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Chapter 1

Statistics and Sampling Distributions

1.1 Introduction

Statistics is closely related to probability theory, but the two fields have entirely different
goals. Recall, from Stat 401, that a typical probability problem starts with some assumptions
about the distribution of a random variable (e.g., that it’s binomial), and the objective is
to derive some properties (probabilities, expected values, etc) of said random variable based
on the stated assumptions. The statistics problem goes almost completely the other way
around. Indeed, in statistics, a sample from a given population is observed, and the goal is
to learn something about that population based on the sample. In other words, the goal in
statistics is to reason from sample to population, rather than from population to sample as
in the case of probability. So while the two things—probability and statistics—are closely
related, there is clearly a sharp difference. One could even make the case that a statistics
problem is actually more challenging than a probability problem because it requires more
than just mathematics to solve. (The point here is that, in a statistics problem, there’s
simply too much information missing about the population to be able to derive the answer
via the deductive reasoning of mathematics.) The goal of this course is to develop the
mathematical theory of statistics, mostly building on calculus and probability.

To understand the goal a bit better, let’s start with some notation. Let X1, . . . , Xn be
a random sample (independent and identically distributed, iid) from a distribution with
cumulative distribution function (CDF) F (x). The CDF admits a probability mass function
(PMF) in the discrete case and a probability density function (PDF) in the continuous case;
in either case, write this function as f(x). One can imagine that f(x) characterizes the
population from which X1, . . . , Xn is sampled from. Typically, there is something about this
population that is unknown; otherwise, there’s not much point in sampling from it. For
example, if the population in question is of registered voters in Cook county, then one might
be interested in the unknown proportion that would vote democrat in the upcoming election.
The goal would be to “estimate” this proportion from a sample. But the point here is that
the population/distribution of interest is not completely known. Mathematically, we handle
this by introducing a quantity θ, taking values in some Θ ⊆ Rd, d ≥ 1, and weakening the
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initial assumption by saying that the distribution in question has PMF or PDF of the form
fθ(x) for some θ ∈ Θ. That is, the statistician believes that the data was produced by a
distribution in a class indexed by Θ, and the problem boils down to picking a “good” value
of θ to characterize the data-generating distribution.

Example 1.1. Suppose the population of registered voters in Cook county is divided into
two groups: those who will vote democrat in the upcoming election, and those that will
vote republican. To each individual in the population is associated a number, either 0 or 1,
depending on whether he/she votes republican or democrat. If a sample of n individuals is
taken completely at random, then the number X of democrat voters is a binomial random
variable, written X ∼ Bin(n, θ), where θ ∈ Θ = [0, 1] is the unknown proportion of democrat
voters. The statistician wants to use the data X = x to learn about θ.1

Throughout we will refer to θ as the parameter and Θ the parameter space. The typical
problem we will encounter will begin with something like “Suppose X1, . . . , Xn is an inde-
pendent sample from a distribution with PDF fθ(x). . . ” For the most part, we shall omit
the (important) step of choosing the functional form of the PMF/PDF; Section 1.2 discusses
this topic briefly. So we shall mostly take the functional form of fθ(x) as fixed and focus on
finding good ways to use the data to learn, or make inference about the value of θ. The two
main statistical inference problems are summarized in Section 1.3. In Stat 411, we will focus
mostly on the simplest of these problems, namely point estimation, since this is the easiest
to understand and most of the fundamental concepts can be formulated in this context. But
regardless of the statistical inference problem at hand, the first step of a statistical analysis
is to produce some summary of the information in the data about the unknown parameter.2

Such summaries are called statistics, and Section 1.4 gives an introduction. Once a summary
statistic has been chosen, the sampling distribution of this statistic is required to construct
a statistical inference procedure. Various characteristics of this sampling distribution will
help not only for developing the procedure itself but for comparing procedures.

1.2 Model specification

The starting point for the problems in this course is that data X1, . . . , Xn are an observed
sample from a population characterized by a PMF or PDF fθ(x), where the parameter θ is
unknown. But it’s not immediately clear where the knowledge about the functional form of
fθ(x) comes from. All the statistician has is a list of numbers representing the observed values
of the random variables X1, . . . , Xn—how can he/she pick a reasonable model for these data?
The most common way this is done is via exploratory data analysis, discussed briefly next.

1This is essentially what’s being done when the results of exit polls are reported on the news; the only
difference is that their sampling schemes are more sophisticated, so that they can report their results with
a desired level of accuracy.

2There are other approaches, besides the so-called “frequentist” approach emphasized in Stat 411, which
do not start with this kind of summary. Later on we shall briefly discuss the “Bayesian” approach, which is
fundamentally and operationally very different.
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In some select cases, however, the statistical model can be obtained by other means. For
example, in some applied problems in physics, chemistry, etc, there may be a physical model
coming from existing theory that determines the functional form of the statistical model. In
other cases, the definition of experiment can determine the statistical model. Example 1.1 is
one such case. There, because the population is dichotomous (democrat or republican), the
number of democrats in an independent sample of size n is, by definition, a binomial random
variable, so the PMF fθ(x) is determined, modulo θ. But these situations are atypical.

When little or no information is available concerning the population in question, the
statistician must rely on exploratory data analysis methods and some imagination to cook
up the functional form of the PMF/PDF. These data analytic methods include drawing
plots and calculating summary statistics, etc. Such methods are discussed in more detail
in applied statistics courses. In addition to basic summaries like the mean and standard
deviation, histograms five-number summaries, and boxplots are particularly useful.

1.3 Two kinds of inference problems

1.3.1 Point estimation

Suppose X1, . . . , Xn are iid with PDF/PMF fθ(x). The point estimation problem seeks to
find a quantity θ̂, called an estimator, depending on the values of X1, . . . , Xn, which is a
“good” guess, or estimate, of the unknown θ. The choice of θ̂ depends, not only on the data,
but on the assumed model and the definition of “good.” Initially, it seems obvious what
should be meant by “good”—that θ̂ is close to θ—but as soon as one remembers that θ itself
is unknown, the question of what it means even for θ̂ to be close to θ becomes uncertain.
We’ll discuss this more throughout the course.

It would be quite unreasonable to believe that one’s point estimate θ̂ hits the unknown
θ on the nose. Indeed, one should expect that θ̂ will miss θ by some positive amount.
Therefore, in addition to a point estimate θ̂, it would be helpful to have some estimate of
the amount by which θ̂ will miss θ. The necessary information is encoded in the sampling
distribution (see Section 1.5) of θ̂, and we can summarize this by say, reporting the standard
error or variance of θ̂, or with a confidence interval.3

1.3.2 Hypothesis testing

Unlike the point estimation problem which starts with a vague question like “what is θ?,” the
hypothesis testing problem starts with a specific question like “is θ equal to θ0?,” where θ0

is some specified value. The popular t-test problem is one in this general class. In this case,
notice that the goal is somewhat different than that of estimating an unknown parameter.
The general setup is to construct a decision rule, depending on data, by which one can
decide if θ = θ0 or θ 6= θ0. Often times this rule consists of taking a point estimate θ̂

3Confidence intervals are widely used in statistics and would be covered in detail in some applied courses.
We’ll discuss this a little bit later.
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and comparing it with the hypothesized value θ0: if θ̂ is too far from θ0, conclude θ 6= θ0,
otherwise, conclude θ = θ0. Later in the course we shall discuss how to define “too far” and
what sorts of properties this decision rule should have.

1.4 Statistics

As discussed previously, the approach taken in Stat 411 starts with a summary of the infor-
mation about θ in the data X1, . . . , Xn. This summary is called a statistic.

Definition 1.1. Let X1, . . . , Xn be a sample whose distribution may or may not depend on
an unknown parameter θ. Then any (“measurable”) function T = T (X1, . . . , Xn) that does
not depend on θ is a statistic.

Examples of statistics T = T (X1, . . . , Xn) include:

T = X̄ =
1

n

n∑
i=1

Xi, the sample mean;

T = S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2, the sample variance;

T = Mn, the sample median;

T ≡ 7;

T = I(−∞,7](X1); etc, etc, etc.

(Here IA(x) denotes the indicator function, which takes value 1 if x ∈ A and value 0 if x 6∈ A.)
Apparently, a statistic T can be basically anything, some choices being more reasonable than
others. The choice of statistic will depend on the problem at hand. Note that T need not be
a continuous function. And by “depend on θ,” we mean that θ cannot appear in the formula
for T ; it is OK (and actually preferable) if the distribution of T depends on θ.

An interesting class of statistics, of which the median is a special case, are the order
statistics ; Chapter 4.4 of HMC.

Definition 1.2. Let X1, . . . , Xn be a random sample. Then the order statistics are the
sorted values, denoted by X(1) ≤ X(2) ≤ · · · ≤ X(n).

For example, if n is odd, then X(n+1
2

) is the sample median. The first and third quantiles

(25th and 75th percentiles) can be defined similarly. The point is that even if the distribution
of X1, . . . , Xn depends on θ, the act of sorting them in ascending order has nothing to do
with the particular value of θ; therefore, the order statistics are, indeed, statistics.

Example 1.2. Let X1, . . . , Xn be an independent sample from a distribution with CDF
F (x) and PDF f(x) = dF (x)/dx. Fix an integer k ≤ n. The the CDF of the kth order
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statistic X(k) can be derived as follows.

Gk(x) = P(X(k) ≤ x) = P(at least k of X1, . . . , Xn are ≤ x)

=
n∑
j=k

(
n

j

)
[F (x)]j[1− F (x)]n−j.

Therefore, the PDF of X(k) is obtained by differentiating4 with respect to x:

gk(x) =
dGk(x)

dx
= k

(
n

k

)
f(x)[F (x)]k−1[1− F (x)]n−k.

In particular, if F (x) is a Unif(0, 1) CDF, then

gk(x) = k

(
n

k

)
xk−1(1− x)n−k, x ∈ (0, 1),

which is the PDF of a Beta(k, n− k + 1) distribution.

Exercise 1.1. Let X1, . . . , Xn
iid∼ Unif(0, 1). Find the expected value E(X(k)) and variance

V(X(k)) of the kth order statistic. (Hint: Look up the beta distribution in HMC, p. 163.)

1.5 Sampling distributions

1.5.1 Basics

A sampling distribution is just the name given to the distribution of a statistic Tn =
T (X1, . . . , Xn); here Tn is a random variable because it is a function of the random variables
X1, . . . , Xn. Similar ideas come up in discussions of “convergence in probability” (Chap-
ter 5.1 of HMC), “convergence in distribution” (Chapter 5.2 of HMC), and especially the
“central limit theorem” (Chapter 5.3 of HMC).

Here’s one way to visualize the sampling distribution of Tn.

X
(1)
1 , . . . , X

(1)
n → T

(1)
n = T (X

(1)
1 , . . . , X

(1)
n )

X
(2)
1 , . . . , X

(2)
n → T

(2)
n = T (X

(2)
1 , . . . , X

(2)
n )

...

X
(s)
1 , . . . , X

(s)
n → T

(s)
n = T (X

(s)
1 , . . . , X

(s)
n )

...

That is, for each sample X
(s)
1 , . . . , X

(s)
n of size n, there is a corresponding T

(s)
n obtained by

applying the function T (·) to that particular sample. Then the sampling distribution of Tn
is what would be approximated by a histogram of T

(1)
n , T

(2)
n , . . . , T

(s)
n , . . .; see Section 1.5.3

4This is a somewhat tedious calculation...
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below. Mathematically, the sampling distribution of Tn is characterized by the CDF FTn(t) =
P(Tn ≤ t), where the probability P(·) is with respect to the joint distribution of X1, . . . , Xn.
In all but the strangest of cases, the sampling distribution of Tn will depend on n (and also
any parameter θ involved in the joint distribution of X1, . . . , Xn). What follows is a simple
but important example from Stat 401.

Example 1.3. Suppose X1, . . . , Xn are iid N(µ, σ2). Let Tn = X̄ be the sample mean, i.e.,
Tn = n−1

∑n
i=1Xi. Since Tn is a linear function of X1, . . . , Xn and linear functions of normals

are also normal (see Theorem 3.4.2 in HMC), it follows that Tn is, too, a normal random
variable. In particular, Tn ∼ N(µ, σ2/n).

Example 1.4. Consider again the setup in Example 1.3. Suppose that µ is a known number,
and let Tn =

√
n(X̄−µ)/S, where S2 = (n−1)−1

∑n
i=1(Xi− X̄)2 is the sample variance and

S =
√
S2 is the sample standard deviation. It was shown in Stat 401 (See Theorem 3.6.1d in

HMC) that the sampling distribution of this Tn is a Student-t distribution with n−1 degrees
of freedom, written as Tn ∼ tn−1.

