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Abstract The Pascal Visual Object Classes (VOC) chal-
lenge consists of two components: (i) a publicly available
dataset of images together with ground truth annotation and
standardised evaluation software; and (ii) an annual compe-
tition and workshop. There are five challenges: classifica-
tion, detection, segmentation, action classification, and per-
son layout. In this paper we provide a review of the challenge
from 2008–2012. The paper is intended for two audiences:
algorithm designers, researchers who want to see what the
state of the art is, as measured by performance on the VOC
datasets, along with the limitations and weak points of the
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current generation of algorithms; and, challenge designers,
who want to see what we as organisers have learnt from
the process and our recommendations for the organisation
of future challenges. To analyse the performance of submit-
ted algorithms on the VOC datasets we introduce a num-
ber of novel evaluation methods: a bootstrapping method for
determining whether differences in the performance of two
algorithms are significant or not; a normalised average pre-
cision so that performance can be compared across classes
with different proportions of positive instances; a clustering
method for visualising the performance across multiple algo-
rithms so that the hard and easy images can be identified; and
the use of a joint classifier over the submitted algorithms in
order to measure their complementarity and combined per-
formance. We also analyse the community’s progress through
time using the methods of Hoiem et al. (Proceedings of Euro-
pean Conference on Computer Vision, 2012) to identify the
types of occurring errors. We conclude the paper with an
appraisal of the aspects of the challenge that worked well,
and those that could be improved in future challenges.

Keywords Database · Benchmark · Object recognition ·
Object detection · Segmentation

1 Introduction

The Pascal 1 Visual Object Classes (VOC) Challenge has
been an annual event since 2006. The challenge consists of
two components: (i) a publicly available dataset of images
obtained from the Flickr web site (2013), together with

1 Pascal stands for pattern analysis, statistical modelling and compu-
tational learning. It was an EU Network of Excellence funded project
under the IST Programme of the European Union.
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ground truth annotation and standardised evaluation soft-
ware; and (ii) an annual competition and workshop. There are
three principal challenges: classification—“does the image
contain any instances of a particular object class?” (where
object classes include cars, people, dogs, etc.), detection—
“where are the instances of a particular object class in the
image (if any)?”, and segmentation—“to which class does
each pixel belong?”. In addition, there are two subsidiary
challenges (‘tasters’): action classification—“what action is
being performed by an indicated person in this image?”
(where actions include jumping, phoning, riding a bike, etc.)
and person layout—“where are the head, hands and feet of
people in this image?”. The challenges were issued with
deadlines each year, and a workshop held to compare and
discuss that year’s results and methods.

The challenges up to and including the year 2007 were
described in our paper Everingham et al. (2010). The purpose
of this paper is not just to continue the story from 2008 until
the final run of the challenge in 2012, although we will cover
that to some extent. Instead we aim to inform two audiences:
first, algorithm designers, those researchers who want to see
what the state of the art is, as measured by performance on
the VOC datasets, and the limitations and weak points of the
current generation of algorithms; second, challenge design-
ers, who want to see what we as organisers have learnt from
the process and our recommendations for the organisation of
future challenges.

1.1 Paper Layout

This paper is organised as follows: we start with a review
of the challenges in Sect. 2, describing in brief the compe-
titions, datasets, annotation procedure, and evaluation crite-
ria of the 2012 challenge, and what was changed over the
2008–2012 lifespan of the challenges. The parts on annota-
tion procedures and changes to the challenges are intended
for challenge organisers.

Section 3 provides an overview of the results for the 2012
challenge and, thereby, a snapshot of the state of the art.
We then use these 2012 results for several additional and
novel analyses, going further than those given at the chal-
lenge workshops and in our previous publication on the chal-
lenge (Everingham et al. 2010). At the end of Sect. 3 we
consider the question of how the performance of algorithms
can be fairly compared when all that is available is their pre-
diction on the test set, and propose a method for doing this.
This is aimed at challenge organisers.

Section 4 takes stock and tries to answer broader ques-
tions about where our field is at in terms of the classifica-
tion and detection problems that can or cannot be solved.
First, inspired by Hoiem et al. (2012), we propose evalua-
tion measures that normalise against the proportion of posi-
tive instances in a class (a problem when comparing average

precision across classes). It is shown that some classes—
like ‘person’—still pose larger problems to modern methods
than may have been believed. Second, we describe a cluster-
ing method for visualising the performance across multiple
algorithms submitted during the lifespan of the challenges,
so that the characteristics of hard and easy images can be
identified.

Section 5 investigates the level of complementarity of the
different methods. It focusses on classification, for which a
‘super-method’ is designed by combining the 2012 submit-
ted methods. It turns out that quite some performance can be
gained over any one existing method with such a combina-
tion, without any of those methods playing a dominant role
in the super-method. Even the combination of only pairs of
classifiers can bring a substantial improvement and we make
suggestions for such pairs that would be especially promis-
ing. We also comment on the construction of super-methods
for detection and segmentation.

In Sect. 6 we turn to progress through time. From the
evaluation server, we have available to us the results of all
algorithms for the challenges from 2009 to 2012, and we
analyse these using the methods of Hoiem et al. (2012) to
identify the types of errors occurring across time. Although
important progress has been made, it has often not been as
monotonic as one might expect. This underlines the fact that
novel, promising ideas may require some consolidation time
and benchmark scores must not be used to discard such nov-
elties. Also, the diversity among the scores has increased as
time has progressed.

Section 7 summarises our conclusions, both about what
we believe to have done well and about caveats. This section
also makes suggestions that we hope will be useful for future
challenge organisers.

2 Challenge Review

This section reviews the challenges, datasets, annotation and
evaluation procedures over the 2009–2012 cycles of the chal-
lenge. It gives a bare bones summary of the challenges and
then concentrates on changes since the 2008 release. Our
companion paper (Everingham et al. 2010) describes in detail
the motivation, annotations, and evaluation measures of the
VOC challenges, and these details are not repeated here.
Sect. 2.3 on the annotation procedure is intended principally
for challenge organisers.

2.1 Challenge Tasks

This section gives a short overview of the three principal
challenge tasks on classification, detection, and segmenta-
tion, and of the two subsidiary tasks (‘tasters’) on action
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Table 1 The VOC classes

Vehicles Household Animals Other

Aeroplane Bottle Bird Person

Bicycle Chair Cat

Boat Dining table Cow

Bus Potted plant Dog

Car Sofa Horse

Motorbike TV/Monitor Sheep

Train

The classes can be considered in a notional taxonomy

classification and person layout. The evaluation of each of
these challenges is described in detail in Sect. 2.4.

2.1.1 Classification

For each of twenty object classes predict the presence/absence
of at least one object of that class in a test image. The twenty
objects classes are listed in Table 1. Participants are required
to provide a real-valued confidence of the object’s presence
for each test image so that a precision–recall curve can be
drawn. Participants may choose to tackle all, or any subset
of object classes, for example ‘cars only’ or ‘motorbikes and
cars’.

Two competitions are defined according to the choice of
training data: (i) taken from the VOC training/validation data
provided, or (ii) from any source excluding the VOC test
data. In the first competition, any annotation provided in the
VOC training/validation data may be used for training, for
example bounding boxes or particular views e.g. ‘frontal’
or ‘left’. Participants are not permitted to perform additional
manual annotation of either training or test data. In the second
competition, any source of training data may be used except
the provided test images.

2.1.2 Detection

For each of the twenty classes, predict the bounding boxes
of each object of that class in a test image (if any), with
associated real-valued confidence. Participants may choose
to tackle all, or any subset of object classes. Two competitions
are defined in a similar manner to the classification challenge.

It is clear that the additional requirement to locate the
instances in an image makes detection a more demanding
task than classification. Guessing the right answer is far more
difficult to achieve. It is also true that detection can sup-
port more applications than mere classification, e.g. obstacle
avoidance, tracking, etc. During the course of the Pascal
VOC challenge it had even been suggested that only detec-
tion matters and classification is hardly relevant. However,
this view is rather extreme. Even in cases where detection is

the end goal, classification may be an appropriate initial step
to guide resources towards images that hold good promise of
containing the target class. This is similar to how an ‘object-
ness’ analysis (e.g. Alexe et al. 2010) can guide a detector’s
attention to specific locations within an image. Classification
could also be used to put regression methods for counting into
action, which have been shown to perform well without any
detection (Lempitsky and Zisserman 2010).

2.1.3 Segmentation

For each test image, predict the object class of each pixel, or
give it ‘background’ status if the object does not belong to
one of the twenty specified classes. There are no confidence
values associated with this prediction. Two competitions are
defined in a similar manner to the classification and detection
challenges.

Segmentation clearly is more challenging than detection
and its solution tends to be more time consuming. Detec-
tion can therefore be the task of choice in cases where such
fine-grained image analysis is not required by the applica-
tion. However, several applications do need a more detailed
knowledge about object outline or shape, such as robot grasp-
ing or image retargeting. Even if segmentation is the goal,
detection can provide a good initialization (e.g. Leibe et al.
2004).

2.1.4 Action Classification

This taster was introduced in 2010. The motivation was that
the world is dynamic and snapshots of it still convey substan-
tial information about these dynamics. Several of the actions
were chosen to involve object classes that were also part of
the classification and detection challenges (like a person rid-
ing a horse, or a person riding a bike). The actions themselves
were all geared towards people.

In 2010 the challenge was: for each of ten action classes
predict if a specified person (indicated by a bounding box) in a
test image is performing the corresponding action. The output
is a real-valued confidence that the action is being performed
so that a precision–recall curve can be drawn. The action
classes are ‘jumping’, ‘phoning’, ‘playing instrument’, ‘read-
ing’, ‘riding bike’, ‘riding horse’, ‘running’, ‘taking photo’,
‘using computer’, ‘walking’, and participants may choose to
tackle all, or any subset of action classes, for example ‘walk-
ing only’ or ‘walking and running’. Note, the action classes
are not exclusive, for example a person can be both ‘riding
a bicycle’ and ‘phoning’. In 2011 an ‘other’ class was intro-
duced (for actions different from the ten already specified).
This increased the difficulty of the challenge. The output is
still a real-valued confidence for each of the ten actions. As
with other parts of the challenge, the training could be either
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based on the official Pascal VOC training data, or on exter-
nal data.

It was necessary for us to specify the person of interest
in the image as there may be several people performing dif-
ferent actions. In 2012 the person of interest was specified
by both a bounding box and a point on the torso, and a sep-
arate competition defined for each. The motivation for this
additional point annotation was that the aspect ratio of the
bounding box might provide some information on the action
being performed, and this was almost entirely removed if
only a point was provided. For example, the aspect ratio of
the box could help distinguish walking and running from
other action classes (this was a criticism raised during the
2011 Pascal VOC workshop).

2.1.5 Person Layout

For each person in a test image (their bounding box is pro-
vided) predict the presence or absence of parts (head, hands
and feet), and the bounding boxes of those parts. The predic-
tion of a person layout should be output with an associated
real-valued confidence of the layout so that a precision–recall
curve can be generated for each person. The success of the
layout prediction depends both on: (i) a correct prediction of
parts present/absent (e.g. are the hands visible or occluded);
(ii) a correct prediction of bounding boxes for the visible
parts. Two competitions are defined in a similar manner to
the classification challenge.

