R B I < N e N o N > N QR
v e

‘;-H\N

}._I

;—_l

no

O

i

A

<formal type>
<go tO statement>
<hex dig:-">

<identifier list>
<identifier>

<if clause>

<i magi nary nunber>
<increment>
<initial value>
<iterative statement>
<label definition>

<l abel identifier>
<letter>

<1limit>

<logical element>
<logical factor>

<l ogi cal primary>
tern>

<l ogi cal value>
<l ower bound>
<null reference

<l ogi cal

<procedure declaration>

<procedure heading>
<procedure identifier>
<procedure statement>

<progranm>

~N =W

[N R

N I B N A WA W <) Wi« I I G VA U U R R T B e NI VRGN R R
D S - N R S SR TR R R

G o

-

—

r—

—

e

—

<proper proceaure body>

<prcper procedure
declaratiorn>

record class declaratior>

A

<record class identifier>

<record class identifier

List>
<record designator>
<relation>
<relational cperator>
<scale factor»
<slgr>
<simple kit expressior>
<simple logical expressior>

<simple reference
expression>

<simple statement>

<simple string expressiom>

<simpie T expressior>

<gimple T variable>

<simpla type>

<simplile variable
declaratior>

<gtatement list>

<string>
<gubarray designator list>

X .
<subscript>

%. IDENTIFIERS

3.1. Syntax

<identifier>

<Tvariable identifier> ::

N1

XY

N\

A

1

-3

=

-3
W

o N F F oo oW
B e I S K

N N O
(@) +

[#) W @)
W

[OANEN]

¥

o

o

f

N

N

e

<subscript iist>

<J array declaraticr>

T array designator>

<T array identifier>

<J assignment Statenent>

N

<J expression list>

<T expressior>

<J factor>

<J field designator>

<7 field identifier>

<T function designator>

<J function identifier>

< function procedure body>

<J function procedure
declaratior>

<J left part>

<J number>

<T primary:>

<J subarray desigrator>
<7 term>

<T variable identifier>
<unscaled real>

<upper bound>

<whi | e clause>

A I

MOy OOy Oy N W o VT o

W o D e U

W W W O O

SRS B R CVRRe PSS B N = I

900 g

;1= <letter> | <identifier> <letter> | <identifier> <digit>
= <identifier>

e

<T array identifier> ::= <identifier>

<procedure identifier> ::= <identifier>

<T function identifier> ::= <identifier>

<record class identifier> ::= <identifier>

<T field identifier> ::= <identifier>

<l abel identifier> ::= <identifier>

<control identifier> ::= <identifier>

<letter> ::= A|B|c|D|E|F|Gc|H|I|J]|K]|L]|M]|
N|jo|P|Q|R|s|T]Uulv]w|x]|Y]z

<digit> ::= o|1]|2| 3|4 |5]|6]7]8]9

<identifier list> ::= <identifier> | <identifier list> , <identifier>

3.2, Semantics
Variables, arrays, procedures, record classes and record fields
are said to be quantities. Identifiers serve to identify quantities,
or they stand as labels, formal parameters or control identifiers.
Identifiers have no inherent neaning, and can be chosen freely in the
reference language. In an actual program a reserved word cannot be
used as an identifier.
Every identifier used in a program nust be defined, This is
achi eved through
(a) a declaration (cf. Section 5), if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
T variable identifier, T array identifier, T procedure identifier
T function identifier, record class identifier or T field iden-
tifier, where the synbol T stands for the appropriate word re-
flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.), if the identifier stands as a

r— r— r

r——

— r

| abel . It is then said to be a label identifier;

(c) its occurrence in a fornal parameter list (cf. 5.3.). 1t is then

(d) its occurrence follow ng the symbol for in a for clause (cf.

(e)

said to be a formal paraneter;
7.7.).
It is then said to be a control identifier;

its inplicit declaration in the language. Standard procedures,
standard functions, and predefined variables my be considered

to be declared in a block containing the program.

The recognition of the definition of a given identifier is de-

termned by the followng rules:

Step 1. If the identifier is defined by a declaration of a
quantity or by its standing as a label within the smallest block
(cf. 7.1.) enbracing a given occurrence of that identifier, then
it denotes that quantity or label. A statement following a pro-
cedure heading {cf.5.3.) or a for clause (cf. 7.7.) i s considered

to be a hlock.

Step 2. Otherwise, if that block is a procedure body and if the

given identifier is identical with a formal paraneter in the asso-

ciated procedure heading, then it stands as that formal paraneter.

Step 3. Oherwise, if that block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Qtherwise, these rules are applied considering the snallest

bl ock enbracing the block which has previously been considered,

-

r

-

——

If either step 1 or step 2 could lead to more than one definition,
then the identification is undefined.

The scope of a quantity, a label, a formal paraneter, or a con-
trol identifier is the set of statements in which occurrences of an
identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3. Exanples
I
PERSON
ELDERSI BLI NG
x15, X20, x25

4. VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a val ue.
The value of a constant is determned by the denotation of the con-
stant. In the language, all constants (except references) have a
reference denotation (cf. 4.1.-k.k.). The value of a variable is the
one nost recently assigned to that variable. A value is (recursively)
defined as either a simple value or a structured value (an ordered set
of one or nmore values). Every value is said to be of a certain type.
The following types of sinple values are distinguished:

integer: the value is a 32 hit integer,
real: the value is a 32 bit floating point nunber,
long real: the value is a 6 bit floating point nunber,

conplex: the value is a conplex nunber conposed of two
nunbers of type real,

s

-

iong conplex: the value is a conplex nunber conposed of two
| ong real nunbers,

logical: the value is a logical value
bits: the value is a linear sequence of 32 hits

string. the value is a linear sequence of at nost 256 char-
acters

reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is an ordered set of values, all of identi-
cal sinple type

record: the value is an ordered set of sinple values.

A procedure may yield a value, in which case it is said to be a
function procedure, or it may not yield a value, in which case it is
called a proper procedure. The value of a function procedure is de-
fined as the value which results fromthe execution of the procedure
body (cf. 62.2.).

Subsequently, the reference denotation of constants is defined.
The reference denotation of any constant consists of a sequence of
characters. This, hcwever, does not inply that the value of the de-
noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

of strings.
L.1. Nunbers
4.1.1. Syntax
<long conplex number> ::= <complex number>L
<conpl ex nunber> ::= <i magi nary nunber>
<i magi nary nunber> ::= <real number>I | <i nteger number>I

10

not at i on.

<long real nunmber
<real nunber> ::=

<unscal ed real>

<scal e factor> ::
<i nt eger nunber >

<sigrl> ::= + !

L.1.2. Semantics

>

<unscal ed real > | <unscal ed real> <scal e factor> |

;2= <real number>L | <integer number>L

<integer nunber> <scale factor> | <scale factor>

<i nteger number> . <integer nunber> |
-<integer nunber>
'<integer nunber> | ‘<sigr> <i nteger nunber>

1= <digit> | <integer nunber> <digit>

Nunbers are interpreted according to the conventional decina

A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceeding it. FEach

nunber has a uniquely defined type.

4.2.

b.3.

4.1.3. Exanples

1

0100
3. 1416

05 1T
1'3 0.671
6.02486'+23 1IL

2.718281828459045235360287L 2,3'.4

Logi cal Val ues

4.2.1. Syntax

s

<l ogi cal value> ::= true | false

Bit Sequences

L.%.1. Syntax

<bit sequence>
<hex digit> ::=

0

Q

<hex digit> | <bit sequence <hex digit>
l1fl2]3lulsl6]l7]18]l9]als]|
|D|E|F

11

Note that 2 |... | F corresponds to CH 15,0

4.3.2, Semantics

The nunmber of bits in a bit sequence is 32 or 8 hex digits. The
bit sequence is always represented by a 32 bit word with the specified
bit sequence right justified in the word and zeros filled in on the

|eft.

4.3.3. Exanples

#uF
#9

0000 0000 0000 0000 0000 0000 0100 1111
0000 0000 0000 0000 0000 0000 0000 1001

i

4.4, Strings

4.4.1. Syntax

<string> ::= "<sequence of character@

4.4.2. Semantics

Strings consist of any sequence of (at nost 256) characters ac-
cepted by the System 360 enclosed by ", the string quote. [f the
string quote appears in the sequence of characters it nust be imre-
diately followed by a second string quote which is then ignored. The
nunber of characters in a string is said to be the length of the

string.
L.4k.3. Exanples

" JOHY
"tis the string of length 1 consisting of the string
quot e.