Exercise 1.2. Let X1, . . . , Xn
iid∼ Exp(1), i.e., exponential distribution with mean 1. Let

Tn =
∑n

i=1 Xi. Use moment-generating functions to show that Tn ∼ Gamma(n, 1), i.e., a
gamma distribution with shape parameter n and scale parameter 1. (Hint: See the proof of
Theorem 3.3.2 in HMC, using the fact that Exp(1) ≡ Gamma(1, 1).)

Except for special cases (like those in Examples 1.3–1.4), the exact sampling distribution
of Tn will not be available. In such cases, we’ll have to rely on some kind of approximation.
There are asymptotic (large-n) approximations, and numerical approximations. These are
discussed next in turn.

1.5.2 Asymptotic results

In most cases, the exact sampling distribution of Tn not available, probably because it’s
too hard to derive. One way to handle this is to approximate the sampling distribution by
assuming n is “close to infinity.” In other words, approximate the sampling distribution of
Tn by its limiting distribution (if the latter exists). See Chapter 5.2 of HMC for details about
convergence in distribution. The most important of such results is the famous central limit
theorem, or CLT for short. This result gives the limiting distribution for sums/averages of
almost any kind of random variables.

Theorem 1.1 (Central Limit Theorem, CLT). Let X1, . . . , Xn be an iid sample from a
distribution with mean µ and variance σ2 <∞. For X̄n the sample mean, let Zn =

√
n(X̄n−

µ)/σ. Then Zn converges in distribution to N(0, 1) as n→∞.

In other words, if n is large, then the distribution of X̄n is approximately N(µ, σ2/n),
which matches up with the (exact) conclusion for X̄ in Example 1.3 in the special case where
the underlying distribution was normal.
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Here is a rough sketch of one proof of the CLT; for details, see p. 301–309 in HMC. Modify
the notation of the statement a bit by writing Zi = (Xi−µ)/σ and Z̄n = n−1

∑n
i=1 Zi. Then

the moment-generating function for Z̄n is given by

MZ̄n(t) = E(etZ̄n) = [missing details] = MZ(t/
√
n)n, (1.1)

where MZ is the (common) moment-generating function for the Zi’s. Write a two-term
Taylor approximation for MZ(t) at t = 0; the choice of t = 0 is reasonable since t/

√
n → 0

as n→∞. We get

MZ̄n(t) ≈
[
1 +M ′

Z(0) · t√
n

+
M ′′

Z(0)

2
· t

2

n

]n
.

Since E(Z) = 0 and V(Z) = E(Z2) = 1, this simplifies to

MZ̄n(t) ≈
[
1 +

t2

2n

]n
.

Using tools from calculus, it can be verified that the right-hand side above converges to et
2/2

as n → ∞. This is the moment-generating function of N(0, 1), so the CLT follows by the
uniqueness of moment-generating functions.

Exercise 1.3. Fill in the “missing details” in (1.1).

Exercise 1.4. Look up the definition of convergence in probability ; see p. 289 in HMC. Using
the notation in Theorem 1.1, argue heuristically that the CLT implies X̄n → µ in probability.
This argument demonstrates that the law of large numbers (LLN; Theorem 5.5.1 in HMC)
is a consequence of the CLT.

Example 1.5. It’s important to note that the CLT applies to other things besides the
original data sequence. Here’s an example. Let U1, . . . , Un be iid Unif(0, 1), and define

Xi = g(Ui) for some specified function g such that
∫ 1

0
g(u)2 du < ∞; e.g., g(u) = u2,

g(u) = u−1/2, etc. Set µ =
∫ 1

0
g(u) du and σ2 =

∫ 1

0
[g(u) − µ]2 du. Then the CLT says

that
√
n(X̄ − µ)/σ converges in distribution to N(0, 1) or, alternatively, X̄ is approximately

N(µ, σ2/n) provided n is large. This type of calculation is frequently used in conjunction
with the Monte Carlo method described in Section 1.5.3.

In Stat 411 we will encounter a number of CLT-like results for statistics Tn used to
estimate an unknown parameter θ. There will be occasions where we need to transform Tn
by a function g and we’ll be interested in the limiting distribution of g(Tn). When a limiting
distribution of Tn is available, there is s slick way to handle smooth transformations via the
Delta Theorem; see Section 5.2.2 in HMC.

Theorem 1.2 (Delta Theorem). For a sequence {Tn}, suppose there are numbers θ and
vθ > 0 such that

√
n(Tn − θ) converges in distribution to N(0, vθ). Let g(t) be a function,

differentiable at t = θ, with g′(θ) 6= 0. Then
√
n[g(Tn) − g(θ)] converges in distribution to

N(0, [g′(θ)]2vθ), as n→∞.

10



Proof. Take a first-order Taylor expansion of g(Tn) around θ:

g(Tn) = g(θ) + g′(θ) (Tn − θ) +Rn,

where Rn is the remainder. I’ll leave off the details, but it can be shown that
√
nRn converges

in probability to 0. Rearranging terms above gives

√
n[g(Tn)− g(θ)] = g′(θ) ·

√
n(Tn − θ) +

√
nRn.

Since g′(θ) ·
√
n(Tn− θ)→ N(0, [g′(θ)]2vθ) in distribution, and

√
nRn → 0 in probability, the

result follows from Slutsky’s theorem (Theorem 5.2.5 in HMC).

Example 1.6. Let X1, . . . , Xn be an independent sample from Exp(θ), the exponential
distribution with PDF fθ(x) = e−x/θ/θ, with x > 0 and θ > 0. One can check that the mean
and variance of this distribution are θ and θ2, respectively. It follows from the CLT that√
n(X̄ − θ) → N(0, θ2) in distribution. Now consider X̄1/2. In the Delta Theorem context,

Tn = X̄ and g(t) = t1/2. By simple calculus, g′(θ) = 1/2θ1/2. Therefore, by the Delta
Theorem,

√
n(X̄1/2 − θ1/2)→ N(0, θ/4) in distribution.

1.5.3 Two numerical approximations

In cases where the exact sampling distribution of the statistic Tn is not known, and n it too
small to consider asymptotic theory, there are numerical approximations that one can rely
on. High-powered computing is now readily available, so these numerical methods are very
popular in modern applied statistics.

Monte Carlo

(Chapter 4.8 in HMC provides some details about Monte Carlo; Examples 4.8.1 and 4.8.4
are good.) The basic principle of the Monte Carlo method is contained in the “illustration”
in Section 1.5.1. That is, information about the sampling distribution of Tn can be obtained
by actually performing the sample of X

(s)
1 , . . . , X

(s)
n for lots of s values and looking at the

histogram of the corresponding T
(s)
n .

Mathematically, the LLN/CLT guarantees that the method will work. For example, let
g be some function and suppose we want to know E[g(Tn)]. If the sampling distribution of
Tn were available to us, then this would boil down to, say, a calculus (integration) problem.
But if we don’t know the PDF of Tn, then calculus is useless. According to the law of large
numbers, if we take lots of samples of Tn, say {T (s)

n : s = 1, . . . , S}, then the expectation

E[g(Tn)] can be approximated by the average S−1
∑S

s=1 g(T
(s)
n ), in the sense that the latter

converges in probability to the former. The CLT makes this convergence even more precise.

Example 1.7. Let X1, . . . , Xn be an independent sample from Pois(θ), the Poisson dis-
tribution with mean θ. Suppose that we’d like to use data X1, . . . , Xn to try to estimate
an unknown θ. Since E(X1) = V(X1) = θ, one could consider either θ̂1 = X̄, the sample

11
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Figure 1.1: Monte Carlo results from Example 1.7.

mean, or θ̂2 = S2, the sample variance. Both are “reasonable” estimators in the sense that
E(θ̂1) = E(θ̂2) = θ and both converge to θ in probability as n→∞. However, suppose that
n is too small to consider asymptotics. Which of θ̂1 and θ̂2 is better for estimating θ? One
way to compare is via the variance; that is, the one with smaller variance is the better of the
two. But how do we calculate these variances? The Monte Carlo method is one approach.

Suppose n = 10 and the value of the unknown θ is 3. The Monte Carlo method will
simulate S samples of size n = 10 from the Pois(θ = 3) distribution. For each sample, the
two estimates will be evaluated; resulting in the list of S values for each of the two estimates.
Then the respective variances will be estimated by taking the sample variance for each of
these two lists. R code for the simulation is given in Section 1.6.1. The table below shows
the estimated variances of θ̂1 and θ̂2 for several values of S, larger S means more precise
approximations.

S 1,000 5,000 10,000 50,000

V(θ̂1) 0.298 0.303 0.293 0.300

V(θ̂2) 2.477 2.306 2.361 2.268

Histograms approximating the sampling distributions of θ̂1 and θ̂2 are shown in Figure 1.1.
There we see that θ̂1 has a much more concentrated distribution around θ = 3. Therefore,
we would conclude that θ̂1 is better for estimating θ than θ̂2. Later we will see how this fact
can be proved mathematically, without numerical approximations.

The problem of simulating the values of X1, . . . , Xn to perform the Monte Carlo approx-
imation is, itself, often a difficult one. The R software has convenient functions for sampling
from many known distributions. For distributions that have a CDF for which an inverse
can be written down, Theorem 4.8.1 in HMC and a Unif(0, 1) generator (e.g., runif() in
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R) is all that’s needed. In other cases, more sophisticated methods are needed, such as
the accept-reject algorithm in Section 5.8.1 of HMC, or importance sampling. Simulation
of random variables and the full power of the Monte Carlo method would be covered in a
formal statistical computing course.

Bootstrap

Let X1, . . . , Xn be a random sample from some distribution. Suppose we’d like to estimate
E[g(X1)], where g is some specified function. Clearly this quantity depends on the distri-
bution in question. A natural estimate would be something like Tn = n−1

∑n
i=1 g(Xi), the

sample mean of the g(Xi)’s. But if we don’t know anything about the distribution which
generated the X1, . . . , Xn, can we say anything about the sampling distribution of Tn? The
immediate answer would seem to be “no” but the bootstrap method provides a clever little
trick.

The bootstrap method is similar to the Monte Carlo method in that they are both
based on sampling. However, in the Monte Carlo context, the distribution of X1, . . . , Xn

must be completely known, whereas, here, we know little or nothing about this distribution.
So in order to do the sampling, we must somehow insert some proxy for that underlying
distribution. The trick behind the bootstrap is to use the observed sample {X1, . . . , Xn} as
an approximation for this underlying distribution. Now the same Monte Carlo strategy can
be applied, but instead of sampling X

(b)
1 , . . . , X

(b)
n from the known distribution, we sample

them (with replacement) from the observed sample {X1, . . . , Xn}. That is, e.g., the sampling
distribution of Tn can be approximated by sampling

X
(b)
1 , . . . , X(b)

n
iid∼ Unif({X1, . . . , Xn}), b = 1, . . . , B

and looking at the distribution of the bootstrap sample T
(b)
n = T (X

(b)
1 , . . . , X

(b)
n ), for b =

1, . . . , B. If B is sufficiently large, then the sampling distribution of Tn can be approximated
by, say, the histogram of the bootstrap sample.

Example 1.8. (Data here is taken from Example 4.9.1 in HMC.) Suppose the following
sample of size n = 20 is observed:

131.7 183.7 73.3 10.7 150.4 42.3 22.2 17.9 264.0 154.4

4.3 256.6 61.9 10.8 48.8 22.5 8.8 150.6 103.0 85.9

To estimate the variance of the population from which this sample originated, we propose
to use the sample variance S2. Since nothing is known about the underlying population, we
shall use the bootstrap method to to approximate the sampling distribution of S2; R code is
given in Section 1.6.2. Figure 1.2 shows a histogram of a bootstrap sample of B = 5000 S2

boot

values. The 5th and 95th percentiles of this bootstrap distribution are, respectively, 3296
and 9390, which determines a (90% bootstrap confidence) interval for the unknown variance
of the underlying population. Other things, like V(S2) can also be estimated.
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Figure 1.2: Bootstrap distribution of S2 in Example 1.8.

The bootstrap method is not as ad hoc as it may seem on this first presentation. In
fact, there is a considerable amount of elegant mathematical theory to show that the boot-
strap method works5 in a wide range of problems. There are actually lots of variations on
the bootstrap, tailored for specific situations, and an upper-level course on computational
statistics or resampling methods would delve more deeply into these methods. But it should
be pointed out that there are well-documented classes of problems for which the bootstrap
method fails, so one must use caution in applications.