2.2 Datasets

For the purposes of the challenge, the data is divided into two
main subsets: training/validation data (trainval), and test
data (test). For participants’ convenience, the trainval
data is further divided into suggested training (train) and
validation (val) sets, however participants are free to use
any data in the trainval set for training and/or validation.

There is complete annotation for the twenty classes: i.e. all
images are annotated with bounding boxes for every instance
of the twenty classes for the classification and detection
challenges. In addition to a bounding box for each object,
attributes such as: ‘orientation’, ‘occluded’, ‘truncated’, ‘dif-
ficult’; are specified. The full list of attributes and their
definitions is given in Everingham et al. (2010). Figure 1
shows samples from each of the challenges including anno-
tations. Note, the annotations on thetest set are not publicly
released.

Statistics for the number of object instances and images
in the training and validation datasets for the classification,
detection, segmentation and layout challenges is given in
Table 3, and for the action classification challenge in Table 4.
Note, we do not release the exact numbers of object instances
in the test set, but both the number of instances per class

and number of images are approximately balanced with those
in the trainval set.

The number of images and instances in all the tasks was
increased up to 2011. From 2011 to 2012 the number of
images in the classification, detection and person layout tasks
was not increased, and only those for segmentation and action
classification were augmented.

From 2009 onwards the data for all tasks consists of the
previous years’ images augmented with new images. Before
this, in 2008 and earlier, an entirely new dataset was released
each year for the classification/detection tasks. Augmenting
allows the number of images to grow each year and, more
importantly, means that test results can be compared with the
previous years’ images. Thus, for example, performance of
all methods from 2009–2012, can be evaluated on the 2009
test set (although the methods may have used a different
number of training images).

2.3 Annotation Procedure

The procedure of collecting the data and annotating it with
ground truth is described in our companion paper (Ever-
ingham et al. 2010). However, the annotation process has
evolved since that time and we outline here the main changes
in the collection and annotation procedure. Note, for chal-
lenge organisers, one essential factor in obtaining consistent
annotations is to have guidelines available in advance of the
annotation process. The ones used for VOC are available at
the Pascal VOC annotation guidelines web page (2012).

2.3.1 Use of Mechanical Turk for Initial Class Labelling
of the Images

We aimed to collect a balanced set of images with a certain
minimum number of instances of each class. This required
finding sufficient images of the rarer classes, such as ‘bus’
and ‘dining table’. In previous years this had been achieved
by getting the annotators to focus on such classes towards
the end of the annotation period, which often meant hav-
ing to skip through large numbers of images before finding
examples of the desired class.

Our initial hope was to use Mechanical Turk (MT) for
most or all of the annotation. We were not able to obtain
MT bounding box annotations of sufficiently high quality
to achieve this. However, the labels of whether a class was
present or not were high enough quality to allow a balanced
image set to be selected, prior to annotation by our trained
annotators. This saved substantial time during the annotation
period at relatively low cost.
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(a)

(b)

(c)

(d)

Fig. 1 Sample images from the Pascal dataset. a Each image has an
annotation file giving a bounding box and object class label for each
object in one of the twenty classes present in the image. Note that mul-
tiple objects from multiple classes may be present in the same image.
Annotation was performed according to a set of guidelines distributed
to all annotators. b A subset of images are also annotated with pixel-
wise segmentation of each object present, to support the segmentation
competition. Segmentations are annotated at the object and object class

level. c Images for the action classification task are disjoint from those
of the classification, detection and segmentation tasks. They have been
partially annotated with people, bounding boxes, reference points and
their actions. Annotation was performed according to a set of guide-
lines distributed to all annotators. d Images for the person layout taster,
where the test set is disjoint from the main tasks, have been additionally
annotated with parts of the people (head, hands and feet)
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2.3.2 Interleaved Annotation and Checking

Previously, significant effort had been spent in checking and
correcting the annotations after the main annotation period.
For segmentation annotation this was a very time consuming
task. It was also common to discover patterns of errors by
new annotators who had not yet become fully familiarised
with the annotation guidelines.

To help new annotators to self-correct and to reduce the
amount of post-hoc correction needed, the main annota-
tion period was changed to incorporate both annotation and
checking running in parallel. After each image was anno-
tated, it was passed to a different annotator for checking.
Examples of common errors were pasted onto a common
noticeboard (with the annotator remaining anonymous) so
that the entire group could understand and avoid such errors
in future. In this way, errors were picked up and corrected ear-
lier and post-hoc checking was substantially reduced. Over
time, the checking part of the annotation effort grew to take
around 50 % of the annotators’ time.

2.3.3 Increased Time Spent on Segmentation

As the datasets for the classification and detection tasks
became large, more emphasis was placed on increasing the
size of the segmentation dataset. Segmentation requires sub-
stantially more annotation effort than detection—it can easily
take ten times as long to segment an object than to draw a
bounding box around it. Over time, the annotation period was
adapted until around 50 % of the time was spent on segmen-
tation annotation and checking.

Once post-hoc segmentation correction was completed,
each annotator was sent a report detailing the number and
kind of errors that they made, so they could avoid such errors
in future years.

2.3.4 Co-located Annotators

In the earlier years of the challenge (up to 2008) annota-
tions were carried out with all annotators located at the same
site. This enabled efficient discussion, e.g. of challenging or
unusual cases, and was very flexible in allowing changes of
priorities and training. In later years the annotators could
remain in their own labs and a web interface was devel-
oped for annotating using a standard client-server architec-
ture. However, the annotation event took place simultane-
ously (over a period of three to five days) so that even if
the annotators were not co-located they could still discuss in
real-time using Skype messaging. In addition, some experi-
enced annotators were always included at each remote site
to train novices.

2.4 Submission and Evaluation

2.4.1 Submission of Results

The running of the challenge consisted of two phases: At
the start of the challenge, participants were issued a develop-
ment kit comprising training/validation images with annota-
tion, and Matlab 2 software to access the annotation (stored
in an XML format compatible with LabelMe, Russell et al.
2008), to compute the evaluation measures, and including
simple baseline implementations for each competition. In
the second phase, unannotated test images were distributed.
Participants were then required to run their methods on the
test data and submit results to an evaluation server. The test
data was available for approximately three months before
submission of results.

2.4.2 Evaluation of Results

In addition to withholding the test data annotation, it was
also required that participants submit only a single entry per
method. We encouraged participants to observe the best prac-
tice guidelines, given at the Pascal VOC best practice guide-
lines web page (2012), that parameters should be tuned on
the validation set and algorithms run only once on the test
set, so that the organisers were not asked to choose the best
result for them. To add to this encouragement, the evalua-
tion server restricted the number of times a participant could
submit results for earlier years (since performance could be
partially gauged as earlier years’ images are a subset of the
current year’s).

2.4.3 Classification and Detection

Both the classification and detection tasks were evaluated as
a set of 20 independent two-class tasks: e.g. for classification
“is there a car in the image?”, and for detection “where are the
cars in the image (if any)?”. A separate ‘score’ is computed
for each of the classes. For the classification task, participants
submitted results in the form of a confidence level for each
image and for each class, with larger values indicating greater
confidence that the image contains the object of interest. For
the detection task, participants submitted a bounding box for
each detection, with a confidence level for each bounding
box. The provision of a confidence level allows results to
be ranked such that the trade-off between false positives and
false negatives can be evaluated, without defining arbitrary
costs on each type of classification error.

In the case of classification, the correctness of a class
prediction depends only on whether an image contains an

2 Matlab ® is a registered trademark of MathWorks, Inc.
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instance of that class or not. However, for detection a deci-
sion must be made on whether a prediction is correct or not.
To this end, detections were assigned to ground truth objects
and judged to be true or false positives by measuring bound-
ing box overlap. To be considered a correct detection, the
area of overlap ao between the predicted bounding box Bp

and ground truth bounding box Bgt must exceed 50 % by the
formula:

ao = area(Bp ∩ Bgt )

area(Bp ∪ Bgt )
, (1)

where Bp ∩ Bgt denotes the intersection of the predicted and
ground truth bounding boxes and Bp ∪ Bgt their union.

Detections output by a method were assigned to ground
truth object annotations satisfying the overlap criterion in
order ranked by the (decreasing) confidence output. Ground
truth objects with no matching detection are false negatives.
Multiple detections of the same object in an image were con-
sidered false detections, e.g. 5 detections of a single object
counted as 1 correct detection and 4 false detections—it was
the responsibility of the participant’s system to filter multiple
detections from its output.

For a given task and class, the precision–recall curve is
computed from a method’s ranked output. Up until 2009
interpolated average precision (Salton and Mcgill 1986) was
used to evaluate both classification and detection. However,
from 2010 onwards the method of computing AP changed to
use all data points rather than TREC-style sampling (which
only sampled the monotonically decreasing curve at a fixed
set of uniformly-spaced recall values 0, 0.1, 0.2, . . . , 1). The
intention in interpolating the precision–recall curve was to
reduce the impact of the ‘wiggles’ in the precision–recall
curve, caused by small variations in the ranking of exam-
ples. However, the downside of this interpolation was that
the evaluation was too crude to discriminate between the
methods at low AP.

2.4.4 Segmentation

The segmentation challenge was assessed per class on the
intersection of the inferred segmentation and the ground
truth, divided by the union (commonly referred to as the
‘intersection over union’ metric):

seg.accuracy = true pos.

true pos. + false pos. + false neg.
(2)

Pixels marked ‘void’ in the ground truth (i.e. those around the
border of an object that are marked as neither an object class
or background) are excluded from this measure. Note, we did
not evaluate at the individual object level, even though the
data had annotation that would have allowed this. Hence, the

precision of the segmentation between overlapping objects
of the same class was not assessed.

2.4.5 Action Classification

The task is assessed in a similar manner to classification. For
each action class a score for that class should be given for the
person performing the action (indicated by a bounding box
or a point), so that the test data can be ranked. The average
precision is then computed for each class.

2.4.6 Person Layout

At test time the method must output the bounding boxes
of the parts (head, hands and feet) that are visible, together
with a single real-valued confidence of the layout so that a
precision/recall curve can be drawn.

From VOC 2010 onwards, person layout was evaluated by
how well each part individually could be predicted: for each
of the part types (head, hands and feet) a precision/recall
curve was computed, using the confidence supplied with the
person layout to determine the ranking. A prediction of a part
was considered true or false according to the overlap test, as
used in the detection challenge, i.e. for a true prediction the
bounding box of the part overlaps the ground truth by at least
50 %. For each part type, the average precision was used as
the quantitative measure.

