
AiGOL w

NOTES

DECK SET-UP

LANGUAGE DESCRIPTION

UNIT RECORD EQUIPMENT

\> ERROR MESSAGES
1

pp. 1 to 40

P?v 1
pp. 1 to 49
pp. 2 - 7 to

2 - 16
pp. 1 to 7

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

JANUARY 1968

$2.25

.

-

ALGOL W NOTES

FOR INTRODUCTORY

COMPUTER SCIENCE COURSES

Henry R. Bauer
ShelIdbn. Becker

Susan Lo Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

JANUARY 1968

-
Introduction

-
The textbook Introduction to AIGOL by Baumann,Feliciano, Bauer,- -

and Samelson describes the internationally recognized language ALGOL 60

for algorithm communication. ALGOL W can be viewed as an extension of

t- ALGOL.

Part I of these notes describes the differences between similar

C
constructs of the two languages.

-
, For clarity, Part I is numbered according to the sections of the

textbook. In general only differences are mentioned; items which are

L the same in both languages are usually not discussed.

/
L

Part II presents some of the details concerning the new features

of AIXOL W. A complete syntactic and semantic description of these

constructs as well as of all others in the language is available in

"ALGOL W Language Description".

L

i

1. Basic Symbols of the Language

L

1.1. The basic symbols

1.1.1. Letters

Only upper case letters are used.

1.1.3. Other symbols

The following are the same in ALGOL 60 and ALGOL W.

+- .,/

:= ;

(> 1

s<>

The following are different in the two languages. The

correspondence between the symbols is shown in the following

table:

AIGOL 60 AIGOL w
L

10 I

X *
i-

t **

1
i

>
t 9 !I

.

7

5

3

V OR

DIV

no equivalent

2

-

AIGOL 60 ALGOLW

h AND

IA one blank space

f I=

< <=

> >=

: : or :: (cf. section 6.1 and 4.2.1)

no equivalent I #

All characters indicated for AIGOL W are on the IBM 029

key-punch.

The significance of spaces in AIGOL W will be discussed in

subsequent sections.

1.2. Numbers

A number is represented in its most general form with a scale

factor to the base 10 as in conventional scientific notation.

EXAMPLE 3.164981’-4 means 3.164981~10-~

This is often called the floating point form. Certain abbreviations

omitting unessential parts are permissible.

EXAMPLES 77 317.092 126 t 04

551 .5384 04.719'2

‘30 0.710 9.123'+1

L ’ -7 0 2’-6

t -3 009.123 f+oi 2.0’-06

To represent a long floating point (cf. Section 2.3.1) number an

3

L must be added as part of the number specified,

i EXAMPLFJS 77L .3:170 0921; 126:04~

In AI1C;OL W, complex numbers (short and long forms) may be used,

The imaginary part of a complex number is written as an unsigned real

number followed by an I.

EXAMPLES 41 4081 kc-51

* Long imaginary numbers are followed by an L,

Numbers may be writs-ten in a variety of' equivalent forms

!

EXAMPLE 12’ob z .12*6 z 1.2fo5 - 120000.0

1
No spaces may appear within an unsigned number, The magnitude of

c
,
I

I
L

an integer or the integer part before the decimal point in a floating

point number must be less than or equal to 2147483647. The magnitude

of.' a nc;n-zero f.i.oating point number must, be between approximately

t
i 504 x 10-'79 75and 7 x 10’ (:?/16 x ,6-64 and (1-16 -6 6-3 \) x 16 /,,

i 0.5 0 Identifiers
i

i

f
i

I

A le-f;ter followed by a sequence of letters and/or digits constitutes

an identifier, Identifiers may be as short as one letter or as long

as 256 letters and digits,

- Identifiers may be chosen freely and have no inherent meaning.

L However, AXOL W recognizes a set of' reserved words which must not 'be

llsed as identifiers,,

L
z

/

L 4

RESERVED WORDS

ABS

AND

ARRAY

BEGIN

BITS

(-JqS~

COMMENT

COMPLEX

DIV

DO

ELSE

EXD

FALSE

FOR

GOT0

GO TO

IF

INTEGER

IS

LOGICAL

LONG

NULL

OF

OR

PROCEDURE

REAL

RECORD

REFERENCE

RESULT

SHL

SHORT

SHR

STEP

STRING

THEN

TRUE

UNTIL

VALUE

WHILE

Spaces are used to separate reserved words and identifiers from

each other and from numbers.

Certain identifiers are predefined for use by the programmer but

are not reserved words. Their meaning will be discussed later. Among

these are three input and output identifiers: READ, READON, WRITE,

(See Sections 2,2.2, and 2,5.)

104 Nonarithmetic symbols

The symbols which are printed in bold type in the text are usually

underlined in typewritten copy, They are contained in the list of

reserved words (cf. Section 103) for ALGOL W, They are not distinguished

5

in any other way but they must not be used for any purpose other than

that for which they are specifically intended, The symbol END, for

example, must not be used as an identifier,

2. Arithmetic Expressions

201. Numerical Expressions

The basic arithmetic operators of ALGOL W are

+ - * / +* DIV REM -

EXAMPLES

3.1459 7 DIRT 3

(3.47'-4 + 9.01"+1) / 4 17 REM 12

9* 8*7 /(P 2* :3) -1.2

(9 + 2-7) / (-3)

(((~5 * 3 - 4) * 3 + 0.19'1) * 3 - 2.6*3) * 3

10 + lo4 / (1 -+ 0,9 / (7 - 0.4 / 3))

The symbol * denotes multiplication while ** denotes exponentiation.

For instance, 4.5 ** 3 means 4.55 o The exponent must always be an

integer in ALGOL W. An integer to any exponent gives a real resu.Lt.

EXAMIXES

ALGOL W form Conventional form

4.1 - 3 ** 2 4J - .32

(4.1 - 3) ** 2 '401 - J)2

302 ** 2 + 502 3.2:! 4- 502

-4 jt* 2 -42

6

AEOZ W form

(-4) -3c* 2

4+5/2**3

gj**2*3

Conventional form

64 2

4x5

23

52 o 3

Also notice

In AIGOL W the following two constructs are not allowed because

the exponent is a real numbers

3.2**(2 +'j 0 2) and 2*,x.(3+*4 >

2.202. Assignment of numerical values through input

If the value cE an identifier is to be provided by input it is

assumed that this value appears on a data card which is in the card

reader waiting to be read, The statement

where 'C stands for variable identifier, reads the next number on the

current input card. If there are no more numbers on the current input

card, subsequent cards are read until a number is found., This statement

assigns the value of the number to the variable whose name is specified,

is equivalent to

The ~zonsi;snts on the data cards are assigned in the same order as

7
I

-

L

the variable names in the READ$N statement. One or several numbers

may appear on a single card separated by one or more blank spaces with

column 80 of one card immediately followed by column 1 of the succeeding

card.

The statement

is similar to READ@N (V) except that scanning for the number begins on

a new input card.

The statement

READ (Vl9 2> 3
V V ,~~~,V,)

is equivalent to

READ (Vl); RUD@ (V2,V3,.,..Jn) o

L

Numbers are punched into data cards in the forms described in

Section 1.2, and may be prefixed by '-pp0 Numbers corresponding to

variables of type integer must not contain decimal fractions or
scale parts.

EXAMPLES READON (A2)

In this case the data card must contain at least one number,

say 1.279'-7 if A2 is not an integer variable.

REN? (Blo,Bll,Bl2,Bl5);
L

The data cards must contain four numbers, say

L
3.4'-1 70 149 825’1 g if BlO, Bll, B12 are not

integer variables, B15 may be an integer variable or a real

variable, One could spread these constants over several cards

if desired,
8

L

In general input read into the machine must be assignment compatible

with the corresponding variable (cf. Section 2.3.2).

2,30 Assignment of numerical values through expressions

Exponentiation ab (a**b) is defined by repeated multiplication if

b is a positive integer and by l/ lb\aa when b is negative. b must have

type integer. If one desires the result of Ax where R is real, use

EXP (R * IJ!J (A)).

2.3~. Evaluation of expressions

The discussion in this paragraph is correct, However, in AIGOL W

the type of a resulting expression is defined for each type and each

operator. The type complex and the discussion of the long forms is

provided for completeness and may be ignored by beginning programmers,

I: A+B,A-B

L

L

c-

i-

x 1 integer real complex

integer

real

complex

integer

real

complex

real complex

real complex

complex complex

The result has the quality r'long's if both A and B have the

quality "long", or if one has the quality "long" and the other is

integer.

9

r- r- . . f----- r ^ f-- - r - . -r

v: ABS A means the "absolute value of A".

A ABS A

integer integer

real real

complex real

2.3.2. Type of the variable to which a value is assigned,

The assignment V := E is correct only if the type of E is

assignment compatible with V. That is, the type of V must be lower or

on the same level in the list below as the type of E.

integer

real, long real

complex, long complex

L

Several transfer functions are provided as standard functions

(cf. Section ~4). For example, to change the type of expression E from

real to integer either ROUNP(E), TRUNCATE(E) or ENTIER may be used,

2.3.~. Multiple assignments

The assignment of the value of an expression can be extended to

several variables. AS in AEOL 60, the form in ALGOL W is
L.-

L

v1 := V2 := a.. := Vn := E;

. The multiple assignment statement is possible only if all the

variables occurring to the left of Voo--10- are assignment compatible with

the type of the variable or expression to the immediate right of the :=.

11

2.4 Standard Functions

All the standard functions listed in this section are provided in

AUOL W except sign and abs. ABS is a unary operator in AIGOL W. In

addition the following standard functions are provided.

truncate(E) if E 5 0, then entier

if E < 0, then -entier

round(E) if E 2 0, then truncate (E + 0.5)

log(E)

time(E)

2.5. output

if E < 0, then truncate (E - 0.5)

the logarithm of E to the base 10

(not defined for E 5 0)

if E = 1, elapsed time returned in 60th 's of a second

if E = 2, elapsed time returned in 60th 's of a second

and printed in minutes, seconds, and 60th 's of a

second

L.

The identifier "print" should be replaced by "write". A print

line consists of 132 characters.

-EXAMPLES
i..

WRITE(E); WRITE(El,E2,.a.,En);

The format of the values of each type of variable is listed below:

integer

real

right justified in field of 14 characters and

followed by two blanks. Field width can be

changed by assignment to IlY'lYIELDSIZE~

same as integer except that field width is

invariant.

L

12

/

i

L.-

long real

complex

long complex

logical

string

bits

i
L

L

i

right justified in field of 22 characters

followed by 2 blanks,

two adjacent real fields.

two adjacent long real fields.

TRUE or FALSE right justified, in a field of

6 characters followed by 2 blanks.

field large enough to contain the string and

continuing onto the next line if the string is

longer than 13:' characters,,

same as real0

In order to provide headings or labels for printed results, a

sequence of characters may be printed by replacing any expression in

the write statement by the sequence of characters surrounded by 'se If

the lr mark is desired in a string it must be followed by a 9'0

EXAMPLES

WRITE ("N = 'I, J'J)

L

i

L

e

This statement will cause the following line to be printed if

N is integer and has the value 3.

This

N = 3

WRITE ("SHAKESPEARE WR@TE 99%AMLET'1"LP)

statement will cause the following line to be printed,

SHAKESPEARE WR$TE "~~M.LFT".

In the statement

WRITE (E;,E~~~~~~E~)

13

t.he type of each ‘Ei determines the field in which its value will

be placed. The field for Ei+l follows the field for Ei @~the current

print line. a!. '. , i vy i * '2.. I '"4g' II ,",',a I ' " 0

If there is not enough space remaining on the current print line, the

line is printed and the field for Ei+l begins at the beginning of a

new print line. The first field of each write statement begins on a

new print line.

30 Construction of the program

3.1. Simple Statements

Note that the simple assignment statement takes the form V := E,

and that the input-output statements are respectively

READ (V) and WRITE(E)

where V is a variable or a variable list and E is an expression or

expression list.

3.2. Compound Statements

In later descriptions in these notes "compound statements" will be

synonomous with "blocks without declarations".

3.4. Comments

The construction

comment text;

may appear anywhere in an AIGOL W program. However, in AIGOL W the

comment following an end is limited to one identifier which is not a

reserved word.

14

I -

3.5. Example

To clarify the change necessary to form an AIGOL W program from

the program enclosed in the box, the example is shown as it would be

punched, Note that an AIGOL W program must end with a

BEGIN COMMENT EVALUATION OF A POLYNOMIAL;

REAL AO, Al, A2, A3, Xl, P;

READ (AO, Al, A2, A3, Xl);

P := ((A3 * Xl + A2) * Xl + Al) * Xl + AO;

WRITE (P)

END.

Note that the indentation, although not required,

and end to be matched easily. In complicated programs

improve readability and therefore reduce the number of

4. \LOOPS *

4.1. Repetition

The variable V of the for statements described is

e (period).

allows the b,egin

indentation will

careless errors.

always of the

type integer and cannot be declared in AIGOL W; its declaration is

implicit (cf. Section 7)j and its value cannot be changed by explicit

assignment within the controlled statement. Each expression E of the

for clause must be of type-integer.

The statement of the form

for V := H19H2,...,Hn

is correct for n > 1 in AIGOL W only if H19H29e0.9Hn are all integer

expressions.