1.6 Appendix

1.6.1 R code for Monte Carlo simulation in Example 1.7

poisson.var <- function(n, theta, S) {

theta.1 <- theta.2 <- numeric(S)

for(s in 1:S) {

X <- rpois(n, theta)

theta.1[s] <- mean(X)

theta.2[s] <- var(X)

}

print(cbind(var.1=var(theta.1), var.2=var(theta.2)))

return(cbind(theta1=theta.1, theta2=theta.2))

5Even the definition of what it means for the bootstrap to “work” is too technical to present here.
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}

theta <- 3

o <- poisson.var(n=10, theta=theta, S=50000)

hist(o[,1], freq=FALSE, xlab=expression(hat(theta)[1]), col="gray", border="white")

abline(v=theta)

hist(o[,2], freq=FALSE, xlab=expression(hat(theta)[1]), col="gray", border="white")

abline(v=theta)

1.6.2 R code for bootstrap calculation in Example 1.8

boot.approx <- function(X, f, S) {

n <- length(X)

out <- numeric(S)

for(s in 1:S) out[s] <- f(sample(X, n, replace=TRUE))

return(out)

}

X <- c(131.7, 183.7, 73.3, 10.7, 150.4, 42.3, 22.2, 17.9, 264.0, 154.4, 4.3,

256.6, 61.9, 10.8, 48.8, 22.5, 8.8, 150.6, 103.0, 85.9)

out <- boot.approx(X, var, 5000)

hist(out, freq=FALSE, xlab=expression(S[boot]^2), col="gray",

border="white", main="")

abline(v=var(X), lwd=2)

print(quantile(out, c(0.05, 0.95)))
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Chapter 2

Point Estimation Basics

2.1 Introduction

The statistical inference problem starts with the identification of a population of interest,
about which something is unknown. For example, before introducing a law that homes be
equipped with radon detectors, government officials should first ascertain whether radon
levels in local homes are, indeed, too high. The most efficient (and, surprisingly, often the
most accurate) way to gather this information is to take a sample of local homes and record
the radon levels in each.1 Now that the sample is obtained, how should this information be
used to answer the question of interest? Suppose that officials are interested in the mean
radon level for all homes in their community—this quantity is unknown, otherwise, there’d be
no reason to take the sample in the first place. After some careful exploratory data analysis,
the statistician working the project determines a statistical model, i.e., the functional form
of the PDF that characterizes radon levels in homes in the community. Now the statistician
has a model, which depends on the unknown mean radon level (and possibly other unknown
population characteristics), and a sample from that distribution. His/her charge is to use
these two pieces of information to make inference about the unknown mean radon level.
The simplest of such inferences is simply to estimate this mean. In this section we will
discuss some of the basic principles of statistical estimation. This will be an important
theme throughout the course.

2.2 Notation and terminology

The starting point is a statement of the model. Let X1, . . . , Xn be a sample from a distri-
bution with CDF Fθ, depending on a parameter θ which is unknown. In some cases, it will

1In this course, we will take the sample as given, that is, we will not consider the question of how the
sample is obtained. In general it is not an easy task to obtain a bona fide completely random sample;
carefully planning of experimental/survey designs is necessary.
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be important to also know the parameter space Θ, the set of possible values of θ.2 Point
estimation is the problem of find a function of the data that provides a “good” estimate of
the unknown parameter θ.

Definition 2.1. Let X1, . . . , Xn be a sample from a distribution Fθ with θ ∈ Θ. A point
estimate of θ is a function θ̂ = θ̂(X1, . . . , Xn) taking values in Θ.

This (point) estimator θ̂ (read as “theta-hat”) is a special case of a statistic discussed
previously. What distinguishes an estimator from a general statistic is that it is required
to take values in the parameter space Θ, so that it makes sense to compare θ and θ̂. But
besides this, θ̂ can be anything, although some choices are better than others.

Example 2.1. Suppose that X1, . . . , Xn are iid N(µ, σ2). Then the following are all point
estimates of the mean µ:

µ̂1 =
1

n

n∑
i=1

Xi, µ̂2 = Mn (sample median), µ̂3 =
X(1) +X(n)

2
.

The sampling distribution of µ̂1 is known (what is it?), but not for the others. However,
some asymptotic theory is available that may be helpful for comparing these as estimators
of µ; more on this later.

Exercise 2.1. Modify the R code in Section 1.6.1 to get Monte Carlo approximations of
the sampling distributions of µ̂1, µ̂2, and µ̂3 in Example 2.1. Start with n = 10, µ = 0, and
σ = 1, and draw histograms to compare. What happens if you change n, µ, or σ?

Example 2.2. Let θ denote the proportion of individuals in a population that favor a
particular piece of legislation. To estimate θ, sample X1, . . . , Xn iid Ber(θ); that is, Xi = 1
if sampled individual i favors the legislation, and Xi = 0 otherwise. Then an estimate of θ
is the sample mean, θ̂ = n−1

∑n
i=1 Xi. Since the summation

∑n
i=1Xi has a known sampling

distribution (what is it?), many properties of θ̂ can be derived without too much trouble.

We will focus mostly on problems where there is only one unknown parameter. However,
there are also important problems where θ is actually a vector and Θ is a subset of Rd, d > 1.
One of the most important examples is the normal model where both the mean and variance
are unknown. In this case θ = (µ, σ2) and Θ = {(µ, σ2) : µ ∈ R, σ2 ∈ R+} ⊂ R2.

The properties of estimators θ̂ will depend on its sampling distribution. Here I need to
elaborate a bit on notation. Since the distribution of X1, . . . , Xn depends on θ, so does the
sampling distribution of θ̂. So when we calculate probabilities, expected values, etc it is often
important to make clear under what parameter value these are being take. Therefore, we
will highlight this dependence by adding a subscript to the familiar probability and expected
value operators P and E. That is, Pθ and Eθ will mean probability and expected value with
respect to the joint distribution of (X1, . . . , Xn) under Fθ.

2HMC uses “Ω” (Omega) for the parameter space, instead of Θ; however, I find it more convenient to use
the same Greek letter with the lower- and upper-case to distinguish the meaning.
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In general (see Example 2.1) there can be more than one “reasonable” estimator of an
unknown parameter. One of the goals of mathematical statistics is to provide a theoretical
framework by which an “optimal” estimator can be identified in a given problem. But before
we can say anything about which estimator is best, we need to know something about the
important properties estimator should have.

2.3 Properties of estimators

Properties of estimators are all consequences of their sampling distributions. Most of the
time, the full sampling distribution of θ̂ is not available; therefore, we focus on properties
that do not require complete knowledge of the sampling distribution.

2.3.1 Unbiasedness

The first, and probably the simplest, property is called unbiasedness. In words, an estimator
θ̂ is unbiased if, when applied to many different samples from Fθ, θ̂ equals the true parameter
θ, on average. Equivalently, unbiasedness means the sampling distribution of θ̂ is, in some
sense, centered around θ.

Definition 2.2. The bias of an estimator is bθ(θ̂) = Eθ(θ̂) − θ. Then θ̂ is an unbiased
estimator of θ if bθ(θ̂) = 0 for all θ.

That is, no matter the actual value of θ, if we apply θ̂ = θ̂(X1, . . . , Xn) to many data
sets X1, . . . , Xn sampled from Fθ, then the average of these θ̂ values will equal θ—in other
words, Eθ(θ̂) = θ for all θ. This is clearly not an unreasonable property, and a lot of work in
mathematical statistics has focused on unbiased estimation.

Example 2.3. Let X1, . . . , Xn be iid from some distribution having mean µ and variance σ2.
This distribution could be normal, but it need not be. Consider µ̂ = X̄, the sample mean,
and σ̂2 = S2, the sample variance. Then µ̂ and σ̂2 are unbiased estimators of µ and σ2,
respectively. The proof for µ̂ is straightforward—try it yourself! For σ̂2, recall the following
decomposition of the sample variance:

σ̂2 = S2 =
1

n− 1

{ n∑
i=1

X2
i − nX̄2

}
.

Drop the subscript (µ, σ2) on Eµ,σ2 for simplicity. Recall the following two general facts:

E(X2) = V(X) + E(X)2 and V(X̄) = n−1V(X1).
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Then using linearity of expectation,

E(σ̂2) =
1

n− 1

{
E
( n∑
i=1

X2
i

)
− nE(X̄2)

}
=

1

n− 1

{
n
(
V(X1) + E(X1)2

)
− nV(X̄)− nE(X̄)

}
=

1

n− 1

{
nσ2 + nµ2 − σ2 − nµ2

}
= σ2.

Therefore, the sample variance is an unbiased estimator of the population variance, regardless
of the model.

While unbiasedness is a nice property for an estimator to have, it doesn’t carry too much
weight. Specifically, an estimator can be unbiased but otherwise very poor. For an extreme
example, suppose that Pθ{θ̂ = θ + 105} = 1/2 = Pθ{θ̂ = θ − 105}. In this case, Eθ(θ̂) = θ,
but θ̂ is always very far away from θ. There is also a well-known phenomenon (bias–variance
trade-off) which says that often allowing the bias to be non-zero will improve on estimation
accuracy; more on this below. The following example highlights some of the problems of
focusing primarily on the unbiasedness property.

Example 2.4. (See Remark 7.6.1 in HMC.) Let X be a sample from a Pois(θ) distribution.
Suppose the goal is to estimate η = e−2θ, not θ itself. We know that θ̂ = X is an unbiased
estimator of θ. However, the natural estimator e−2X is not an unbiased estimator of e−2θ.
Consider instead η̂ = (−1)X . This estimator is unbiased:

Eθ[(−1)X ] =
∞∑
x=0

e−θ
(−1)xθx

x!
= e−θ

∞∑
x=0

(−θ)x

x!
= e−θe−θ = e−2θ.

In fact, it can even be shown that (−1)X is the “best” of all unbiased estimators; cf. the
Lehmann–Scheffe theorem. But even though it’s unbiased, it can only take values ±1 so,
depending on θ, (−1)X may never be close to e−2θ.

Exercise 2.2. Prove the claim in the previous example that e−2X is not an unbiased esti-
mator of e−2θ. (Hint: use the Poisson moment-generating function, p. 152 in HMC.)

In general, for a given function g, if θ̂ is an unbiased estimator of θ, then g(θ̂) is not an
unbiased estimator of g(θ). But there is a nice method by which an unbiased estimator of
g(θ) can often be constructed; see method of moments in Section 2.4. It is also possible that
certain (functions of) parameters may not be unbiasedly estimable.

Example 2.5. Let X1, . . . , Xn be iid Ber(θ) and suppose we want to estimate η = θ/(1−θ),
the so-called odds ratio. Suppose η̂ is an unbiased estimator of η, so that Eθ(η̂) = η =
θ/(1− θ) for all θ or, equivalently,

(1− θ)Eθ(η̂)− θ = 0 for all θ.
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Here the joint PMF of (X1, . . . , Xn) is fθ(x1, . . . , xn) = θx1+···+xn(1− θ)n−(x1+···+xn). Writing
out Eθ(η̂) as a weighted average with weights given by fθ(x1, . . . , xn), we get

(1− θ)
∑

all (x1, . . . , xn)

η̂(x1, . . . , xn)θx1+···+xn(1− θ)n−(x1+···+xn) − θ = 0 for all θ.

The quantity on the left-hand side is a polynomial in θ of degree n+1. From the Fundamental
Theorem of Algebra, there can be at most n+ 1 real roots of the above equation. However,
unbiasedness requires that there be infinitely many roots. This contradicts the fundamental
theorem, so we must conclude that there are no unbiased estimators of η.

2.3.2 Consistency

Another reasonable property is that the estimator θ̂ = θ̂n, which depends on the sample size
n through the dependence on X1, . . . , Xn, should get close to the true θ as n gets larger and
larger. To make this precise, recall the following definition (see Definition 5.1.1 in HMC).3

Definition 2.3. Let T and {Tn : n ≥ 1} be random variables in a common sample space.
Then Tn converges to T in probability if, for any ε > 0,

lim
n→∞

P{|Tn − T | > ε} = 0.

The law of large numbers (LLN, Theorem 5.1.1 in HMC) is an important result on con-
vergence in probability.