12

4 5. References

L.5.1. Syntax
<null reference> : := null

L.5.2. Semantics
The reference value nuil fails to designate a record; if a refer-
ence expression occurring in a field designator (cf. 6.1.) has this

val 2e, then the field designator is undefined.

=, DECLARATIONS

Declaraticons Serve to associate identifiers with the quantities
used in the program to attribute certain permanent properties to
these quantities (s.g. type, structure), and to determine their scope,
The juantities declared by declarations are sinple variables, arrays,
procedures and record classes.

Tipon exit from a block, all quantities declared or defined within

that block iose their value and significance (cf. 7.1.2. and 7.4.2.).

Svntax:

<declaration> ::= <simple vari abl e declaration> | <J array
declaration> | <procedure declaration> |
<record class declaration>

.1, Sinple _Variabl e Jeclarations

5.1.1. Syntax

<simple variabl e declaration> ::= <simple type> <identifier list>

<simple type> ::: integer |real |long real | complex | | ong
compl ex | logical | bits | bits (32) |

13

<rezcrd cl ass

5.1.2.

can be assigned to it .

is equal to the value Of

string | string (<integer>) | reference

(<record class identifier list>)

Semantics

Examples

integer

I, T, K, M, N
K, ¥, Z

real

long complex C

14

identifier lists 5:=

Each identifier Of the identifier |i st

the declaration specification is included.

integer in the declaration specification.

<record class identifier> |
identifier
i dentifier>

<record class
<record class

is associated with a

variable which is declared to be of the indicated type. A variable is
calied a sinple variabie, if its vaiue is sinple (cf. Section 4). |f
a variable is declared to be of a certain type, then this inplies that
only values which are assignnent conpatible with this type (ef. 7.2.2.)
It 1s understood that the value of a variable
the expression most recently assigned to it.

A var 1abie of type bits is always of Zength 32 whether or not

A variabie of type string has g iengih equal to the unsigned

If the sinple type is

given only as string, the length of the variable i s 16.
A variaole of type reference may refer only to records of the
record Classes whose identifiers appear in the record class :identi-

fier list of the reference declaration specification.

list>

r

e

string (107 S, T
reference (PERSON) JACK, JILL

5.2" Array Declarations

5.2.1. Syntax

<T array declaration> ::=<sinple type> array <identifier list>
(<bound pair 1list>)
<bound pair list> ::= <bound pair> |<bound pair list>,<bound
pair>
<bound pair> ::= <lower bound> :: <upper bound>
<integer expression">
<i nteger expressior>

<| ower bound>

i

<upper bound>

i

5.2.2. Semantics
Each identifier of the identifier list of an array declaration is

associated with a variable which is declared to be of type grray.

variable of type array is an ordered set of variables whose type is the
sinple type preceding the synbol array. The dinension of the array is
the number of entries in the bound pair Iist

Every element of an array is identified by a list of indices.
The indices are the integers between and including the values of the
| over-bound and the upper bound. Every expression in the bound pair
list is evaluated exactly once upon entry to the block in which the
declaration occurs. In order to be valid, for every bound pair, the

val ue of the upper bound nust not be |ess than the value of the |ower

bound.

5.2.3. Exanples

integerr ay H(1: :100)

15

— r r-

r—

5.3,

real array A, B(l::M, L::N)
string (12) array STREET, TOMW, CITY (J::K + 1)

Procedure Declarations

5.%.1. Syntax
<procedure declaration> ::= <proper procedure declaration> |
<J function procedure declaration>
<proper procedure declaration> ::= procedure <procedure heading>;
<proper procedure body>
<7 function procedure declaration> ::= <sinple type> procedure
<procedure heading>;
<J function procedure body>
<proper procedure body=> ::= <statement>
<T function procedure body> .= <7 expression> | <bl ock body>
<T expression> end
<procedure heading> ::= <identifier> | <identifier> (<fornal

parameter |ist>)
<formal parameter list> ::= <formal parameter segment> |
<formal paraneter list> ; <formal
paraneter segnent>
<formal paranmeter segment> ::= <formal type> <identifier list3 |
<formal array paraneter>
<formal type> ::= <sinple type> | <sinple type> value | <sinple
type> result | <sinple type> value result |
<sinpl e type> procedure | procedure
<formal array parameter> ::= <sinple type> array <identifier

list> (<dimension specification>)

-<di mensi on specification> ::= * | <dinension specification> , *

5.3.2. Semantics

A procedure declaration associates the procedure body with the

identifier imediately following the symbol procedure. The principal

16

r—-

part of the procedure declaration is the procedure body. Qther parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper procedure
is activated by a procedure statement (cf. 7.3.), a function procedure
by a function designator (cf. 6.2,). Associated with the procedure
body is a heading containing the procedure identifier and possibly a

list of formal paraneters.

5.3.2.1. Type specification of formal-parameters. Al fornal para-
neters of a formal parameter segnent are of the sane indicated type
The type nust be such that the replacenent of the formal paraneter by
the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the synbols value and result appearing in a
formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked
(1) The procedure body is enclosed by the synbols begin and ggg
if it is not already enclosed by these symbols;
(2) For every fornmal paraneter whose formal type contains the

synbol value or result (or both),

(a) a declaration followed by a senmicolon is inserted after
the first begin of the procedure body, with a sinple
type as indicated in the formal type, and with an iden-
tifier different fromany identifier valid at the place
of the declaration.

(b) throughout the procedure body, every occurrence of the

17

formal paraneter identifier is replaced by the identifier

defined in step 2a;

(3) If the fornmal type contains the synbol value, an assignment

st at enent (Cf 72) foll owed by a semcolon is inserted
. after the declarations of the procedure body. |is |eft part

contains the identifier defined in step 2a, and its expres-
sion consists of the formal parameter identifier. 4 sym

- bol value is then deleted

(4) If the formal type contains the symbol result, an assignment

—

statement preceded by a semicolon is inserted before the

symbol nd which terminates a proper procedure body. n

r—

the case of a function procedure an assignment statenent

is inserted after the final expres-

r—

sion of the function procedure body. |ts |eft part contains
the formal paraneter identifier, and its expression consists
of the identifier defined in step 2a. The symbol result is

J

then deleted.

oo oo

5.3.2.3. Specification of array dinmensions. The nunber of "%"'g

appearing in the formal array specification is the- dimension of the

array paraneter

—

5.3.3. Exanples

procedur e INCREMENT; X := X+1

\;”-—-!

Meal procédure X (real value X)
if X< Ythen Y else X

18

r— r— r

—

procedure COPY (real array U, V (¥,%); integer value A B);

for I := 1 until A do
for J := 1 until B do u(z,J}:= V(I,J)

real procedure HORNER (real array A (*); integer value n;

real value X);

begin real S; S := 0;
for I := 0 until Ndo S:=S8S* X+ A(l);
S

end

| ong real procedure SUM (integer K, N long real. X);
begin long real Y; Y:=0; K:=N
while X> =1 dc
begin Y :=Y +X; K:=K-1
end,
Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON)

begin reference (PERSON) P, M
P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));
while (P = =null) and (= MALE (P)) or
(P = FATHER (R)) do
P := ELDERSIBLING (P);
M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));
while (M= =null) and (- MALE (M) do
M := ELDERSIBLING (M;
P =null then Melse

—h

i
M= null then P else
ACE(P) < AGE(M then P else M

[

end

19

r—

-

r—

5.4, Record {dass Declarations

5.4.1. Syntax

<record class declaration> s:= record <identifier> (<field list>)

<field list> ::= <sinple variable declaration> | <field list> ;

<sinple variabl e declaration>

5.h.2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of sinple variable declara-
tions which define the fields and their sinple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

t 0 construct a new record of the given class.

5.4.3. Exanpl es

record NODE (reference (NODE) LEFT, RIGHT)
record PERSON (string NAME, integer AGE; |ogical MALE;
reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRIP,

ELDERSI BLI NG

6. EXPRESSI ONS

Expressions are rules which specify how new val ues are conputed
from existing ones. These new values are obtained by perfornming the
operations indicated by the operators on the values of the operands.
Several sinple types of expressions are distinguished. Their struc-

ture is defined by the following rules, in which the synbol T has to

20

7

r— r— r— & r

-

be repl aced consistently as described in Section |, and where the trip-

lets T, T, T, have to be either consistently replaced by the words

l}
logical
bits
string
ref erence

or by any combination of words as indicated by the follow ng table,

whi ch yields TS given 7. and T

T
T 2 .