This method of evaluation was introduced following crit-
icism of an earlier evaluation used in 2008, that was con-
sidered too strict and demanding (given the state of the art
in layout detection algorithms at that time). In VOC 2008,
the layout was still assessed by computing a precision–recall
curve, but rather than assessing parts individually the entire
layout was assessed. To be considered a true positive, each
layout estimate had to satisfy two criteria: (i) the set and
number of predicted parts matches ground truth exactly e.g.
{head, hand, hand} or {head, hand, foot}; and (ii) the pre-
dicted bounding box of each part overlaps ground truth by at
least 50 %. These criteria were relaxed from VOC 2010 on,
though this task never became as popular as the others.

3 VOC 2012 Results and Rankings

In this section we review the results of the VOC 2012 chal-
lenge to give a snapshot of the state-of-the-art in the final
year of the challenge. Sections 3.1, 3.2, 3.3 and 3.4 describe
the top performing methods for the classification, detection,
segmentation and action classification challenges in 2012
respectively (there were no entries for complete person lay-
out so we do not include that here). Having done that, in
Sect. 3.5, we then propose a method to assess whether dif-
ferences in AP between the methods are significant or not
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Table 2 Participation in the 2012 challenge

Codename Cls Det Seg Act Institutions Contributors References

BONN_CSI · · • · University of Bonn, Georgia
Institute of Technology, University
of Coimbra

Joao Carreira, Fuxin Li, Guy
Lebanon, Cristian Sminchisescu Li et al. (2013)

BONN_JOINT · · • · University of Bonn, Georgia
Institute of Technology,
University of Coimbra, Vienna
University of Technology

Joao Carreira, Adrian Ion, Fuxin Li,
Cristian Sminchisescu Ion et al. (2011a, b)

BONN_LINEAR · · • · University of Bonn, Univer-
sity of Coimbra

Joao Carreira, Rui Caseiro, Jorge
Batista, Cristian Sminchisescu Carreira et al. (2012)

CVC • · · · Computer Vision Barcelona Fahad Khan, Camp Davesa, Joost van
de Weijer, Rao Muhammad Anwer,
Albert Gordo, Pep Gonfaus,
Ramon Baldrich, Antonio Lopez

Khan et al. (2012a)

CVC_CLS · • · · Computer Vision Barcelona Albert Gordo, Camp Davesa,
Fahad Khan, Pep Gonfaus,
Joost van de Weijer, Rao Muham-
mad Anwer, Ramon Baldrich,
Jordi Gonzalez, Ernest Valveny

Khan et al. (2012a, b)

CVC_SP • · · · Computer Vision Barcelona, Uni-
versity of Amsterdam, Univer-
sity of Trento

Fahad Khan, Jan van Gemert,
Camp Davesa, Jasper Uijlings ,
Albert Gordo, Sezer Karaoglu,
Koen van de Sande, Pep Gon-
faus, Rao Muhammad Anwer,
Joost van de Weijer, Cees Snoek,
Ramon Baldrich, Nicu Sebe, Theo Gev-
ers

Khan et al. (2012a, b),
Karaoglu et al. (2012),
Van Gemert (2011)

HU · · · • Hacettepe University, Bilkent Uni-
versity

Cagdas Bas, Fadime Sener,
Nazli Ikizler-Cinbis Sener et al. (2012)

IMPERIAL • · · · Imperial College London Ioannis Alexiou, Anil A. Bharath
Alexiou and Bharath
(2012)

ITI,
ITI_ENTROPY,
ITI_FUSED

• · · · ITI-CERTH, University of Surrey,
Queen Mary University

Elisavet Chatzilari, Spiros Nikolopou-
los, Yiannis Kompatsiaris, Joseph Kit-
tler

–

MISSOURI · • · · University of Missouri Columbia Guang Chen, Miao Sun, Xutao Lv,
Yan Li, Tony Han

–

NEC · • · · NEC Laboratories America, Stan-
ford University

Olga Russakovsky, Xiaoyu Wang,
Shenghuo Zhu, Li Fei-Fei, Yuan-
qing Lin

Russakovsky et al.
(2012)

NUS_SCM • · · · National University of Singapore,
Panasonic Singapore Labs, Sun Yat-
sen University

Dong Jian, Chen Qiang, Song Zheng,
Pan Yan, Xia Wei, Yan Shuicheng,
Hua Yang, Huang Zhongyang,
Shen Shengmei

Song et al. (2011), Chen
et al. (2012)

NUS_SP · · • · National University of Singapore,
Panasonic Singapore Labs

Wei Xia, Csaba Domokos, Jian Dong,
Shuicheng Yan, Loong Fah Cheong,
Zhongyang Huang, Shengmei Shen

Xia et al. (2012)

OLB_R5 · • · · Orange Labs Beijing, France Tele-
com

Zhao Feng –

OXFORD · • · · University of Oxford Ross Girshick, Andrea Vedaldi,
Karen Simonyan

–

OXFORD_ACT · · · • University of Oxford Minh Hoai, Lubor Ladicky,
Andrew Zisserman Hoai et al. (2012)
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Table 2 continued

Codename Cls Det Seg Act Institutions Contributors References

STANFORD · · · • Stanford University, MIT Aditya Khosla, Rui Zhang, Bang-
peng Yao, and Li Fei-Fei Khosla et al. (2011)

SYSU_DYNAMIC · • • · Sun Yat-Sen University Xiaolong Wang, Liang Lin, Lichao
Huang, Xinhui Zhang, Zechao Yang Wang et al. (2013)

SZU · · · • Shenzhen University Shiqi Yu, Shengyin Wu, Wensheng
Chen

–

UP • · · · University of Padova Loris Nanni
Nanni and Lumini
(2013)

UVA_HYBRID · • · · University of Amsterdam Koen van de Sande, Jasper Uijlings,
Cees Snoek, Arnold Smeulders Van de Sande et al.

(2011), Uijlings et al.
(2013)

UVA_MERGED · • · · University of Amsterdam Sezer Karaoglu, Fahad Khan, Koen
van de Sande, Jan van Gemert, Rao
Muhammad Anwer, Jasper Uijlings,
Camp Davesa, Joost van de Weijer,
Theo Gevers, Cees Snoek

Khan et al. (2012a),
Uijlings et al. (2013)

UVA_NBNN · · • · University of Amsterdam Carsten van Weelden, Maarten
van der Velden, Jan van Gemert

–

Each method is assigned an abbreviation used in the text, and identified as a classification (Cls), detection (Det), segmentation (Seg), or action
classification (Act) method. The contributors to each method are listed with references to publications describing the method, where available

based on bootstrap sampling—this is important as it enables
one to tell if the method proposed by the ‘runner up’ should
actually be considered as equivalent to that of the ‘winner’.

The VOC 2012 participants (and our codenames for them)
are listed in Table 2. Where possible we have identified pub-
lications describing these methods in the right hand column
of the table; in addition short descriptions were provided by
the participants and are available at the Pascal VOC 2012
challenge results webpage (2012).

The number of images and objects in the VOC 2012 train-
ing and validation sets are shown as a histogram for the clas-
sification and detection challenges in Fig. 2. The numbers are
tabulated in Table 3 for classification, detection and segmen-
tation, and in Table 4 for the action classification challenge.
There were 850 annotated objects instances in 609 images
for the person layout challenge.

3.1 Classification

Figure 3 and Table 5 give summaries of the results of the clas-
sification challenge for both competition 1 (using supplied
data only) and competition 2 (which also allowed external
data to be used). Figure 4 shows precision–recall curves for
a sample of the classes. The winning method for competition
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Fig. 2 Summary of the main VOC2012 dataset. Training and valida-
tion images only. Histogram by class of the number of objects and
images containing at least one object of the corresponding class. Note
the log scale on the vertical axis. Best viewed in colour (Color figure
online)

1 is NUS_SCM. Its performance exceeded all other methods
(including those in competition 2) for all classes in 2012, and
also improved on the 2011 winning entries in all but one class
(‘pottedplant’). The NUS_SCM method started from a fairly
standard pipeline of a bag-of-visual-words (BOW) represen-
tation and spatial pyramid matching (SPM), followed by a
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support vector machine (SVM) classifier (see Sect. 6.1 for
more details). To this they added the identification and use of
sub-categories (e.g. identifying different types of chair), and
a refinement of SPM based on the output of sliding window
detection confidence maps.

3.2 Detection

Figure 5 and Table 6 give the results of the detection chal-
lenge for competition 3 (using supplied data only); there
were no entries for competition 4. Figure 6 shows precision–
recall curves for a sample of the classes. The winning
method was UVA_HYBRID (see Van de Sande et al. 2011)
which used multiple segmentations to hypothesise bounding
boxes bottom up, thus avoiding an expensive sliding win-
dow search (with potentially more false positives). These
candidate bounding boxes were then classified using a BOW
feature representation, SPM, and a SVM using the histogram
intersection kernel.

The method from Oxford won on six classes. This used a
local implementation of the deformable parts model (DPM;
Felzenszwalb et al. 2010) sliding window detector to pro-
pose candidate regions. The top 100 candidates were then
re-scored using a homogeneous kernel map (χ2) SVM com-
bining the DPM’s scores, two descriptors computed on the
regions, together with two context models (the context scor-
ing of Felzenszwalb et al, and context from image classifica-
tion scores).

3.3 Segmentation

Table 7 gives the results of the segmentation challenge for
competition 5 (using supplied data only) and competition
6 (which also allowed external data to be used). The win-
ning method for competition 5 was NUS_SP which used an
object detector to identify object bounding boxes and then
determined a segmentation for each bounding box using a
superpixel-based MRF (see Xia et al. 2012). This method
achieved a mean AP 4 % higher than the winner of the previ-
ous year, which suggests that segmentation methods continue
to improve, although some of the increase may be due to the
additional training data available in 2012.

The second placed method in competition 5 and the win-
ning entry in competition 6 was BONN_JOINT which cre-
ated multiple segmentations of each image and then sampled
from a distribution over tilings constructed from these seg-
ments (see Ion et al. 2011a). Parameter learning was achieved
using the method of Ion et al. (2011b). The additional training
data used in competition 6 was a set of ground truth annota-
tions provided by the Berkeley vision group. This data proved
to be valuable in that it increased the mean AP of this method
by about 0.5 %.
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Table 4 Statistics of the action classification VOC2012 dataset

Jumping Phoning Playing Reading Riding bike Riding horse Running Taking photo Using Walking Other Total

Img 405 444 459 463 400 411 310 414 395 386 799 4,588

Obj 495 457 619 530 578 534 561 456 476 597 1,043 6,278

For the trainval dataset, the number of images containing at least one person performing a given action, and the corresponding number of
objects are shown

3.4 Action Classification

Table 8 gives the results of the action classification challenge.
This consisted of competitions 9 (using only supplied data)
and competition 10 (which also allowed external data to be
used).

The winning method STANFORD for competition 9 is
mostly described in the paper by Khosla et al. (2011), and
that of OXFORD_ACT for competition 10 in Hoai et al.
(2012). What these high-scoring approaches seem to have in
common is a top-down analysis. STANFORD first focuses
on larger, more globally enclosing boxes, and then homes in
on smaller ones that capture details relevant to the action.
OXFORD_ACT followed an approach that was quite dif-
ferent in the specifics, but also started with global regions,
then homed in on telling details like the hands. A differ-
ence was that for the OXFORD_ACT method the regions
were pre-selected by the designers, while the STANFORD
method itself determines which portions of the given bound-
ing box are relevant at the different stages of processing.
The methods also shared their use of a wide variety of fea-
tures. The OXFORD_ACT method was in competition 10 as
it used additional data to train detectors for the upper body
and musical instruments.