Theorem 2.1 (Law of Large Numbers, LLN). If X1, . . . , Xn are iid with mean µ and finite
variance σ2, then X̄n = n−1

∑n
i=1Xi converges in probability to µ.4

The LLN is a powerful result and will be used throughout the course. Two useful tools
for proving convergence in probability are the inequalities of Markov and Chebyshev. (These
are presented in HMC, Theorems 1.10.2–1.10.3, but with different notation.)

• Markov’s inequality. Let X be a positive random variable, i.e., P(X > 0) = 1. Then,
for any ε > 0, P(X > ε) ≤ ε−1E(X).

• Chebyshev’s inequality. Let X be a random variable with mean µ and variance σ2.
Then, for any ε > 0, P{|X − µ| > ε} ≤ ε−2σ2.

It is through convergence in probability that we can say that an estimator θ̂ = θ̂n gets
close to the estimand θ as n gets large.

3To make things simple, here we shall focus on the real case with distance measured by absolute difference.
When θ̂ is vector-valued, we’ll need to replace the absolute difference by a normed difference. More generally,
the definition of convergence in probability can handle sequences of random elements in any space equipped
with a metric.

4We will not need this in Stat 411, but note that the assumption of finite variance can be removed and,
simultaneously, the mode of convergence can be strengthened.
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Definition 2.4. An estimator θ̂n of θ is consistent if θ̂n → θ in probability.

A rough way to understand consistency of an estimator θ̂n of θ is that the sampling
distribution of θ̂n gets more and more concentrated as n → ∞. The following example
demonstrates both a theoretical verification of consistency and a visual confirmation via
Monte Carlo.

Example 2.6. Recall the setup of Example 2.3. It follows immediately from the LLN that
µ̂n = X̄ is a consistent estimator of the mean µ. Moreover, the sample variance σ̂2

n = S2 is
also a consistent estimator of the variance σ2. To see this, recall that

σ̂2
n =

n

n− 1

{ 1

n

n∑
i=1

X2
i − X̄2

}
.

The factor n/(n− 1) converges to 1; the first term in the braces convergence in probability
to σ2 − µ2 by the LLN applied to the X2

i ’s; the second term in the braces converges in
probability to µ2 by the LLN and Theorem 5.1.4 in HMC (see, also, the Continuous Mapping
Theorem below). Putting everything together, we find that σ̂2

n → σ2 in probability, making
it a consistent estimator. To see this property visually, suppose that the sample originates
from a Poisson distribution with mean θ = 3. We can modify the R code in Example 7
in Notes 01 to simulate the sampling distribution of θ̂n = σ̂2

n for any n. The results for
n ∈ {10, 25, 50, 100} are summarized in Figure 2.1. Notice that as n increases, the sampling
distributions become more concentrated around θ = 3.

Unbiased estimators generally are not invariant under transformations [i.e., in general,
if θ̂ is unbiased for θ, then g(θ̂) is not unbiased for g(θ)], but consistent estimators do have
such a property, a consequence of the so-called Continuous Mapping Theorem (basically
Theorem 5.1.4 in HMC).

Theorem 2.2 (Continuous Mapping Theorem). Let g be a continuous function on Θ. If θ̂n
is consistent for θ, then g(θ̂n) is consistent for g(θ).

Proof. Fix a particular θ value. Since g is a continuous function on Θ, it’s continuous at this
particular θ. For any ε > 0, there exists a δ > 0 (depending on ε and θ) such that

|g(θ̂n)− g(θ)| > ε implies |θ̂n − θ| > δ.

Then the probability of the event on the left is no more than the probability of the event on
the right, and this latter probability vanishes as n→∞ by assumption. Therefore

lim
n→∞

Pθ{|g(θ̂n)− g(θ)| > ε} = 0.

Since ε was arbitrary, the proof is complete.
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Figure 2.1: Plots of the sampling distribution of θ̂n, the sample variance, for several values
of n in the Pois(θ) problem with θ = 3.

Example 2.7. Let X1, . . . , Xn be iid Pois(θ). Since θ is both the mean and the variance for
the Poisson distribution, it follows that both θ̂n = X̄ and θ̃n = S2 are unbiased and consistent
for θ by the results in Examples 2.3 and 2.6. Another comparison of these two estimators is
given in Example 2.10. Here consider a new estimator θ̇n = (X̄S2)1/2. Define the function
g(x1, x2) = (x1x2)1/2. Clearly g is continuous (why?). Since the pair (θ̂n, θ̃n) is a consistent
estimator of (θ, θ), it follows from the continuous mapping theorem that θ̇n = g(θ̂n, θ̃n) is a
consistent estimator of θ = g(θ, θ).

Like with unbiasedness, consistency is a nice property for an estimator to have. But
consistency alone is not enough to make an estimator a good one. Next is an exaggerated
example that makes this point clear.

Example 2.8. Let X1, . . . , Xn be iid N(θ, 1). Consider the estimator

θ̂n =

{
107 if n < 10750,

X̄n otherwise.
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Let N = 10750. Although N is very large, its ultimately finite and can have no effect on the
limit. To see this, fix ε > 0 and define

an = Pθ{|θ̂n − θ| > ε} and bn = Pθ{|X̄n − θ| > ε}.

Since bn → 0 by the LLN, and an = bn for all n ≥ N , it follows that an → 0 and, hence,
θ̂n is consistent. However, for any reasonable application, where the sample size is finite,
estimating θ by a constant 107 is an absurd choice.

2.3.3 Mean-square error

Measuring closeness of an estimator θ̂ to its estimand θ via consistency assumes that the
sample size n is very large, actually infinite. As a consequence, many estimators which are
“bad” for any finite n (like that in Example 2.8) can be labelled as “good” according to the
consistency criterion. An alternative measure of closeness is called the mean-square error
(MSE), and is defined as

MSEθ(θ̂) = Eθ{(θ̂ − θ)2}. (2.1)

This measures the average (squared) distance between θ̂(X1, . . . , Xn) and θ as the data
X1, . . . , Xn varies according to Fθ. So if θ̂ and θ̃ are two estimators of θ, we say that θ̂ is
better than θ̃ (in the mean-square error sense) if MSEθ(θ̂) < MSEθ(θ̃).

Next are some properties of the MSE. The first relates MSE to the variance and bias of
an estimator.

Proposition 2.1. MSEθ(θ̂) = Vθ(θ̂) + bθ(θ̂)
2. Consequently, if θ̂ is an unbiased estimator of

θ, then MSEθ(θ̂) = Vθ(θ̂).

Proof. Let θ̄ = Eθ(θ̂). Then

MSEθ(θ̂) = Eθ{(θ̂ − θ)2} = Eθ{[(θ̂ − θ̄) + (θ̄ − θ)]2}.

Expanding the quadratic inside the expectation gives

MSEθ(θ̂) = Eθ{(θ̂ − θ̄)2}+ 2(θ̄ − θ)Eθ{(θ̂ − θ̄)}+ (θ̄ − θ)2.

The first term is the variance of θ̂; the second term is zero by definition of θ̄; and the third
terms is the squared bias.

Often the goal is to find estimators with small MSEs. From Proposition 2.1, this can be
achieved by picking θ̂ to have small variance and small squared bias. But it turns out that,
in general, making bias small increases the variance, and vice versa. This it what is called
the bias–variance trade-off. In some cases, if minimizing MSE is the goal, it can be better to
allow a little bit of bias if it means a drastic decrease in the variance. In fact, many common
estimators are biased, at least partly because of this trade-off.
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Example 2.9. Let X1, . . . , Xn be iid N(µ, σ2) and suppose the goal is to estimate σ2. Define
the statistic T =

∑n
i=1(Xi−X̄)2. Consider a class of estimators σ̂2 = aT where a is a positive

number. Reasonable choices of a include a = (n− 1)−1 and a = n−1. Let’s find the value of
a that minimizes the MSE.

First observe that (1/σ2)T is a chi-square random variable with degrees of freedom n−1;
see Theorem 3.6.1 in the text. It can then be shown, using Theorem 3.3.1 of the text,
that Eσ2(T ) = (n − 1)σ2 and Vσ2(T ) = 2(n − 1)σ4. Write R(a) for MSEσ2(aT ). Using
Proposition 2.1 we get

R(a) = Eσ2(aT − σ2)2 = Vσ2(aT ) + bσ2(aT )2

= 2a2(n− 1)σ4 + [a(n− 1)σ2 − σ2]2

= σ4
{

2a2(n− 1) + [a(n− 1)− 1]2
}
.

To minimize R(a), set the derivative equal to zero, and solve for a. That is,

0
set
= R′(a) = σ4

{
4(n− 1)a+ 2(n− 1)2a− 2(n− 1)

}
.

From here it’s easy to see that a = (n+1)−1 is the only solution (and this must be a minimum
since R(a) is a quadratic). Therefore, among estimators of the form σ̂2 = a

∑n
i=1(Xi − X̄)2,

the one with smallest MSE is σ̂2 = (n + 1)−1
∑n

i=1(Xi − X̄)2. Note that this estimator is
not unbiased since a 6= (n − 1)−1. To put this another way, the classical estimator S2 pays
a price (larger MSE) for being unbiased.

Proposition 2.2 below helps to justify the approach of choosing θ̂ to make the MSE small.
Indeed, if the choice is made so that the MSE vanishes as n→∞, then the estimator turns
out to be consistent.

Proposition 2.2. If MSEθ(θ̂n)→ 0 as n→∞, then θ̂n is a consistent estimator of θ.

Proof. Fix ε > 0 and note that Pθ{|θ̂n − θ| > ε} = Pθ{(θ̂n − θ)2 > ε2}. Applying Markov’s
inequality to the latter term gives an upper bound of ε−2MSEθ(θ̂n). Since this goes to zero
by assumption, θ̂n is consistent.

The next example compares two unbiased and consistent estimators based on their re-
spective MSEs. The conclusion actually gives a preview of some of the important results to
be discussed later in Stat 411.

Example 2.10. Suppose X1, . . . , Xn are iid Pois(θ). We’ve looked at two estimators of θ
in the context, namely, θ̂1 = X̄ and θ̂2 = S2. Both of these are unbiased and consistent.
To decide which we like better, suppose we prefer the one with the smallest variance.5 The
variance of θ̂1 is an easy calculation: Vθ(θ̂) = Vθ(X̄) = Vθ(X1)/n = θ/n. But the variance of
θ̂2 is trickier, so we’ll resort to an approximation, which relies on the following general fact.6

5In Chapter 1, we looked at this same problem in an example on the Monte Carlo method.
6A. DasGupta, Asymptotic Theory of Statistics and Probability, Springer, 2008, Theorem 3.8.
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Let X1, . . . , Xn be iid with mean µ. Define the sequence of population and sample
central moments:

µk = E(X1 − µ)k and Mk =
1

n

n∑
i=1

(Xi − X̄)k, k ≥ 1.

Then, for large n, the following approximations hold:

E(Mk) ≈ µk

V(Mk) ≈ n−1{µ2k − µ2
k − 2kµk−1µk+1 + k2µ2µ

2
k−1}.

In the Poisson case, µ1 = 0, µ2 = θ, µ3 = θ, and µ4 = θ + 3θ2; these can be verified
directly by using the Poisson moment-generating function. Plugging these values into the
above approximation (k = 2), gives Vθ(θ̂2) ≈ (θ + 2θ2)/n. This is more than Vθ(θ̂1) = θ/n
so we conclude that θ̂1 is better than θ̂2 (in the mean-square error sense). In fact, it can be
shown (via the Lehmann–Scheffe theorem in Chapter 7 in HMC) that, among all unbiased
estimators, θ̂1 is the best in the mean-square error sense.

Exercise 2.3. (a) Verify the expressions for µ1, µ2, µ3, and µ4 in Example 2.10. (b) Look
back to Example 7 in Notes 01 and compare the Monte Carlo approximation of V(θ̂2) to
the large-n approximation V(θ̂2) ≈ (θ + 2θ2)/n used above. Recall that, in the Monte Carlo
study, θ = 3 and n = 10. Do you think n = 10 is large enough to safely use a large-n
approximation?

It turns out that, in a typical problem, there is no estimator which can minimize the
MSE uniformly over all θ. If there was such a estimator, then this would clearly be the best.
To see that such an ideal cannot be achieved, consider the silly estimator θ̂ ≡ 7. Clearly
MSE7(θ̂) = 0 and no other estimator can beat that; of course, there’s nothing special about 7.
However, if we restrict ourselves to the class of estimators which are unbiased, then there is a
lower bound on the variance of such estimators and theory is available for finding estimators
that achieve this lower bound.