1 i nteger real conpl ex
I nt eger integer r eal complex
real r eal r eal complex
conpl ex conpl ex conpl ex conpl ex

To has the quality "long™ if either both Tl and T2 have t hat

quality, or if one has the quality and the other is "integer".

Synt ax

<J expression> ::= <sinple T expressior> | <case clause?
(<7 expression list>)

<TO expressior> ::= <if clause€> <simple 71 expressior> el se

<32 expression>
<J expression list> ::= <J expressionm>
<J, expression list> ::= <Tl expression list> | <J,, expressior>
<if clause> ::= if <logical expressior> then
<case clause> ::= case <integer expressiom> Of

The operands are either constants, variables or function designa-
tors Or other expressions between parentheses, The eval uation of
operands other than constants may invcive smaller units of action such
as the evaluation of other expressions or the execution Of statements.

21

-

-

The value of an expression between parentheses is obtained by eval uat-
ing that expression. |f an operator has two operands, then these oper-
ands may be evaluated in any order with the exception of the |ogical
operators discussed in 6.4.2.2, The construction

<if clause> <sinple Tl expressi on>_el se <T, expression>
causes the selection and evaluation of an expression on the basis of
the current value of the logical expression contained in the if clause.
If this value is true, the sinple expression following the if clause
is selected, if the value is false, the expression following else is
selected. The construction

<case clause> (<T expression list>)
causes the selection of the expression whose ordinal number in the
expression list is equal to the current value of the integer expres-
sion contained in the case clause. In order that the case expression
be defined, the current value of this expression nust be the ordina
nunber of some expression in the expression |ist.
6.1. Variables

6.1.1. Syntax

<sinple T variable> ::= <T variabl e identifier> | <7 field designator>
<T array designator>
<T veriable> ::= <sinple T variable | <sinple string variabl e3
(<integer expression>§ <integer nunber>)

<T field designator> :<T field identifier> (<reference expression>)
<T array designator3 ::=<T array identifier", (<subscript l|ist>)
<subscript |ist> ::= <subscript> | <subscript list>, <subscript>
<subscript> ::= <integer expressior>

22

r—

— r— r— r— 1

6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in the subscript list. The value of
each subscript nmust lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The sinple type of the field designator
is defined by the declaration of that field identifier in the record
class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Exanples

X A(T) M1+, 1-J)
FATHER (JACK) MOTHER (FATHER (JILL))

6.2. Function Designators

6.2.1. Syntax

<T function designator> ::= <T function identifier> | <F function
identifier> (<actual paraneter 1list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the follow ng steps
Step 1. A copy is made of the body of the function procedure
whose procedure identifier is given by the function designator

and of the actual paraneters of the latter

Steps 2, 3, 4, As specified in 7.3.2.

23

|
L

—

Step 5. The copy of the function procedure body, nodifed as in-
dicated in steps 2-4, is executed. The value of the function
designator is the value of the expression which constitutes or is
part of the nmodified function procedure body. The sinple type

of the function designator is the sinple type in the corresponding

function procedure declaration.

6.2.3. Exanples

MAX (X *%2, Y *%2)

SUM (I, 100, H1))

SuM (I, M, suM (J, N, A(I,J)))
YOUNGESTUNCLE (JILL)

SUM (1, 10, x(1) * Y(1))
HORNER (X, 10, 2.7)

6 .3. Arithmetic Expressions

6.3.1. Synt ax

In any of the following rules —eyvery occurrence of the symbol T
nust be systenmatically replaced by one of the follow ng words (or
word pairs):

i nt eger

rea

long rea
conpl ex

| ong conpl ex

The rul es governing the replacenent of the synbols TO,Tl and TQ are
given in 6.3.2.

<sinple T expressior> ::= <7 term> | + <7 term> | - <7 term>

24

r—

e

-

r——

r—

r—

r—

<sinple TO expression> ::= <sinple Tl expression> + <J, term>
<sinple Tl expression> - <:r2 term>
<J term> ::= <T factor>
<TO term> = <Tl tern> * <T, factor>
T, term> ::= <J, term> / <T, factor>
<integer term> ::= <integer term> div <integer factor>
<integer term> rem <integer factor>
<T, primary> |<Tl factor> ** <integer primary>
abs <7, primry> |@9§_<Tl nunber >
| ong <Tl primary>
short <3'l primary>

T
< 0 factor>

<J o Pr imary>
'<To pri mary>
<TO primary>

<T primry=> = <J variable> | <T function designator>
(<T expression>) | <T nunber >
<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithnetic expression is a rule for conputing a nunber.

According to its sinple type it is called an integer expression,
real expression, long real expression, conplex expression, or |ong

conpl ex expression.

6.3.2.1. The operators +, -, %, and / have the conventional neanings
of addition, subtraction, multiplication and division. |n the rele-
vant syntactic rules of 6.3.1. the synbols TO,Tl and T, have to be re-
pl aced by any conbination of words according to the follow ng table

whi ch indicates To for any conbination of Tl and Ty

Qperators + | -

T .
T 1 2 integer real complex
i nt eger i nt eger real conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

—

—

TO has the quality "long" if both Tl and s have the quality

"long", or if one has the quality "long" and the other is "integer".

Qperator *
T .
Tl 2 | integer real conpl ex
i nt eger i nt eger | ong real | ong conpl ex
real | ong real | ong real | ong conpl ex
conplex | long conplex long conplex long conplex

Tl or 52 having the quality "long" does not affect the type of

the result.
Qperator /
T T .
1 2] i nt eger real conpl ex
i nt eger real real conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

Jo has the quality "long" if both Il and 72 have the quality

“long", or if one has the quality "long" and the other is "integer" .

6.3.2.2. The operator "-" standing as the first symbol of a sinple

expression denotes the monadic operation of sign jnversion. The type
of the result is the type of the operand. The operator "+"' standing
as the first symbol of a sinple expression denotes the nonadic opera-

tion of identity.
6.3.2.3. The operator div is mathematically defined (for B # 0) as

Adiv B = SN (AXB) XD (abs A abs B) (cf. 6.3.2.6.)

26

e ey

— o r

~=

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);
if A<O0 then -1 else 1;

integer procedure D (integer value A B);
if A<Bthen O else (A-B, B) +1

6.3.2.4. The operator rem (renminder) is mathenetically defined as

—————

AremB=A-(AdivB xB

6.3.2.5. The operator ** denotes exponentiation of the first operand
to the power of the second operand. |n the relevant syntactic rule of
6.3.1. the synbol s To and Tl are to be replaced by any of the follow

ing conbinations of words:

J’O 3’1
real i nt eger
real real
conpl ex conpl ex

To has the quality "long" if and only if Tl does.

6.3.2.6. The nonadic operation abs yields the absolute value of the
operand. In the relevant syntactic rule of 6.3.1. the symbols TO and

Ii have to be replaced by any of the follow ng conbinations of words

3.O :rl
I nt eger I nt eger
real real
real conpl ex

| f Tl has the quality "long", then so does TO.

27

e

—

— r r r — -

6.3.2.7. Precision of arithnetic. |f the result of an arithmetic

operation is of sinple type real, conplex, long real, or |ong conplex

then it is the mathematically understood result of the operation per-
formed on operands which may deviate from actual operands.
In the relevant syntactic rules of 6.3.1. the synbols To and Tl

nust be replaced by any of the follow ng conmbinations of words (or

word pairs):

Operator long

TO j’l
long real real
long real i nt eger
long conplex | conplex

Qperator short

oo |
real long real
complex long complex

6.3.3. Examples

c + A(T) * B(I)
EXP (-X/(2 *SIGMA)) / SQRT (2 * SIGMA)

6.%. Logical Expressions

6.4.1. Syntax
In the following rules for <relation> the synbols TO and 3’1 must

either be identically replaced by any one of the follow ng words:

28

P o

r—

e

— r—

bi t
string
ref erence

or by any of the words from:

conpl ex

| ong conpl ex
real

| ong real

i nt eger

and the symbol's T, or T3 must be replaced by any of real, long real,

i nt eger.
<sinpl e | ogi cal expression> ::= <l ogi cal element> | <relatior>
<logical element> ::= <|ogical term> | <l ogical elenment2 or

<logical term>
<l ogi cal term> ::= <l ogical factor> | <l ogical term and
<l ogi cal factor>
<logical factor> ::= <logical primary> | = <logical primary
<l ogi cal primary> ::= <logical value> | <logical variable> |
<l ogi cal function designator> |
(<l ogi cal expressior>)
<relatior> ::= <sinple J'O expression> <equal ity operator>
<sinple T, expression> | <logical element,
<equality operator> <l ogical elenment> |
<reference expression> is <record class identifier> |
<sinple I, expression> <rel ational operator>
<simple T, expressior>
<relational operator> ::= < |<=|>=]>
<equal ity operator> ::= = |

- =

6.4.2. Semantics

A logical expression is a rule for conputing a l|ogical value.