3.5 Bootstrapping AP and Rank

In the challenge different methods will produce different
scores on each class and competition. For classification,
detection, and action classification this will be the AP score,
while for segmentation it is the segmentation accuracy (see
Eq. 2). This is a single number that summarises a method’s
performance on a whole dataset—how should we assess
if differences between methods are significant? A simple
approach to this question is via the bootstrap (see e.g. Wasser-
man 2004, Ch. 8), where the data points are sampled with
replacement from the original n test points to produce boot-
strap replicates. We first came across this idea in the blog
comment by O’Connor (2010), although bootstrapping of
ROC curves has been discussed by many authors, e.g. Hall
et al. (2004); Bertail et al. (2009).

We can use the bootstrap in a number of different ways: to
simply judge the variability for a given method, to compare
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Fig. 3 Summary of the 2012 classification results by class (competi-
tion 1). For each class three values are shown: the maximum AP obtained
by any method (max), the median AP over all methods (median) and
the AP obtained by a random ranking of the images (chance)

the relative strength of two methods, or to look at rank ranges
in order to get an overall sense of all methods in a competition.

For a single method we can obtain a bootstrap estimate
of the confidence interval for a method’s score by running
a large number of bootstrap replicates, sorting the resulting
scores, and then returning the α/2 and 1 − α/2 quantiles,
where for example α = 0.05 would yield a 95 % confidence
interval. (This is the percentile interval method described in
Wasserman 2004, Sect. 8.3.)

To compare two methods A and B, we first compute the
difference in score for each method on each bootstrap sample.
We then use the percentile bootstrap to estimate a confidence
interval, with a null hypothesis that A is equivalent to B (at
the 1 − α level). This is rejected if zero is not contained in
the confidence interval, leading to the conclusion that method
A is statistically significantly better than method B, or vice
versa, depending on the result. This procedure is more infor-
mative than the unpaired confidence intervals in determining
whether two methods are significantly different; for example
a variation in the hardness of the bootstrap replicates may
give rise to overlapping score intervals, even if method A
always beats method B.

Thirdly, in the challenge we can also determine the rank
of each method on each bootstrap replicate, and thus a confi-
dence interval for the rank of a method (using α/2 and 1−α/2
quantiles as above). This can provide a useful summary of the
relative strength of the methods without the need for pairwise
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comparisons. Note that rank ranges depend on all entrants in
a competition, while the individual confidence interval is a
property of a single method.

These bootstrap ideas are illustrated in detail for four
classes in Tables 9 and 10, for the classification and detection
competitions respectively. Summary results for all classes
highlighting methods that are not significantly different from
the leading one are shown in Table 11 (for classification),
Table 12 (for detection) and Table 13 (for segmentation).

4 What We Can and Cannot Do Today

In this section we examine the results of the VOC classifica-
tion and detection competitions in more detail to answer the
following questions:

– which classes are current methods doing better or worse
on?

– are there groups of images that are handled particularly
well or particularly badly, and can these be characterised?

We continue this examination in Sect. 6, where we analyse
in detail the types of errors occurring for each class over time.

4.1 Comparing Across Classes

The standard VOC 2012 classification and detection results
given earlier and reproduced in the top plots of Figs. 7 and 8
show the best average precision achieved in descending order
across classes. However, this does not necessarily mean that
we are doing better on classes earlier in the ordering than
those later in the ordering. Looking at the ‘chance’ results
we see that a random ranking does better on some classes
than others. For the person class, for example, it is easier to
get a higher AP score simply because a much higher pro-
portion of images contain people, than is the case for other
classes. To overcome this bias, we need to consider a different
comparison metric.

4.1.1 Comparing Classification Across Classes

To correct for the varying proportion of positive instances in
different classes, we define a normalised precision measure
that takes this into account. This normalised measure will
allow us to compare classification accuracy across classes
meaningfully. It is inspired by the normalised AP measure
introduced by Hoiem et al. (2012) for detection.
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Fig. 4 Classification results. Precision–recall curves are shown for a representative sample of classes. The legend indicates the AP score (%)
obtained by the corresponding method. a Aeroplane, b bicycle, c person, d train
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Fig. 5 Summary of the 2012 detection results by class. For each class
two values are shown: the maximum AP obtained by any method (max)
and the median AP over all methods (median)

For reference, the standard definition of precision is:

precision = true positives

true positives + false positives
(3)

= TPR × n pos

TPR × n pos + FPR × nneg
(4)

where TPR is the true positive rate, FPR is the false positive
rate, n pos is the number of positive examples, and nneg the
number of negative examples. As already mentioned, it is dif-
ficult to compare precisions across classes where these num-

bers differ because precision depends on the proportion of
positive and negative images. To perform such a comparison
we instead define a normalised precision measure:

norm. precision = TPR × n̄ pos

TPR × n̄ pos + FPR × n̄neg
(5)

where n̄ pos and n̄neg are the average number of positive
and negative examples across all classes. Thus for a particu-
lar classifier threshold, computing the normalised precision
measure simply involves calculating the TPR (as in Eq. 4)
and using its value in Eq. 5. A normalised average precision
measure for classification can be computed by averaging nor-
malised precisions computed at a range of recalls.

The bottom plot of Fig. 7 gives the VOC 2012 clas-
sification results using this normalised measure. The first
thing to note is that the ‘chance’ results (obtained by setting
T P R = F P R) are now the same for all classes, showing
that the normalisation has equalised the accuracy for a ran-
dom classifier. In addition, the normalised results also reveal
aspects of the accuracy across classes that are not clear from
the original results (top plot). The biggest change is that the
‘person’ class drops from 2nd to 13th position in the rank-
ing, indicating that this class is substantially harder to iden-
tify than might have been understood from the unnormalised
results alone. This is not the only difference: the ‘chair’ class
now joins the ‘bottle’ and ‘potted plant’ classes in under-
performing the general trend. These three classes seem to
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be substantially harder to recognise than the others. Other
classes with large changes in rank are: ‘dog’ (down 5 places
to 16), ‘sheep’ (up 5 places to 9) and ‘cow’ (also up 5 places
to 10). However, these large changes in rank are less signif-
icant since they occur in the centre of the list where the AP
figures are similar (and so small changes in AP can lead to
large changes in rank).

4.1.2 Comparing Detection Across Classes

In the detection case, the number of negatives is difficult to
define, since it is hard to say the number of places where an
object could be in an image, but isn’t. Instead, we assume
that the number of possible places is very large compared
to the variation in the number of positives across classes.
This allows us to assume that the number of negatives is
approximately equal across classes, even when they have
different numbers of positives. The result is the same as the
normalised AP measure introduced in Hoiem et al. (2012):

norm. prec. det. = TPR × n̄ pos

TPR × n̄ pos + FP
, (6)

where FP is the number of false positives in the class. A
normalised average precision measure for detection can be
computed by averaging normalised precisions computed at a
range of recalls.

The detection results using this normalised measure are
shown in the bottom plot of Fig. 8. In general the impact
of the normalisation is less for detection than for classifica-
tion, with most classes hardly changing in rank. The biggest
change is once again for the ‘person’ class, which drops from
10th to third from last. This again suggests that the normal
way of reporting results may underestimate the difficulty of
detecting people in images—the state-of-the-art accuracy for
detecting people is in fact only slightly better than that of
detecting plants and chairs, despite all the special research
effort that has gone into this case. The other two classes
whose ranking drops after normalisation are ‘cat’ and ‘dog’,
in both cases by three places in the ranking, reflecting the
higher rate of occurrence of cats and dogs in the test set.
However, this is a relatively small change in rankings com-
pared to that of the ‘person’ class and should not cause us to
substantially re-evaluate the difficulty of these two classes.

Finally, it is of interest to examine the difference in class
ranking between classification and detection. The most dra-
matic difference is for the ‘boat’ class which is one of the
better performing classes for classification but one of the
worst for detection. This suggests that it is much easier to
detect an image that contains a boat than to find the boat in
the image. A plausible explanation for this is that the presence
of an expanse of water is a good indicator of the presence of
a boat. So a classifier can use this cue to infer that a boat is
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Fig. 6 Detection results. Methods trained on VOC2012 data. Precision–recall curves are shown for a representative sample of classes. The legend
indicates the AP score (%) obtained by the corresponding method. a Aeroplane, b bicycle, c person, d train

present, whereas it is not as helpful for a detector in precisely
locating the boat.

4.2 Identifying Easy and Hard Groups of Images

In this section, we aim to identify easy and hard groups of
images using the pooled results of the classification challenge
for all submissions since 2009, a total of 73 submissions. The
idea is to cluster both images and methods simultaneously
(bi-clustering) such that methods that are clustered together
tend to perform either well or badly on all the images in each
image cluster.

To be more precise, the following steps were followed for
each class:

1. Using the submitted results for each submission the test
images were classified as containing or not containing the
class. Since the submitted format included a continuous
score for each image, these were converted into binary
by choosing a threshold that gave equal numbers of false
positive and false negatives.

2. Taking only the positive images (that is, images contain-
ing objects of the class) these results were formed into a
binary 73× N matrix, where N is the number of positive
images of that class.

3. The columns of the matrix were re-ordered so as to
minimise an objective function whose main component

was the sum of Hamming distances between adjacent
rows/columns. In addition the objective function also
contained a longer-range term that computed the Ham-
ming distance between columns that were 20 apart, down-
weighted by a factor of 0.05. The minimisation was
achieved using 40,000 iterations of the following greedy
iterative algorithm:

(a) Select a column or block of columns, favouring
blocks that have high Hamming distance to the imme-
diate neighbouring columns.

(b) Move the selected columns to the location in the
matrix that minimises the objective function. The
block of columns can also be flipped if that further
minimises the objective.

4. Apply the same algorithm to the rows of the matrix for
10,000 iterations.

5. Manually analyse the resulting matrix to identify block
structures representing groups of images that are jointly
either correctly or incorrectly handled by different groups
of methods.

We also performed similar analysis for the detection chal-
lenge (a total of 57 submissions since 2009), except in this
setting we identify easy and hard groups of object instances
(as opposed to images). Here, the binary 57 × N matrix rep-
resents whether the test instances were identified in each
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method’s top 2N most confident detections, where N is
the number of positive instances of that class. We do this
to include the methods’ lower confidence detections in our
analysis.

Figures 9, 10, and 11 illustrate the resultant matrices for
the three classes: aeroplane, horse and bicycle for classifica-
tion, and Figs. 12, 13, and 14 illustrate the resultant matrices
for the three classes: bus, cat and tvmonitor for detection. For
each class, six identified groups are shown, with six randomly
selected images per group used to illustrate their nature.