15

L-

-

L-

-

L

L-

L_-

The form

for V := E, step 1 until E,do S;-- ‘L-

may be abbreviated as

for V := E,luntil E&do S;- -._ -

4.2. Subscripted Variables

In AIGOL W the subscript expression must be of type integer. Any

other type will result in an error detected during compilation.

4.2.~ Array declarations

In the text, the : in array declarations must be replaced by ::

for AIGOL W, The word array must always be preceded by its type.

ARRAY A[1:10,1:20]; is incorrect and should be written

REAL ARRAY A (l::lO, 1~20);

Only one set of subscript bounds may be given in an array declaration.

Hence, the examples should be corrected for AIGOL W to read

EXAMPLES

real array A, B, C(l::lO);

real array D, EG(l::lO, 1: ~20);

integer array N, .M(1::4);

4.4.2. Example

In ALGOL W the example in the box would be written as listed below,

16

BEGIN COMMENT DERIVATIVE OF A POLYNOMIAL;

INTEGER N; REAL P, C;

REAL ARRAY A(1::20);

READ (N, C);

FOR I := 1 UNTIL N DO READON (A(I));

.-P 0;.-

FOR I := N STEP -1 UNTIL 1 DO

P := P*C + I*A(I);

WRITE (P)

END.

5. The Conditional Statement

Conditional statements are very useful and are used in ALGOL W as

discussed in this chapter for ALGOL 60. Note that the symbols 5 9 2 t

and f must be replaced by < =, > =, and --I =t respectively.

6. Jumps

6*1, Labels

All labels in ALGOL W must be identifiers which are not reserved

words.

6.2. The Jump Statement

go to may be written as GO TO or GOT0 in ALGOL W,

6,2,1. Jumps out of loops or conditional statements

The value of the loop variable is not accessible outside of the

loop in ALGOL W.

17

6.2.2. Inadmissible Jumps

It is not possible to jump from outside into a loop in AIGOL W.

Likewise, it is not possible to jump into a conditional statement.

In general, it is not possible to jump into the middle of any

statement, viz, for statement, conditional statement, while statement,

compound statement, block.

* 6.4. Another Form of Loop Statement

The statement described in the text does not exist in ALGOL W.

However, ALGOL W has another form of loop statement which is

useful -- it is called the while statement.

FORM while

B is a condition like

true, the statement S

never executed. More

L: if B thenm P

begin S; goto

end- -

that described in Chapter 5. As long as B is

will be repeated. It is possible that S is

precisely, this loop may be interpreted

L

The example in Section 6.3 can be rewritten as follows:

BEGIN COMMENT DETERMINATION OF THE CUBE ROOT;

REAL A, APPROXIMATIONVALUE, X, Y, D;

READ (A, APPROXIMATIONVALUE);

X := APPROXIMATIONVALUE; 2 := ABs X; -

3

18

L

WHILE D> .5’-9 * ABS X DO

BEGIN

Y:=X; x := (2'lcY + A/(Y*Y))/g;

D z= ABS (X-Y);

END;

END.

i

7- - Block Structure
i

i
I
i

f
I
L

i
,
I
L

i

L
6

i

i

For the purposes of block structure in ALGOL W compound statements

must be considered as blocks, namely blocks without declarations. A

compound statement with a label defined in it is a block. (Reread the

notes in this paper concerning Chapter 6.) In for statements the scope

of the variable V in the for clause is the statement S following the do.

7.4. Dynamic Array Declarations

The expressions specifying the subscript bounds in dynamic array

declarations must be of type integer.

8. Propositions and Conditions

i
L

IL

L

The word "Boolean" in the text should be replaced throughout by

"logical".

8.1, Logical Operations

-Some of the symbols for logical operations are different in

ALGOL w.

L
L

19

L

L

Operation

negation

conjunction

disjunction

equivalence

ALGOL

1

A

V

?s

AEOLW

1

AND

OR

=

READ AS

not

and

or

is equivalent to

ALGOL W does not have an equivalent form of the ALGOL implication

symbol, 1.

, The following hierarchical arrangement defines the rank of the

operator with respect to other operators.

Level t Operation Symbol

1 LONG, SHORT, ABS

2 SHL, SHR, **

3 I

4 i
AND, *, /, DIV, REM

5

6

In a particular construct, the operations are executed in a sequence

from the highest level (smallest number) to the lowest level (largest

number): Operations of the same level are executed in order from left

to right when logical operations are involved and in undefined order in

arithmetic expressions.

The discussion in this section is correct except concerning the

hierarchy of operators, In general, the extra parentheses are required

in AXOL W when using arithmetic expressions with logical operators,

The examples below are correct ALGOL W and correspond to examples in

20

L

i

tne text. All parentheses are necessary.

EXAMPLES

(A > 5) OR (B > = 1)

(A * B > = c + D) = (ABS (zi + 22) >M)

(0 < = X) AND (X < = 1)

(X = 3) OR (1 < = X) AND (X c = 2)

means (X = 3) OR ((1 < = X) AND (X < = 2))

I
L

1
t
1

1
L
L
L
L
c

L

I+

L

9. Designational Expressions

The designational expressions described in the text do not exist

in ALGOL W. The chapter may be skipped.

However, ALGOL W provides a designational statement and expression

which is equivalent to that described by the text.

9.1. The Case Statement

The form

CASE E OF

BEGIN

s1;s2;. . . ;sn

END

is called a case statement. The expression E must be of type integer.

The value of the expression, E, selects the SE statement between the

BEGIN END pair. Execution is terminated if the value of E is less

than 1 or greater than n. After the designated expression is executed,

execution continues with the statement following the END.

IL
21

i

. -IL
i

i

c

i

L

I
i
L

t

i

i

t

L
1
1e

L
L
L
L
I
1

EXAMPLE

CASE I OF

BEGIN

BEGIN J := I; GOT0 Ll;

END;

I := I + 1;

IF J < I THEN GOT0 Ll

END

If the value of the expression, I, is 3$ for example, the statement,

IF J < I THEN GOT0 Ll is executed, IfJ>= I then execution continues

following the END.

9.2. The Case Expression

Analogous to the case statement, the case expression has the form

cAsE E 0~ (+E~,...,E,)

The value of the case expression is the value of the expression selected

by the value of the expression E. If the value of E is e, then the

value of E
e

is the value of the case expression. The type of the case

expression is the type of th.e Ei expression whose type is lowest on the

list

integer

real

long real

complex

long complex

L

22

i
i

i

i

EXAMPLE

CASE 3 OF (4.8, 12, lT9 4.9) has the value 1'7 in floating

point representation since the type of the case expression is real.

10. Procedures

lO,l.l* Global and formal parameters

Labels may not be used as formal parameters. Switches do not exist

in -ALGOL W.

10.1,2.1. Arguments

I
i

IL
I,

L

1

Arguments serve to introduce computational rules or values into

the procedure. A rule of computation can be brought into the procedure

if the computation is defined by means of another procedure declaration,

or a statement.

Formal simple variables, formal arrays, and formal procedures can

be arguments.

Example 3 is correct in the text.

A formal array can be used as an argument in only one way, "call

by name". The discussion concerning "call by valuePi should be ignored.

lO.lZ.3, Exits

Because labels may not be used as actual parameters to a procedure,

the text's discussion of exits is not correct for AI/XL W, However,

a statement (in particular a GOT0 statement) may be used as an actual

parameter corresponding to a formal procedure identifier0 In this 'way

side exits leading out of the procedure are provided,

23

i

10.1.3. Function procedures and proper procedures
T
i

L

L
!
L
L
L
L
L
t
L
L
L
i
I1
fe

From given pieces of programs t procedures can be derived either

in the form of function procedures or in the form of proper procedures,,

The body of a function procedure is either an expression or a

block with an expression before the final END in the procedure body0

The value of the expression is the value of the function procedure,

The way in which a procedure is set up and used is a fixed

characteristic of the procedure and is established directly in the

declaration by means of the introducing-symbols, The declaration of

functions is introduced by the symbols

INTEGER PROCEDURE

REAL PROCEDURFZ

LOGICAL PROCEDURE
.e.

according to the type of the resulting value. The type of the expression

giving the value of the procedure must be assignment compatible with

the declared type of the function procedure.

The declaration of the proper procedure begins with the symbol

PROCEDURE

No resulting expression can be placed at the end of the procedure

body.

10.1.4. The procedure head

All necessary assertions about the formal parameters and the use

of the procedure are contained in the head of the procedure declaration,

In ALGOL W the head consists of three parts:

I. .
!-

(1) Introductory symboi

(2) Procedure name

(3) List of formal parameters and their specifications

L

L-

i

L

i

i

L

L

L

(1) The introductory symbol determines the later use of the procedure
(cf. Section 10.1.3.)

(2) The procedure name can be chosen almost arbitrarily. The only

restriction is the general limitation concerning some reserved

, names (cf. Section le3)e

(3) The Q-w, value specification, and identifier name of formal

parameters appear in the list of forma'I parameter specifications,

and not separately as in ALGOL 609 The comma serves as the

general separation symbol between formal parameter identifiers

of the same type and vaiue specification. The semicolon serves

as the general separation symbol between specifications of formal

parameters of different types or value specifications.

The type of the formal parameter is specified by the symbols

REAL

LONG REAL

INTEGER

COMPLEX

LONG COMPLEX

LOGICAL

REALARRAY

LONG RJZALARRAY

COMPLEXARRAY

LONG COMPLEXARRAY

i-tiEGER ARRAY

LOGICAL ARRAY

25

t
L

,
L

i

i

L
i

IL

e
L

I

i

L
L
1
I

REAL PROCEDURE

LONG REAL PROCEDURE

COMPLEX PROCEDURE

LONG COMPLEX PROCEDURE

INTEGER PROCEDURE

LOGICAL PROCEDURE

PROCEDURE

The value specification is used only for parameters called by

value. It is specified by the symbol value. It may only follow the

types INTEGER, RE%L, LONG REAL, LCGICAL, COMPLEX, LONG COMPLEX.

EXAMPLES

PROCEDURE P (REAL X, Y; INTEGER VALUE I; PROCEDURE Q, R);

REAL PROCEDURE Z (LOGICAL L, M, N; REAL PROCEDURE P);

Note that in the case of formal parameters used as array identifiers,

information about the number of dimensions must be given. The

last identifier following each array specification must be followed

by (followed by one asterisk for each dimension separated by commas,

followed by)e

EXAMPLE

PROCEDURE P (REAL ARRAY X, Y (*,*); RE%L ARRAY Z (*)) o

10.2. The Procedure Call

The procedure call in ALGOL W is unchanged from ALGOL 60. This

section should be read carefully.

Since labels are not allowed as parameters, it was earlier suggested

that jump statements be used and that the corresponding formal parameter

be a proper procedure (cf. 10.1.4. Example 8). In general, any

26

I ‘:i

L

L

i
i

f

i

I,
IL

i

L

L
L

statement may be used as an actual parameter corresponding to a formal

proper procedure which is used without parameters.

EXAMPLE

BEGIN

PROCEDURE ~~~cT~R~PERATIONS (INTEGER J; INTEGER VALUE NJ

PROCEDURE P);

BEGIN J := 1;

WHILE J<= ND0

BEGIN P; J := J+l

END

END;

REAL PROD; INTEGER I;

REAL ARRAY A, B, C(l::lO);

(initialize A and B)

Ll: VECTOROPERATIONS (I, 10, C(1) := A(1) + B(1));

PROD := 0.0;

L2: VECTOROPERATIONS (I, 10, PROD .z= PROD + A(1) * B(1));

END

The statement Ll is a procedure call which causes a vector addition

of A and B to be placed in C. The statement L2 causes the element-by-

element vector product of A and B to be calculated and placed in PROD.

L
L
L

27

10.3. Example

REAL PROCEDURE ROMBERGINT (REAL PROCEDURE FCT;

REALVALUEA, B; INTEGER VALUE ORD);

BEGIN REAL Tl, L;

ORD := EN-TIER ((ORD -f 1) / 2);

BEGIN INTEGER F, N; REAL M, S;

REAL ARRAY U, T (1 :: ORD);

o-L B-A;0-

T(1) := (FCT(A) + FcT(B)) / 2;

U(1) := FCT ((A + B) / 2);

o-F N:=l;0-

FOR H := 2 UNTIL ORD-1 DO

BEGIN N := 2 * N; S ::= 0;

M := L / (2 * N);

FOR J P= 1 STEP 2 UNTIL 2 * N - 1 DO

S := S + FCT (A + J * M);

U(H) :=S /N;

T(H) :- (T(H - 1) + U(H - 1)) / 2;

o-F 1;"--

FOR J := H - 1 STEP -1 UNTIL 1 DO

BEGIN F := 4 * F;

T(J) + T(J + 1) + (T(J + 1) - T(J)) / (F - 1);

U(J) := U(J -p 1) -b (U(J + 1) - U(J)) / (F - 1);

END;

IF ORD > 1 THEN

28

L
L

REGIN

T(P) := (U(1) + T(1)) / 2;

T(1) !=s T(2) + (T(2) -. T(l)) /(4 * F - 1) :

END;

Tl := T(1)

END;

END;

Tl * L

The names of standard functions and standard procedures cannot appear

as actual parameters in ALGOL W. Therefore the calls to R@BERGINT

in Section 10.3 are incorrect. However, this situation may be overcome

by declaring a procedure which returns the value of the standard function

or performs the computation of the standard procedure.