29

NP

r—

-

-

6.4.2.1. The relational operators have their conventional meanings,
and yield the logical value true if the relation is satisfied for the
values of the two operands; odl$eer wi se. Two references are
equal if and only if they are both null or both refer to the sane
record. Two strings are equal if and only if they have the same

length and the same ordered sequence of characters.

6.4.2.2. The operators - (not), and, and or, operating on |ogical

val ues, are defined by the follow ng equival ences:

- X if X then false else true
Xand Y if Xthen Y else fal se
Xor'y if X then true else Y

6.4.3. Examples

PorQ

(X<Y) and (Y <2
YOUNGESTOFFSPRING (JACK) — = null
FATHER (JILL) is PERSON

6.5. Bit Expressions

6.5.1. Synt ax

<sinple bit expression> ::= <bit term> | <sinple bit expression>
or <bit term>

<bit term> ::= <bit factor> | <bit term> and <bit factor3

<bit factor> ::= <bit secondary> | - <bit secondary3

<bit secondary3 ::= <bit primary", | <bit secondary=> shl
<integer primary> | <bit secondary> shr_
<integer primry2
<bit primary> ::= <bit sequence | <hit variable> | <bit
function designator> | (<bit expression>)

20

r

r-

r— r— r—

6.5.2. Semantics

A bit expression is a rule for conputing a bit sequence.

The operators and, or, and - produce a result of type bits, every

bit being dependent on the corresponding bits in the operand(s) as

follows:
X Y - X Xand Y Xory
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the nunber of bit positions in-

dicated by the absolute value of the integer primary. Vacated bit

positions to the right or left respectively are assigned the bit value

0.

6.5.3. .Examples

Gand H or #38
Gand = (Hor G shr 8

6.6. String EXpressions

6.6.1. Syntax

<sinple string expressiom> ::= <string primary>

‘<string primery> ::= <string> | <string variable | <string
function designator> | <string variable>
(<integer expression> R <integer number>) |
(<string expression>)

31

r"'r"r =

6.6.2. Semantics

A string expression is a rule for conputing a string (sequence
of characters).
6.6.2.1. The integer expression preceding the § selects the starting
character of the sequence from the string variable specified. The
val ue of the expression indicates the position in the string variable.
The value nust be greater than or equal to 0 and |ess than the declared
length of the string variable. The first character of the string has
position 0. The integer number following the ® indicates the length
of the selected sequence and is the length of the string expression. The

sum of the integer expression and the integer nunber nmust be less than

or equal. to the declared length of the string variable.

6.6.3. Example

string (10) S

s (LB3)

s (+J B1)

string (10) array T (l::m,2::n);
T (4,6)(>85)

6.7. Reference Expressions

6.7.1. Syntax

<simple reference expressions> ::= <null reference> | <reference

variable> | <reference function

desi gnator> | <record designator> |

(<reference expression>)

32

e

<record designator> ::= <record class identifier> | <record
class identifier> (<expression list>)
<expression list> ::= <T expression> | <expression list>,

<T expressior>

6.7.2. Semantics

A reference expression is a rule for conputing a reference to a
record. Al sinple reference expressions in a reference expression
nust be of the sane record class

The value of a record designator is the reference to a newy
created record belonging to the designated record class. [f the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record. The entries
in the expression list are taken in the sanme order as the fields in
the record class declaration, and the sinple types of the fields nust
be assignment, conpatible with the sinple types of the expressions

(cf. 7.2.2.).

6.7.3. Exanple

PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRI NG
(JACK))

6.8. Precedence of Qperators

The syntax of 6.3.1., 6.4.1., and 6.5.1. inplies the follow ng

hi erarchy of operator precedences:

| ong, short, abs
shl, shr, *¥
/|

%, /, div, rem and

33

—

Exanpl e
A=Band C s equivalent to A= (B and C

STATEMENTS

A statement denotes a unit of action. By the execution of a

statement IS meant the performance of this unit of action which may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statenents.

7.1

Synt ax:

<program> ::= <bl oc&

<statenment> ::= <simple Statement, | <iterative statenent> |
<if statement> | <ease statenent>

<block> | <J assignnent statement> |

<empty> | <procedure statenent> |

<si npl e statement>

]

<goto St atenent>

Bl ocks

7.1.1. Syntax

<blockK> ::= <block body> <statement> end

<block body> ::= <bl ock head> | <bl ock body> <statement>; |
<bl ock body> <l abel definitiomn>

<bl ock head> ::= begin | <bl ock head> <declaration> ;

<l abel definition> ::= <identifier> :

7.1.2. Senmantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the follow ng steps:

3h

Fe

—

Step 1. If an identifier, say A defined in the block head or in
a label definition of the block body is already defined at the
place from which the block is entered, then every occurrence of
that identifier, A wthin the block is systematically replaced
by another identifier, say APRIME, which is defined neither

within the block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are eval uated.

Step 3. .Execution of the statenents contained in the block body
begins with the execution of the first statement follow ng the

bl ock head.

After execution of the last statenent of the block body (unless
it is a goto statenent) a block exit occurs, and the statenent follow

ing the entire block is executed.

7.1.3. Example

begin real U
u-:=; X =Y, Y:=2z;, z :=U
end

1.2. Assignnment Statements

7.2.1. Syntax
~In the follow ng rules the synbol s IO and Tl must be repl aced by
words as indicated in Section 1, subject to the restriction that the

type TO i s assignnment conpatible with the type Tl as defined in 7.2.2.

35

r—

e

—

— r—

<J, assignment statement> ::= <J_ left part> <J, expression> |
<?O |l eft part> <. assignnent
st at ement >

<T left parts ::= <7 variable> :=

1

7.2.2. Semantics
The execution of a sinple assignnent statenent

-<TO assi gnment statement> ::= <TO left part> <Tl expressi on>

causes the assignment of the value of the expression to the variable.

In a multiple assignnent statenent

(<i'rO assi gnnent statement> ::= <TO left part> <T1 assi gnnent
st at ement >)

the assignnents are performed fromright to left. The sinple type of
each left part variable nust be assignment conpatible with the sinple

type of the expression or assignmentvariable irmmediately to the right.

A sinple type TO is said to be assignnent conpatible with a

sinple type Tl if either

(L5 the two types are identical (except possibly for length
specifications), or

(2) TO is real or long real, and Tl is integer, real or long

real or

{3) To is conmplex or long conplex, and Tl is integer, real, long

real, conplex or long conplex.

In the case of a reference, the reference to be assigned nust

refer to a record of the class specified by the record class identi-

associated with the reference variable in its declaration

36

|
L

- —

rr— r r— r— [

e

13-

7.2.3. Exanples

Z := AGE(JACK) := 28
X :=VY +abs Z
C:=I+X+C
Pi=X=-=%Y

Procedure Statements

7.3.1. Syntax
<procedure statement9 ::= <procedure identifier> | <procedure
identifier9 (<actual paraneter list>)
<actual parameter list9 ::= <actual paraneter> | <actual para-
meter list9 , <actual paranmeter>
<actual paraneter> ::= <7 expression9 | <statenment9 | <J subarray
desi gnator9 | <procedure identifier> |
<T function identifier>
<J subarray designator9 ::= <J array identifier9 | <7 array
identifier9 (<subarray designator
list>)
Csubarray designator 1ist> ::= <subscript> | * | <subarray

designator list>,<subscript> l
<subarray designator list>,*

7.3.2. Semantics

The execution of a procedure statenent is equivalent to a process

performed in the foll owi ng steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the procedure statenent, and of

the actual paraneters of the latter.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by

37

step 1 of 7.1.2.