In each case the groups of images are ordered to show
a steady increase in difficulty. This increase can be charac-
terised by reduction in object size, increased truncation or
occlusion, increased variation in illumination or viewpoint,
increased background clutter. In each figure, the final group
is of images which none of the current methods work on—it
would be interesting to focus analysis and research on this
group, with the aim of teasing out properties of these images
which may inspire improvements to current methods.

5 Super Methods

In this section we investigate whether methods can be com-
bined in order to obtain an algorithm with superior perfor-
mance. This is a way of probing the diversity and comple-
mentarity of the submitted methods. We will use the classi-
fication task as an example, and ask the question: “can the
output of the submitted methods be combined in order to
build a ‘super-classifier’ whose performance exceeds that
of the individual methods?”. This question is answered in
Sect. 5.1 by constructing a super-classifier from the VOC
2012 submitted methods. In Sect. 5.2 we examine the learnt
parameters of the super-classifier to determine how the meth-
ods are weighted, and if particular methods are used for all
classes. Finally, in Sect. 5.3, we use this combination scheme
to identify pairs of methods that tend to provide complemen-
tary information for a given classification task. The result of
this indicates which sites should collaborate to best improve
their methods.

5.1 Is it Possible to Improve on the Best Submission by
Using a Combination of Submissions?

The method we investigate for the super-classifier is a lin-
ear classifier for each of the VOC classes, where the feature
vector consists of the real-valued scores supplied by each
submitted method. We have these scores available for all of
the VOC test images, though not for the VOC training or
validation images. For this reason the investigation is carried
out on the VOC test data, for which we have the ground truth
labels.
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Table 8 Action classification results

Jumping Phoning Playing instrument Reading Riding bike Riding horse Running Taking photo Using computer Walking

STANFORD 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6

SZU 73.8 45.0 62.8 41.4 93.0 93.4 87.8 35.0 64.7 73.5

methods below also trained on external data

HU 59.4 39.6 56.5 34.4 75.6 80.2 74.3 27.6 55.2 56.6

OXF_ACT 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5

For each object class and submission, the AP score (%) is shown. Bold entries in each column denote the maximum AP for the corresponding class,
and italic entries denote the results ranked in second place. Competition 9 results are in the top half, and competition 10 in the lower half

Table 9 Bootstrapped classification results on 4 classes

Aeroplane Bottle Person Potted plant

AP range Rank RR AP range Rank RR AP range Rank RR AP range Rank RR

0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975

CVC 87.2 89.4 91.1 4 4–5 47.4 51.4 55.0 3 3 90.7 91.4 92.0 3 2–3 38.3 42.9 47.2 3 3

CVC_SP 90.2 92.1 93.5 2 2 50.6 54.4 58.0 2 2 91.0 91.6 92.2 2 2–3 51.6 56.1 60.3 2 1–2

IMPERIAL 70.0 73.3 76.4 6 6 15.2 17.3 19.7 6 6 55.6 57.3 59.1 7 7 10.3 12.1 14.2 6 6

ITI 86.8 89.1 90.8 5 4–5 30.2 33.6 37.2 5 5 82.1 83.2 84.2 6 6 22.3 26.0 29.8 5 5

ITI_FUSED 88.3 90.5 92.0 3 3 34.2 37.9 41.7 4 4 85.9 86.8 87.6 5 5 33.4 37.8 42.3 4 4

NUS_SCM 96.4 97.3 98.1 1 1 57.3 61.1 64.9 1 1 94.4 95.1 95.6 1 1 53.1 58.0 62.6 1 1–2

UP – – – 7 7 – – – 7 7 88.0 88.7 89.5 4 4 – – – 7 7

α = 0.05, RR denotes the rank range, and leading methods that are not statistically significantly different from each other are highlighted in bold

Table 10 Bootstrapped detection results on 4 classes

Bicycle Bus Horse Potted plant

AP range Rank RR AP range Rank RR AP range Rank RR AP range Rank RR

0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975

CVC_CLS 47.0 49.8 52.5 6 6 51.4 54.6 57.9 3 3 42.6 45.7 48.7 5 4–6 12.9 14.7 16.4 4 3–5

MISSOURI 50.9 53.7 56.6 2 1–3 53.4 56.5 60.2 2 1–2 47.0 50.4 53.5 2 1–3 10.1 12.0 13.8 6 5–6

NEC 43.9 46.8 49.9 8 7–8 47.8 50.9 54.5 7 4–7 36.6 39.8 43.2 8 7–8 10.9 12.8 14.8 5 4–6

OLB_R5 48.9 51.7 54.5 4 3–5 48.6 51.8 54.9 6 4–7 43.7 47.0 50.4 4 3–5 07.7 09.6 11.3 7 7

SYSU_DYNAMIC 44.0 47.0 49.9 7 7–8 43.9 47.2 50.6 8 8 40.1 43.7 47.6 6 5–7 06.5 07.9 09.5 8 8

OXFORD 51.7 54.5 57.3 1 1–2 49.5 52.6 55.8 5 4–7 47.7 51.0 54.3 1 1–3 13.5 15.7 17.7 3 3–4

UVA_HYBRID 49.1 52.0 54.7 3 2–5 54.0 57.1 60.2 1 1–2 45.7 49.0 52.0 3 1–4 20.1 22.8 25.6 1 1

UVA_MERGED 47.4 50.2 52.9 5 3–5 50.2 53.4 56.7 4 4–7 38.5 41.7 44.9 7 6–8 15.8 18.2 20.5 2 2

α = 0.05, RR denotes the rank range, and leading methods that are not statistically significantly different from each other are highlighted in bold

5.1.1 Training, Test Data, and Evaluation

The 10,991 images and labels that form the VOC 2012 test
dataset are used both as training data for the super-classifier,
and as test data to evaluate the super-classifier’s performance.

The images are separated into two sets of approximately
equal size in a stratified manner (i.e. the number of positive
and negative training images in each set are roughly equal).
The super-classifier is trained on one set and its performance

is tested on the other set. The experiments are then repeated
by switching the train and test datasets, and the method is
evaluated as the average AP across the two folds. To ensure
a fair comparison, the same two-fold evaluation is also com-
puted for the individual methods. Despite the stratification the
difference between the AP computed by averaging the two
folds and that computed on all the test data can be as high as
2.40 % AP; see Fig. 15 for the precision–recall curves of a
single method on the ‘boat’ class.
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Fig. 7 Effect of normalised AP on 2012 classification results by class.
Above Standard AP results. Below Normalised AP results. For each
class three values are shown: the maximum AP obtained by any method
(max), the median AP over all methods (median) and the AP obtained
by a random ranking of the images (chance)

5.1.2 Data Preparation and Classifier Training

The feature vector xi that is used to predict the presence or
absence of a VOC class c in the i th image consists of the
M real-valued scores xim submitted by each of the methods
for that image, i.e. it is an M dimensional vector. The scores
xim are linearly scaled to ensure that the range of values
spanned by each particular method m in the training data is
between −1 and 1. The same linear scaling is also applied to
the feature vectors of the test data.

For each VOC class a binary classifier is trained to predict
whether the image contains that object class or not. We use a
support vector machine (SVM) with a linear kernel, trained
using LIBSVM (Chang and Lin 2011). An optimal value for
the parameter C is first found by optimising classification
performance on a held-out validation set (10 % of the training
dataset), and then the SVM is trained on all of the training
data.

5.1.3 Results

Figure 16 shows, for each object class, the improvement
made by the super-classifier over the best performing method
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Fig. 8 Effect of normalised AP on 2012 detection results by class.
Above Standard AP results. Below Normalised AP results. For each
class two values are shown: the maximum AP obtained by any method
(max) and the median AP over all methods (median)

at that class. The super-classifier outperforms any individual
method on 17 out of 20 object classes. On classes where it per-
forms better, it boosts performance by 4.40 % AP on average.
The highest increase in performance is on the ‘potted plant’
class, where the super-classifier improves performance by
13.00 % AP. Where the super-classifier performs worse, the
performance drops by 0.78 % AP on average. The average
performance difference across all classes was found to be
+3.62 % AP. We compare the super-classifier’s precision–
recall curves with those of the other submissions in Fig. 17
for the ‘person’ and ‘potted plant’ categories.

5.2 How Much Does Each Method Contribute
to the Super-Classifier?

To investigate the role that the scores predicted by each of
the methods plays in training the super-classifier, we examine
the magnitude of the SVM’s weights for each of its M input
dimensions. In this case we do not intend to test the perfor-
mance of the trained SVM but only to inspect its weight vec-
tor, so it is trained on all 10,991 feature vectors. As before,
an optimal value for the C parameter is found via cross-
validation on 10 % of the data.

Figure 18 displays the magnitude of the learnt weights for
the scores predicted by each submitted method for the ‘aero-
plane’, ‘bicycle’, ‘person’ and ‘sofa’classes. Surprisingly, the
influence of the different methods varies significantly across
object classes. Also note that the method with the best per-
formance is not necessarily the strongest influence on the
performance of the super-classifier (as indicated by the PR
curves).

5.3 Who Should Collaborate?

Classifier combination can also be used to identify pairs of
methods which make predictions that provide complemen-
tary information about each image in question. It might be
beneficial for the community if such complementary meth-
ods incorporate each other’s ideas.

In order to find these so-called ‘complementary’ pairs,
we perform two experiments. In the first, we create super-
classifiers as above, but using the predictions of only two
submitted methods as input features at a time. For each object
class, we select the pair of methods that achieve the highest
combined performance.

In the second experiment we proceed as above, except that
we report the pair of methods whose combined performance
maximises S1+2 = min(AP1+2/AP1, AP1+2/AP2), where
AP1 and AP2 are the recorded APs for each of the two meth-
ods, and AP1+2 is the performance of the super-classifier
resulting from their combination. This measure ensures that
the combination boosts the performance of both methods rel-
ative to their individual performances.

We report the results of these two experiments in Tables 14
and 15. In Table 14, we note that the performance of the
super-classifier trained using only scores from two methods
is often significantly higher than the best-performing indi-
vidual method (e.g. for ‘bottle’, ‘chair’ and ‘potted plant’),
and for some classes higher than that of the super-classifier
trained for all methods together (e.g. ‘bicycle’). For all
classes NUS_SCM is one of the chosen collaborators, which
is not entirely surprising given its dominating individual per-
formance (see Table 5).

From Table 15, we note that for several classes a large rel-
ative increase in performance can be obtained by combining
two moderately performing methods.

5.4 Discussion

We have illustrated the idea of combining the output from
submitted methods for the case of the classification chal-
lenge. A similar approach could be carried out for the other
main challenges, detection and segmentation, and we discuss
possible solutions here.

For segmentation we require a VOC class (or background)
prediction for each pixel (i.e. one of 21 choices) in each test
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Fig. 9 Analysis of the matrix of submissions for classification: aero-
plane. Each row corresponds to one of the 73 classification methods
submitted since 2009. The columns correspond to the test images that
contain instances of the class, with black indicating a missed classifica-

tion. Six different groups of test images have been highlighted in red.
a–f A selection of images from the different groups. The groups are
ordered by increasing difficulty (Color figure online)
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Fig. 10 Analysis of the matrix of submissions for classification: horse.
Each row corresponds to one of the 73 classification methods submit-
ted since 2009. The columns correspond to the test images that contain
instances of the class, with black indicating a missed classification. Six

different groups of test images have been highlighted in red. a–f A
selection of images from the different groups. The groups are ordered
by increasing difficulty (Color figure online)
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Fig. 11 Analysis of the matrix of submissions for classification: bicy-
cle. Each row corresponds to one of the 73 classification methods sub-
mitted since 2009. The columns correspond to the test images that con-
tain instances of the class, with black indicating a missed classification.