REAL PR#CEDURE SINE (REAL VALUE x); SIN(X);

Then a call to R@BERGINT might be

A := R$MBERGLNT (SINE, x(l), x(2), 10);

EXAMPLE6

REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);

'IL N DO

BEGIN R.EAL S;

S :I= 0;

FOR I :=1uN!t

S :=S+A

S

END

OJ);

29

EXAMPLE 7

PROCEDURE COUNTUP (INTEGER X);

X :=X+1

EXAMPLE8

PROCEDURE ROOTEX (REAL VALUE X; REAL Y; PROCEDURE P);

IFX> = OTHEN

Y : = SQRT(X)

ELSE

BEGIN Y :- SQRT(ABS X);

P

END

The actual parameter corresponding to the formal parameter P

should be a jump statement.

30

L-

-

L

PART II: Some Extensions of AIZOL 60 in Air-,C aj w

lo Procedures

i lo.+e Call by Result

Besides "call by value" and "call by nam I'? A.IGOL W allows parameters

to be called by result. The formal simple varid?ie is handled as a local

quantity although no declaration concerning ti~is Iquantity is present,

The value of the simple variable is not initiaiized atI the procedure

call, If the procedure exits normally, the va~:-it;: correspoinding to the

formal simple variable is assigned to the c~,r yjta3pcndiing actual parameter.

The formal parameter must be assignment compaS9ikl::t.> with the actual

parameter. To specify a result parameter, insert the word RESULT after

the type and before the identifier (as with VAi,1&I).

EXAMPLE

PROCEDURE P(REAL RESULT X,Y; INTEGER VALTJE I; LONG COMPLEX RESULT Z);

1.2. Call bv Value Result

Formal simple variables may be called 'boish by value and result.

This combines the calls of value and result so f.haf, the formal identifier

is initialized to the value of the corresponding actual parameter at

procedure call and the value of the formal idenkifier is assigned to

the corresponding actual parameter at a normal procedure exit, To

specify a value result parameter, insert the words VALUE RESULT after

the type and before the identifiers.

EXAMPLE

PROCEDURE Q(INTEGER VALUE RESULT 13&Xj;

3.1

i

L

L-

20 Procedure Calls

2.10 Sub-arrays as Actual Parameters-

In AU0.L W, it is possible to pass any rectangular sub-array of an

actual or formal array to a procedure, Those dimensions which are to be

passed to the procedure are specified by *'s) and those which are to

remain fixed are specified by integer expressions. The number of

dimensions passed must equal the number of dimensions specified for

the corresponding formal array.

L

!
i

IL

t

L
c
L-

EXAMPLE

The actual parameter may be a sub-array of a three dimensional

real array A0 Examples of possible actual parameter specifications and

corresponding formal parameter specifications are listed below.

Actual Parameter

A or A(*S+s*)

A(I,*,*>

A(+&)+)

A(*,*,I)

5 A(I,J,*)

- m,*,J)

Corresponding Formal Parameter Specification

real array B(*,*,*)

real array B(*,*)

real array B(*,*)

real array B(*b*)- -

real array B(*)

real arra,y B(*)

EXAMPLE

Read in the size of one dimension of a cubic array X, then

read in the KLeEin-k-

Calculate and write ou$ the sum of the traces of all possible

two dimensional arrays in A using the previously defined real

procedure TRACE.

‘L 32

BEGIN

REAL SUM;

REAL PROCEDURE TRACE (Z'&Q, ARRAY A(",,*); INTEGEfR VALUE N);

BEXIN COMMENT THE BO3Y CF THIS PROGE1DURE 1s ;1VEn IN A

PHE!VJ(?US EXAMPLE: ;

END;

INTEGER N;

READ(N);

BEGIN

REAL ARRAY X(kN, l::N, 1~3);

FOR I ::= I UNTIL N DC)

FOR J :- .L TUN!TIL N DC:

FOR K := 1. UNTIL N DO READON(X(I,J,K!);

SupI :r= 0; :

FOR I := lUNTILND0

SUM := SUM + TRACE(X(I;x,++),N) + TRA:"E (X(~+,Ig*!gN)

+ TRACE (X(++3+9:I.!3N),

WRITE (SUM]

EN2

END,

3. ~kring Variables

F~eqtien2;ly, it is desirable to manipu.late sequences of charackrs,

'I"n.is facility is available in &2ZC1'-A ‘W in the form IJ,f string variables,

E&--3 variable has a fixed length specified in %he string declaratitin,

The d'l>rm of' II-he declaration is

33

string (<integer number>) <variable list>

The integer number must be greater than 0 and less than or equal to

2560 The specification "(<integer number>)'" may be omitted; a defau1-t

length of 16 is assigned to the variables. Arrays of strings also may

be declared,

STRING A, B, C

STRING (24) X, Y, Z

STRING (1.0) ARRAY R, S(O::::.O,-5~~1.5)

In order to be able to inspect elements of the string or to

manipulate portions of the string, a s&string operation is provided.

FORM <string identifier> (E 1 <integer number>?

The expression E must be of type integer, This string expression

selects a substring of the length specified by the integer number from

the string variable beginning at the character specified by the integer

expression, The first character of the string has position 0,

EXAMPLE

BEGIN STRING (5) A;

A : = "Q-JSTU" ;

A (312) := A (012);

WRITE (A)

END

In this example the constant string "QRSTU", is assigned to the

variable A which is declared to be of length 5e Then the character

positions 0 and 1 of A are assigned to positions :3 and 4 of A.

34

-

Consequently, when the &ring <L! is wr.iktc?n it;5 va.~*;.e i s QRSQR. 1-L

sh~LLd be noted that, khe assignmenk are made cTua,racf3er by charackr.

If the sectxd assignmerit s-clat,cmen% in Lhe examy~:Lc a25!we had been

4,l. ,Rezord Class Declarations

Record declarations indicate the composition of a record, linlike

simpic type declarations or array declarations no storage is reserved

f’or a wcord when the record dec.1 ara5.‘,c>n .is erxt2:?.nLered.o Easent?“, aKL.y,

the recoCi dec.la~at;i.cx only describes Zhe f’mm I::? re:cord.s t;12 ‘be created,

bi.1 f,h t3.d. okhe c dec.~ara~,.l ms o

i OfiS u:? variables of simple C,ype>j;

The name V is the name of $-he recOrd class o The var i,aI. .1 es

dec.L.ared bekweer! i&e parentheses are called ii-ne f ie Lds ok’ the record,

i-

L

The p;;incLai,ion of the examples shol;ild be noted carefully, The

names in the list of' identifiers f'oXl~ti.ing the :i.ndication of the simple

type are separated by rrg'EO The List; is ended with a YE;LY -Anless i,he

PF -" would immediat.e.ly precede the closi.ng 'I ‘i"'O3

li,2, Reference Declarations

i

i-

L

L

1

I

i

t

L

L

In order to specify a record of some record ciass, REFERENCE is a

simple i;ype in ALGOL W, The value of a varia'ble of type z9krence

is an address of a record, This address is sometimes called a pointer

to a record..

Reference declarations appear in a program where ail other declarations

appear.

FORM

REFERENCE (V) VL;

V is a name of a record class, Vl is a name of a reference

variable or a list; of names of reference vayia~bles separated by k'3'00

EXAJYG'LE

REl?EF~CE (A) R1, K2, R3;

The name V of a record class may also be a list, of Tames

separated 'by rrgliO This list indicates the record cl.asses to whkh

records referenced by the reference variables must 'belong.

RF,FERElNCE (A,B' 34, 35;
c

Rli acd F5 may point, only to records of record class A. OY' B.

The reserved word WI.& stands for a reference constant which

fails to designate a record,

Arrays of references are declared and used analogously to arrays

of other simple types.

REFERENCE (V) ARRAY V1. (<subscript botinds>);

ElrWMBZE

REFERENCE (A,B) ARMY ARI, AR2 (1~i.0, 3~7);

The implementation requires -thati a1.L ref'erenee arrays declared in

a 'block be declared in the same reference array declarat;i,on UP

immediately following a reference array declaration.

REFEFZNCE (A) ARRAY ARl, AR2 (Lz.0, .j:::Tl,

J3FFERZFJCE (B) ARRAY AR3 (2: ::LT),

In the example above, any other declarai5cn except a ref'erence

array declarat;itJn is not ali.owed between the two rlef'erence array

declarations,

403. ‘Reference Expressions

Quantities of simple type reference may be used in assignmeni;

statements and comparisons,

EXAMFUG

R11. :- R2

RI P,= J!l-uIJE

Is '-d R2

R2 -I = R3

I

i

L

i.

1
i
i

L
r:L
L
i

L
1
1
i

t
L

t

1
c

I

i

Only the relations = and 7 = are allowed between references. In

order to inquire to which record class a reference expression is bound,

the IS operator is provided.

FORM

E IS V

E is a reference expression and V is a name of a record class. The

value of the IS operator is logical, either TRUE or FALSE.

'EXAMPLE

4,4, Record Designators

A particular type of reference expression is the record designator.

A record designator is the name of a record class when used as an

expression.

EXAMPLE:

Rl := A

R4 := B

When the record class name is encountered, the value is a pointer

to a new record of that class. The values of the fields of the new

record are undefined.

4050 Field Designators

In order to manipulate the values of the fields of a record, the

expression

FORM

vlw

38

IL

L

C

L

L

c

c

exists in AIXOL W. E is a

record class of the record

reference expression. V., is a field of the

pointed to by E, The type of the field

designator is the type of the variable V
1'

EXAMPLES

Z(R1)

NW

EXAMPL;El

BEGIN RECORD H (INTEGER 09~; STRI& (2) s!;

R!G'ER.EN@E (I-I) Rl; -

Rl :-= H:

C(R.1) := 5;

D(Rl) :- 8;

S(R1) := 'FA%fr

EN-D.

Example 1 is a short program which declares a record class H and

one reference -variable RI.. whose values may point to records (JY class H,

C'ne record of class H is created and each field of the record pointed

to by .Fcl is initialized,

AZOL W provides a short notation for creating a record and

jnitia.Lizing its fields, This modified record creator has t;he form

V is the name of the record class. The expression list Eyl between theI

parentheses is the _i_ist of the values 02.‘ the fields specified in the

order t%e:y appear in the record. class decl.aration,

39

L

i

IL

r‘- r-’ rd f-c r-- p.’ .I
r --‘- r---‘-- r

V

c
ALGOL W

L
LANGUAGE DESCRIPTION

bY

t
i

Henry R, Bauer
Sheldon Becker
ban L, Graham

COMPUTER SCIENCE DEPARTMENT
STANFORQ UNIVERSITY

JANUARY 1968

"A Contribution to the Development

1L

I

i

f

L

L
I

of ALGOL" by Niklaus Wirth and C. A. R.

Hoar e1 j was the basis for a compiler de-,

veloped for the IEM $0 at Stanford Univer-

sity. This report Is a description of the

implemented language, ALGOL W. Historical

background and the goals of the language

may be found in the Worth and Hoart? papere

11 Wirth, Niklaus and Hoare, C. A. IL, "A
Contribution to the DeueLopment of ALGOL"',
Comm. ACM 9, 6(Zune 1966), pp- 413-431.

i i.

i-

-

L

CONTENTS

1. TERMINOLOGY, NOTATION AND BASIC DEFLNTTIONS.....~o...~oooeo..l

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. no I> <> u e v .> oo .I u 0 a.4

2.1. Basic Symbols.0......000...~e.e~.~e..e~04

5.2. Array Declarations ..00..00....000"0..0~"~~~~.~.. 15

5 039 Procedure Declarations3 .~,,00~0~09000UOOUO~.00UUUU 16

5 .40 Record Class Declarations Y0.DO0.00~UOOV~.~0..~~~20

6.2. Function Designators .loo~ooooo.oo.a.o.ou~"~~*...23

ii

i

-

i

CONTENTS (cont.)

8.3.2. Standard Message Function...........4 8

8.4. Output Field Sizes--
. .

.49

8.5. Time Function-- 49

C

iv

L-

1. TERMINOLOGY, NOTATION AND RASIC DEFINITIONS

The Reference Language is a phrase structzre langauage, defined by

a formal system. This formal system makes use of the notation and

definitions explained below. The structure of the language ALGOL W

is determined by three quantitites:

(1) Y, the set of basic constituents of the language,

(2) &the set of syntactic entities, and

(3) 63, the set of syntactic rules, or productions.

1.1. Notation

A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form

L
t

L

where <pz> is a member of 11, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a "sequence".

The form

is used as an abbreviation for the set of syntactic rules

<fD ::= x

aD ::=y

* * . .

CPa ::= z

1.2 Definitions

1. A sequence x is said to directly produce a sequence y if and

1

L

L

i

L

I
L,

i

L

i
L

i

f
L
.
1

L

only if there exist (possibly elnpty) sequences u and w, so that

either (i) for some <p3 in tl, x = K&W, y = uvw, and<& ::=

v‘is a rule in P; or (ii) x = uw, y = uvw and v is a "comment"

(see below).