Step 3. The copies of the actual paraneters are treated in an
undefined order as follows: If the copy 1s an expression differ-
ent froma variable,, then it is enclosed by a pair of parentheses,
or if it is a statenent it is enclosed by the synbols begin and

end.

step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal parameter is replaced by the copy
of the corresponding actuai parameter {cf.7.3.2.1.). In order
for the process to be defined, these replacenents must lead to

correct ALGCL W expressions and statenents”

Step 5 The copy cf the procedure body, nodified as indicated in

steps 2 4, is executed.

7.3.2.1. Actuai-formal correspondence, The correspondence between
the actual paraneters and the forma. paraneters is established as
follows: The actual parameter list of the procedure Statement (or
of the function designator) nust have the sane number of entries as
the formal parameter iist of the proceaure declaration heading. The
correspondence is obtained by taking the entries of these two lists

in the sanme order.

7 3.2.2, Formal specifications. If a formal paraneter is specified
by value, then the formal type must be assignment conpatible with the
type of the actual parameter. If it is specified as result, then the

type of the actual varametar must be assignment conpatible with the

38

J—

— —

——

.

formal type. In all other cases, the types nust be identical. |f an
actual parameter is a statement, then the specification of its corre-

sponding formal paraneter must be procedure.

7-3.2.3. Subarray designators. A conplete array may be passed to a
procedure by specifying the name of the array if the nunber of sub-
scripts of the actual paranmeter equals the nunber of subscripts of

the corresponding fornmal. parameter. |f the actual. array parameter has

more subscripts than the corresponding formal paraneter, enough sub-

scripts must be specified by integer expressions so that the number of
¥'s appearing in the subarray designator equals the number of sub-

scripts of the corresponding formal parameter. The subscript positions
of the formal array designator are matched with the positions with *'s

in the subarray designator in the order they appear.

7.3.3. Examples

TNCREMENT
COPY (A, B, M, N)
INNERFRODUCT (I, N, A(I,*), B(*,J))

+ . Goto Statenents

7.4.1. Syntax

<goto statement> ::= poto <label identifier> | go to <l abel
identifier>

7 4.2. Semantics

An identifier is called a label identifier if it stands as a

label,

39

A goto statement determnes that execution of the text be contin-
ued after the label definition of the label identifier. The identifi-

cation of that label definition is acconmplished in the follow ng steps:

Step 1. If sonme |abel definition within the nmost recently acti-
vated but not yet termnated block contains the l|abel identifier,

then this is the designated |abel definition. Cherwise,

Step 2. The execution of that block is considered as term nated

and Step 1 is taken as specified -above.

T7.5. |f Statements

7.5.1. Syntax

<if statement> ::= <if clause <statement> | <if clause>
<sinple statenent> else <statenent>

<if clause> ::= if <logical expression> then

it

7.5.2. Semantics
The execution of if statements causes certain statements to be
executed or skipped depending on the values of specified |ogical ex-

pressions. An if statement of the form
<if clause=> <statenent>

Is executed in the follow ng steps:

Step 1. The logical expression in the if clause is eval uated.

step 2. If the result of Step 1 is true, then the statenent
following the if clause is executed. Qherwise step 2 causes

no action to be taken at all.

40

An if statement of the form
<if clause> <sinple statement> else <statenent>
Is executed in the follow ng steps:
Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the sinple state-
ment following the if clause is executed. Qherwi se the state-

ment following else is executed.

7.5.3%. Exanples

if X =Y then goto L
IfX<YthenU :=X else if Y <:ithen U:=Y else V:=Z

7.6. Sd4satements

7.6.1. Syntax

<case statenent> = <case clause> begin <statement |ist> end
<statement list> ::= <statement> ! <statenment |ist> ; <statement>;
<case clause> ::= case <integer expressiom> Of

7.6.2. Semantics
The execution of a case statement proceeds in the follow ng

st eps:
Step 1. The expression of the case clause is eval uated.

~ Step 2. The statement whose ordinal number in the statement |ist
Is equal to the value obtained in Step 1 is executed. In order
that the case statement be defined, the current value of the ex-

pression in the case clause nmust be the ordinal nunmber of sone

41

-

statenent of the statement list.

7.6.%. Exanples

case | of

begin X := X + Y;
Y := Y + 23
Z =72 +X

end

case j of

" begin_E-: (1) := -E(1);

begin H(1-1) := B(1-1) + H(1); | :=1-1 end;
begin H(i-1) := H(I-1)xH(I); I := I-1 end,

begin, H(H(1-1)) := H(1); | :=1-2 end
end

|terative Statenents

7.7.1. Syntax
<iterative statement> ::= <for clause> <statement> | <whil e
clause> <statement>
<for clause> ::= for <control identifier> := <initial value
step <increment> until <limit> do lfj!_
<identifier:> := <initial value until <limit>

do | for <identifier> := <for list> do
<for list> ::= <integer expression> | <for list>, <integer
exprassior>
<initial value> ::= <integer expressiom>
<increment;> : := <integer expressior>
<limt> ::- <integer expressiom-

<while clause> : := ghile <l ogi cal expressior> do

7.7.2. Semantics

The iterative Statement serves to express that a statenent be

42

Fros

executed repeatedly depending. on certain conditions specified by a
for clause or a while clause, The statenent following the for clause
or the while clause always acts as a block, whether it has the form of

a block or not. The value of the control identifier cannot be changed
by assignnment within the controlled statenent.
(a) An iterative statenent of the form

for <control identifier>:=E step E2 until E3 do <statenent>

Is exactly equivalent to the block
begin <statement-D, <statement-D ... ; <statenent-D
; <statenment-D end

in the Ith

statement every occurrence of the control identi-
fier is replaced by the reference denotation of the value of the
expression El + Ix E2, enclosed in parentheses.

The index N of the last statenent is determned by
N < (E3-E1) / E2 < N+1. If N< 0, then it is understood that
the sequence is enpty. The expressions El, E2, and E3 are evalu-

ated exactly once, nanely before execution of <statement-0>.

(b) An iterative statement of the form

]

for <control identifier> El until E3 do <statenment>
is exactly equivalent to the iterative statenment

for <controi identifier>:= E step 1 until E3 do <statement>

(c) An iterative statement of the form
for <control identifier> :=FE, E2,..., EN do <statenent>

IS exactly equivalent to the block

43

begin <statenent-D; <statenent-B . . . <statenment-* ;.
<statement - N> end

when in the ©*® statement every occurrence of the control identi-
fier is replaced by the reference denotation of the value of the
expression EIi.

(dj An iterative statenent of the form
while E do <statement>
is exactly equivalent to

if Ethen
begi n <statement> ;
while E do <statenent>

end

7.7.3. Exanples
for 7:-. 1 step 1 until NI do S:=S+ AU V)

while (7> 0; and (¢1T¥(7) = = S)do J := J-|

for T :=X, X+ 1, X+ 3, X +7do 2(I)

7.8. Standard Frocedures

The standard procedures differ from explicitly declared procedures
in that they may have one or nore paraneters of mxed sinple type.

n the following descriptions T is to be replaced by any one of

i nt eger bits
real. string
long real.

conpl ex

| ong complex

Ly

7.8.1. Read Statenents

l

Tmplicit dec laration headi ng:
Y

procedure read (7 result X, T result X,..., T result X Js

procedure readon (T result x,, 7 result X, ..., 7T result X);

17
(where n > 1)

Both read and readon designate free field read statenents. The
quantities on the data cards nust be spearated by one or nore blank col-
umns . All 80 card colums can be used and quantities extending to coi-
umn 80 on one card can be continued beginning in colum 1 of the next
card. In addition to the nunbers of 4.1., nunbers of the follow ng
sytactic forms are acceptable quentities on the data cards:

1) <sig> <7 nunber>

where 7 is one of integer, real, long real, conplex, long conplex.
2) <sigm> <J, number> <sigr> <°J‘l nunber >

wher e ;TO is one of integer, real, long real, and 3‘1 is one of

conpl ex,, long conpl ex.

The quantities on the data cards are matched with the variables of
the variabie list in order of appearance. The sinple type of each quan-
tity read must be assignnent conpatible with the sinple type of the
variabl e designated. The read statenent begins scanning for the data
on the next card. The readon statement begins scanning for the data
where the last read or readon Statement finished.