Six different groups of test images have been highlighted in red. a–f A
selection of images from the different groups. The groups are ordered
by increasing difficulty (Color figure online)
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Fig. 12 Analysis of the matrix of submissions for detection: bus. Each
row corresponds to one of the detection methods submitted since 2009.
The columns correspond to the instances of objects of the class, with
black indicating a missed detection. Six different groups of test images

have been highlighted in red. a–f A selection of images from the dif-
ferent groups. The groups are ordered by increasing difficulty (Color
figure online)
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Fig. 13 Analysis of the matrix of submissions for detection: cat. Each
row corresponds to one of the detection methods submitted since 2009.
The columns correspond to the instances of objects of the class, with
black indicating a missed detection. Six different groups of test images

have been highlighted in red. a–f A selection of images from the dif-
ferent groups. The groups are ordered by increasing difficulty (Color
figure online)
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Fig. 14 Analysis of the matrix of submissions for detection: tvmonitor.
Each row corresponds to one of the detection methods submitted since
2009. The columns correspond to the instances of objects of the class,
with black indicating a missed detection. Six different groups of test

images have been highlighted in red. a–f A selection of images from
the different groups. The groups are ordered by increasing difficulty
(Color figure online)
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Fig. 15 Fold variance for super-classifier training/test data. Precision–
recall curve for a single method on the ‘boat’ class. The two grey curves
are the method’s performances when evaluated on either half of the test
data, and the red curve for when evaluated on all the test data (Color
figure online)
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Fig. 16 AP increase of super-classifier. Gold indicates the increase in
performance on object classes where the super-classifier beats all other
methods, averaged across the two folds. The three classes for which
performance drops slightly have been highlighted in red (Color figure
online)

image, and we have available the pixel level class predic-
tions for all the submitted methods. Note, we do not have
confidence scores for the submitted methods. There are vari-
ous super-segmenters that could then be learnt. The simplest
would be to take a majority vote for each pixel across all the
submitted methods. This does not require the ground truth
annotation and essentially involves no learning. An alterna-
tive is to learn a multi-way classifier using the class pre-
dictions of the submitted methods as the feature vector. In
this case, if there are M submitted methods, then the fea-
ture vector is a 21M dimensional binary vector, where each
21 dimensional block arises from one method and only con-
tains one non-zero entry. There is then a choice of multi-way
classifiers; for example a random forest or softmax logis-
tic regression. There is also a choice in how to sample the
training data—whether all pixels are used, and whether the
classes are balanced.

For detection the combination of predictions is more dif-
ficult, as there is a need to first identify which detections
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Fig. 17 PR curves for super-classifier. Precision–recall curves for the
submitted methods along with that of the super-classifier for one fold.
The best performing submitted method is drawn thicker

from the different methods are referring to the same predicted
object (e.g. based on overlaps between bounding boxes),
before combining them. This generalises the problem of
non-maximum suppression for a single predictor (see e.g.
Dalal and Triggs 2005; Viola and Jones 2004; Felzenszwalb
et al. 2010; Leibe et al. 2004) to the output of multiple
predictors.

6 Progress Through Time

In this section we examine trends over the 2008–2012 times-
pan of the challenges: trends in the datasets themselves,
trends in the performance of the algorithms, and trends in
the methods employed.

The growth in the amount of data in the main and seg-
mentation datasets is shown graphically in Fig. 19, and in
detail in Tables 16 and 17. Between 2008 and 2012 the total
number of images (objects) in the main dataset more than
doubled from 4,332 (12,684) to 11,540 (31,561). Over the
same period the number of images (objects) in the segmen-
tation dataset almost trebled from 1,023 (2,369) to 2,913
(6,934). For action classification, training and testing cases
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Fig. 18 Super-classifier weight vectors and AP. Precision–recall
curves and bars are colour-coded to indicate matching methods. The
influence of the methods varies significantly for different object classes.
Also note that the strongest influence on the performance of the super-

classifier is not necessarily the method with the best performance.
Method UP is only used in the ‘person’ class since it only participated
in that class (Color figure online)

went up by about 90 % from 2011 to 2012. Indeed, by 2012
there were 4588 training and validation images, with about
400 examples of people carrying out each class of action.
For the person layout taster, the number of images (objects)
similarly increased from 245 (367) in 2008 to 609 (850) in
2012.

To determine the trends in performance, we evaluate all
submissions from 2009 to 2012 using the images in the VOC
2009 test dataset. All submissions since 2009 have provided
predictions for the VOC 2009 test images, since images were
only added to the test set over the years; thus this dataset
provides a common test set for all submissions. For detection,
we also analyse the submissions using the methods of Hoiem
et al. (2012), and thereby identify the types of errors occurring
across time.

We consider the trends for the classification, detection and
segmentation tasks in order. As will be seen, originally these
tasks were treated quite independently by participants, but as
the challenge progressed there was progressively more cross-
fertilisation, with detection and segmentation being used to
enhance the classification performance for example.

6.1 Classification

In Fig. 20 we plot histograms of the mean AP scores achieved
on the classification task by the various methods in the dif-

ferent years. The diversity in performances has gradually
increased, as has the highest AP achieved. We also plot, for
each class, the AP of the best-performing method in each
year on that class in Fig. 21. This shows improved per-
formance between 2009 and 2012 for all classes, although
these increases are not always monotonic over the interven-
ing years.

The basic classification method that was dominant in
VOC 2007 was the bag-of-visual-words (Csurka et al. 2004).
Local features were extracted (e.g. SIFT descriptors, Lowe
2004), vector quantised into a visual vocabulary (e.g. using
k-means), and each image represented by histograms of how
often the extracted features were assigned to each visual
word. A support vector machine (SVM) classifier was then
used on top of this histogram representation.

One idea to go beyond the simple bag-of-words (BOW)
representation was to use histograms on regions of the image,
e.g. spatial pyramid matching (SPM, Lazebnik et al. 2006),
where representations for a nested pyramid of regions are
computed.

An alternative approach is classification-by-detection,
making use of the output of a classifier looking at a spe-
cific region of the image (e.g. a sliding window detector),
and combining the results of these detections.

Over 2008–2012 there were various developments of these
methods. For example the winning NEC/UIUC entry in 2009
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Table 14 Collaboration table from super-classifiers I

Class Top Method 1 Method 2 Pair combined All combined

AP Name AP1 Name AP2 AP1+2 AP

Aeroplane 97.34 UP 6.00 NUS_SCM 97.34 97.34 97.41

Bicycle 84.28 ITI_FUSED 65.35 NUS_SCM 84.28 85.30 84.98

Bird 80.89 CVC 69.78 NUS_SCM 80.89 85.09 85.73

Boat 85.52 CVC_SP 77.53 NUS_SCM 85.52 86.38 86.80

Bottle 61.12 CVC_SP 54.37 NUS_SCM 61.12 69.94 70.27

Bus 89.86 CVC 84.79 NUS_SCM 89.86 91.12 91.38

Car 86.87 CVC_SP 81.90 NUS_SCM 86.87 93.07 91.54

Cat 89.37 CVC_SP 76.54 NUS_SCM 89.37 92.19 91.81

Chair 75.56 CVC_SP 65.21 NUS_SCM 75.56 83.49 83.70

Cow 77.88 UP 3.93 NUS_SCM 77.88 77.96 76.35

Dining table 75.24 CVC_SP 68.59 NUS_SCM 75.24 82.26 82.86

Dog 83.19 CVC_SP 68.94 NUS_SCM 83.19 89.25 89.22

Horse 87.53 ITI_FUSED 72.39 NUS_SCM 87.53 88.84 86.73

Motorbike 90.14 CVC 79.21 NUS_SCM 90.14 90.78 91.14

Person 95.11 CVC_SP 91.62 NUS_SCM 95.11 97.87 98.14

Potted plant 57.99 CVC_SP 56.24 NUS_SCM 57.99 70.11 70.99

Sheep 79.34 IMPERIAL 23.86 NUS_SCM 79.34 79.48 79.34

Sofa 73.69 ITI_FUSED 57.42 NUS_SCM 73.69 78.56 79.12

Train 94.49 UP 5.10 NUS_SCM 94.49 94.49 94.62

TV/Monitor 80.95 CVC_SP 77.37 NUS_SCM 80.95 85.75 86.61

Collaborator 1 and 2 (C1 and C2) chosen to maximise AP1+2, the performance of super-classifier resulting from the combination of C1 and C2.
Note that the performance of the super-classifier trained using only scores from two methods as input features (second to last column) is often
significantly higher than the best-performing individual method (second column), and for some classes higher than that of the super-classifier
trained all methods together (last column). NUS_SCM, the best-performing individual method across all classes, is always chosen to be one of the
super-classifier collaborators. Bold values indicate highest achieved AP for each class

used local coordinate coding (LCC, Yang et al. 2009) to
replace the vector quantisation step, so that a feature vec-
tor could be represented by more than one template. In 2010
the winning entry from NUS/PSL used multiple kernels to
combine BOW-type representations with the outputs of the
object detector due to Felzenszwalb et al. (2010). The 2011
entry from the University of Amsterdam used classification-
by-detection, but instead of using sliding windows they pro-
posed candidate windows based on multiple segmentations
(Van de Sande et al. 2011). The 2012 winning entry from
NUS/PSL was described in Sect. 3.1.

We note that recent work by Krizhevsky et al. (2012) on
deep convolutional neural networks (CNNs) has significantly
outperformed methods similar to those described above on
the large scale ImageNet classification challenge. These net-
works, trained on ImageNet, have subsequently been applied
to VOC classification in two different ways: the first is to
‘remove’ the final classification layer of the CNN, and use
the remaining architecture to compute image level features;
the second is to use the ImageNet data as supervised pre-
training, and then refine the network by training with VOC
data. Both have led to impressive performance improvements

2008 2009 2010 2011 2012
0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 
Main − images
Main − objects
Segmentation − images
Segmentation − objects

Fig. 19 Summary of the statistics of the VOC datasets over the years

on the VOC classification task (Donahue et al. 2013; Oquab et
al. 2014; Zeiler and Fergus 2013). This is another important
development in the image level feature learning/encoding
story.

