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Abstract

We consider the teacher-student framework for knowledge transfer, where the goal
is to improve learning of a “student” neural network, given a “teacher” neural
network pretrained on the same or a similar task. The majority of existing ap-
proaches for distilling knowledge from a teacher network to a student network rely
on matching either activations or handcrafted features from the teacher network. In-
stead, in this paper we establish an information-theoretic framework for knowledge
distillation which encourages high mutual information between two networks. Our
framework can be applied to knowledge transfer between different tasks without
any assumptions on the architectures of the teacher and the student network. We
empirically validate our proposed framework by demonstrating its improvement
over existing methods on various knowledge transfer tasks.

1 Introduction

Transfer learning for neural networks facilitates learning on a target task by leveraging knowledge
gained from training on a source task. Hinton et al. [2015] introduce the teacher-student framework
as a special case of transfer learning, where a “student” neural network learns a target task while
efficiently using the knowledge present in a “teacher” neural network that was pretrained on a source
task. Knowledge distillation methods have been proposed to solve this problem by matching either
the activations [Romero et al., 2014, Hinton et al., 2015] or the handcrafted features [Zagoruyko and
Komodakis, 2016a] of a specific layer of a student network to the ones of a teacher network. In
this paper, we develop a new knowledge distillation method based on information content matching
that maximizes the mutual information between student and teacher. Our argument is quite intuitive:
for transfer learning to be effective, one has to maximize the amount of relevant knowledge being
transferred from a teacher network to a student network; the mutual information between two networks
provides quantification of such knowledge in a principled way. Despite its attractive properties, the
mutual information is intractable to compute in general. Therefore, we replace the mutual information
as a tractable analytic variational lower bound. Interestingly, we observe that maximization of such
bound is equivalent to solving a density estimation task for activations in the teacher network. Our
implementation based on a Gaussian observation model empirically outperforms state-of-the-art
methods on various transfer learning tasks.
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2 Method

Consider training a student neural network on a particular target task, given another teacher neural
network trained on a similar (or related) source task. From the perspective of information theory,
knowledge distillation can be expressed as retaining high mutual information between the layers of
the teacher and student networks while training the student network. More specifically, consider an
input random variable x drawn from the target data distribution p(x) and K pairs of representative
layersR = {(T (k),S(k))}Kk=1, where each pair (T (k),S(k)) is selected from the teacher and student
network respectively. Feedforwarding the input x through the neural networks induces K pairs
of random variables {(t(k), s(k))}Kk=1 which indicate outputs from the corresponding layers as a
function of input x, e.g., t(k) = T (k)(x). The mutual information between the pair of random
variables (t, s) is defined by:

I(t, s) = H(t)−H(t|s) = −Et∼p(t)[log p(t)] + Et,s∼p(t,s)[log p(t|s)],

where the entropy H(t) and the conditional entropy H(t|s) were derived from the joint distribution
p(t, s). Note that the joint distribution p(t, s) is a result of aggregagation over the representative
layers with input x sampled from the empirical distribution p(x). We now define the following loss
function which simultaneously trains the student network for the target task while encouraging high
mutual information with the teacher network:

L = LS −
K∑

k=1

λkI(t
(k), s(k)), (1)

where LS is the loss function for the target task and {λk}Kk=1 is set of hyper-parameters introduced
for regularizing the mutual information terms. Equation (1) needs to be minimized with respect
to the student network’s parameters. However, the minimization is hard since computation of the
exact mutual information terms is intractable. We instead propose a variational lower bound for each
mutual information term I(t, s), in which we define a variational distribution q(t|s) that approximates
p(t|s):

I(t, s) = H(t)−H(t|s)
= H(t) + Et,s∼p(t,s)[log p(t|s)]
= H(t) + Es∼p(s)[DKL(p(t|s)||q(t|s))] + Et,s∼p(t,s)[log q(t|s)]
≥ H(t) + Et,s∼p(t,s)[log q(t|s)],

where the last inequality comes from the non-negativity of the Kullback-Leiber divergence DKL(·).
Applying the above lower bound to (1), yields an upper bound of the original loss function:

L̃ = LS −
K∑

k=1

λkEt(k),s(k)∼p(t(k),s(k))[log q(t
(k)|s(k))]. (2)

This objective is jointly minimized over the parameters of the student network and the auxiliary
distribution q. Note that the entropy term H(t) has been removed from the equation since it is
constant with respect to the parameters to be optimized. Such a technique of maximizing the lower
bound of mutual information is known as variational information maximization [Agakov and Felix,
2004].