7.8.1.2. Exanples

read (x,AlI))
for T :=1 until N do readon {(A(I}

L5

7.86.2. Wite Statenents
Implicit declaration heading:
procedure Wite (T value X, 7 value X2, ..., 7 value Xn);

(where n > 1)

The values of the variables are output in the order they appear

in the variable list in a free field form described below. The first
field of each WRITE statement begins on a new line. |f there is insuffi-
cient space remaining on the 132 character print line for a. new field,
that line is printed and the new fisld starts at the beginning of a new
print line.

integer: right. justified in field of 14 characters followed by 2
blanks. Field size can be changed by assignnment to intfieldsize

real: same as integer except the field size cannot be changed,

long real.: right justified in field of 22 characters followed
by 2 blanks .
conplex:: two adjacent real fields always on the sane line

long conplex: two long real fields adjacent always on the sane

line.

logizal: TRUE or FALSE right justified in a field of 6 characters
foil-owed by 2 blanks.

string: placed in a field large enough to contain the string
and may extend to a new line if the string is larger
than 132 characters.

bits: sane as real.

ref erence: sanme as real.

8. STANDARD FuncTIONS AND PREDECLARED | DENTI FI ERS

8.1. Svandard Transfer. Functions
Inplicit declaration headings

L6

integer procedure round (real value Xj;
i nteger procedure truncate (real value X);
i nteger procedure entier (real value X);
real procedure realpart (conplex value X);
| ong reai procedure longreal part (long conplex value X);
real procedure imagpart <conplex value X);
long real procedure |ongimgpart (long conplex value X);
conpl ex procedure img (real value X);
conment conpl ex nunber Xl ;
| ong conpl ex procedure longimag (long real value X);
| ogi cal procedure odd (integer value X);
bits procedure bitstring (integer value X);
comment binary representation of nunber X
i nteger procedure nunber (bits value X);
comment integer with binary representation X;
integer procedure decode (string (1.) value S);
comment nuneric code of the character S
string (1) procedure code (integer value X);
comrent character whose numeric code is X REM 256;

8.2. Standard Functions of Analysis

real procedure sin (real value X);
long real procedure longsin (long real value X);

real procedure cos (real value X);

-long real procedure longcos (long real value X);

real procedure arctan (real value X);
coment -n/2 < arctan (X) < n/2;

long real procedure |ongarctan (long real value X);
coment -n/2 < longarctan (X) < x/2;

real procedure In (real value X);
conment | ogarithm base e;

long real procedure longln (long real value X);
conment | ogarithm base e;

r-.«’v?;—,

8.3.

real. procedurs Log (real value 7);

comment ' Logarithm base 1¢;
| ong real procedure longlcg (long real value X);

commpent, Logarithm base 10
real procedure exp (real, value X);
long real precedure longexp (1ong_real. value X);
real procedure sqrt (regl value x);
long real procedure longsgrt (lorg yeal_value X);

C ome nt principal square root,
long compiex procedure longcomplexsqrt (1ong conplex val ue X);

comrent principal square root ,

Overflcw and Underflow

8.3.1. Predeczlared Variables

logi cal underfiow;
comment initialized to false, Set to frue at occurrence
of a fioating pci 3. -underfiow interrupt;

overflow;
comment initialized tO false. Se-t, %o true at occurrence

of" a f icat ing-point Or fizeé-vpoint overflow or divide-by-

zero interrupt ;
8.%.2., Standard Message Function

intsger QLEEﬁgigig,angleve; (;qtgggrwvgligi_X);
comrent The vaius of a system integer variable MSG controls
the number Of underfiow/overfiow nessages printed during
program execution. MSG is initialized tO Zzero.

MG £ 0

No messeges ale prioted

r——

MEG > 0
Underflow and overflow nessages are printed
After each message is printed, MSGis decreased by 1.

MEG < 0
Overflow messages are printed. After each nessage

Is printed, MsG is increased by 1.

Each nessage gives the type of interrupt and a source card number

near which the interrupt occured.

Exanpl es

OVERFLOW NEAR CARD 0023
UNDERFLON NEAR CARD 0071
DIV BY ZERO NEAR CARD 0372

The predeclared integer procedure nsglevel is used to interro-
gate and to set the value of MSG The ol d value of MG is the value
of the procedure nsglevel, and the new value given to MSG is the

val ue of the argunent of nsglevel

8.4, Qutput Field Sizes

integer intfieldsize;
conment indicates nunber of digits including mnus sign if
any, Initialized to 14; can be changed by assignment state-

nen-t;

8.5, Fumction

i nteger procedure time (integer value X)

comment if X =1, tine is returned in 6oths of a second.
If X =2, timeis printed in ninutes, seconds and 60thg of
a second and returned in 60ths of a second.

49

UNIT RECORR EQUIPMENT *

COMPUTATION CENTER
CAMPUS FACILITY
STANFORD UNIVERSITY

*Reprintedfrom the Campus Facility USERS MANUAL. December 196%

2.2.2 Unit Record Equi pnent

Necessary unit record equipment ;¢ ,uaijable in Pine Hall, and may

be operated by Users to prepare and correct punched cards and Iist,
interpret and dupli ’ . .

| Y uplicate punched card decks. PBrj ef operating instruc-
tibns appear below. The personnel in Dispatch will be happy to assist
the User in learhing how to use and operate the machines. A word of
caution -- in the event of a card jamor machine failure, contact a
Dispatch clerk inmediately and do not attenpt to clear the failure or

jam

'L, 519 Reproducing Punch

Operating
Controls
and
Indicators
Punch
Read ~Stacker
Stacker
Comparison
Indicator
Control
Panel ~

2-7

To duplicate a deck, place the source cards into the READ FEED with the
top of the cards, face down and toward your right. In the same way,
place a supply of blank cards in the PUNCH FEED. (Qpen the CONTROL
PANEL cover, insert the 80 X 80 DUPLI CATE Control Panel and then
reclose the cover. Control panels should be handled with care. Hold.
down the START key for a couple of seconds. The cards will begin feed-
ing and will fall into their respective STACKERS. Al ways stop the ma-
chine to replenish the blank card or source card supply. Wen the |ast
source card has been read, renove the remaining cards fromthe PUNCH
FEED and hol d down the START key a few seconds until all cards are in
.the STACKERS.

Cards can be duplicated in colums 1-76 and punched with new sequence
nunbers in colums 77-80. On the Col. |-76 DUPE and 77-80 NEW SEQ Contr ol
Panel select the switch setting desired: count by units or count by 10's.
On a blank card, keypunch the starting nunber you want in your deck,

into colums 77-80. Put this card in front of your blank card supply

and then load and operate the machine as explained for 80 X 80 dupli-
cating. WARNING The 519 Reproducing Punch cannot be used to reproduce
bi nary cards.

For comparing, the "Conpare" Control Panel is used. The master deck is
put in the left-hand feed, and reproduced deck in the right-hand feed.
The machine will stop and the red "ERROR' light will glow, if a dis-
crepancy is encountered.

2-8

2. 557 Interpreter

Frint Position
" Diali

Card
-Hopper

Entry
Switch

Control
Panel

The interpreter reads information punched into a card and prints it on
-the card at the rate of 100 cards per mnute. Up to 60characters can
be printed in a single pass through the machine. The remaining 20

characters on the card can te printed Oon a second pass. Pprjnting
be positioned on the card s azy one or' 25 lines. This machine is not

yet equi pped to inter wst: ali %60/67 code .

can

r— r— r—

r— r

rS—
(

— r—

perating |Instructions

0

Be sure the main power switch on the right-hand end of the machine
near the hopper is in the "ON' position, and verify that the proper
control board is in the machine.

Joggle the cards into perfect alignnent, and place them face down
in the hopper with the 12-edge inward (to the left).

Set the printing position control (the clear plastic knob with
nunbers on the edge) to the desired print line. Line No. 1is
above the 12-line on the top edge of the card; line No. 2 is the
12-punch line; line No. 3is between the 11 and 12 punch Ii nes,
etc. The odd-nunbered lines (3through 23) are between the punch
l'i nes.

Set the "ENTRY" toggle switch at the right-hand end of the controls
to the "UP" position for entry 1 (the first 60characters), or the
"DOM" position for entry 2 (the remaining 20 characters), and push
the black "START" button.

The machine will interpret the punches in the cards, which wll
emerge in their original order in the stacker.