6.2 Detection

In Fig. 22 we plot histograms of the mean AP scores achieved
on the detection task by the various methods in the differ-
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Table 15 Collaboration table from super-classifiers II

Class Top Method 1 Method 2 Pair combined All combined

AP Name AP1 Name AP2 AP1+2 AP

Aeroplane 97.34 ITI 89.09 CVC 89.29 91.03 97.41

Bicycle 84.28 ITI_FUSED 65.35 NUS_SCM 84.28 85.30 84.98

Bird 80.89 CVC 69.78 NUS_SCM 80.89 85.09 85.73

Boat 85.52 ITI_FUSED 72.39 CVC 73.91 74.77 86.80

Bottle 61.12 CVC_SP 54.37 NUS_SCM 61.12 69.94 70.27

Bus 89.86 CVC 84.79 NUS_SCM 89.86 91.12 91.38

Car 86.87 CVC_SP 81.90 NUS_SCM 86.87 93.07 91.54

Cat 89.37 CVC_SP 76.54 NUS_SCM 89.37 92.19 91.81

Chair 75.56 CVC_SP 65.21 NUS_SCM 75.56 83.49 83.70

Cow 77.88 ITI_FUSED 55.37 CVC 59.39 60.16 76.35

Dining table 75.24 CVC_SP 68.59 NUS_SCM 75.24 82.26 82.86

Dog 83.19 CVC_SP 68.94 NUS_SCM 83.19 89.25 89.22

Horse 87.53 ITI_FUSED 72.39 NUS_SCM 87.53 88.84 86.73

Motorbike 90.14 ITI_FUSED 77.39 CVC 79.21 80.68 91.14

Person 95.11 UP 88.74 ITI_FUSED 86.78 91.79 98.14

Potted plant 57.99 CVC_SP 56.24 NUS_SCM 57.99 70.11 70.99

Sheep 79.34 ITI_FUSED 61.04 CVC 63.09 63.94 79.34

Sofa 73.69 ITI_FUSED 57.42 NUS_SCM 73.69 78.56 79.12

Train 94.49 ITI_FUSED 85.83 CVC 86.77 87.37 94.62

TV/Monitor 80.95 CVC_SP 77.37 NUS_SCM 80.95 85.75 86.61

Collaborator 1 and 2 (C1 and C2) chosen to maximise S1+2, where S1+2 = min(AP1+2/AP1, AP1+2/AP2), and AP1+2 is the performance of
super-classifier resulting from the combination of C1 and C2. For comparison, the best performance of a single method is shown in the Top AP
column. Bold values indicate highest achieved AP for each class

ent years. Again the diversity in performances has gradually
increased, as has the highest AP achieved. We also plot, for
each class, the AP of the best-performing method in each year
on that class in Fig. 23. For most classes the AP of the best
performing method has gradually increased over the years,
although this trend is less strong than for the classification
task (see Fig. 21).

The reference method for object detection in VOC 2008–
2012 was the deformable part model (DPM; Felzenszwalb
et al. 2010). The method is based on a coarse scale ‘root’
filter using a histogram of oriented gradients representation
(HOG; Dalal and Triggs 2005), plus finer-scale HOG part
templates that can move relative to the root. This model
is applied everywhere in the image using efficient sliding
windows. The outputs are post-processed involving regres-
sion to predict the bounding box from the root and part
locations, greedy non-maximum suppression, and rescor-
ing of each bounding box with an SVM using contextual
information about the maximal strengths of detections for
all classes. Teams led by Felzenszwalb were joint winners
of the challenge in 2008 and 2009, and the released code
meant that this method was widely used/developed by oth-
ers.

The team from the National Laboratory of Pattern Recog-
nition, Chinese Academy of Sciences which won in 2010
enhanced the DPM method by incorporating local binary pat-
tern (LBP) features in addition to HOG, and including spatial,
global and inter-class context into the post-processing SVM.

Also in 2010, the MIT/UCLA team (Zhu et al. 2010)
extended the DPM model by allowing a 3-layer architecture
(corresponding to a root, parts and sub-parts), and by incor-
porating data terms involving a histogram of ‘visual words’
for region appearance as well as HOG features for edges.

One issue with the DPM is that it performs search densely
in the image, and uses relatively simple matches between
the HOG input representation and filters. In VOC 2009,
Vedaldi et al. (2009) used a cascade of methods of increasing
complexity using linear, quasi-linear and non-linear kernels,
with the idea that the more expensive non-linear methods
need only be run on a subset of locations determined by the
cheaper methods. In the VOC 2011 and 2012 contests this
group instead re-scored the top 100 candidates output by the
DPM, using a SVM with inputs including additional features,
geometry, and context (described in more detail in Sect. 3.2).

Another way of avoiding sliding windows search is to
hypothesise bounding boxes bottom up, e.g. based on mul-
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Fig. 20 Overall classification AP over the years. The histograms indi-
cate the number of methods whose mean AP score fell in specific ranges
in each year
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Fig. 21 Classification AP by class over the years. For each year and
class we plot the AP obtained by the best-performing method at that
class in that year
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Fig. 22 Overall detection AP over the years. The histograms indicate
the number of methods whose mean AP score fell in specific ranges in
each year

tiple segmentations (Van de Sande et al. 2011). This is the
route, termed ‘selective search’, followed by the University
of Amsterdam entry which won in 2012, and allowed them to
use more computationally expensive features and classifiers.

In more recent work (Girshick et al. 2014), the CNN fea-
tures described in Sect. 6.1 have been used to represent the
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Fig. 23 Detection AP by class over the years. For each year and class
we plot the AP obtained by the best-performing method at that class in
that year

selective search bounding boxes, and have achieved a sub-
stantial improvement in detection performance.

6.2.1 Patterns of Errors Through Time

Hoiem et al. (2012) produced a very interesting analysis of
patterns of false-positive and false-negative errors made by
two different detection algorithms on the Pascal VOC 2007
dataset (for which ground truth is also publicly available for
the test set). We have carried out a similar analysis on the top
three performing methods from both 2009 and 2012.

For false positives (FPs), Hoiem et al (2012, Sect. 2)
looked at four kinds of errors. These are: localisation, where
the target category is detected with a misaligned bounding
box (with overlap between 0.1 and 0.5, while the threshold
for a correct detection is set at 0.5); confusion with simi-
lar objects, where the groups of similar objects are taken
to be {all vehicles}, {all animals including person}, {chair,
diningtable, sofa}, {aeroplane, bird}; confusion with other
VOC objects, describes remaining false positives which have
at least 0.1 overlap with an object with a non-similar label;
all other FPs are classified as confusion with background. Let
the number of true positives of class j in the test set be N j .
Following Hoiem et al. (2012), we consider the top ranked
N j detections for class j , and compute the percentage that
are correct, and the four kinds of errors (localisation, similar
objects, dissimilar objects, background). These results are
plotted as pie charts by Hoiem et al (2012, Fig. 2).

Figure 24 plots these results for three groups (animals,
vehicles, furniture) and four individual classes from both
2009 and 2012. For 2012, the three top performing meth-
ods were OXFORD, UVA_HYBRID, and UVA_MERGED.
There is a marked trend that the percentage of background
errors has increased between 2009 and 2012, while in gen-
eral the confusions with similar and dissimilar objects have
decreased.
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Fig. 24 Patterns of errors through time. Percentage of top-ranked
detections that are correct (Cor), or are false positives due to poor
localisation (Loc), confusion with similar objects (Sim), confusion
with other VOC objects (Oth), or confusion with background or unla-

belled objects (BG). For each label there are six bars: the left three
(blue) are 2009 results (OXFORD_MKL, UOC_LSVM, NEC) while
the right three (yellow) are 2012 results (OXFORD, UVA_HYBRID,
UVA_MERGED) (Color figure online)
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Fig. 25 Per-category analysis of caracteristics: object size.
norm. prec. det. (‘+’) with standard error bars (red). Black dashed
lines indicate the overall value of this measure. Key: XS extra-small,

S small, M medium, L large, XL extra-large. Following Hoiem et al.
(2012) standard error is used for the average precision statistic as a
measure of significance, rather than confidence bounds

Following Hoiem et al. (2012) we also examined the
impact of object characteristics (object size, aspect ratio and
truncation) on false negatives. Object size was measured by
the bounding box area. Objects in each class were partitioned
into five size categories, depending on the object’s percentile
size within its category: extra-small (XS: bottom 10 %), small

(S: next 20 %), medium (M: next 40 %); large (L: next 20 %)
and extra-large (XL: top 10 %). For aspect ratio (defined as
bounding box width divided by height), objects were cate-
gorised as extra-tall, tall, medium, wide and extra-wide, using
the same percentiles. For truncation, the Pascal VOC anno-
tation of truncated/not-truncated was used. For object size
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Fig. 26 Overall segmentation accuracy over the years. The histograms
indicate the number of methods whose mean segmentation accuracy
score fell in specific ranges in each year

the results are plotted in Fig. 25. For all classes we observe
trends similar to those noted by Hoiem et al. (2012) in that
the normalised precision (see Eq. 6) increases as function
of size, except that there is sometimes a drop for extra-large
objects, which are often highly truncated. In general (data not
shown) performance with respect to aspect ratio is better for
less-extreme aspect ratios, and it is better for non-truncated
objects than truncated ones (except that the top three meth-
ods in 2009 and 2012 all prefer truncated over non-truncated
cats).

6.3 Segmentation

Figure 26 shows histograms of the mean segmentation accu-
racy scores achieved on the segmentation task by the meth-
ods in the different years. Notice that the highest accuracy
achieved has increased at a steady and significant pace from
each year to the next.

Figure 27 shows, for each class, the accuracy of the
best-performing method in each year on that class. For
most classes the accuracy of the best performing method
has increased between 2009 and 2012, although often not
monotonically with the year. In particular, in the final years
from 2011 to 2012 there was substantial improvement in all
classes except bus. This gives hope that there is scope for fur-
ther improvement in years to come, although note from Table
17 that there was an increase of over 30 % in the amount of
data between these years.

We will now discuss the evolution of the methods used in
the segmentation challenge since its inception in 2007. In the
first year of the segmentation challenge we expected few sub-
missions due to the newness of the challenge and so each par-
ticipant in the detection challenge was entered automatically
in the segmentation challenge to provide a baseline set of
methods. This was achieved by filling in the predicted bound-
ing boxes to produce a segmentation. The 2008 segmentation
competition had six participants and was the first year where
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Fig. 27 Segmentation accuracy by class over the years. For each year
and class we plot the accuracy obtained by the best-performing method
on that class in that year

the segmentation methods beat the automatic entries from
the detection challenge. The methods used included:

– use of bottom-up segmentations (superpixels),
– MRFs, including high-order potentials,
– refinement of bounding boxes from a detector,
– use of image-level classifiers from the classification chal-

lenge.

The 2009 competition had probably the broadest set of
entries, twelve in all, whose methods built on and extended
those used in the previous year. Key extensions were:

– use of multiple bottom-up segmentations to avoid making
early incorrect boundary decisions,

– Hierarchical MRFs e.g. modelling object co-occurrence,
– use of parts-based instance models to refine detections,
– deeper integration of segmentation model with detec-

tion/classification models,
– use of 3D information.