2.4 Where do estimators come from?

In the previous sections we’ve simply discussed properties of estimators—nothing so far has
been said about the origin of these estimators. In some cases, a reasonable choice is obvious,
like estimating a population mean by a sample mean. But there are situations where this
choice is not so obvious. There are some general methods for constructing estimators. Here
I simply list the various methods with a few comments.

• Perhaps the simplest method of constructing estimators is the method of moments.
This approach is driven by the unbiasedness property. The idea is to start with some
statistic T and calculate its expectation h(θ) = Eθ(T ); now set T = h(θ) and use the
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solution θ̂ as an estimator. For example, if X1, . . . , Xn are iid N(θ, 1) and the goal is
to estimate θ2, a reasonable starting point is T = X̄2. Since Eθ(T ) = θ2 + 1/n, an
unbiased estimator of θ2 is X̄2 − 1/n.

• Perhaps the most common way to construct estimator is via the method of maximum
likelihood. We will spend a considerable amount of time discussing this approach.
There are other related approaches, such as M-estimation and least-squares estima-
tion,7 which we will not discuss here.

• As alluded to above, one cannot, for example, find an estimator θ̂ that minimizes the
MSE uniformly over all θ. But but restricting the class of estimators to those which
are unbiased, a uniformly best estimator often exists. Such an estimator is called the
uniformly minimum variance unbiased estimates (UMVUE) and we will spend a lot of
time talking about this approach.

• Minimax estimation takes a measure of closeness of an estimator θ̂ to θ, such as
MSEθ(θ̂), but rather than trying to minimize the MSE pointwise over all θ, as in the
previous point, one first maximizes over θ to give a pessimistic “worst case” measure
of the performance of θ̂. Then one tries to find the θ̂ that MINImizes the MAXimum
MSE. This approach is interesting, and relates to game theory and economics, but is
somewhat out of style in the statistics community.

• Bayes estimation is an altogether different approach. We will discuss the basics of
Bayesian inference, including estimation, in Chapter 6.

7Students may have heard of the least-square approach in other courses, such as applied statistics courses
or linear algebra/numerical analysis.
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Chapter 3

Likelihood and Maximum Likelihood
Estimation

3.1 Introduction

Previously we have discussed various properties of estimator—unbiasedness, consistency,
etc—but with very little mention of where such an estimator comes from. In this part,
we shall investigate one particularly important process by which an estimator can be con-
structed, namely, maximum likelihood. This is a method which, by and large, can be applied
in any problem, provided that one knows and can write down the joint PMF/PDF of the
data. These ideas will surely appear in any upper-level statistics course.

Observable data X1, . . . , Xn has a specified model, say, a collection of distribution func-
tions {fθ : θ ∈ Θ} indexed by the parameter space Θ. Data is observed, but we don’t know
which of the models Fθ it came from. We shall assume that the model is correct, i.e., that
there is a θ value such that X1, . . . , Xn are iid fθ.

1 The goal, then, is to identify the “best”
model—the one that explain the data the best. This amounts to identifying the true but
unknown θ value. Hence, our goal is to estimate the unknown θ.

In the sections that follow, I shall describe this so-called likelihood function and how it is
used to construct point estimators. The rest of the chapter will develop general properties of
these estimators; these are important classical results in statistical theory. Focus is primarily
on the single parameter case; Section 3.7 extends the ideas to the multi-parameter case.

3.2 Likelihood

Suppose X1, . . . , Xn
iid∼ fθ, where θ is unknown. For the time being, we assume that θ resides

in a subset Θ of R. By the assumed independence, the joint distribution of (X1, . . . , Xn) is

1This is a huge assumption. It can be relaxed, but then the details get much more complicated—there’s
some notion of geometry on the collection of probability distributions, and we can think about projections
onto the model. We won’t bother with this here.
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characterized by

fθ(x1, . . . , xn) =
n∏
i=1

fθ(xi),

i.e., “independence means multiply.” From a probability point of view, we understand the
above expression to be a function of (x1, . . . , xn) for fixed θ. In the statistics context, we flip
this around. That is, we will fix (x1, . . . , xn) at the observed (X1, . . . , Xn), and imagine the
above expression as a function of θ only.

Definition 3.1. If X1, . . . , Xn
iid∼ fθ, then the likelihood function is

L(θ) = fθ(X1, . . . , Xn) =
n∏
i=1

fθ(Xi), (3.1)

treated as a function of θ. In what follows, I may occasionally add subscripts, i.e., LX(θ) or
Ln(θ), to indicate the dependence of the likelihood on data X = (X1, . . . , Xn) or on sample
size n. Also write

`(θ) = logL(θ), (3.2)

for the log-likelihood; the same subscript rules apply to `(θ).

So clearly L(θ) and `(θ) depend on data X = (X1, . . . , Xn), but they’re treated as
functions of θ only. How can we interpret this function? The first thing to mention is a
warning—the likelihood function is NOT a PMF/PDF for θ! So it doesn’t make sense to
integrate over θ values like you would a PDF.2 We’re mostly interested in the shape of the
likelihood curve or, equivalently, the relative comparisons of the L(θ) for different θ’s. This
is made more precise below:

If L(θ1) > L(θ2) (equivalently, if `(θ1) > `(θ2)), then θ1 is more likely to have
been responsible for producing the observed X1, . . . , Xn. In other words, fθ1 is a
better model than fθ2 in terms of how well it fits the observed data.

So, we can understand likelihood (and log-likelihood) of providing a sort of ranking of the θ
values in terms of how well they match with the observations.

Exercise 3.1. Let X1, . . . , Xn
iid∼ Ber(θ), with θ ∈ (0, 1). Write down an expression for the

likelihood L(θ) and log-likelihood `(θ). On what function of (X1, . . . , Xn) does `(θ) depend.
Suppose that n = 7 and T equals 3, where T is that function of (X1, . . . , Xn) previously
identified; sketch a graph of `(θ).

Exercise 3.2. Let X1, . . . , Xn
iid∼ N(θ, 1). Find an expression for the log-likelihood `(θ).

2There are some exceptions to this point that we won’t discuss here; but see Chapter 6.
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3.3 Maximum likelihood estimators (MLEs)

In light of our interpretation of likelihood as providing a ranking of the possible θ values
in terms of how well the corresponding models fit the data, it makes sense to estimate the
unknown θ by the “highest ranked” value. Since larger likelihood means higher rank, the
idea is to estimate θ by the maximizer of the likelihood function, if possible.

Definition 3.2. GivenX1, . . . , Xn
iid∼ fθ, let L(θ) and `(θ) be the likelihood and log-likelihood

functions, respectively. Then the maximum likelihood estimator (MLE) of θ is defined as

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

`(θ), (3.3)

where “arg” says to return the argument at which the maximum is attained. Note that θ̂
implicitly depends on (X1, . . . , Xn) because the (log-)likelihood does.

Thus, we have defined a process by which an estimator of the unknown parameter can be
constructed. I call this a “process” because it can be done in the same way for (essentially)
any problem: write down the likelihood function and then maximize it. In addition to the
simplicity of the process, the estimator also has the nice interpretation as being the “highest
ranked” of all possible θ values, given the observed data, as well as nice properties.

I should mention that while I’ve called the construction of the MLE “simple,” I mean
that only at a fundamental level. Actually doing the maximization step can be tricky, and
sometimes requires sophisticated numerical methods (see Section 3.8). In the nicest of cases,
the estimation problem reduces to solving the likelihood equation,

(∂/∂θ)`(θ) = 0.

This, of course, only makes sense if `(θ) is differentiable, as in the next two examples.

Exercise 3.3. Let X1, . . . , Xn
iid∼ Ber(θ), for θ ∈ (0, 1). Find the MLE of θ.

Exercise 3.4. Let X1, . . . , Xn
iid∼ N(θ, 1), for θ ∈ (0, 1). Find the MLE of θ.

It can happen that extra considerations can make an ordinarily nice problem not so nice.
These extra considerations are typically in the form of constraints on the parameter space
Θ. The next example gives a couple illustrations.

Exercise 3.5. Let X1, . . . , Xn
iid∼ Pois(θ), where θ > 0.

(a) Find the MLE of θ.

(b) Suppose that we know θ ≥ b, where b is a known positive number. Using this additional
information, find the MLE of θ.

(c) Suppose now that θ is known to be an integer. Find the MLE of θ.
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Figure 3.1: Graph of the Laplace log-likelihood function for a sample of size n = 10.

It may also happen the the (log-)likelihood is not differentiable at one or more points. In
such cases, the likelihood equation itself doesn’t make sense. This doesn’t mean the problem
can’t be solved; it just means that we need to be careful. Here’s an example.

Exercise 3.6. Let X1, . . . , Xn
iid∼ Unif(0, θ) find the MLE of θ.

I should also mention that, even if the likelihood equation is valid, it may be that the
necessary work to solve it cannot be done by hand. In such cases, numerical methods are
needed. Some examples are given in the supplementary notes.

Finally, in some cases, the MLE is not unique (more than one solution to the likelihood
equation) and in others no MLE exists (the likelihood function is unbounded). Example 3.1
demonstrates the former. The simplest example of the latter is in cases where the likelihood
is continuous and there is an open set constraint on θ. An important practical example is in
mixture models, which we won’t discuss here.

Example 3.1. Let X1, . . . , Xn
iid∼ fθ(x) = e−|x−θ|/2; this distribution is often called the

shifted Laplace or double-exponential distribution. For illustration, I consider a sample of
size n = 10 from the Laplace distribution with θ = 0. In Figure 3.1 we see that the log-
likelihood flattens out, so there is an entire interval where the likelihood equation is satisfied;
therefore, the MLE is not unique. (You should write R code to recreate this example.)
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3.4 Basic properties

3.4.1 Invariance

In the context of unbiasedness, recall the claim that, if θ̂ is an unbiased estimator of θ, then
η̂ = g(θ̂) is not necessarily and unbiased estimator of η = g(θ); in fact, unbiasedness holds
if and only if g is a linear function. That is, unbiasedness is not invariant with respect to
transformations. However, MLEs are invariant in this sense—if θ̂ is the MLE of θ, then
η̂ = g(θ̂) is the MLE of η = g(θ).

Theorem 3.1 (HMC, Theorem 6.1.2). Suppose θ̂ is the MLE of θ. Then, for specified
function g, η̂ = g(θ̂) is the MLE of η = g(θ).

Proof. The result holds for any function g, but to see the main idea, suppose that g is one-
to-one. Then our familiar likelihood, written as a function of η, is simply L(g−1(η)). The
largest this function can be is L(θ̂). Therefore, to maximize, choose η̂ such that g−1(η̂) = θ̂,
i.e., take η̂ = g(θ̂).

This is a very useful result, for it allows us to estimate lots of different characteristics of
a distribution. Think about it: since fθ depends on θ, any interesting quantity (expected
values, probabilities, etc) will be a function of θ. Therefore, if we can find the MLE of θ,
then we can easily produce the MLE for any of these quantities.

Exercise 3.7. If X1, . . . , Xn
iid∼ Ber(θ), find the MLE of η =

√
θ(1− θ). What quantity does

η represent for the Ber(θ) distribution?

Exercise 3.8. Let X ∼ Pois(θ). Find the MLE of η = e−2θ. How does the MLE of η here
compare to the estimator given in Example 4 of Notes 02?

This invariance property is nice, but there is a somewhat undesirable consequence: MLEs
are generally NOT unbiased. Both of the exercises above demonstrate this. For a simpler
example, consider X ∼ N(θ, 1). The MLE of θ is θ̂ = X and, according to Theorem 3.1, the
MLE of η = θ2 is η̂ = θ̂2 = X2. However, Eθ(X

2) = θ2 + 1 6= θ2, so the MLE is biased.
Before you get too discouraged about this, recall the remarks made in Chapter 2 that

unbiasedness is not such an important property. In fact, we will show below that MLEs are,
at least for large n, the best one can do.

3.4.2 Consistency

In certain examples, it can be verified directly that the MLE is consistent, e.g., this follows
from the law of large numbers if the distribution is N(θ, 1), Pois(θ), etc. It would be better,
though, if we could say something about the behavior of MLEs in general. It turns out
that this is, indeed, possible—it is a consequence of the process of maximizing the likelihood
function, not of the particular distributional form.
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We need a bit more notation. Throughout, θ denotes a generic parameter value, while
θ? is the “true” but unknown value; HMC use the notation θ0 instead of θ?.3 The goal is to
demonstrate that the MLE, denoted now by θ̂n to indicate its dependence on n, will be close
to θ? in the following sense:

For any θ?, the MLE θ̂n converges to θ? in Pθ?-probability as n→∞, i.e.,

lim
n→∞

Pθ?{|θ̂n − θ?| > ε} = 0, ∀ ε > 0.