2. A sequence x is said to produce a sequence y if and only if

there exists an ordered set of sequences s[O], s[l], . . . , s[n],

so that x = s[O], s[n] = y, and s[i-l] directly produces s[i] for

all i = 1, . . . , n.

39 A sequence x is said to be an ALGOL W program if and only if

its constituents are members of the set If, and x can be produced

from the syntactic entity <progre.

The sets 'I/ and L4 are defined through enumeration of their members

in Section 2 of this Report (cf. also 4.4.). The syntactic rules are

given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. Where

words which have appeared in this manner are used elsewhere in the

text, they refer to the corresponding syntactic definition. Along

with these letter sequences the symbol 7 may occur. It is understood

that this symbol must be replaced by any one of a finite set of English

words (or word pairs). Unless otherwise specified in the particular

section, all occurrences of the symbol 7' within one syntactic rule

must be replaced consistently, and the replacing words are

2

integer

real

long real

complex

long complex

logical

bits

string

reference

For example, the production

<Y term ::= <T factor> (cf. 6.3.1.)

corresponds to

<integer term : : = <integer factor>

<real ter* ::= <real factor>

<long real term z ZFz <long real factor>

<complex terrri> . .=,a e <complex factor>

<long complex term> ::r= <long complex factor>

The production

<To primary>

corresponds to

long <Tl primary> (cf. 6.3.1. and
table for long
6.3.207.)

<long real primary> : :z long <real primary>

<long real primar$=- ::= long <integer primary",

<long complex primary> ::= long <complex primary>-

It is recognized that typographical entities exist of lower order

than basic symbols, called characters. The accepted characters are

those of the IBM System 360 EBCDIC code.

The symbol comment followed by any seq=xence of characters not

containing semicolons, followed by a semicolon, is called a comment.

A eornment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.L) immediately

3

-

following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these units of action is defined as

the evaluation of expressions and the execution of statements as de-

noted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs is either (1) de-

fined by System 360 operations, e.g., real arithmetic, or (2) left

undefined, e.g., the order of evaluation of arithmetic primaries in/ -

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

true I false I M 1 null I # I 1 I

integer I real 1 complex I logical I bits I string I

reference I long real I long complex I array I

procedure 1 record

J I ; I : I ’ I (
case 1 of 1 + 1 -
abs 1 long I short

<= > >=I I I : :

) I begin I end I

*I/I*Idiv
I and I or I 7 I 1

:= 1 got0 I go 1 for I step

comment 1 value I result

I then 1 else

I until

1 rem I shr I shl- __c -

I I= -I= I I<

0 I p I

All underlined words, which we call "reserved words", are repre-

sented by the same words in capital letters in an actual program.

4

Adjacent reserved words, identifiers (of" 3"1") and numbers must be

separated by at least one blank space. 3therwise blanks have no mean-

jng and can be used freely to improve the readability of the program,

2.2, Syntactic Entities

(with corresponding section numbers)

<actual parameter list>

<actual parameter>

<bit factor>

<bit primary',

<bit secondary>

<bit sequence>

<bit term

<block bodp

<block heac‘i>

<blocI-+

<bound pair iSst>

<bound pair>

<ease clause>

<case statement>

<control identifier>

<deelaratfo.rD

<digit3

Cdf.mens_ion specificatioe

<equality operator>

<expression lis0

<field list>

<for clause:>

<for listi

<formaL array parameter>

<formal parameter lis0

<formal parameter segment3

7*3 <formal type>

703 <go to statemen

6 co,5 <hex dig:-">

6.5 <identifier Listi

6.5 <identifier>

4.3 <if clause

6.5 <imaginary number>

7-1. <incremen*

7'.L <initial value>

741 <iterar;ive statemen

5 .2 <label definition>

5*2 <label identifier>

6 <letter>

706 <iim.i+,s

3-l <logical elementi

5 <logical factor>

341 <logical primarp

5.3 <logical terr0

6.4 <logical value>

6~ <lower boun0

504 <null reference

7*7 <procedure declaratiori>

7.7 <procedure headin@

503 <procedure identifier>

5 525 <procedure statementi

5 .3, <progrW

5

5*3

7n4

4.3

301

3.1
6

4.1

7-7

707

707

7e1

301
301

7e7
6.4

6u4

6.4

6.4

4.2

502

4.5

593

5.3

3*1

703

7

<5u5seriFt lis+&

<y array declaraticr>

<T array designator>

<? array identifier>

,<T assfgnment statement>

<T expression 14.~~

<3 exgressiol*

<T factor>

<T field designator>

'1Kf field identifier>

CT function designator>

<T function identifier>

~<4 function procedure body?

<T function procedure
deelaratioo

s.3 left parti

(3 nmiber>

<T primar$:

<IIf subarray desigr,ator>

<3 terrrP

<J variable identifier>

Cunscaled real>

<upper boun@

<while clau.s&

6.1

582

6.1

3.1

7-2
6

6

6-3
6.1

3*1
6.2

301

5-3

5 -3
7*2

4.1

6.3

703

6L3

3*1
4 -I.I

5.2

7J

<identlfler> ::= <letter> I <identifier> <letter> I <identifier> <digit2

<J v-aria’ble identifier3 ::- <identifier>

6

<T array identifier> ::= <identifier>

<procedure identifier> : := <identifier>

<y function identifier> : := <identifier>

<record class identifier> ::= <identifier>

<7' field identifier> : := <identifier>

<label identifier> :: = <identifier>

<control identifier> : := <identifier>

<letter> : := AlBlClDlElF
N

<digit> : := O I
<identifier list>

3.2. Semantics

: := <identifier> 1 <identifier listi , <identifier>

Variables, arrays, procedures, record classes and record fields

are said to be quantities. Identifiers serve to identify quantities,

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the

reference language. In an actual program a reserved word cannot be

used as an identifier.

Every identifier used in a program must be defined, This is

achieved through

(a) a declaration (cf. Section 5),-if the identifier identifies a

quantity. It is then said to denote that quantity and to be a

T variable identifier, 9 array identifier, 3' procedure identifier,

y function identifier, record class identifier or 7' field iden-

tifier, where the symbol Zr stands for the appropriate word re-

flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.), if the identifier stands as a

7

1
L

L

i

1L

I
i

I
i

label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3e). It is then

said to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7e7e).

It is then said to be a control identifier;

(>e its implicit declaration in the language. Standard procedures,

standard functions, and predefined variables may be considered

to be declared in a block containing the program0

The recognition of the defini+.,f,on of a given identifier is de-

termined by the following rules:

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7010) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a pro-

cedure heading (cfO 5.3*) or a for clause (cf. 7.7.) is considered

to be a block.

Step Z Otherwise, if that block is a procedure body and if the

given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause

. and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered,

8

f.
t

t

L

c

L-

If either step 1 or step 2 could lead to more than one definition,

then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a con-

trol identifier is the set of statements in which occurrences of an

identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3030 Examples

1
c

1

PERSON

ELDERSIBLING

x15, x20, x25

4. VALUE23 AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.

The value of a constant is determined by the denotation of the con-

!
L-

t

I-
t
L

L
ic

stant. In the language, all constants (except references) have a

reference denotation (cf. 4.1.-k,&). The value of a variable is the

one most recently assigned to that variable. A value is (recursively)

defined as either a simple value or -a structured value (an ordered set

of one or more values). Every value is said to be of a certain type.

The following types of simple values are distinguished:

integer: the value is a 32 bit integer,

real: the value is a 32 bit floating point number,

zreal: the value is a 6k bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,

9

c-

L

I -

L

i

i

L

iong complex: the value is a complex number composed of two
long real numbers,_I-

logical: the value is a logical value,

bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is an ordered set of values, all of identi-
cal simple type, _

record:D__P the value is an ordered set of simple values.

A procedure may yield a value, in which case it is said to be a

function procedure, or it may not yield a value, in which case it is

called a proper procedure. The value of a function procedure is de-

fined as the value which results from the execution of the procedure

body (cf. 62.2.).

Subsequently, the reference denotation of constants is defined.

The reference denotation of any constant consists of a sequence of

characters. This, hcwever, does not imply that the value of the de-

noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

of strings. .

kOl. Numbers- -

4.1.1. Syntax

<long complex number> ::= <complex number>L

<complex number> ::- <imaginary number>

<imaginary number> ::= <real number>1 I <integer number>1

10

C

i

L

I
L

f
i-

\
i

<long real number> : g= <real number>L I <integer number>L

<real number> ::= <unscaled real> 1 <unscaled rea> <scale facto-

<integer number> <scale factor> 1 <scale factor>

<unscaled real> ::= <integer number> . <integer number> I

-<integer number>

<scale factor> ::= r<integer number> I '<sig+ <integer number>

<integer number> ::= <digiti I <integer number> <digit>

<sigrD ::= + 1 -

. 4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceeding it. Each

number has a uniquely defined type.

4.1.3. Examples

1 l 5 11

0100 1'3 0.671

3.1416 6.024861+23 1IL

2.71828182&59~5235360287L 2.y5

4.2. Logical Values- -

4.2.1. Syntax

<logical value> ::= true I false

4.3: Bit Sequences

4.3.L Syntax

<bit sequence> ::= # <hex digit> I <bit sequence <hex digit>

<hex digi ::- 01~121314151~1718191~1131
CIDIEIF

11

c

Note that 2 1 (.* I F corresponds to 210 1 . . . I 15
10'

4.3.2. Semantics

The number of bits in a bit sequence is 32 or 8 hex digits. The

bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in on the

left.

4.3.30 Examples

#4F = 0000 0000 0000 0000 0000 0000 0100 1111

#P =. 0000 0000 0000 0000 0000 0000 0000 1001

4.4. Strings

4.4.1. Syntax

<strin@ ::- "<sequence of character@"

4.4.2. Semantics

Strings consist of any sequence of (at most 256) characters ac-

cepted by the System 360 enclosed by ", the string quote. If the

&ring quote appears in the sequence of characters it must be imme-

diately followed by a second string quote which is then ignored. The

number of characters in a string is said to be the length of the

string,

4.,4.30 Examples

‘? JOHN”

's'olt99 is the string of length 1 consisting of the string

quote.

12

!

L

L-

-

4 5, ReferencesI T=---~>

4.5 310 Syntax

<null referent@> : :;-= null-1

4?2e / i - 0 Semantics

The reference value null falls to designate a record; if a refer-

ence e.xpression occurring in a field designator (cf. 6.1.) has this

val IFS) %hen the field designator is undefined.

c, * DEC:WT,'.ONS

Declarations serve to associate identifiers with the quantities

used in the program, to attribute certain permanent properties to

these quantities (aOg. type, structure), and to determine their scope,

The #laant-,itiee declared by declarations are simple variables, arrays,

prozdl;ires and record classes"

i

"C$o.n exit from a block, all quantities declared or defined within

t.hat block io~e zh>elr value and significance (cfO T,i.2. and 7.4.2.).

<dec~aratiOrD X- <+z.mple variable declaratio0 1 <y array

dec'l.aratidrD I <procedure declaration> I

<record class declaratiori>

c “1% Simple Variable Declarations.-r-3 - - - L

<simple variable decdara-tiori~ ::= <simple type> <identifier list>

-tsimFle type> ; ; .z integer 1 real 1 long real I Ccomplex, I long

complex 1 logi@a_l 1 bits 1 bits (32) 1mm___ f_

C

string I sJring, (<integer>) 1 r-eferenee? x--7
(<record class identifier lis+>)

,<reccrd class identifier list> ;::=- <record class identifier> 1

<record class identifier Zist~ ,

<record class identifier>

5"L2, Semant,ics

Each identifier of the identifier list is associated with a

variable which is declared to be of the indicated type, A variable is

calLed a simple vari.abLe, if its value-z-s simple (cf, Section 4). If

a variable is declared to be of a certaEn type, then this implies that

only values which are assignment compatible with this type (ef. 7.2,2.)

can be assigned to it O It 1s :understooc;l that the value of a variable

is equal to t.he valixe of the expression most recently assigned to it.

A vu l.abae of tLype bits is always of Length 32 whether or not-a

the declaration specification is included.

A varfab.le of type string hasc-2 a length equal to the unsigned

integer i.n the declaration specification. If the simple type is

g1.ve.n only as string, the length of She variable is 16.rs---_C~I

A varLable of type reference may s,2fer onl.y to records of theo-m--

rLlcord classes whose identifiers appear in the record class ident<-,

fier list of the reference declaration specification.

c

.14

i
L

L

L

L

L

L

L

i
I

string (I-0) S, T

reference- (PERSON) JACS, JILL

5.2" Array Declarations- -

5.2”1. Syntax

4' array declaratio0 ::= <simple type> array <identifier list>

(<bound pair lis-0)

<bound pair list> ::= <bound pair> l<bound pair list>,<bound

pair>

<bound pair> z ;= <lower bound> a: <upper bound>

<lower bound> : := <integer expression">

<upper bound> ; := <integer expressi0r-D

5.2,2. Semantics

Each identifier of the identifier list of an array declaration is

associated with a variable which is declared to be of type array.A

variable of type array is an ordered set of variables whose type is the

simple type preceding the symbol array. The dimension of the array is

the number of entries in the bound pair list.

Every element of an array is identified by a list of indices.