From 2010 until the final competition in 2012, participants
used combinations and refinements of these techniques. The
two dominant methods were: hierarchical random fields with
a range of potentials, and the use of multiple bottom-up seg-
mentations, combined with a classifier to predict the degree
of overlap of a segment with an object. In 2012 the number
of participating organisations was down to three, suggest-
ing that the methods used were performing so well it was
difficult for a new participant to enter the competition with
an original method and get competitive results. That said,
the above results through time suggest that segmentation
methods are still improving rapidly and we should expect
further improvements on these methods in the immediate
future.

123



132 Int J Comput Vis (2015) 111:98–136

7 Discussion and the Future

This section appraises certain choices we made in running the
challenge and gives suggestions for future challenge organ-
isers.

7.1 Design Choices: What We Think We Got Right

7.1.1 Standard Method of Assessment

Having software that provides a standard method of assess-
ment is essential. For the challenge we provided the follow-
ing: (i) The train, validation and test splits; (ii) A standard
evaluation protocol; and (iii) Evaluation software that com-
putes the evaluation measures. This includes a baseline clas-
sifier, detector and segmenter, and the software to run every-
thing ‘out of the box’, from training through to generating a
PR curve and AP on the validation (or test) data.

So, for example, in the classification challenge it is only
necessary to replace the call to the baseline classifier we
supplied with a call to the new classifier to be trained and
evaluated, and then the PR curve and AP measure are gener-
ated automatically on the validation data. Providing the splits
and evaluation code has meant that results on VOC can be
consistently compared in publications.

The lesson here is that all challenges should provide code
for their standard method of assessment. In cases where this is
not provided we still see many examples in papers of authors
evaluating the results in different ways—for example some
using micro-averaging (giving equal weight to each image)
and others using macro-averaging (giving equal weight to
each class)—so that results are not comparable.

It is also a good idea to provide written guidelines for
annotation, see Pascal VOC annotation guidelines (2012), so
that there is little ambiguity and instead greater consistency in
the labelling; and ‘best practice’ guidelines, see Pascal VOC
best practice guidelines (2012), so that participants know
how the organisers intend the data to be used for training,
validation and testing.

7.1.2 Measuring Performance on the Test Data

There are (at least) three possibilities on how to obtain the
performance on the test data from participants: (i) Release
test data and annotation and participants can assess perfor-
mance themselves; (ii) Release test data, but test annotation is
withheld—participants submit results and organisers assess
performance (e.g. using an evaluation server); (iii) No release
of test data— participants have to submit software and organ-
isers run this and assess performance.

We now discuss these options and our reasons for choosing
(ii). The first option (release test data annotations) is the most
liberal, but is open to abuse—for example, since participants

have the test annotations then the test data could be used
for choosing parameters, and only the best result reported
(optimising on the test data). There was some evidence that
this was happening with the VOC 2007 release, and this was
one of the reasons that we adopted option (ii) from VOC 2008
onwards.

In the second option (withhold test annotation) partici-
pants simply run their method over the test data and return
the results (e.g. a confidence score for each image for each
class for the classification challenge) in a standard form. The
performance can then be assessed automatically by an eval-
uation server. Since the data consists of images, there is still
some danger that performance of different parameter choices
will be assessed by eye on the test data. It is also theoreti-
cally possible for participants to hand-annotate the test data,
though we rely on participants’ honesty and to some extent
also the limited time available between the release of the test
data and submission of the results to prevent this. Note, this
danger may not apply to other challenges where the test data
is more abstract than images (e.g. feature vectors).

The third option (participants submit code) is the most
safe as there is no release of test data at all. However, there
are potentially huge computational and software costs both
in being able to run the supplied software on other machines
(e.g. the software may use a mix of Matlab/C/GPUs) and
in providing the computational infrastructure (clusters, suf-
ficient memory) to run the code over the test dataset in a
reasonable time.

Given the potential costs of the third option, we adopted
the second. Other than some participants making multiple
similar submissions (which contravenes the best practice of
choosing the method submitted using the validation set),
there were no problems that we were aware of. Here it should
be added that in case of multiple submissions, participants
were forced to select a single submission without knowing
the respective test scores.

7.1.3 Augmentation of Dataset Each Year

Each year new images were added to the dataset and data
splits (into training, validation and test) of earlier years main-
tained. The statistics on how the data was augmented are
given in Tables 16 and 17. Both the number of images and
number of objects more than doubled between 2008 and
2012.

This had a number of useful consequences: first, it has
mitigated overfitting to the data (which might have happened
if the data had not changed from year to year); and second,
since the earlier year’s data is available as subsets, progress
can be measured from 2008 to 2012 using the same test set.
For example, the 2009 dataset is a subset of 2010, 2011 and
2012, and as the assignments to training, validation and test
are maintained, performance of all methods can be measured
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each year using the same 2009 test data (albeit with different
training and validation data each year).

Note, the alternative of releasing an entirely new dataset
each year would also prevent overfitting, but the disadvan-
tages are that performance would then be measured on a dif-
ferent test set each year. Also there would be the additional
cost of preparing entirely new releases of similar sizes, com-
pared to more gradually increasing the sizes.

7.2 Room for Improvement

The biggest risk when running a competition like VOC is that
it reduces the diversity of methods within the community. A
good strategy for a participant is to make an incremental
improvement on the previous year’s winning method. New
methods that have the potential to give substantial improve-
ments may be discarded before they have a chance to mature,
because they do not yet beat existing mature methods. Our
attempts to solve this problem were:

– to add new competitions (such as the segmentation
and action competitions) with different objectives that
required new methods to be developed. However, the
existing challenges were kept largely fixed so that we
could track progress over time, as we saw in Sect. 6.

– to encourage novelty explicitly through invited talks and
novelty prizes at the annual workshop. However, it was
difficult to assess novelty in an objective fashion and it
was easier to favour methods which combined an element
of novelty with close to state-of-the-art performance.

However, we feel that there is still room for improvement in
maintaining diversity. To this end, we will now suggest some
other strategies that may help increase diversity in future
competitions.

7.2.1 Multiple Evaluation Metrics

The design of the evaluation metric for a competition is often
controversial since small changes in the metric can give sub-
stantial advantages to one method or another. Indeed the
metrics used in each VOC competition have typically been
changed or refined at least once during the lifetime of the
competition. These changes may have reduced but not elim-
inated another type of reduction in diversity: that methods
may end up overfitting to the particular evaluation metrics
selected for each competition.

One possible suggestion that may mitigate this is to use
and publish several different metrics when evaluating partic-
ipants in each competition. Each metric should pick up on a
different aspect of the success of a method. Not only would
this reduce overfitting but it would provide more detail into
the strengths and weaknesses of each method, help inform
collaboration between teams with different strengths, and

encourage the discussion and development of informative
metrics. However, it would still be necessary to combine the
metrics somehow to determine the competition winner.

Another suggestion would be to report a diversity met-
ric. This could be a metric across all participants, which
would allow the diversity to be tracked over time making
any reduction in diversity more visible and encouraging more
discussion and improvements relating to diversity. Alterna-
tively (or in addition), there could be an evaluation metric that
indicates how different each participant is from the average
participant—effectively giving additional weight to partic-
ipants that do well on images where other participants do
badly.

7.2.2 Community Boosting

This idea can be taken further by formalising it into a
community-level boosting algorithm. The idea would be to
attach weights to each test image and upweight images that
were poorly handled by the community of methods in the
previous year’s challenge. These weights would then be used
when calculating evaluation metrics to favour methods that
differ from the previous year, and thus encourage greater
diversity.

One way this could be achieved in practice would be to
combine together the previous year’s methods, for example,
by using a super-classifier like the one used in Sect. 5. This
super-classifier would then be used as the ‘weak learner’ in
a standard boosting algorithm to compute the image weights
for the current year. The result would be a boosting algorithm
running at one iteration per year. This would have the inter-
esting side benefit of producing a classifier that combined all
methods of all years into a single ‘strong’ classifier.

Boosting is known to suffer from overfitting and this could
be a problem here, although the small number of iterations
should limit the scope for overfitting. Another issue is this
could lead the community to focus on specialised solutions
to niche problems. Nonetheless, we believe this approach
would be worth considering for future challenges.

7.2.3 Community Analysis of Results

Our current analysis has been centred around rather global
evaluation metrics, i.e. a set of numbers that cannot sum-
marise all aspects. However, as the work by Hoiem et al.
(2012) has shown, there are many interesting and relevant
aspects that could well stay under the radar but would war-
rant further attention. This is especially the case for failure
cases that may be rare—and would therefore hardly impact
global performance measures—but nonetheless need solving
if object recognition is to come of age. It would therefore be
interesting to make all submissions public, e.g. by extend-
ing the evaluation server so that everyone can query them.
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However, this is not our current intention, as it would require
additional resources, and would also create complications
with the policy of withholding the testing annotations from
future participants.

7.3 Conclusions and Impact

The Pascal VOC challenges and workshops have certainly
contributed to the surge in interest in category recognition in
the computer vision community over the last decade, and
have been mentioned in thousands of papers. They have
been used for research areas that we did not have in mind
at all when they were created, such as studying dataset bias
(Torralba and Efros 2011)—where algorithm performance is
compared across different training and testing datasets (e.g.
VOC vs. ImageNet), or automatically inferring attributes for
each object (e.g. has wheel, has head) with additional anno-
tation provided to support this (Farhadi et al. 2009). Our
current intention is to keep the VOC 2008–2012 test data
annotations secret (so as to minimise the effects of over-
fitting), and to keep the evaluation server available (Pascal
VOC evaluation server 2012). We have added a leaderboard
so that future submissions may be easily recorded and com-
pared. We intend for this leaderboard to include the bootstrap-
ping technique described in Sect. 3.5, so that the significance
of the difference between entries on the leaderboard can be
assessed.

We note here some of the particular successes of the
period. First, has been the development of a new class of
object category detector, the DPM of Felzenszwalb et al.
(2010), with open source code provided to the community.
Second, has been the steady increase in performance over all
the three main challenges. Third, has been the development of
cross fertilisations between the challenges—detectors used
as part of the segmentation and classification methods, and
(unsupervised) segmentation used to propose windows in
detection methods—where originally methods were myopic
in only applying to one of the three challenges. Fourth, VOC
has contributed to establishing the importance of bench-
marks, and in turn has led to efforts to refine and analyse
the results in more detail, e.g Hoiem et al. (2012). Finally,
VOC has led to a new generation of challenges with far
greater number of classes (e.g. ImageNet), with explorations
of more structure (e.g. parts and attributes), and with finer
grain visual categorisations (e.g. distinguishing between sub-
ordinate classes of flowers, birds, dogs).

Winston Churchill famously said “democracy is the worst
form of government except all those other forms that have
been tried from time to time”. It could equally be said that
organising a challenge is the worst way to track and encour-
age progress in a research community, except for all the other
ways. Certainly a widely adopted challenge can be a curse

as well as a blessing. In running the Pascal VOC challenge,
we have tried to steer a course that maximises the community
benefits and minimises the costs, and believe that we have
had some reasonable success in doing so. As we move into a
new generation of machine vision problems, challenges will
continue to play a critical role in assessing, recognising and
communicating progress. We wish the organisers of these
challenges the very best in steering their own paths through
the uncharted territory ahead.
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