We shall also need to put forth some general assumptions about the model, etc. These
are generally referred to as regularity conditions, and we will list this as R0, R1, etc. Several
of these regularity conditions will appear in our development below, but we add new ones
to the list only when they’re needed. Here’s the first three:

R0. If θ 6= θ′, then fθ and fθ′ are different distributions.

R1. The support of fθ, i.e., supp(fθ) := {x : fθ(x) > 0}, is the same for all θ.

R2. θ? is an interior point of Θ.

R0 is a condition called “identifiability,” and it simply means that it is possible to estimate θ
based on only a sample from fθ. R1 ensures that ratios fθ(X)/fθ′(X) cannot equal ∞ with
positive probability. R2 ensures that there is an open subset of Θ that contains θ?; R2 will
also help later when we need a Taylor approximation of log-likelihood.

Exercise 3.9. Can you think of any familiar distributions that do not satisfy R1?

The first result provides a taste of why θ̂ should be close to θ? when n is large. It falls
short of establishing the required consistency, but it does give some nice intuition.

Proposition 3.1 (HMC, Theorem 6.1.1). If R0 and R1 hold, then, for any θ 6= θ?,

lim
n→∞

Pθ?{LX(θ?) > LX(θ)} = 1.

Sketch of the proof. Note the equivalence of the events:

LX(θ?) > LX(θ) ⇐⇒ LX(θ?)/LX(θ) > 1

⇐⇒ Kn(θ?, θ) :=
1

n

n∑
i=1

log
fθ?(Xi)

fθ(Xi)
> 0.

Define the quantity4

K(θ?, θ) = Eθ?
{

log
fθ?(X)

fθ(X)

}
,

3Note that there is nothing special about any particular θ? value—the results to be presented hold for
any such value. It’s simply for convenience that we distinguish this value in the notation and keep it fixed
throughout the discussion.

4This is known as the Kullback–Leibler divergence, a sort of measure of the distance between two distri-
butions fθ? and fθ.
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From Jensen’s inequality (HMC, Theorem 1.10.5), it follows that K(θ?, θ) ≥ 0 with equality
iff θ = θ?; in our case, K(θ?, θ) is strictly positive. From the LLN:

Kn(θ?, θ)→ K(θ?, θ) in Pθ?-probability.

That is, Kn(θ?, θ) is near K(θ?, θ), a positive number, with probability approaching 1. The
claim follows since the event of interest is equivalent to Kn(θ?, θ) > 0.

The intuition is that the likelihood function at the “true” θ? tends to be larger than any
other likelihood value. So, if we estimate θ by maximizing the likelihood, that maximizer
ought to be close to θ?. To get the desired consistency, there are some technical hurdles
to overcome—the key issue is that we’re maximizing a random function, so some kind of
uniform convergence of likelihood is required.

If we add R2 and some smoothness, we can do a little better than Proposition 3.1.

Theorem 3.2 (HMC, Theorem 6.1.3). In addition to R0–R2, assume that fθ(x) is differen-
tiable in θ for each x. Then there exists a consistent sequence of solutions of the likelihood
equation.

The proof is a bit involved; see p. 325 in HMC. This is very interesting fact but, being an
existence result alone, it’s not immediately clear how useful it is. For example, as we know,
the likelihood equation could have many solutions for a given n. For the question “which
sequence of solutions is consistent?” the theorem provides no guidance. But it does suggest
that the process of solving the likelihood equation is a reasonable approach. There is one
special case in which Theorem 3.2 gives a fully satisfactory answer.

Corollary 3.1 (HMC, Corollary 6.1.1). In addition to the assumptions of Theorem 3.2,
suppose the likelihood equation admits a unique solution θ̂n for each n. Then θ̂n is consistent.

I shall end this section with a bit of history. Much of the ideas (though not the proofs)
were developed by Sir Ronald A. Fisher, arguably the most influential statistician in history.
At the time (1920s), the field of statistics was very new and without a formal mathematical
framework. Fisher’s ideas on likelihood and maximum likelihood estimation set the stage
for all the theoretical work that has been done since then. He is also responsible for the
ideas of information and efficiency in the coming sections, as well as the notion of sufficiency
to be discussed later in the course. The p-value in hypothesis testing and randomization in
designed experiments can be attributed to Fisher. Two of Fisher’s other big ideas, which are
less understood, are conditional inference (conditioning on ancillary statistics) and fiducial
inference. Besides being one of the fathers of statistics, Fisher was also an extraordinary
geneticist and mathematician. Personally, Fisher was a bit of a fiery character—there are
well-documented heated arguments between Fisher, Neyman, and others about the philoso-
phy of statistics. This “hot-headedness” was likely a result of Fisher’s passion for the subject,
as I have heard from people who knew him that he was actually very kind.
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3.5 Fisher information and the Cramer–Rao bound

To further study properties of MLEs, we introduce a concept of information. Before we can
do this, however, we need two more regularity conditions.

R3. fθ(x) is twice differentiable in θ for each x;

R4.
∫
fθ(x) dx in the continuous case, or

∑
x fθ(x) in the discrete case, is twice differentiable

in θ, and the derivative can be evaluated by interchanging the order of differentiation
and integration/summation.

The first condition is to guarantee that the problem is sufficiently smooth. R4 is the first
condition that’s really technical. It holds for most problems we’ll encounter herein, but it
really has nothing to do with statistics or probability. For completeness, Section 3.10.9 gives
some details about interchange of derivatives and integrals/sums.

In what follows I will work with the case of continuous distributions with PDF fθ(x).
The discrete case is exactly the same, but with summation over x where integration over x
appears below. For moment, consider a single X ∼ fθ(x). Here’s a simple calculus identity
that will help simplify some notation, etc:

∂

∂θ
fθ(x) =

∂
∂θ
fθ(x)

fθ(x)
· fθ(x) =

∂

∂θ
log fθ(x) · fθ(x).

Using the fact that 1 =
∫
fθ(x) dx for all θ, if we differentiate both sides with respect to θ

and apply R4 we get

0 =

∫
∂

∂θ
fθ(x) dx =

∫
∂

∂θ
log fθ(x) · fθ(x) dx = Eθ

{ ∂

∂θ
log fθ(X)

}
.

The random variable Uθ(X) := ∂
∂θ

log fθ(X) is called the score function, and depends on
both X and θ. We have shown that the score function has mean zero.

Differentiate the fundamental identity 1 =
∫
fθ(x) dx a second time and apply R4 once

more we get

0 =

∫
∂

∂θ

[ ∂
∂θ

log fθ(x) · fθ(x)
]
dx

= · · ·

= Eθ
{ ∂2

∂θ2
log fθ(X)

}
+ Eθ

{( ∂
∂θ

log fθ(X)
)2}

.

It follows that the latter two expectations are equal in magnitude—one negative, the other
positive. This magnitude is called the Fisher information; that is,

I(θ) = Eθ
{( ∂

∂θ
log fθ(X)

)2}
= −Eθ

{ ∂2

∂θ2
log fθ(X)

}
. (3.4)

This definition is understood that the Fisher information I(θ) can be evaluated with either
of the two expressions on the right-hand side. You may use whichever is most convenient.
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It is clear that the first expression for I(θ) in (3.4) is positive (why?) and, therefore, defines
the magnitude mentioned above. So the second expectation is negative and multiplication
by −1 makes it positive.

If you recall the score function Uθ(X) defined above, then you’ll notice that I(θ) =
Eθ{Uθ(X)2}. If you also recall that Uθ(X) has mean zero, then you’ll see that the Fisher
information is simply the variance Vθ{Uθ(X)}. But despite this simple expression for I(θ)
in terms of a variance of the score, it turns out that it’s usually easier to evaluate I(θ) using
the version with second derivatives.

Exercise 3.10. Find I(θ) when X is Ber(θ), Pois(θ), and Exp(θ).

Exercise 3.11. Let X ∼ N(θ, σ2) where σ > 0 is a known number. Find I(θ).

Exercise 3.12. Let X ∼ fθ(x), where the PDF is of the form fθ(x) = g(x − θ), with g an
arbitrary PDF. Show that I(θ) is a constant, independent of θ. (Hint: In the integration,
make a change of variable z = x− θ.)

Exercise 3.13. Let I(θ) be the Fisher information defined above. Let η = g(θ) be a
reparametrization, where g is a one-to-one differentiable function. If Ĩ(η) is the Fisher
information for the new parameter η, show that Ĩ(η) = I(g−1(η)) · [{g−1(η)}′]2.

So far we’ve considered only a single observation X ∼ fθ(x). What happens if we have

a sample X1, . . . , Xn
iid∼ fθ(x)? We simply replace fθ(x) in the calculations above with the

likelihood function L(θ) = LX(θ). Fortunately, since the model is iid, we don’t have to redo
all the calculations. For the score function, Uθ(X) = Uθ(X1, . . . , Xn), we have

Uθ(X1, . . . , Xn) =
∂

∂θ
logLX(θ)

=
∂

∂θ

n∑
i=1

log fθ(Xi) (by independence)

=
n∑
i=1

∂

∂θ
log fθ(Xi) (linearity of derivative)

=
n∑
i=1

Uθ(Xi), (definition of Uθ(Xi))

the sum of the individual score functions. The Fisher information in the sample of size
n is still defined as the variance of the score function. However, since we have a nice
representation of the score as a sum of individual scores, we have

Vθ{Uθ(X1, . . . , Xn)} = Vθ{Uθ(X1) + · · ·+ Uθ(Xn)}
= [missing details]

= nI(θ).

Exercise 3.14. Fill in the missing details in the expression above.
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We have, therefore, shown that the information in a sample of size n is simply n times
the information in a single sample. This derivation depends critically on the iid assumption,
but that’s the only case we’ll consider here; but know that in dependent or non-iid data
problems the Fisher information would be different.

I have so far deferred the explanation of why I(θ) is called “information.” A com-
plete understanding cannot be given yet—wait until we discuss sufficient statistics—but the
derivation above gives us some guidance. Intuitively, we expect that, as n increases (i.e.,
more data is collected), we should have more “information” about what distribution data
was sample from and, therefore, we should be able to estimate θ better, in some sense. Our
derivation shows that, since I(θ) is non-negative, as sample size n increases, the information
about θ in that sample nI(θ) increases (linearly). So our intuition is satisfied in this case.
For dependent-data problems, for example, information in the sample will still increase, but
slower than linear. The Cramer–Rao lower bound result that follows should also help solidify
this intuition.

In Chapter 2 we discussed point estimation and the idea of making mean-square error
small. Of course, mean-square error is closely related to the variance of the estimator. The
result that follows helps relate the variance of an estimator to the Fisher information. The
message is that, if information is large, then better estimation should be possible.

Theorem 3.3 (Cramer–Rao; Theorem 6.2.1 in HMC). Let X1, . . . , Xn
iid∼ fθ(x), and assume

R0–R4 hold. Let Tn = Tn(X1, . . . , Xn) be a statistic, with Eθ(Tn) = τ(θ). Then

Vθ(Tn) ≥ [τ ′(θ)]2

nI(θ)
, ∀ θ,

where τ ′(θ) denotes the derivative of τ(θ).

Proof. Recall that for two random variables X and Y , the covariance (if it exists) is defined
as C(X, Y ) = E(XY ) − E(X)E(Y ). The Cauchy–Schwartz inequality (you may have seen
this in a linear algebra course) that says |C(X, Y )| ≤

√
V(X)V(Y ).

Here I will work with the case n = 1; write X = X1, T = T (X) for the statistic in
question, and U = Uθ(X) for the score function. The first goal is to evaluate the covari-
ance Cθ(T, U). For this, recall that U has zero mean, so Cθ(T, U) = Eθ(TU). Recall that
∂
∂θ

log fθ(x) · fθ(x) = ∂
∂θ
fθ(x); then the expectation of TU can be written as

Eθ(TU) =

∫
T (x)Uθ(x)fθ(x) dx

=

∫
T (x)

∂

∂θ
log fθ(x)fθ(x) dx

=

∫
T (x)

∂

∂θ
fθ(x) dx

=
∂

∂θ

∫
T (x)fθ(x) dx (by R4)

= τ ′(θ).
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Now we know that Vθ(U) = I(θ), so the Cauchy–Schwartz inequality above gives

|τ ′(θ)| ≤
√

Vθ(T )I(θ).