The indices are the integers between and including the values of the

lower-bound and the upper bound. fiery expression in the bound pair

list is evaluated exactly once upon entry to the block in which the

declaration occurs. In order to be valid, for every bound pair, the

value of the upper bound must not be less than the value of the lower

bound.

L

502.3. Examples

integers-a r r a y H(1: 300)

15

iL

-

I -

i

I
i

L

I
h

i

L
i

L

t

IL

1

real array- - A, B(l::M, 1::N;

string (12) array STREET, TOWN, CITY (J::K + 1)

5.3. Procedure Declarations

5.3.1. Syntax

<procedure declaratiom ::= <proper procedure declaration> 1

<Y function procedure declaration+

<proper procedure declaratior3 : := procedure <procedure headin@;

<proper procedure bodp

<r function procedure declaratiog : := <simple type> procedure

<procedure headin@;

<7 function procedure body>

<proper procedure body=> : := <statemen

<r function procedure bodp : : = <J expression> 1 <block bodp

<9 expression> end-
<procedure headin@ ::= <identifier> 1 <identifier> (<formal

parameter list>)

<formal parameter list> ::= <formal parameter segment> 1

<formal parameter list> ; <formal

parameter segment>

<formal parameter segmenti : := <formal type <identifier list3 I

<formal array parameter>

<formal type> : := <simple type> I <simple type> value 1 <simple

type3 result 1 <simple type> value result I

<simple type> procedure 1 procedure

<formal array parameter> : := <simple type> array <identifier

list> (<dimension specification>)

-<dimension specification> ::= * I <dimension specification> , *

5.3.2. Semantics

A procedure declaration associates the procedure body with the

L
L

identifier immediately following the symbol procedure. The principal

16

L

L

i

i

L.

f

i

L

:

L
,
L
f

t

i.

part of the procedure declaration is the procedure body. Other parts

of the block in whose heading the procedure is declared can then cause

this procedure body to be executed or evaluated. A proper procedure

is activated by a procedure statement (cf. 7.3.), a function procedure

by a function designator (cf. 6.2,). Associated with the procedure

body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal-parameters. All formal para-

meters of a formal parameter segment are of the same indicated type.

The type must be such that the replacement of the formal parameter by

the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3-2.).

5.3.2.2. The effect of the symbols value

formal type is explained by the following

and result appearing in a

rule, which is applied to

the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols begin and end

if it is not already enclosed by these symbols;

(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(1a a declaration followed by a semicolon is inserted after

the first begin of the procedure body, with a simple

type as indicated in the formal type, and with an iden-

tifier different from any identifier valid at the place

of the declaration.

(b) throughout the procedure body, every occurrence of the

l-7

formal parameter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon is inserted

after the declarations of the procedure body. Its left part

contains the identifier defined in step 2a, and its expres-

sion consists of the formal parameter identifier. The sym-

bol value is then deleted;_

(4) If the formal type contains the symbol result, an assignment

statement preceded by a semicolon is inserted before the

symbol end which terminates a proper procedure body.I n

the case of a function procedure J an assignment statement

is inserted after the final expres-

sion of the function procedure body. Its left part contains

the formal parameter identifier, and its expression consists '

of the identifier defined in step 2a. The symbol result is

then deleted, J

5.302.3. Specification of array dimensions. The number of "*'"'s

appearing in the formal array specification is the- dimension of the

array parameter.

5 -3.30 Examples

procedure INCRIZMENT; X := X+1

M A Xreal procedure (real value X, Y);- -
if X < Y then Y else X

18

L

procedure COPY (real array U, V (*,*); integer value A,-,-

real

long

for I := 1 until A do-
for J :=-s 1 until B do U(X,J) := V(I,J)

procedure HORNER (real array A (*); integer value

real value X);- -
begin real S; S := 0;- -

for I := 0 until N do S := S * X + A(1);

S

end

real procedure SUM (integer K, N; long real X);- -
begin long real Y; Y := 0; K := N;

while M> = 1 dc

begin Y := Y f-X; K := K - 1

end;

Y

end

B);

N;

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, M;

P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));

while (P- - 1 = null) and (7 MALE (P)) or

(P = FATKER<R))-do

P := ELDERSIBLING (P);

M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));

while (M 1 = null) and-. ?B (+GLL~~ (M)) do

M :- ELDERSIBLING (M);

if P = null then M else- -
if M = null then P else

if AGE(P) < AGE(M) then P else M

end

19

h
f
i

I

i
I,

t
L

L
L
1
i

Z

L

I
t

L
1
L
I

5.4. Record Glass Declarations

5p401e Syntax

<record class declaratioa ::r= record <identifier> (<field list>)- -
<field list> z ;z <simple variable declaratiom 1 <field list> ;

<simple variable declaratiori>

5.4.2, Semantics

A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent

of a record class declaration is a sequence of simple variable declara-

tions which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.403e

record

record

Examples

NODE (reference (NODE) LEFT, RIGHT)

PERSON (string NAME; integer AGE; logical MALE;

reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRJP,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

from existing ones. These new values are obtained by performing the

operations indicated by the operators on the values of the operands.

Several simple types of expressions are distinguished. Their struc-

ture is defined by the following rules, in which the symbol J has to

L
L

20

be replaced consistently as described in Section I, and where the trip-
I L

lets To, Y19 r2 have to be e.LT,her consistently replaced by the words

-

-

L
or by any combination of lords as indicated bgM the following table,

c

L
I

1c
*
!
r
I
c

I-
L
1
1
t-

t

logical

bits

string

reference

which yields To given 72 and Z$:

\
TTl 32

integer real complex

integer

real

complex

intege-c

real

complex

real

real

complex

compl.ex

coAmp.lex

complex

so has the qual?..ty *'Longpp if either both rl and .Yf2 have that

quality, or if one has the quality and the other is "integer".

Syntax:

<3 expresslo :b'=l: <simple .T expressioK>

(d expressicn IisG$
I <case clause?

<Jo expressforD z:= <if clauses <si,mple g
1 expressi else--r

d2 expressionI

0 expression iisC> g ;z 0 expressiori>

<Jo expression Listi ;:--: <Yl expression list;> > <J2 expressi0r-D

<if Claus0 z z= if <logical expressiorD then-z3
<case clause> ," gz case <integer expressionS of- - s-

The operands are either constants, variables or function designa-

tor.s or other expressions between parentheses, The evaluation of

operands other than constants may in-icLve ,smal.ler units of action such

as the evaluation of other expressions or r,he execution of statements*

2.L

f
i

L

!L

i&
I

i

L
1
L
IL

L
L
L
L
L
L

The value of an expression between parentheses is obtained by evaluat-

ing that expression. If an operator has two operands, then these oper-

ands may be evaluated in any order with the exception of the logical

operators discussed in 6.4.2.2. The construction

<if clause> <simple Yl expression> else <J2 expressio*

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true, the simple expression following the if clause

is selected, if the value is false, the expression following else is

selected. The construction

<case clause (0 expression lis*)

causes the selection of the expression whose ordinal number in the

expression list is equal to the current value of the integer expres-

sion contained in the case clause. In order that the case expression

be defined, the current value of this expression must be the ordinal

number of some expression in the expression list.

6.1. Variables

6.1.1. Syntax

<simple J variable> ::= CT variable identifieti 1 <7' field designator> 1

U array designator>

<J-variable ::= <simple 3' variable f <simple string variable3

(<integer expressi0m.B <integer number>)

<r field designator> ::=<J field identifier> (<reference expressiom)

<r array designator3 ::= <3* array identifier", (<subscript list>)

<subscript list> ::= <subscript> 1 <subscript listi, <subscript>

<subscripD ::= <integer expressiorD

L
1 22

i

L

i,rIL

L

I
L

1

L
!
!

6.1.2. Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of the field designator

is defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples

x A(I) M(I+J, I-J)

FATHER (JACK) MOTHER(FATHER(JILL))

6.2. Function Designators

6.2.~ Syntax

<9 function designator> ::= CT function identifier> 1 <T function

identifier> (<actual parameter lise)

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

steps 2, 3, 4, As specified in 7.3.2.

23

i

L

i

L
L
1

L

1
L
L
L
I

Step 5. The copy of the function procedure body, modifed as in-

dicated in steps 2-4, is executed. The value of the function

designator is the value of the expression which constitutes or is

part of the modified function procedure body. The simple type

of the function designator is the simple type in the corresponding

function procedure declaration.

6.2.3. Examples /-.

MAX (x * 2, Y -He 2)

SUM (I, 100, H(1))

S’UM (I, M, SUM (J, N, A&J)))

YOUNGESTUNCLE (JILL)

SUM (I, 10, x(1) * Y(I))

HORN333 (X, 10, 2.7)

6 -3. Arithmetic Expressions

6-3.1. Syntax

In any of the following rules , every occurrence of the symbol J

must be systematically replaced by one of the following words (or

word pairs):

integer

real

long real

complex

long complex

The rules governing the replacement of the symbols To, rl and J2 are

given in 6.3.2.

<simple g expressio* : := <J ten0 1 + <J term 1 - CT ter*

24

i

i

i

IL

Ic

IL

f
L

t

i

L
1
It.

<simple To expression> ::= <simple 71 expressiorD + <Y2 terr0 1

<simple T
1 expressioD - <T2 term

<3 terti i z= <T factor>

<Jo term ::= <Tl terrD * <J, factor>

<Jo terti ::= <Jl term / <J2 factor>

<integer terrD z z=: <integer term div <integer factor> I

<integer terti rem <integer factor>

<Jo factor> z ;z <Jo primary> I <Jl factor> H <integer primary+

<Jo primarp : := abs <T1 primary> 1 abs <yl number>

* <Jo primary> ; z= long CT1 primarp

<Jo primary> z ;= short <Tl prima&y'>

<Y primary=> ; zz <T variable> I 4' function designator> I

(<Y expressiom) I 4 number>

<integer primary> : := <control identifier>

6.3.2, Semantics

An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,

real expression, long real expression, complex expression, or long

complex expression.

6a3e2~10 The operators -+, -$ 3, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the rele-

vant syntactic rules of 6.3.1. the symbols To, 71 and T2 have to be re-

placed by any combination of words according to the following table

which indicates To for any combination of yl and 3'20

Operators 4- I -

integer

real

complex

integer real complex

real real complex

complex complex complex

25

i *
i

i

1
i

1
L
L
L
1

To has the quality "long" if both T1 and J2 have the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

complex

integer integer long real

real long real long real

complex long complex long complex

T1 or ?2 having the quality "long" does not affect the type of

the result.

Operator /

??+I * integer real

long complex

long complex

long complex

complex

integer

real

complex

-~
real real complex

real real complex

complex complex complex

To has the quality "long" if both I1 and 3*, have the quality

"long", or if one has the quality "long" and the other is "integer" .

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type

of the result is the type of the operand. The operator "+I' standing

as the first symbol of a simple expression denotes the monadic opera-

tion of identity.

6.3.2.3. The operator div is mathematically defined (for B # 0) as

A div B = SGN (A X B) X D (abs A, abs B) (cf. 6.3.2.6.)

L
t

26

i

!
L
1.
L
L
L
I

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A, B);

if A < B then 0 else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathemetically defined as

A rem B = A - (A div B) xB

6.3.2.5. The operator * denotes exponentiation of the first operand

to the power of the second operand. In the relevant syntactic rule of

6.3.1. the symbols To and Jl are to be replaced by any of the follow-

ing combinations of words:

real

real

complex

integer

real

complex

To has the quality "long" if and only if Jl does.

6.3.2.6. The monadic operation abs yields the absolute value of the

operand. In the relevant syntactic rule of 6.3.1. the symbols To and

T1 have to be replaced by any of the following combinations of words:

?O

integer

real

real

integer

real

complex

If Tl has the quality "long", then so does Jo.

27

i/

L-

L

6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex, long real, or long complex

then it is the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols To and rl

must be replaced by any of the following combinations of words (or
i

word pairs):

f

L

i

L
i

I
L

L
L

Operator long

3O I 3

long real real

long real integer

long complex complex

Operator short

C + A(I) * B(I)

=p (-x/(2 * SIGMA)) /‘St&IT (2-n SIGMA)

6.4. Logical Expressions

6.4.1. Syntax

In the following rules for <relatioO the symbols To and rl must

either be identically replaced by any one of the following words:

28

L

i
L

I.

i
L

L
i

i

L
1
1

bit

string

reference

or by any of the words from:

complex

long complex

real

long real

integer

and the symbols J2 or 3
3
must be replaced by any of real, long real,

integer.

<simple logical expressi ::= <logical elementi 1 <relatio*

<logical element> ::= <logical term I <logical element2 or

<logical terrD

<logical term :::= <logical factor> I <logical terD and

<logical factor>

<logical factor> : z= <logical primaryP.1 I <logical prima@

<logical primary z g= <logical value> I <logical variable 1 ,

<logical function designator> 1

(<logical expressio0)

<relatiorD g ,y z <simple To expressiom <equality operator>

<simple J1 expressi I <logical element,

<equa?_ity operator> <logical element> I

<reference expressiori> is <record class identifier> 1

<simple J2 expressio* <relational operator>

<simp1e 33
expressiorD

<relational operator> ::= <l<~l>~l>

<equality operator> ::- = I 1"

6.4.2. Semantics

A logical expression is a rule for computing a logical value.