The machine will stop automatically when the final card has been
interpreted, when the stacker is full, if the feed mechanism fails
or if the "STOP" button is pushed.

A special control board is provided for interpreting binary cards.

-

82 Sorter

Sort Brush Feed Hopper

Column-Selector Handle\\ -‘—» Hand Feed

Wheel

Selection
" Switches

//////// g . ~ ; Main-Line

;"E { ’l _l “‘f R : | f Switch

Start and
Stop Keys

Pockets

The sorter arranges punched cards in either alphabetical or nunerica
sequence, sorting a single colum at a tine.

perating Instructions

O

Be sure the main power supply switch on the right-hand side of
the machine is "ON'.

After a 2-mnute warmup period, press the "START" key to clear
the machine of any cards left by the previous User.

Joggle the cards into perfect alignment and place themin the

hopper at the right-hand end of the machine, then put the card
weight on top of the stack. The cards nust be face down with

the o-edge toward the throat (left).

2-11

Set the control switches as follows:

a) The "SORTI NG SUPPRESSI ON' toggle switch should be set at "OFF".

b) The "CARD COUNT" toggle switch (black) should be "ON' if a card
count is desired, and the counter manually set to zero.

c) The "COLUW | NDI CATCR' (the crank above the sel ection switches)
is set to the card colum to be sorted. Sorting is done one
colum at a tine.

d) The "SELECTION SWTCHES' are set as foll ows:

NUMERIC SORTI NG

Al tabs set away
fromcenter ring

ALPHABETI C SORTI NG -

Move red tab to for sorting out zone (0,11 and 12)
center ring punches only. Cards without a zone
punch are rejected.

The, cards with ietters Al are put
into the 12 pocket. The cards with
J through R are put into the 11-
pocket, and those with S through z
go into the zero pocket. Cards with
nureral s and bl ank go to pocket R

Mve red tab away from Sort the cards with the letters
center ring A-1, J-R and S-Z separately.

Press the "START" button until the machine starts feeding cards from

the bottom of the stack. Each card passes under the brush head,
whi ch deternmines which of the 13 stacker pockets will accept it,
There is a pocket for each punch position in the card, and a reject
pocket for cards wthout a valid punch in the colum being sorted.

The machine will stop when a pocket is full, when the hopper is empty,

when the cover over the brush is raised, or when the "STOP" button
I's pressed.

2-12

<
3]
c
>
of
W,
X
o
Q
O
=

—d

—

2-13

(-

—

Key ALPHABETIC NUMERIC
Number | Card Code Graphic Cord Code Graphic
1 11-8 Q 12-8-6 +
2 0-6 w 0-8-5 -
3 12-5 E 11-8-5)
4 11-9 R 12-8-2 ¢
5 0-3 T 0-8-2 0-8-2
é 0-8 Y 12-8-7 |
7 12-1 A none none
8 0-2 S 0-8-6 >
9 12-4 - D 8-2 :
10 12-6 . F 11-8-6 H
. n 12-7 G 11-8-7 4
12 12-8 H 8-5 '
13 0-9 z none none
14 0-7 X 0-8-7 ?
15 12-3 C 8-7 "
16 0-5 \' 8-6 =
17 12-2 B 11-8-2 t
19 11-5 N 12-8-5 (
2 1A P 120 &
/ 0
21 0-4 V) 1 1
22 12-9 | 2 2
23 11-6 o 3 3
24 11-1 J 4 4
25 11-2 K 5 5
74 11-3 L) 6
28 11-4 M 7 7
0-8-3 ’ 8 8
29 12-8-3 . 9 9
33 n - 1 -
40 8-4 @ 8-3]
4 0-8-4 % 0-8-3 s
42 11-8-4 * 11-8-3 $
Qa 12-8-4 < 12-8-3 .

Key Graphics and Punched-Hole Codes

"

Cards can be punched under "manual" control or " progranf control.
"Progranm controlled punching is advisable when preparing a large
number of cards all with a similar format. "Manual" punching is
sinple and is recommended when a few or randonly formatted cards

are to be prepared.

Manual Control Punching:

a) Put the supply of cards to be punched into the hopper on the
upper right-hand side of the machine.

-b) Turn the three sw tches "AUTO FEED","AUTO SKIP","AUTO DUP", and
"pRINT" tO the "ON' position..

c) Press the "FEED' key at the right of the keyboard'tw ce. This
will bring down two cards. The first card is ready for punching.

d) If you punch through col. 80the machine will automatically

eject the card punched, position the next card for punching and
feed another card.

2-14

]

e

e) If you want to eject a card before reaching col. 80, manual:,y
press the "REL" key.

f) Wien punching a very few cards, you'can insert cards into the
punch station at the right of the machine. Press "REG" and begin,
punchi ng,

g) To duplicate a card, put a blank card in the punch station and
the source card in the read station (to the left) and then press
"REG" . Next, hold down the "DUP" key for contirmous duplicating,
or use the "DUP" key to duplicate colum by colum. This procedure
is commonly used to correct punching errors.

" Program Control | ed Punchi ng

a) Preparing a "progrant card. In the programcontrol node, the
' program card controls the format of the cards and the characters
(al phabetic or nuneric) to be punched.
1) Program control synbols
1 This punch allows punching of al phabetic characters
b A bl ank colum allows punching of nuneric characters

0 This symbol causes duplicating fromthe colum at
the read station to the colum at the punch station

A 2-punch causes printing of |eading zeros and all
characters

+ A + synbol in each colum in the field, except the
first, defines a field.

015

r~—— r—

r—

~—

r—

— o

o

—

2) This exanple of a programcard shows all common conbinations
»or codes and their resultant products.

[TOBRLRE, RN AP
0 0 00 000 00 UDGUUUDUUUDUUDUDDUU through ?O will skip out

v 0 U

000000000000~000

12345878 90N2DUIBHBNMINDN222320252627 282930 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 6 67 68 69 70 71 7273 74 7576 77 78 79 80
i11121212112117111111~2121211121212212121111112122111111112211111111212111111111211111111111111111~

222002221222222222222222222222222222
YA FATaN Pl

00 © ' ‘\

L

0000000000000000000000ﬂﬂﬂ000000000ﬂﬂ0000@000000000000000000000000000000000000'00
12345670 310N12131151617101920212223240252527282930 31 32 33 34 35 3 3 38 39 4041 42 43 44 45 45 47 43 49 50 51 52 5 54 55 56 57 58 59 60 6162 63 64 65 65 67 68 63 70 71 72 13 74 75 76 77 78 79 80
llll|11IEI1|lllllllllllllllllllllllll|III|1llllllllllllllllllllllillllllllllllll

2222222220220222
3333B33333ﬂ3333333333333}333
44444444444@44
55555555555555ﬂ555
6566BBSBBESGGDGG68656656666656S666686686BB68B68566568668666686656666666665666668
7D77717777177777777777
88888888888888888888!388388888888888388888

9 9999989999999999999 999999999999999999999999989 33 ?wslgzgsg‘ggeﬁﬂlamq'ﬁ9999999999

12033 567 6 90 NI 1819°20°20 2°20- 242526 2020 2530902233 H-35°36 37 3839 4041 42 43 4445 46 4) 46 43 50 5 5 664’69 PRSI TN
“w I1BM 5081)

o The keypunch is designed for punching and duplicating only those
characters contained on the keyboard. Heavily coded cards (e.g.,
cards with nmore than 3 punches per colum) cannot be duplicated
on the *machines.

o Pl ease renmenber to consider the other users and clean up the
machi ne before leaving it. Dispose of cards in a nearby "CARD

di sposal can."

o See the Dispatchers for assistance with keypunch machines and to
report failures.

r—

e

— r-

r-——

ALGOL W

ERROR MESSAGES

by

Henry R. Bauer
Sheldon Becker
Susan L. Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

T

r—

—

r— r—

[

ALGOL W ERROR MESSAGES

PASS ONE MESSAGES

Al Pass One nessages appear on the first page follow ng the pro-

gram listing. The message format is

CARD N0 (nunber) --

(message)

The (nunber) corresponds to the card nunber on which the error

was found. The (nessage) is one of those listed bel ow

| NCORRECT SPECI FTN

| NCORRECT CONSTANT
M SSING END
M SSI NG BEG N

M SSI NG)
| LLEGAL CHARACTER

M SSI NG END .