Squaring both sides and solving for Vθ(T ) gives the desired result.

The following corollary helps us better understand the message of the Cramer–Rao in-
equality. Here we focus on the case where Tn is an unbiased estimator of θ.

Corollary 3.2 (HMC, Corollary 6.2.1). Let Tn be an unbiased estimator of θ. Then under
the assumptions of Theorem 3.3, Vθ(Tn) ≥ [nI(θ)]−1.

Therefore, in this special case, the Cramer–Rao inequality can be understood as giving a
lower bound on the variance of an unbiased estimator of θ. From a practical point of view,
this provides us a gauge for measuring the quality of unbiased estimators. For example, if
we find an unbiased estimator whose variance is exactly equal to the Cramer–Rao bound,
then we know that no other unbiased estimator can do better than this one. We follow up
on this idea in Section 3.6.

Exercise 3.15. Let X1, . . . , Xn
iid∼ Pois(θ). Find the Cramer–Rao lower bound for unbiased

estimators of θ. Find the variance of X̄ and compare to this lower bound. We’ve seen before
that S2 is also an unbiased estimator of θ. What does your comparison of the Cramer–Rao
lower bound and Vθ(X̄) say about the relative performance of of X̄ and S2? You don’t have
to evaluate the variance of S2, just explain how Corollary 3.2 helps with your comparison.

3.6 Efficiency and asymptotic normality

To follow up, more formally, on the notion of measuring performance of estimators by com-
paring their variance to the Cramer–Rao lower bound, we define a notion of efficiency. If θ̂n
is an unbiased estimator of θ, then the efficiency of θ̂n is

effθ(θ̂n) = LB/Vθ(θ̂n), where LB = 1/nI(θ).

An estimator is efficient if effθ(θ̂n) = 1.

Exercise 3.16. Let X1, . . . , Xn
iid∼ N(0, θ), where θ > 0 denotes the variance.

(a) Let θ̂
(1)
n be the sample variance. Find effθ(θ̂

(1)
n ).

(b) Find the MLE of θ, and write this as θ̂
(2)
n . Find effθ(θ̂

(2)
n ).

(c) Compare θ̂
(1)
n and θ̂

(2)
n based on their efficiencies.

We are particularly interested in the efficiency of MLEs, but there’s not so many problems
where the MLE has a nice expression, and even fewer of these cases can we write down a
formula for its variance. So it would be nice to have some idea about the efficiency of
MLEs without having to write down its variance. The next theorem, a fundamental result
in statistics, gives us such a result. Indeed, a consequence of this theorem is that the MLE
asymptotically efficient in the sense that, as n → ∞, the efficiency of the MLE approaches
1. We need one more regularity condition:
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R5. fθ(x) is thrice differentiable in θ for each x, and there exists a constant c > 0 and a
function M(x) > 0 such that Eθ[M(X)] <∞ and, for “true value” θ?, | ∂3

∂θ3
log fθ(x)| ≤

M(x) for all x and for all θ ∈ (θ? − c, θ? + c).

This assumption allows us to write a two-term Taylor approximation for `′(θ), which is the
driving part of the proof, sketched below.

Theorem 3.4 (HMC, Theorem 6.2.2). Let X1, . . . , Xn
iid∼ fθ(x). If R0–R5 hold, and I(θ) ∈

(0,∞), then for any consistent sequence of solutions θ̂n of the likelihood equation
√
n(θ̂n −

θ)→ N(0, I(θ)−1) in distribution as n→∞.

We can understand the result as saying that, when n is large, the MLE θ̂n is approximately
normal with mean θ and variance [nI(θ)]−1. So the claim about asymptotic efficiency of the
MLE is clear, since the variance is exactly the Cramer–Rao lower bound. Theorem 3.4 is
fundamental for applied statistics. It says that no matter how the MLE is obtained—closed
form expression, complicated numerical algorithms, etc—the sampling distribution is ap-
proximately normal when n is large. Many statistical computing packages report hypothesis
tests and confidence intervals in relatively complex problems, such as logistic regression, and
these are based on the sampling distribution result in Theorem 3.4.

Sketch of the proof of Theorem 3.4. The basic idea of the proof is fairly simple, although
carrying out the precise details is a bit tedious. So, here I’ll just give a sketch to communicate
the ideas. First, do a Taylor approximation of `′n(θ̂n) in a neighborhood of θ̂n = θ. Since
θ̂n is a solution to the likelihood equation, we know that `′n(θ̂n) = 0. Therefore, this Taylor
approximation looks like

0 = `′n(θ̂n) = `′n(θ) + `′′n(θn)(θ̂n − θ) + error,

where θn is some value between θ̂n and θ. Since θ̂n is consistent, it follows that θn is too.
Ignoring the error and rearranging the terms in the Taylor approximation gives

√
n(θ̂n − θ) = −n

1/2`′n(θ)

`′′n(θn)
= −n

−1/2`′n(θ)

n−1`′′n(θn)
.

Now we’ll look at the numerator and denominator separately. We can apply the usual CLT
to study the numerator. Indeed, note that

Ūn :=
1

n
`n(θ) =

1

n

n∑
i=1

Uθ(Xi)

is an average of iid mean-zero, variance-I(θ) random variables. So the usual CLT says
n−1/2`n(θ) =

√
n(Ūn − 0) → N(0, I(θ)) in distribution. For the denominator, we’ll do a bit

of fudging. Recall that θn is close to θ for large n. So we’ll just replace n−1`′′n(θn) in the
denominator with n−1`′′n(θ). A careful argument using the regularity conditions can make
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Figure 3.2: Exact and approximate sampling distributions for the MLE in Example 3.2.

this step rigorous. Now n−1`′′n(θ) is an average of iid mean-I(θ) random variables, so the
usual LLN says n−1`′′n(θ) converges in probability to I(θ). Slutsky’s theorem gives

√
n(θ̂n − θ) = −n

1/2`′n(θ)

`′′n(θn)
= −n

−1/2`′n(θ)

n−1`′′n(θn)
→ I(θ)−1 · N(0, I(θ)), in distribution.

But multiplying a normal random variable by a number changes the variance by the square
of that number. That is,

I(θ)−1 · N(0, I(θ)) ≡ N(0, I(θ)−1).

This completes the (sketch of the) proof.

Example 3.2. An interesting question is: how accurate is the normal approximation for

finite n? Suppose X1, . . . , Xn
iid∼ Exp(θ). If θ = 1, then Theorem 3.4 says the MLE X̄n is

approximately normal with mean 1 and variance n−1. However, it can be shown that X̄n ∼
Gamma(n, n−1). Figure 3.2 shows the exact distribution of X̄n and the normal approximation
for two relatively small values of n. At n = 25 there’s some noticeable differences between
the two distributions, but for n = 50 there’s hardly any difference.

Exercise 3.17. Show that if X1, . . . , Xn
iid∼ Exp(θ), then X̄n ∼ Gamma(n, n−1θ).

Theorem 3.4 is much more broad than it looks initially. As it’s stated, it applies only to
the MLE of θ (specifically, consistent solutions of the likelihood equation). But in light of
the invariance of MLE (Theorem 3.1) and the Delta Theorem (Theorem 1.2), we can develop
a similar asymptotic normality result for any function of the MLE.
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Exercise 3.18. Let X1, . . . , Xn
iid∼ Exp(θ). The MLE is θ̂n = X̄n. Use Theorem 3.4 and the

Delta Theorem to find the limiting distribution of log X̄n.

Asymptotic normality of MLEs, in combination with the Delta Theorem, is very useful
in the construction of confidence intervals. Unfortunately, we don’t have sufficient time to
cover this important application in detail. But some supplementary material on maximum
likelihood confidence intervals is provided in a separate document.

This consideration of the asymptotic efficiency of MLEs is effectively a comparison of the
asymptotic variance of the MLE, which according to Theorem 3.4, is I(θ)−1. This is just like
the “vθ” in the Delta Theorem statement in Notes 01. So a way to compare two estimators
is look at the ratio of their respective asymptotic variances. That is, the asymptotic relative
efficiency of θ̂

(1)
n and θ̂

(2)
n is

areθ(θ̂
(1)
n , θ̂(2)

n ) =
aVθ(θ̂

(1)
n )

aVθ(θ̂
(2)
n )

,

where aV denotes the asymptotic variance. If this ratio is bigger (resp. smaller) than 1, then

θ̂
(2)
n is “better” (resp. “worse”) than θ̂

(1)
n .

Example 3.3. Let X1, . . . , Xn
iid∼ N(θ, σ2), with σ known. The MLE is θ̂

(1)
n = X̄n, and it’s

easy to check that the MLE is efficient. An alternative estimator is θ̂
(2)
n = Mn, the sample

median. The exact variance of Mn is difficult to get, so we shall compare these two estimators
based on asymptotic relative efficiency. For this, we need a sort of CLT for Mn (the 50th
percentile):

(CLT for percentiles) Let X1, . . . , Xn
iid∼ f(x) = F ′(x). For any p ∈ (0, 1), let ηp

be the 100pth percentile, i.e., F (ηp) = p. Likewise, let η̂p be the 100pth sample
percentile. If f(ηp) > 0, then

√
n(η̂p − ηp)→ N

(
0, p(1− p)/f(ηp)

2
)
, in distribution.

In this case, the asymptotic variance of Mn is

aVθ(θ̂
(2)
n ) =

0.5 · 0.5(√
1/2πσ2

)2 =
πσ2

2
.

Since aVθ(θ̂
(1)
n ) = σ2, the asymptotic relative efficiency is

areθ(θ̂
(1)
n , θ̂(2)

n ) =
σ2

πσ2/2
=

2

π
< 1.

This ratio is less than 1, so we conclude that θ̂
(1)
n is “better” asymptotically.
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3.7 Multi-parameter cases

Now suppose that θ ∈ Θ ⊆ Rd, for integer d ≥ 1. An important example is Θ = {θ =
(µ, σ2) : µ ∈ R, σ2 ∈ R+} for the normal distribution where both mean µ and variance σ2

are unknown. In general, let X1, . . . , Xn
iid∼ fθ(x). Then we may define the likelihood, and

log-likelihood functions just as before:

L(θ) =
n∏
i=1

fθ(Xi) and `(θ) = logL(θ).

Likelihood still can be understood as providing a ranking of the possible parameter values
and, therefore, maximizing the likelihood function to estimate the unknown θ still makes
sense. That is, the MLE θ̂ is still defined as

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

`(θ).

Conceptually, everything is the same as in the one-dimensional parameter case. Technically,
however, things are messier, e.g., we need vectors, matrices, etc. We can immediately see how
things get more technically involved, by considering the analogue of the likelihood equation:
θ̂ is the solution to

∇`(θ) = 0.

Here ∇ is the gradient operator, producing a vector of component wise partial derivatives,

∇`(θ) =
(∂`(θ)
∂θ1

, . . . ,
∂`(θ)

∂θd

)>
,

and superscript > being the transpose operator.

Exercise 3.19. Let X1, . . . , Xn
iid∼ N(µ, σ2), with θ = (µ, σ2) unknown. Find the MLE.

For multiple parameters, it is less likely that a closed-form solution to the likelihood
equation is available. Typically, some kind of numerical methods will be needed to find the
MLE. Next is a simple example of this scenario.

Exercise 3.20. Let X1, . . . , Xn
iid∼ Gamma(α, β), with θ = (α, β) unknown. Write down the

likelihood equation and confirm that no closed-form solution is available.

For a single observation X ∼ fθ(x), the score vector is

Uθ(X) = ∇ log fθ(X) =
( ∂

∂θ1

log fθ(X), . . . ,
∂

∂θd
log fθ(X)

)>
.

In this case, the score is a d × 1 (column) random vector. Recall that, for random vectors,
there are notions of a mean vector and a covariance matrix. In particular, if Z is a d-
dimensional random vector, then

E(Z) =
(
E(Z1), . . . ,E(Zd)

)>
and C(Z) = E(ZZ>)− E(Z)E(Z)>.
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So the mean of a random vector is a d×1 vector and the covariance is a d×d matrix (provided
these quantities exist). Under versions of the regularity conditions in the one-parameter case,
it can be shown that

Eθ[Uθ(X)] = 0 (a d-vector of zeros).

Just like in the one-parameter case, we define the Fisher information as the (co)variance of
the score, i.e., I(θ) = Cθ[Uθ(X)], which is a d× d matrix, rather than a number. Under reg-
ularity conditions, each component of this matrix looks like a one-dimensional information;
in particular, its (j, k)th element satisfies

I(θ)jk = Eθ
{ ∂

∂θj
log fθ(X) · ∂

∂θk
log fθ(X)

}
= −Eθ

{ ∂2

∂θj∂θk
log fθ(X)

}
.