1
29

L

i

I
L

i

L
1
L
L
L
L
L
1
L
t

t

6.4.2.1. The relational operators have their conventional meanings,

and yield the logical value true if the relation is satisfied for the

values of the two operands; o t h e r w i s e .false Two references are

equal if and only if they are both null or both refer to the same

record. Two strings are equal if and only if they have the same

length and the same ordered sequence of characters.

6.4.2.2. The operators 1 (not), and, and or, operating on logical

values, are defined by the following equivalences:

1x if X then false else true---3--
X and Y if X then Y else false- -
X or Y if X then true else Y--w

6.4.3. Eksmples

P or Q

(XT Y) and (Y < Z)

YOUIVGEST~SPRING (JACK) 1= null

FATHER (JILL) & PERSON

6.5 e Bit Expressions

6.5.~ Syntax

<simple bit expression>- ::= <bit terti I <simple bit expressiorir

or <bit ter0

<bit ter0 : := <bit factor> 1 <bit term and <bit factor3

<bit factor> : := <bit secondary7 I ~<bit secondary3

<bit secondary3 ::= <bit primary", 1 <bit secondary=> shl

<integer primarp I <bit secondarp shr

<integer primary2

<bit primarp : :r <bit sequence I <bit variable> I <bit

function designator> I (<bit expression>)

30

c

6.5.2. Semantics
i

i

i

i

i

L
L
t

1
1
L
1
t

L
t

A bit expression is a rule for computing a bit sequence.

The operators and, or, and -I produce a result of type bits, every

bit being dependent on the corresponding bits in the operand(s) as

follows~

X Y

0 0

0 1

1 0

1 1

1x X and Y XEY

1 0 0

1 0 1

0 0 1

0 1 1

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions in-

dicated by the absolute value of the integer primry. Vacated bit

positions to the right or left respectively are assigned the bit value

0.

605.3. .Examples

G and H z #38

G and 1 (H z G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expressiorD ; ;= <string primarp
-<string primar* : := <strine 1 <string variable I <string

function designator> I <string varfableS

(<integer expression> @ <integer number>) I

(<string expressiorD)

31

t

L-

-

6.62. Semantics

A string expression is a rule for computing a string

of characters).

i

i

/
L

i
L

I
i
L-

L
L
L
L
L
I

(sequence

6.6.2.1. The integer expression preceding the 8 selects the starting

character of the sequence from the &ring variable specified. The

value of the expression indicates the position in the string variable.

The value must be greater than or equal to 0 and less than the declared

length of the string variable. The first character of the string has

position 0. The integer number following the m indicates the length

of the selected sequence and is the I.ength of the string expression. The

sum of the integer expression and the integer number must be less than

or equal. to the declared length of the string variable.

606.30 &le

string (LO) S;YV

s (413)

s (1-N 11)

string (10) array T (l::m,2::n);

T v-b61 (3 85)

6,-/, Reference Expressions

6.7.~ Syntax

<simpie reference expressions> ::= <null reference> 1 <reference

variable 1 <reference function

designator> 1 <record designator> 1

(<reference expressiorDj

L
32

L

i

L

i.

ic_

L
!
i
L
L
IL
1
L
L
I
L

<record designator> : i= <record class identifier> (<record

class identifier> (<expression listi)

<expression lis-0 : := <J expression> 1 <expression listi,

<T expressi

6.7.2. Semantics

A reference expression is a rule for computing a reference to a

record. All simple reference expressions in a reference expression

must be of the same record class.

The value of a record designator is the reference to a newly

created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record. The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and

be assignment, compatible with the

(cf. 7.2.2.).

6.7.3. Example

the simple types of the fields must

simple types of the expressions

PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING

(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 6*5 .l. implies the following

hierarchy of operator precedences:

long, short, abs- -

1

*, /
, div, rem, and- -

33

L

!
i

IL

!
i

Ic

Example

A = B and C-* is equivalent to A = (B and C)

79 STATEMEmS

A statement denotes a unit of action. By the execution of a

st&tement is meant the performance of this unit of action which may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

Syntax:

<program'> ::= <bloc& .,

<statement> ::= <simple statement, 1 <iterative statement> I

<if statementi I <ease statement>

<simple statemen* :;=r <bloclO I 6 assignment statement> I

<empt$> 1 <procedure statement> 1

<goto statement>

7.1. Blocks*-,

7.a.1. Syntax

<bloclO ",:- <block body", <statementi end- -
<block body> z ,"z <block hea& 1 <block bodp <statement>; I

<block body> <label definitior%>

<block head> z Ezz begin 1 <block head> <declaratiom ;

<label definitiorD ::= <identifier? :

71.2. Semantics

Every block introduces a new ieuel of nomenclature. This is

realized by execution of the block in the following steps:

L
L

L

L

i

L

L

i

Step 1. If an identifier, say A, defined in the block head or in

a label definition of the block body is already defined at the

place from which the block is entered, then every occurrence of

that identifier, A, within the block is systematically replaced

by another identifier, say APRIME, which is defined neither

within the block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 3. .Execution of the statements contained in the block body

begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless

it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed.

7.1.3. .Example

begin real U;

u - x ; x:=

end

:= Y; Y := z; z := u

7.2. Assignment Statements

7.2.1. Syntax

_ In the following rules the symbols To and fl must be replaced by

words as indicated in Section 1, subject to the restriction that the

type To is assignment compatible with the type yl as defined in 7.2.2.

35

‘,
j.

L

L

L

,

L

<Jg assignment statement> ::= <To left par-0 <Tl expressi 1

do left part> <T1 assignment

statement>

d left parts ::= <g variable> :-

7.2.2. Semantics

The execution of a simple assignment statement

L-

,

L

i
L

i

iI
I

i
l-
n

I
L

i

*

L
L
L
i

XT0 assignment statementi : :cll <To left part> <JI expression>

causes the assignment of the value of the expression to the variable.

In a multiple assignment statement

(S<O assignment statemen* ::=: <To left part> <Yl assignment

statement>)

the assignments are performed from right to left. The simple type of

each left part variable must be assignment compatible with the simple

type of the expression or assignmentvariable immediately to the right.

A simple type f. is said to be assignment compatible with a

simple type Jl if either

(-I iJ-1 the two types are identical (except possibly for length

specifications), or

(2) To is real or long real, and Jl is integer, real or long*-

real or

43) Jo is complex or long complex, and 71 is integer, real, long

real, complex or long complex.

In the case of a reference, the reference to be assigned must

refer to a record of the class specified by the record class identi-

fier associated with the reference variable in its declaration.

1 36

L

c

7.2.3. Examples

Z := AGE(LTACK) :- 28

X o- v0-I - + abs Zs-
C:=I+X+C

P o-0- X1=Y

7*3* Procedure Statements

7.3.L Syntax

L

1
L

i
L

iA-

i
L

I
L-

L
L
L

. <procedure statement9 ::- <procedure identifier> I <procedure

identifier9 (<actual parameter list>)

<actual parameter list9 ::= <actual parameter> I <actual para-

meter list9 , <actual parameter>

<actual parameter> ::= 4 expression9 I <statement9 1 <J subarray

designator9 I <procedure identifier> 1

4' function identifier>

<J subarray designator9 z:= <T array identifier9 I <T array

identifier9 (<subarray designator

list>)

Csubarray designator list9 ::= <subscript> I Jt 1 <subarray

desi.gnator lisD,<subscript9 I

<subarray designator list>,*

703.20 Semantics

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose

procedure identifier is given by the procedure statement, and of

the actual parameters of the latter.

Step 2. If the procedure body is a block, then a systematic

L
Ii

change of identifiers in its copy is performed as specified by

37

C

L

L

step 1 of 7,1,2.,

Step j, The copies of the actual parameters are treated in an

undefined order as follows: If the copy 1s an expression differ-

ent from a variable,, then is :.a enclosed by a pair of parentheses,

or if it is a statement ir, is enclosed by the symbols begin andI__uy

end.

step 40 In the copy of the procedure body every occurrence of an

idenirlfier identifying a formal parameter is replaced by the copy

of t.he corresponding actual parameter ,(cf, 7.3.2.1.). In order

for the process to be defined, these replacements must lead to

correct ALGGL W expressions and statements"

,step 5 The copy cf the procedure body, modified as indicated ~.n

steps 2 4, is executed.

‘7,3,2,E* Actuai-formal correspondence, The correspondence between

the act,ual parameters and the formaL parameters is establzshed as

fOl.~OwS: The actuai parameter list of the procedwe statement (or

of the function designator) must have ?he same n.-znber of entries as

the formal parameter List of the proceaure declaration heading. The

correspondence is obtained by taking the ;;nt,ries of these two lists

in the same order"

7 52.2, Formal specifications. If a formal parameter is specified

by value, then the formal type must be assignment compatible with the- -

type of the actual parameter. If it is specified as result, then the.P

type of the actual -JZLY~~Y?T EKE& be asslgLnnent compatible with the

L-

L.

formal type. In all other cases, the types must be identical. If an

actual parameter is a statement, then the specification of its corre-

spondlng formal parameter must be procedure.

752.3. Subarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of sub-

scripts of the actual parameter equals the number of subscripts of

the corresponding formal. parameter. If the actual. array parameter has

more subscripts than the corresponding formal parameter, enough sub-

scripts must be specified by integer expressions so that the number of

sns appearing in the subarray designator equals the number of sub-

scripts of the corresponding formal parameter. The subscript positions

of the formal array designator are matched with the positions with s's

in the subarray designator in the order they appear.

i
L
t

i

f
L

L

’ 7 . 4 , Goto Statements

7.4L Syntax

<goto statement> .z:= poto <label identifier> 1 go & <label

identifier>

‘7 4.2. Semantics

An identifier is called a label identifier if it stands as a

iabeL.

L
39

A goto statement determines that execution of the text be contin-

ued after the label definition of the label identifier. The identifi-

cation of that label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently acti-

vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified -above.

7.5’ If Statements

7.5.1. Syntax

<if statementi : := <if clause <statement> 1 <if clause+

<simple statement> else <statement>

<if Claus& : := if <logical expressi then

7.5.2. Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical ex-

pressions. An if statement of the form

<if clause=> <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

step 2. If the result of Step 1 is true, then the statement

following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

40

An if statement of the form

<if clause> <simple statement> else <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the simple state-

ment following the if clause is executed. Otherwise the state-

ment following else is executed.

7=5*3Q Examples

if X = Y then goto L

ifX<YthenU :=X else if Y < Z the.n U := Y else V := Z-v

7.6. StatementsCase

7.6.1. Syntax

<case statement> ::= <case clause> begin <statement list> end

<statement list> : : = <statementi 1 <statement list> ; <statement>;

<case clause E z= case <integer expressi.orD of

7.62, Semantics

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause is evaluated.

_ Step 2. The statement whose ordinal number in the statement list

is equal to the value obtained in Step 1 is executed. In order

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

41

statement of the statement list.

7a6.30 Examples

case I of-z-w -
begin X := X + V;

Y :c; y -I" z;

z :-zcx

end

case j of- - .--
' begin E-:(I) := -F(I);- - -

begin H(I-1) := J3(1--1) + H(I); I := I-l _end;

beg:n H(b-1) :A H(i-1) X x(I); 1 := I-l end;-
begin, H(H(I-1)) :- H(1); I := I-2 end -

end

7 ‘7 = Iterative StatementsF%- e*_q____-u

7.7.L Syntax

<iterative statemen ::-= <for clause <statemenD 1 <while

clause <statemen

<for clause> ::- for <control identifier> :- <initial value

step <incrementi until<limiti do 1 for---> m -
<i,dentifier? := <initial value9 until <limiO

do 1 for <%&nti.fier> :- <for listi doc_-> -0. -1
<.for 11~0 ::=r <integer ,expressio.+ I <for list> , <integer

exprk3sxiorP

<initial value9 ::- <integer expressioD

<increment;> : z-2 <integer expressiorP

- <limit> : :- <integer expressi

<while clauseI : :- while <logical expressi do- -

‘7,7-2, Semantics

The iteratjve statement serves to express that a statement be

42

executed repeatedly depending. on certain conditions specified by a

L

L

i-

for Claus2 or a while clause, The statement following the for clause

or the while clause always act,; as a block, whether it has the form of

a block or not. The value of the control identifier cannot be changed

by assignment within the controlled statement.

(a) An iterative statement of the form

for <control identifier> :== El step E2 until E3 do <statement>

is exactly equivalent to the block

begin <statement-D; <statement-D ..* ; <statement-D;

u . . ; <statement-D end

in the I
th

statement every occurrence of the control identi-

fier is replaced by the reference denotation of the value of the

e.Kpression El T 1 x E2, enclosed in parentheses.

The index N of the last statement is determined by

N < (~3~El) / E2 < N-+1.- If N < 0, then it is understood that

the seqsn.ce is empty. The expressions El, E2, and E3 are evalu-

ated exactly once, namely before execution of <statement-D.

(b) An iterat:iT:e st!atement of the form

for <control identifier>.-> z= El until E3 do <statement>->

is exactl:f equivalent to the iterative statement

for <control identifier> :- El step 1 until E3 do <statement>

(c) An iterative statement of the form

for <control identifier> :== El, E2, .O o , EN do <statement>-,

is exaztl;y equivalent to the block

43

c

begin <statement-D; <statement-B . . . <statement-* ; . . .