Implementation. We describe a specific instance of our framework by choosing a form made for
the variational distribution q(t|s), which depends on the type of layers used for t and s. In general,
we use a Gaussian distribution with heteroscedastic mean µ(·) and homoscedastic variance σ as the
auxiliary distribution q(t|s), i.e., the mean µ(·) is a function of s and the standard deviation σ is
not. When the corresponding representative layer of the teacher network is one-dimensional, i.e.,
t = T (x) ∈ RD, the variational distribution is expressed as follows:

− log q(t|s) =
D∑

d=1

log σd +
(td − µd(s))

2

2σ2
d

+ constant, (3)

where td indicates the d-th entry of the vector t and µd represents the output of a single unit of
µ. Furthermore, representative layer of the teacher network can also contain spatial dimensions
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N Full (5000) 1000 500 100

Teacher 94.46 - - -
Student 90.71 85.21 79.82 59.59

KD 91.34 85.39 81.88 65.94
FitNet 90.97 86.45 83.71 76.07
AT 91.51 87.28 84.46 75.18
MI 91.76 88.71 86.49 78.14

KD + AT 91.81 87.34 85.01 76.29
KD + MI 91.7 88.59 86.53 78.48

(a) CIFAR-10 with varying size of the dataset

N` 1000 500 100

KD 91.33 91.30 91.29
FitNet 85.25 82.03 76.85
AT 89.30 88.72 86.34
MI 90.33 90.23 89.03

KD + AT 91.56 91.81 91.34
KD + MI 91.57 91.44 91.34

(b) CIFAR-10 with varying number of the labels

Table 1: Experimental results (accuracy) of knowledge distillation (model compression) on CIFAR-10
and CIFAR-100 dataset from WRN-40-2 (teacher network) to WRN-16-1 (student network) with
varying (a) number of data points per class (denoted byN ) and (b) number of labels per class (denoted
by N`) provided for training of student network.

corresponding to channel, height and length, i.e., t ∈ RC×H×L. For this case, our choice of
variational distribution is expressed as follows:

− log q(t|s) =
C∑

c=1

H∑
h=1

L∑
`=1

log σc +
(tc,h,` − µc,h,`(s))

2

2σ2
c

+ constant, (4)

where tc,h,` denote scalar components of t indexed by (c, h, `). Further, µc represents the output of a
single unit from the neural network µ consisting of convolutional layers.

3 Experiments

In this section, we demonstrate the effectiveness of the proposed method in knowledge transfer
for various tasks. We consider using various deep convolutional neural networks such as residual
networks [He et al., 2016], wide residual networks [Zagoruyko and Komodakis, 2016b] and VGG
networks [Simonyan and Zisserman, 2014]. We also consider various vision datasets: CIFAR-10
[Krizhevsky, 2009], ImageNet [Russakovsky et al., 2015], CUB-200-2011 [Welinder et al., 2010] and
MIT-67 [Quattoni and Torralba, 2009]. Throughout the experiments, 20% of the dataset provided for
training the student network was used for validation, i.e., choosing the best set of hyper-parameters
for each method. Every result was computed as the mean of accuracies over 3 runs.

3.1 Knowledge transfer between same datasets

We first consider knowledge transfer task where the student network is being trained on the same
dataset that the teacher network has already been trained on. A wide residual network with 40 layers
of depth (WRN-40-2) was pretrained on the same dataset as the teacher network. The goal is to
transfer knowledge from the teacher network for the training of a smaller network with 16 layers
of depth (WRN-16-1). Here, we implement our mutual information loss (MI) by choosing ends
of each residual blocks in the teacher and student network as the representative layers. The mean
function µ(·) for auxiliary distribution in equation (4) was parameterized by two layers of 1 × 1
convolutional layers with batch normalization and rectified linear unit. For comparison, we consider
three candidates for loss function: traditional knowledge distillation loss (KD) proposed by Hinton
et al. [2015], attention transfer loss (AT) proposed by Zagoruyko and Komodakis [2016a] and hint
based loss (FitNet) [Romero et al., 2014]. Additionally, we provide the baseline results from training
on the provided dataset without any transfer learning applied to the teacher network (Teacher) and
student network (Student). In the first set of experiments (Table 1a), we train the student network on
the subset of the given dataset with a varying number of data points. For the next set of experiments
(Table 1b), labels were provided only for the subset of the original dataset, which results in a mixture
of labeled and unlabeled dataset. In Table 1a, we observe that the proposed MI loss outperform
baselines accross most regimes. Especially, one can observe that improvement from MI compared
to other methods gets larger with a smaller size of the number of data points. In Table 1b, we
observe that the KD loss outperforms other algorithms. This is as expected since KD can be seen
as providing“soft” labels to the student network which have been removed in the unlabeled training
data. Still, we observe that the MI loss outperforms other methods for transferring knowledge from
intermediate layers of the teacher network, i.e., FitNet and AT.
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N FULL (<127) 50 25 10