STRING LENGTH ERRCR

BITS LENGTH ERROR

M SSI NG (
OOWPI LER TABLE OVERFLOW

syntactic entity of a declaration is
incorrect, e.g. variable string length.

syntax error in nunber or bitstring.
an END needed to close bl ock

an attenpt to close outer block be-
fore end of code.

) i's needed.

a character, not in a string, is
unrecogni zabl e.

program nust conclude with the se-
quence END .

string is of 0 length or length
greater than 256.

bits constant denotes no hits or
nore than 32 bits.

(is needed

termnating error — a conpile time
tabl e has exceeded its bounds.

—

— o

TOO MANY ERRORS the maxi mum nunber of errors for Pass
One records has been reached. Com
pilation continues but nessages for
succeeding errors detected by Pass
One are suppressed.

| D LENGTH > 256 more than 256 characters in identifier.

1. PASS TWD MESSAGES

The format of Pass Two error messages is

(message), CARD NUMBER IS (nunber). CURRENT SYMBOL IS (incom ng
synbol).
If a $sTACK card is included anywhere in the source deck, the

SYNTAX ERROR nessage is followed by

STACK CONTAI NS:
(beginning of file)

<symbol-1>

<synmbol -0 (top of stack)

The symbol names may differ somewhat from the metasynbols of
the syntax.

If any Pass One or Pass Two errors occur, conpilation is term-
nated at the end of Pass Two.
| NCORRECT SIMPLE TYPE <nunber > <sinple type> of entity is inproper

as used. Number indicates explana-
tion on list of sinple type errors.

| SR

r - r rr

rm

| NCORRECT TYPE

M SMATCHED PARAMETER

MULTI PLY- DEFI NED SYMBCOL <i den-
tifier>
UNDEFI NED SYMBOL <identifier>

| NCORRECT NUMBER OF ACTUAL
PARAMETERS

| NCORRECT DI MENSI ON

DATA AREA EXCEEDED
| NCORRECT NUMBER OF FIELDS

| NCOVPATI BLE STRING LENGTH

| NCOVPATI BLE REFERENCES
BLOCKS NESTED TOO DEEP

REFERENCE MUST REFER TO RECCRD
CLASS

EXPRESSI ON' M SSING |N PROCEDURE

BODY

a variable, |abel, procedure, record
field, record, array, standard func-
tion, standard procedure or contro
identifier is used inproperly.

formal paranmeter does not correspond
to actual paraneter

synbol defined nore than once
in a block.

synbol is not declared or defined.

the nunber of actual parameters to

a procedure does not equal the number
of formal paraneters declared for

the procedure.

the array has appeared previously
with a different number of dimensions

too many declarations in the block.

the nunber of fields specified in a

record designator does not equal the
nunber of fields the declaration of

the record indicates.

|l ength of assigned string is greater
than length of string assigned to.

record class bindings are inconsistent.

bl ocks are nested nore than 8 |evels.

reference nust be bound to a record
cl ass

body of typed procedure nust end with
an expression.
3

e

r

—

RESULT PARAMETER MJUST BE <T VAR> the actual parameter corresponding
to a result formal paraneter nust
be a <T VARIABLE>.

PROCEDURE BCDY LACKS SI MPLE TYPE proper procedure ends with an ex-
pressi on.

<SYMBOL-1> UNRELATED TO <SYMBOL-a the synbol at the top of the stack
(<SYMBQL-i,) should not be fol |l owed
by the incom ng synbol (<SYMBCL-a).

SYNTAXERRCR construction violates the rules of
the grammar. The input string is
skipped until the next END, ";",
BEG N, or the end of the program
More than one error message may be
generated for a single syntax error.

Sinple Type Errors

25. Upper and |ower bounds nust be integer.

29. Upper and |ower bounds nust be integer.

32 Sinple type of procedure and sinple type of expression in pro-
cedure body do not agree.

71. Substring index nust be integer.

73. Variable before '(' nust be string, procedure identifier, or array
i dentifier.

T4 . Substring length nust be integer

76. Field index nust be reference or record class identifier.

77. Array subscript must be integer.

81. Array subscript nust be integer.

84. Actual paraneters and formal paranmeters do not agree.

88. Actual paraneters and fornal paranmeters do not agree.

93. Expressions in if expression do not agree.

9k . Expressions in case expression do not agree.

% . Expression in if clause nust be |ogical.

{

— -

—

98.

99.
101.

102.

103.
106.
107.

108.

109.

110.
112.

117.

118.

119.

120.
121.

123.
125.

126.

130.
13k,
135,
136.
148.

181.

182.
188.
190.
191.
193.

Expressions in case expression do not agree.

Expression in case clause nust be |ogical.

Argunments of= or— = do not agree.

Argunments of relational operators must be integer, real, or
Long real.

Argument before is nust be reference.

Argunent of unary + nust be arithnetic.

Argument of unary - nust be arithnetic.

Argunments of + nust be arithnetic.

Argunents of - nust be arithnetic.

Arguments of or nust be both |ogical or both bits.

Record field nust be assignment conpatible with declaration.

Argunments of * nust be arithnetic.

Argunents of / nust be arithmetic.

Argunents of div nust be integer.

Argunents of rem nust be integer.

Arguments of and nust be both |ogical or both bits.

Argunment of - nust be logical or bits.

Exponent or shift quantity nmust be integer; expression to be
shifted nust be bits.

Shift quantity nust be integer; expression to be shifted nust be
bits.

Actual paraneter of standard function has incorrect sjnple type.

Argunent of long nust be integer, real, or conplex.

Argunent of short nust be long real or |long conplex,

Argunent of abs nust be arithnetic.

Record field nust be assignnent conpatible with declaration.

Expression cannot be assigned to variable.
Result of assignment cannot be assigned to variable.

-Limt expression in for clause nust be integer.

Expression in for list nust be integer.

Assignnent to for variable nust be integer.

Expression in for list nmust be integer.

Step elenment nust be integer.

Expression in while clause nust be |ogical.
5

¢
-

r r——

r

r— r

r—

III. PASS THREE ERROR MESSAGES
The form of Pass Three error nessages is

**6xx (message)
*%%x%x NEAR CARD (nunber)

The nunber indicates the nunber of the card near which the error
occurred. The nessage may be

PROGRAM SEGVENT OVERFLOW the amount of code generated for a
procedure exceeds 4096 bytes.

COWPI LER STACK OVERFLOW constructs nested too deeply.

CONSTANT PO NTER TABLE TOO LARGE too nmany literals appear in a pro-
cedure.

BLOCKS NESTED TOO DEEP parameters in procedure call are nested

too deeply; procedure calls in block
nested too deeply.

DATA SEGVENT OVERFLOW too many variables declared in the
bl ock.

lv. RUN TIME ERROR MESSAGES

The form of run error nmessages is

(segment nunber) (nmessage) RUN ERROR NEAR CARD (nunber)

SUBSTRI NG | NDEXI NG substring selected not within named
string.
CASE SELECTI ON | NDEXI NG index of case statement or case ex-

pression is less than 1 or greater
than nunber of cases.

ARRAY SUBSCRI PTI NG array subscript not wthin declared
bounds.

6

—

—

—

LOAER BOUND> UPPER BQOUND

ARRAY TOO LARGE
ASSI GNMVENT TO NAVE PARAMETER

DATA AREA OVERFLOW

ACTUAL- FORMAL PARAMETER M SVATCH
| NFORVAL PROCEDURE CALL

RECORD STORAGE AREA OVERFLOW

LENGTH OF STRING | NPUT

LOG CAL | NPUT

NUMERICAL INPUT

REFERENCE | NPUT
READER ECF

REFERENCE

| ower bound is greater than upper
bound in array declaration.

array must have fewer elenents:

assignment to a formal name parameter
whose correspondi ng actual paraneter
s an expression, a literal, control
identifier, or procedure nane.

storage available for program execu-
tion has been exceeded.

the nunber of actual paraneters in
a formal procedure call is different
from the nunber of formal paraneters
in the called procedure,: or the
paranmeters are not assignment com
patible.

no more storage exists for records.

string read is not assignnent com
patible with corresponding decl ared
string.

quantity corresponding to |ogical
quantity is not true or false.
numerical input not assignment com
patible with specified quantity.
reference quantities cannot be read.

a system control card has been en-
countered during a read request.

the null reference has been used to
address a record, or a reference

bound to two or nore record classes
was used to address a record class

to which it was not currently pointing.

7