<statement-N> end

when in the It' statement every occurrence of the control identi-

fier is replaced by the reference denotation of the value of the

expression EI.

(d> An iterative statement of the form

while E do <statemen<I -

is exactly equivalent to

if E then- -
begin <statement> ;

while E do <statement>- -
endI-

7.7.30 Examples

for ? : .~- 1 step 1 until N-l do S C= S + A(U,V)

while (;T > 0; and (C.TTlr(,T> 1 .-= S)do J := J-l

-(A. Standard Froctdures?__c~

The standard procedures

in that they ma-y have one or

differ from explicitly declared procedures

more parameters of mixed simple type.

Tn the fol.Lowing descriptions J is to be replaced by any one of

integer bits

real.

long real.

complex

long compkin

atring

44

58.1. Read Statements

'PIplicit declaration heading:

procedure read (7 result Xl9 7 result X2 .a O , 3" result Xr- - -);
n‘

procedure readon (s result Xl, 3' result X2 nO. 9 7 result XI= .- n
);

(where n 2.1)

Both read and readon designate free field read statements. The--=

quantities on the data cards must be spearated by one or more blank co-i-

umnsL. All 80 card columns can be used and quantities extending to col-

xnn 80 on one card can be continued beginning In column 1 of the next

card. In addition to the numbers of kOIlq, numbers of the following

sytactic forms are acceptable quantities on the data cards:

I) <sigrD <T number>

where J is one of integer, real, long real, complex, long complex.

2) <sign'r do number> <sigYi, <TI number>

where 30 is one of integer, real, long real, and T.
1

is one of

complex,, Long complex.

The quantities on the data cards are matched with the variables of

the variable list in order of appearance. The simple type of each quan-

tity read must be assignment compatible with the simple type of the

variable designated. The read statement begins scanning for the data

OS the next card. The readon statement begins scanning for the data

where the last read or readon statement finished.

708 ~sc2. Examples

read (X,A[I))

for L :- 1 until N do readonL- v-- _D (A(I)

7.822. Write Statements

Implicit declaration heading:

profzedure write (J value Xl, T value X2, OOq , 7 value X,);

(where n >, 1);

The values of the variables are output in the order they appear

in the variable list in a free field form described below. The first

field of each WRITE statement begins on a new line. If there is insuffi-

cient space remaining on the 132 character print line for a. new field,

that line is printed and the new field+arts at the beginning of a new

print line.

integer: right. justified in field of 14 characters followed by 2
blanks. Field size can be changed by assignment to intfieldsize.

real: same as integer except the field size cannot be changed,

long real:: right justified in field of 22 characters followed- -
by 2 blanks D

complex:: two adjacent real fields always on the same line.

long complex:L-2p two long real fields adjacent always on the same- -
14neC

ioglcal:- - - - TRUE or FALSE right justified in a field of 6 characters

foil-owed by 2 blanks.

str:ng: placed in a field large enough to contain the string

and may extend to a new line if the string is larger

than 132 characters.

bits: same as real.

reference: same as real*

8. STANDARD .FI3CTIONS AND PREDECLARED IDENTIFIERS

8.1” s.andard Transfer Functions- -

Implicit declaration headings:

46

L

C

L

i

L

8 .20 Standard Functions of Analysis

integer procedure round (real value X);PI
integer procedure truncate (real value X);- -
integer procedure entier (real value X);I_,-
real procedure realpart (complex value X);

long real procedure longrealpart (long complex value X);

real procedure imagpart <complex value X);

long real procedure longimagpart (long complex value X);

complex procedure imag (real value X);PY
comment complex number XI;

long complex procedure longlmag (long real value X);- -
logical procedure odd (integer value X);

bits procedure bitstring (integer value X);

comment binary representation of number X;

integer procedure number (bits value X);- - - -
comment integer with binary representation X;

integer procedure decode (string (1.) value S);

comment numeric code of the character S;

string (1) procedure code (integer value X);

comment character whose numeric code is X REM 256;

realI-

10%

real

-long

real

long

real

long

,procedure sin (real value X);- -
real procedure longsin (long real value X);P-P
procedure cos (real value X);PI
real procedure longcos (Long real value X);1-
procedure arctan (real value X);- -
comment -a/2 < arctan (X) < n/2;

real procedure longarctan (long real value X);- -
comment =+/2 < longarctan (X) < n/2;

procedure ln (real value X);- -
comment logarithm base e;

real procedure longln (long real value X);- -
comment logarithm base e;

II 7

L-

L

L

L

L

L-

real.-__3

long-s-s-

realU__.
long‘~NC-
realF-
long.-_I_

procedure Log (real value Y);--_____y
clomment 'Logarithm base 12;,___1__,
real procedure longlog (long real value X);--a-- vu_ ---, x---=1 u___
cmment Logarithm base Yr'o"A& 9- ----
procedure exp (real, value ^k) J- - -w__ .--
real procedure Iongexp (long real value X);--- =- -.-- --- Y
procedure sqrt (real value I?Z.);e.sw--F- .-a-- -- =.
real procedure longsqrt (Aong real value X);- - - - - -

complex proc.cdure complexsqrt (complex value X);I.----- s-B-.-- .---- WY_ --
c omme nt principal square root;---R--d

long ,aomp_iex procedure longcomplexsqrt (long complex value X);<m-I_a c--P s=--->
comment principal_ square root F- - -

logical underfLow;- -

comment fnitialzred to false. Set to true at occurrence=--- YIZ- -w - -

of a fl-oatin.g- pc?: 3: '~.nderfl.ow interrupt;

plcg.L~a&a0verfloV;

cmment inftla;lzed to false" Se-t, to true at occurrence.-_I-- se.-.- L9__

of" a f l5a-k Xng-pcxt or f'lxed-point overflow or divide-by-

zero interrupt ;

k,,e. Standard Mesaage Function

1r:teger procedure msgk-.rel. (:;.nteger value X);c. --- -.--2 c *.. B-s s-2

comment The vaiue of a system 4nteger variable MSG controls- -

the r?Jmber of underflod/overfLow messages printed during

program estecution<> MSG 2:s initialized to zero.

MSG == 0L I---
NO ~~essages are ~ri..o";ed I

43

:

i
L-

MSG > 0

Underflow and overflow messages are printed.

After each message is printed, MSG is decreased by 1.

MSG < 0

Overflow messages are printed. After each message

is printed, MSG is increased by 1.

Each message gives the type of interrupt and a source card number

near which the interrupt occured.

Examples

OVERFLOW NEAR CARD 0023

UNDERFLOW NEAR CARD 0071

DIV BY ZERO NEAR CARD 0372

The predeclared integer procedure msglevel is used to interro-

gate and to set the value of MSG. The old value of MSG is the value

of the procedure msglevel, and the new value given to MSG is the

value of the argument of msglevel.

8.4. Output Field Sizes

i

!
i

i

i

IL.

integer- - intfieldsize;

comment indicates number of digits including minus sign if

any, Initialized to 14; can be changed by assignment state&

men-t;

8.5. F u n c t i o nTime

integer procedure time (integer value X);

comment if X = 1, time is returned in 60~~s of a second.

If X = 2, time is printed in minutes, seconds and 60ths of

a second and returned in 60~~s of a second.

49

I -

-

UNIT RECORR EQUIPMENT *

COMPUTATION CENTER
CAMPUS FACILITY

STANFORD U-NIVERSITY

L

i

’ Reprivlted from the Camp~ls Facility USERS MANUAL. December 196%

i

2.2.2 Unit Record Equipment

Necessary unit record equipment

be operated by Users to prepare

interpret and duplicate-punchep

is available in Pine Hall, and may

and correct punched cards and list,

card decks. Brief operating instruc-
tibns appear below. The personnel in Dispatch will be happy to assist
the User in Jearhing how to use and operate the machines. A word of

caution -- 'In the event of a card jam or machine failure, cdntact a

Dispatch clerk immediately and do not attempt to clear the failure or

jam.

'1. 519 Reproducing Punch

Read
Feed

Punch
Feed

Operating
Controls

a n d .
Indicators

Read-
Stacker

C o n t r o l I
Panet (

Punch
Stacker

COmpari!
indicator

on

2-7

L-

To duplicate a deck, place the source cards into the READ FEED with the

top of the cards, face down and toward your right. In the same way,

place a supply o1p blank cards in the PUNCH FEED. Open the CONTROL

PANEL cover, insert the 80 X 80 DUPLICATE Control Panel and then

reclose the cover. Control panels should be handled with care. Hold.

down the START key for a couple of seconds. The cards will begin feed-

ing and will fall into their respective STACKERS. Always stop the ma-

chine to replenish the blank card or source card supply. When the last

source card has been read, remove the remaining cards from the PUNCH

FEED and hold down the START key a few seconds until all cards are in

the STACKERS.

Cards can be duplicated in columns 1-76 and punched with new sequence

numbers in columns 77-80. On the Col. l-76 DUPE and 77-80 NEW SE& Control

Panel select the switch setting desired: count by units or count by 10's.

On a blank card, keypunch the starting number you want in your deck,

into columns 77-80. Put this card in front of your blank card supply

and then load and operate the machine as explained for 80 X 80 dupli-

cating. WARNING: The 519 Reproducing Punch cannot be used to reproduce

binary cards.

For comparing, the "Compare" Control Panel is used. The master deck is

put in the left-hand feed, and reproduced deck in the right-hand feed.

The machine will stop and the red "ERROR" light will glow, if a dis-

crepancy is encountered.

!
L

C

2-8

2. 557 Interpreter

FVint Position
Dial

Stacker

Card
-Hopper

Entry .
Switch

Control
Panel

i

L

The interpreter reads information punched into a card and prints it on

-the card at the rate of 100 cards per minute. Up to 60 characters can

be printed in a single pass iArc-Pugh the machine. The remaining 20

characters on the card c'n 'It<;3 ysrintrd on a second pass. Printing can ' +
be positioned on the cart5 :: :~.t~y ~iile or' 25 lines. This machine is not

yet equipp .ed to Inter Y. .i +yy,PP -L * i 3e,;z-w a-- 1 ;u-." i 1’07 Ccjde; .I -k-m

L

h
fi

Operating Instructions

i
0

0

0

L
!

0

I-

f
i

0

Ik.
0I

L

0

Be sure the main power switch on the right-hand end of the machine

near the hopper is in the "ON" position, and verify that the proper

control board is in the machine.

Joggle the cards into perfect alignment, and place them face down

in the hopper with the 12.edge inward (to the left).

Set the printing position control (the clear plastic knob with

numbers on the edge) to the desired print line. Line No. 1 is

above the 12-line on the top edge of the card; line No. 2 is the
12-punch line; line No. 3 is between the 11 and 12 punch lines,

etc. The odd-numbered

lines.

Set the "ENTRY" toggle
t

lines (3 through 23) are between the punch

switch at the right-hand end of the controls

to the "UP" position for entry 1 (the first 60 characters), or %he

"DOWN" position for entry 2 (the remaining 20 characters), and push

the black "START" button.

The machine will interpret the punches in the cards, which will

emerge in their original order in the stacker.

The machine will stop automatically when the final card has been

interpreted, when the stacker is full, iflthe feed mechanism fails

or if the "STOP" button is pushed.

A special control board is provided for interpreting binary cards.

i

2-10

3* 82 Sorter

c

i

L

Sort Brush

Column-Selector Handle.\ JoppZond Feed

Selection

*Switches

Main-line
Switch

Start and
Stop Keys

Pockets

The sorter arranges punched cards in either alphabetical or numerical

sequence, sorting a single column at a time.

Operating Instructions

Be sure the main power supply switch on the right-hand side of

the machine is "ON".

After a 2-minute warm-up period, press the "START" key to clear

the machine of any cards left by the previous User.

Joggle the cards into perfect alignment and place them in the

hopper at the right-hand end of the machine, then put the card

weight on top of the stack. The cards must be face down with

the o-edge toward the throat (left).

i
2-11

0 Set the control switches as follows:

I -

L

L ALPHABETIC SORTING -

L

L

L

,
L

4
b)

4

d)

The "SORTING SUPPRESSION" toggle switch should be set at "OFF".

The "CARD COUNT" toggle switch (black) should be "ON" if a card

count is desired, and the counter manuall/y set to zero.

The "COLUMN INDICATOR" (the crank above the selection switches)

is set to the card column to be sorted. Sorting is done one

column at a time.

The "SELECTION SWITCHES" are set as follows:

NUMERIC SORTING

All tabs set away
from center ring

Move red tab to
center ring

for sorting out zone (0,ll and 12)
punches only. Cards without a zone
punch are rejected.

The, cards with ietters A-I are put
into the 12 pocket. The cards with
J through R are put into the ll-
pocket, and those with S through 2
go into the zero pocket. Cards with
numerals and blank go to pocket R.. .

Move red tab away from Sort the cards with the letters
center ring A-I, J-R, and S-Z separately.

0 Press the "START" button until the machine starts feeding cards from

the bottom of the stack. Each card passes under the brush head,

which determines which of the 13 stacker pockets will accept it,

There is a pocket for each punch position in the card, and a reject

pocket for cards without a valid punch in the column being sorted.