Student 48.46 37.49 25.02 16.32
Finetuned 71.89 66.72 57.74 47.36

LwF 64.05 57.66 43.43 27.84
FitNet 70.15 65.40 56.37 40.82
AT 58.56 49.50 40.65 24.80
MI-L 68.11 60.27 48.68 30.45
MI-I 72.09 68.13 60.25 49.83

LwF + FitNet 70.75 65.87 56.02 40.07
MI-L + MI-I 71.27 67.59 61.69 50.07

(a) MIT-67, ResNet-34 to ResNet-18

N FULL (<127) 50 25 10

Student 54.15 43.31 28.11 15.45
Finetuned 67.39 61.77 52.11 39.33

LwF 64.50 60.12 50.55 34.20
FitNet 71.00 65.10 54.83 41.27
AT 59.10 52.11 40.75 25.45
MI-L 68.78 62.89 52.69 37.69
MI-I 69.38 64.98 57.41 43.51

LwF + FitNet 70.67 65.10 54.95 40.92
MI-L + MI-I 71.04 66.89 58.21 48.26

(b) MIT-67, ResNet-34 to VGG-9
N FULL (<35) 20 10 5

Student 43.15 25.59 10.31 5.11
Finetuned 74.76 69.10 53.29 33.15

LwF 62.64 53.46 38.49 21.84
FitNet 67.85 62.58 51.15 36.51
AT 59.94 47.75 28.20 17.39
MI-L 66.11 59.80 44.20 27.13
MI-I 71.03 66.08 53.86 41.44

LwF + FitNet 68.53 62.63 51.08 34.28
MI-L + MI-I 70.97 64.73 53.87 40.58

(c) CUB-200-2011, ResNet-34 to ResNet-18

N FULL (<35) 20 10 5

Student 49.33 33.28 14.44 7.41
Finetuned 66.94 63.57 50.79 29.56

LwF 66.12 55.72 41.63 24.89
FitNet 69.06 62.83 45.81 29.96
AT 59.31 47.66 29.13 15.07
MI-L 68.08 63.13 47.83 28.73
MI-I 69.84 62.63 45.91 31.01

LwF + FitNet 70.56 62.44 47.36 30.52
MI-L + MI-I 70.00 65.14 53.78 38.76

(d) CUB-200-2011, ResNet-34 to VGG-9

Table 2: Experimental results (accuracy) of transfer from ResNet-34 (teacher network) to ResNet-
18/VGG-9 (student network) for the MIT-67/CUB-200-2011 dataset with varying number of data
points per class (denoted by N ).

3.2 Knowledge transfer between different datasets

Next, we consider transfer learning between heterogeneous tasks, where the goal is to enhance the
training of student network for classifying a dataset that has never been provided for training of
the teacher network. The teacher network is trained on the ImageNet dataset and is then used for
transferring knowledge to a student network which is trained on the MIT-67 or the CUB-200-2011
dataset. We consider the residual network (ResNet-34) as the teacher network and either one of
the residual network (ResNet-18) or VGG network (VGG-9) as the student network. This time, we
conduct each set of experiments by varying the number of data points in the dataset provided to
the student network. We consider two candidates for the MI loss. The first type of loss is based
on mutual information between logit layer of the teacher network and the penultimate layer of the
student network (MI-L). The other kind of loss considered corresponds to choosing representative
layers as the intermediate layers with spatial dimensions (MI-I). Specifically, ends of residual blocks
and max pooling layers were chosen from the residual and VGG networks respectively. The auxiliary
distributions for MI-L and MI-I are parameterized as in equation (3) and (4) with mean function
µ(·) as linear transformation and two layers of 1× 1 convolutional layers with batch normalization
and rectified linear units respectively. We compare with the same choice of knowledge transfer
loss as considered in Section 3.1 except for the KD loss, which was replaced by its extension to
transfer learning between heterogeneous tasks, i.e., the learning without forgetting loss (LwF) [Li and
Hoiem, 2017]. For baselines, we additionally provide the results from training the student network
without transfer learning (Student). We also provide the results of finetuning the student network with
initialization provided from training on the ImageNet dataset (Finetuned). In Table 2, our method
outperforms others in most regions of comparison. Especially, we observe that our algorithm shows
similar performance even with the finetuning method, which requires the student network to be
pretrained on the source task.

4 Conclusion

We proposed a new framework for maximizing the mutual information between two neural networks
for efficient knowledge transfer. We also presented an accompanying tractable variational formulation
equipped with a recognition model for efficient optimization. The implementation of our algorithm is
based on Gaussian observation models and is empirically shown to outperform other benchmarks in
the distillation and transfer learning tasks.
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