0 The machine will stop when a pocket is full, when the hopper is empty,

when the cover over the brush is raised, or when the "STOP" button

is pressed.

c

c
2-12

. :IL

4.

i
i

t
L

4. 029 Keypunch .

1

I
2-13 c

‘*

-

3

0

.

Key . ALPHABETIC NUMERIC
Number Card Code Gmphic Cad Code Graphic

L
1 11-B Q 12-B-6 +
2 O-6 W o-8-5
3 12-5 E 11-8-5 i
4 11-9 R 12-B-2 , C
5 O-3 T O-B-2 o-8-2
6 O-B Y 12-B-7 I
7 12-1 A none none
8 o-2 5 O-86 >
9 12-4 D
10 12-6 ,' F

8-2 :
11-86 i

11 12-7 G 11-8-7 7
12 12-8 H 8-5 I
13 o-9 z none
14 O-7 X 0::7 3
15 12-3 C 8-7 II

16 O-5 V 8-6 =
17 12-2 B 11-8-2
18 11-5 N 12-8-5 t
li 11-7 o-1 12 0 8

0
21 o-4 e
22 12-9 I :

1
2

23 11-6 0 3 3
24 11-l J 4 4
25 11-2 K 5 5
26 11-3 L -6 6
ii 11-4 M 7 7

O-8-3 t 8 8
29 12-8-3 . 9 9
33 11
40 B-4 ii

11
8-3 i

41 O-8-4 % O-B-3
42 11-8-4 11-8-3 i
43 12-8-4 12-8-3 .

Key Graphics and Punched-Hole Codes

Cards can be punched under "manual" control or " program" control.

"Program" controlled punching is advisable when preparing a large

number of cards all with a similar format. "Manual" punching is

simple and is recommended when a few or randomly formatted cards

are to be prepared.

Manual Control Punching:

a) Put the supply of cards to be punched into the hopper on the

upper right-hand side of the machine.

-b) Tllrn the three switches "AUTO FEED","AUTO SKIP","AUTO DUP", and

"PRINT" to the "ON" position.. *

c) Press the "FEED" key at ttie right of the keyboard‘twice. This

will bring down two cards. The first card is ready for punching.

d) If you punch through col. 80 the machine will automatically

eject the card punched, position the next card for punching and 'i

feed another card.

/

,
I

2-14

1

t
L

L.-

i

L-

L-

c

L

L

i

c

L

4

f >

63)

If you want to eject a card before reaching col. 80, manual:,y

press the "REL" key.

When punching a very few cards, you'can insert cards into the

punch station at the right of the machine. Press "REG" and begin,

punching,

To duplicate a card, put a blank card in the punch station and

the source card in the read station (to the left) and then press

"RISG" . Next, hold down the "DUP" key for contirllous duplicating,

or use the "DUP" key to duplicate column by column. This procedure

is commonly used to correct punching errors.

0 ' Program Controlled Punching

a) Preparing a "program" card. In the program control mode, the
t

program card controls the format of the cards and the characters

(alphabetic or numeric) to be punched.

1) Program control symbols

1 This punch allows punching of alphabetic characters

b A blank column allows punching of numeric characters

0 This symbol causes duplicating from the column at
the read station to the column at the punch station

A 2-punch causes printing of leading zeros and all'
characters

+ A + symbol in each column in the field, except the
first, defines a field.

k

2) This example of a program card shows all common combinations

' or codes and their resultant products.

000000000000~000
1 2 3 4 5 6 7 6 910111213141516171919~21~~24~~27m~r,3132~M~363738~~4142434445~47(849505152535(555657Y5960616263~6566676869707172737475767779m~

11111111111111~11~

222~~0222
l-1 7 iyi.I &qy&3Flc_ >:.

2222222220220222

44444444444044444444444444444444444441444

88

99
I 2 3 4 5 6 7 8 9 IO 11 12 I3 14 15 lb 17 I6 I9 26 2l22 23 24 25 26 27 129 30 31 32 33 31 35 36 37 36 39 4041 42 43 U 45 46 47 48 49 50 51 52 53 54 55 56 57 W 59 60 61 62 63 64 65 66 67 64 69 70 71 12 73 74 75 76 77 76 79 6t7

The keypunch is designed for punc‘hing and duplicating only those

characters contained on the keyboard. Heavily coded cards (e.g.,

- cards with more than 3 punches per column) cannot be duplicated

on the *machines.

Please remember to consider the other users and clean up the

machine before leaving it. Dispose of cards in a nearby "CARD

disposal can."

See the Dispatchers for assistance with keypunch machines and to

report failures.

2-16

i

.
i

t

c
ALGOL W

L

ERROR MESSAGES

ii

i

c

i
L

Henry R. Bauer
Sheldon Becker

Susan L. Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

JANUARY 1968

i

ALGOL W- - ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the pro-

gram listing. The message format is

CARD NO. (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) is one of those listed below.

INCORRECT SPECIFTN syntactic entity of a declaration is

incorrect, e.g. variable string length.
L

fii
L

INCORRECT CONSTANT syntax error in number or bitstring.

MISSING END anEND needed to close block.

MISSING BEGIN an attempt to close outer block be-

fore end of code.

c

MISSING)
.

) is needed.c

ILLEGAL CHARACTER a character, not in a string, is

unrecognizable.b-

MISSING END l program must conclude with the se-

quence END .L

STRING LENGTH ERROR string is of 0 length or length

greater than 256.
i
L

IL
BITS LENGTH ERROR bits constant denotes no bits or

more than 32 bits.

i
MISSING ((is needed.

COMPILER TABLE OVERFLOW terminating error - a compile time

table has exceeded its bounds.
i

1I
I-

:cfi
zI
L

TOO MANY ERRORS

ID LENGTH > 256

I
L

L
L
I-
L

L
L
L

the maximum number of errors for Pass

One records has been reached. Com-

pilation continues but messages for

succeeding errors detected by Pass

One are suppressed.

more than 256 characters in identifier.

II. PASS TWO MESSAGES

The format of Pass Two error messages is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

symbol).

If a $STACK card is included anywhere in the source deck, the

SYNTAX ERROR message is followed by

STACK CONTAINS:

. (beginning of file)

<s,ymbol-l>

<symbol-0 (top of stack)

The symbol names may differ somewhat from the metasymbols of

the syntax.

If any Pass One or Pass Two errors occur, compilation is termi-

nated at the end of Pass Two.

INCORRECT SXPLE TYPE <number> <simple type> of entity is improper

as used. Number indicates explana-

tion on list of simple type errors.

2

r ’L
hL

INCORRECT TYPE

L

MISMATCHED PARAMETER
L

MULTIPLY-DEFINED SYMBOL <iden-
tifier>c

L

f

L

UNDEFINED SYMBOL <identifier>

INCORRECT NUMBER OF ACTUAL
PARAMETERS

INCORRECT DIMENSION
C

i

L

i

DATA AREA EXCEEDED

INCORRECT NUMBER OF FIELDS

INCOMPATIBLE STRING LENGTH

INCOMPATIBLE REFERENCES

BLOCKS NESTED TOO DEEP

REFERENCE MUST REFER TO RECORD
CLASS

EXPRESSION MISSING IN PROCEDURE
BODY

a variable, label, procedure, record

field, record, array, standard func-

tion, standard procedure or control

identifier is used improperly.

formal parameter does not correspond

to actual parameter.

symbol defined more than once

in a block.

symbol is not declared or defined.

the number of actual parameters to

a procedure does not equal the number

of formal parameters declared for

the procedure.

the array has appeared previously

with a different number of dimensions.

too many declarations in the block.

the number of fields specified in a

record designator does not equal the

number of fields the declaration of

the record indicates.

length of assigned string is greater

than length of string assigned to.

record class bindings are inconsistent.

blocks are nested more than 8 levels.

reference must be bound to a record

class.

body of typed procedure must end with

an expression.

3

L

L

L

i

L-

L

RESULT PARAMETER MUST BE <T VI4JF(> the actual parameter corresponding

to a result formal parameter must

be a<yVARIABLD.

PROCEDURE BODY LACKS SIMPLE TYPE proper procedure ends with an ex-

pression.

<SYMBOL-D UNRELATED TO <SYMBOL-a the symbol at the top of the stack

(<SYMBOL-i,) should not be followed

by the incoming symbol (<SYMBOL-a).

SYNTAXERROR construction violates the rules of

the grammar. The input string is

skipped until the next END, ";",

BEGIN, or the end of the program.

More than one error message may be

generated for a single syntax error.

Simple Type Errors

25 l Upper and lower bounds must be integer.

29. Upper and lower bounds must be integer.

32 l
Simple type of procedure and simple type of expression in pro-

cedure body do not agree.

71* Substring index must be integer.

?3* Variable before !(I must be string, procedure identifier, or arrayI_--
identifier.

74 l Substring length must be integer

76. Field index must be reference or

770 Array subscript must be integer.- -
81. Array subscript must be integer.

record class identifier.

84.- Actual parameters and formal parameters do not agree.

88. Actual parameters and formal parameters do not agree.

93. Expressions in if expression do not agree.

94 l
Expressions in case expression do not agree.

95 * Expression in if clause must be logical.

4

;~ !
I_

: ,:

:

IL

f

i

:i
L

rI
i

r

L

L
L
1
L
L
L
L
L
L
1
L
L

98. Expressions in case expression do not agree.

99* Expression in case clause must be logical.

101. Arguments of= or -I = do not agree.
102. Arguments of relational operators must be integer, real, orVP

long real.

103. Argument before is must be reference.

106. Argument of unary + must be arithmetic.

107. Argument of unary - must be arithmetic.

108. Arguments of

log. Arguments of

110. Arguments of

112. Record field

117. Arguments of

118. Arguments of

119. Arguments of

120. Arguments of

121. Arguments of

+ must be arithmetic.

- must be arithmetic.

or must be both logical or both bits.

must be assignment compatible with declaration.

* must be arithmetic.

/ must be arithmetic.

div must be integer.

rem must be integer.

and must be both logical or both bits.

123. Argument of 1 must be logical or bits.

125. Exponent or shift quantity must be integer; expression to be

shifted must be bits.

126. Shift quantity must be integer; expression to be shifted must be

bits.

i30. Actual parameter of standard function has incorrect

134. Argument of long must be integer, real, or complex.

135 l
Argument of short must be long real or long complex

136. Argument of abs must be arithmetic.

simple type.

.

148. Record field must be assignment compatible with declaration.

181.

182.

188.

190.

191.

193 l

1 9 5 l

1 9 7 l

Expression cannot be assigned to variable.

Result of assignment cannot be assigned to variable.

-Limit expression in for clause must be integer.

Expression in for list must be integer.

Assignment to for variable must be integer.

Expression in for list must be integer.

Step element must be integer.

Expression in while clause must be logical.II
5

11X. PASS THREE ERROR MESSAGES

The form of Pass Three error messages is

**- (message)
*+%JcJc NEAR CARD (number)

The number indicates the number of the card near which the error
I

L
occurred. The message may be

PROGRAM SEGMENT OVERFLOW the amount of code generated for a

procedure exceeds 4096 bytes.

COMPILER STACK OVERFLOW constructs nested too deeply.

CONSTANT POINTER TABLE TOO LARGE too many liberals appear in a pro-
F
i
L

cedure.

BLOCKS NESTED TOO DEEP parameters in procedure call are nested

too deeply; procedure calls in block
i

nested too deeply.

DATA SEGMENT UVERFLaJ too many variables declared in thei
block.

Iv. RUN TIME ERROR MESSAGES.

i
L The form of run error messages is

i
L (segment number) (message) RUN ERROR NEAR CARD (number)

ic
SUBSTRING INDEXING substring selected not within named

string.

i
CASE SELECTION INDEXING index of case statement or case ex-

pression is less than 1 or greater

than number of cases.L
ARRAY SUBSCRIPTING array subscript not within declared

bounds.L
6

L

I L
LOWER BOUND> UPPER BOUND

ARRAY TOO LARGE array must have fewer elements:

ASSIGNMENT TO NAME PARAMETER assignment to a formal name parameter

whose corresponding actual parameter

is an expression, a literal, control

identifier, or procedure name.

lower bound is greater than upper

bound in array declaration.

L

DATA !&E./i ovE)!@‘Lo?? storage available for program execu-

tion has been exceeded.

I

i

L
I
i

i

L
!
t

1

-ACTUAL-FORMAL PARAMETER MISMATCH
INFORMAL PROCEDURE CALL the number of actual parameters in

a formal procedure call is different

from the number of formal parameters

in the called procedure,: or the

parameters are not assignment com-

patible.

RECORD STORAGE AREA OVERFLOW

LENGTH OF STRING INPUT

LOGICAL INPUT

NUMER-ICAL INPUT

REFERENCE INPUT

READER EOF

REFERENCE

no more storage exists for records.

string read is not assignment com-

patible with corresponding declared

string.

quantity corresponding to logical

quantity is not true or false.

numerical input not assignment com-

patible with specified quantity.

reference quantities cannot be read.

a system control card has been en-

countered during a read request.

the null reference has been used to

address a record, or a reference

bound to two or more record classes

was used to address a record class

to which it was not currently pointing4

7