I(θ) is a symmetric matrix (i.e., I(θ) = I(θ)>). This means you only need to evaluate
d(d+ 1)/2 of the d2 total matrix entries.

Exercise 3.21. For X ∼ N(µ, σ2), with θ = (µ, σ2), find I(θ).

What about if we have an iid sample X1, . . . , Xn
iid∼ fθ(x) of size n? Everything goes just

as before, except we’re working with vectors/matrices. In particular, we replace the density
fθ(X) in the definition of the score vector with the likelihood function LX(θ), and just as
before, the Fisher information matrix for a sample of size n is just n times the information
matrix I(θ) for a single observation.

For brevity, I shall summarize the d-dimensional analogues of the large-sample results
derived above with care for one-dimensional problems. Here I will not explicitly state the
regularity conditions, but know that they are essentially just higher-dimensional versions of
R0–R5 listed above.

• Under regularity conditions, there exists a consistent sequence θ̂n (a d-vector) of solu-
tions of the likelihood equation.

• Under regularity conditions, for any consistent sequence of solutions θ̂n,

√
n(θ̂n − θ)→ Nd(0, I(θ)−1) in distribution (for all θ),

where Nd(0, I(θ)−1) denotes a d-dimensional normal distribution with mean vector 0
and covariance matrix I(θ)−1, the d× d inverse of the Fisher information matrix.

• (Delta Theorem) Let g : Rd → Rk have continuous partial derivatives, and define the
k × d matrix

D =
(
∂g(θ)i/∂θj

)
i=1,...,k;j=1,...,d

.

Then, under regularity conditions,

√
n[g(θ̂n)− g(θ)]→ Nk(0, DI(θ)−1D>).
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For example, take g : Rd → R so that g(θ) = θj. Then D is a 1× d matrix of all zeros
except a 1 appearing in the (1, j) position. With this choice,

√
n(θ̂n,j − θj)→ N(0, I(θ)−1

jj ),

which is the one-dimensional counterpart, like Theorem 3.4.

Exercise 3.22. Let X1, . . . , Xn
iid∼ Gamma(α, β), where θ = (α, β)> is unknown. Denote the

MLE by θ̂n = (α̂n, β̂n)>; there’s no closed-form expression for the the MLE, but it can be
readily evaluated numerically (Example 3.6). State the limiting distribution of θ̂n.

3.8 MLE computation

Suppose that sample data X1, . . . , Xn are iid with common distribution having PMF/PDF
fθ(x). The goal is to estimate the unknown parameter θ. In simple examples, there is
a closed-form expression for the MLE θ̂. But, in many practical problems, there may be
more than one solution to the likelihood equation, and there may be no nice formula for
those solutions. In such cases, one will need to use some numerical methods to compute the
MLE. Here I will briefly discuss computation. These are important throughout all of applied
and theoretical statistics. Focus here is on just one optimization strategy, namely Newton’s
method. A course on computational statistics would discuss other methods, such as the EM
algorithm, simulated annealing, and iteratively re-weighted least squares.

3.8.1 Newton’s method

Suppose the goal is to solve g(x) = 0 for some function g. Newton’s method is one useful
technique, and the basics are presented in early calculus courses. The idea is based on
the fact that, locally, any differentiable function can be suitably approximated by a linear
function. This linear function is then used to define a recursive procedure that will, under
suitable conditions, eventually find the desired solution.

Consider, first, the case where the unknown parameter θ is a scalar. An example is where
the underlying distribution is Pois(θ). The vector parameter case is dealt with below. Write
`(θ) for the log-likelihood logL(θ). Assume that `(θ) is twice differentiable with respect to
θ; this is not really a practical restriction, in fact, our good theoretical properties of MLEs
assumes this and more.

The goal is to solve the likelihood equation `′(θ) = 0; here, and throughout, the “prime”
will denote differentiation with respect to θ. So now we can identify `′ with the generic
function g above, and apply Newton’s method. The idea is as follows. Pick some guess θ(0)

of θ̂. Now approximate `′(θ) by a linear function at θ(0). That is,

`′(θ) = `′(θ(0)) + `′′(θ(0))(θ − θ(0)) + error to be ignored.

Now solve for θ, and call the solution θ(1):

θ(1) = θ(0) − `′(θ(0))/`′′(θ(0)).
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If θ(0) is close to the solution of the likelihood equation, then so will θ(1) (draw a picture!).
The idea is to iterate this process until the solutions converge. So the method is to pick a
“reasonable” starting value θ(0) and, at iteration t ≥ 0 set

θ(t+1) = θ(t) − `′(θ(t))/`′′(θ(t)).

Then stop the algorithm when t is large and/or |θ(t+1) − θ(t)| is small. General R code to
implement Newton’s method (for one or many parameters) is presented in Section 3.10.1.
Then two examples are considered.

Example 3.4. Suppose X1, . . . , Xn be an iid sample from a mean-θ exponential distribution
with PDF fθ(x) = θ−1e−x/θ. We’ve seen already that the MLE for θ in this problem is the
sample mean: θ̂ = X̄. For comparison, we can run Newton’s algorithm to see what answer
it produces. In this case, the log-likelihood is

`(θ) = −n log θ − nX̄/θ.

The first and second derivatives of `(θ) are:

`′(θ) = −n
θ

+
nX̄

θ2
and `′′(θ) =

n

θ2
− 2nX̄

θ3
.

We now have what we need to run Newton’s algorithm. Suppose that the following data is
a sample of size n = 20 from the mean-θ exponential distribution:

0.27 0.83 0.27 1.52 0.04 0.43 0.92 0.58 0.20 0.32

0.82 0.91 0.66 0.01 0.56 1.21 1.44 0.64 0.53 0.30

From the data we have θ̂ = X̄ = 0.623. If we take θ(0) ∈ (0, 1), then the iterates θ(t) converge
quickly to θ̂ = 0.623, the same as we get from direct calculations; see Section 3.10.2. If
θ(0) > 1, then Newton’s method apparently does not converge to the correct solution.

Example 3.5. Refer to Example 6.1.4 in HMC. That is, let X1, . . . , Xn be iid observations
from a logistic distribution with PDF

fθ(x) =
e−(x−θ)

(1 + e−(x−θ))2
, x ∈ R, θ ∈ R.

The log-likelihood can be written as

`(θ) =
n∑
i=1

log fθ(Xi) = nθ − nX̄ − 2
n∑
i=1

log{1 + e−(Xi−θ)}.

Differentiating with respect to θ gives the likelihood equation:

0 = `′(θ) = n− 2
n∑
i=1

e−(Xi−θ)

1 + e−(Xi−θ)
.
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Figure 3.3: Graph of `′(θ) in Example 3.5 and the MLE θ̂ = 7.273.

Although there is no formula for the solution, HMC shows that there is a unique solution. To
find this solution, we shall employ Newton’s method. We already have a formula for `′(θ),
and we need one for `′′(θ) as well:

`′′(θ) = −2
n∑
i=1

e−(Xi−θ)

(1 + e−(Xi−θ))2
.

Now we have what we need to use Newton’s estimate to find the MLE. Suppose that the
data below are obtained by sampling from the logistic distribution:

6.37 12.01 7.34 6.28 7.09 7.51 8.24 7.35 6.70 4.95

5.14 10.72 3.67 6.35 9.71 7.20 9.21 7.88 5.80 8.27

From Newton’s method, we find that θ̂ = 7.273; see Section 3.10.3. Figure 3.3 shows a graph
of `′(θ) and the solution to the likelihood equation `′(θ) = 0. Incidentally, the data was
simulated from a logistic distribution with θ = 7, so the MLE is close to the truth.

Moving from a scalar to vector parameter, the only thing that changes is `(θ) is a function
of p > 1 variables instead of just one, i.e., θ = (θ1, . . . , θp)

> ∈ Rp; here I’m using the notation
x> instead of x′ for vector/matrix transpose, so there’s no confusion with differentiation. So,
in this context, `′(θ) corresponds to a vector of partial derivatives and `′′(θ) a matrix of
mixed second-order partial derivatives. Therefore, the Newton’s iterations are

θ(t+1) = θ(t) − [`′′(θ(t))]−1`′(θ(t)), t ≥ 0,

where [·]−1 denotes matrix inverse. This matches up conceptually with what was done in
the single parameter problem.
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Example 3.6. Suppose that X1, . . . , Xn is an iid sample from a Gamma(α, β) distribution
where θ = (α, β)> is unknown. The likelihood and log-likelihood functions are given by

L(α, β) =
n∏
i=1

1

βαΓ(α)
Xα−1
i e−Xi/β =

( 1

βαΓ(α)

)n
e(α−1)

∑n
i=1 logXie−(1/β)

∑n
i=1Xi ,

`(α, β) = −nα log β − n log Γ(α) + (α− 1)
n∑
i=1

logXi −
1

β

n∑
i=1

Xi,

where Γ(α) =
∫∞

0
zα−1e−z dz denotes the gamma function. Differentiating `(α, β) with

respect to α and β, we get

∂

∂α
`(α, β) = −n log β − nψ(α) +

n∑
i=1

logXi

∂

∂β
`(α, β) = −nα

β
+
nX̄

β2
,

where ψ(α) = Γ′(α)/Γ(α) is called the digamma function. There’s no closed-form solution
to the likelihood equation ∇`(α, β) = 0, so we must resort to a numerical method, like
Newton’s. For this we need the matrix of second derivatives:

∂2

∂α2
`(α, β) = −nψ′(α),

∂2

∂β2
`(α, β) =

nα

β2
− 2nX̄

β3
,

∂2

∂α∂β
`(α, β) = −n

β
.

The derivative ψ′(α) of the digamma function is called the trigamma function; both of these
are special functions in R. Finally, the matrix of second partial derivatives is

`′′(α, β) = −n
(
ψ′(α) 1/β
1/β 2X̄/β3 − α/β2

)
.

To implement Newton’s method, we’d need to calculate the inverse of this matrix. For 2× 2
matrices, there’s a relatively simple formula. But here we’ll leave matrix inversion for R to
do, via the function ginv, for (generalized) inverse.

How might we initialize Newton’s method, i.e., how to choose θ(0) = (α(0), β(0))? A useful
technique is the method of moments. In this case, since Eθ(X1) = αβ and Vθ(X1) = αβ2,
the method of moments sets X̄ = αβ and S2 = αβ2 and solves for α and β. In this
case, β(0) = S2/X̄ and α(0) = X̄2/S2. These are the starting values we’ll use the following
calculations.

Suppose that the data below are obtained by sampling from the gamma distribution:

6.00 5.98 7.81 6.77 10.64 13.63 10.53 8.92 3.77 5.78

6.32 4.44 5.34 1.54 4.42 4.71 6.12 2.57 9.47 9.03
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The starting values are (α(0), β(0)) = (S2/X̄, X̄2/S2) = (5.05, 1.32), based on method of
moments. After running Newton’s method (see Section 3.10.4), we find the MLE (α̂, β̂) =
(4.75, 1.41). Incidentally, the true (α, β) used to simulated the data above was (5, 1.4), so
both the method of moments and MLE are close to the truth in this case.

3.8.2 Estimation of the Fisher information

For defining confidence intervals for θ, one typically needs and estimate of the Fisher infor-
mation I(θ). One possible estimator is I(θ̂), but this is not always the best choice. It can be
argued that n−1`′′(θ̂) is a better estimator. This is typically called the observed information
while I(θ̂) is called the expected information. In some cases, these two are the same but not
always. The advantage of the observed information n−1`′′(θ̂) is that it comes as a natural
by-product of Newton’s algorithm, whereas I(θ̂) requires some extra calculations. There are
other, more fundamental, reasons for preferring the observed over expected information, but
these are a bit beyond the scope of Stat 411.

3.8.3 An aside: one-step estimators

The presentation in this note has been mostly practical/computational. But there is an
interesting theoretical concept related to Newton’s method, that’s worth mentioning; the
book makes a remark along these lines at the bottom of page 329.

Suppose θ̂n is a consistent sequence of estimators of θ. This sequence may or may not
be asymptotically efficient, however. The so-called one-step estimator is a trick by which
a consistent sequence of estimators can be transformed into an asymptotically efficient one.
Specifically, the sequence θ̃n defined as

θ̃n = θ̂n − [`′′(θ̂n)]−1`′(θ̂n)

is asymptotically efficient. That is, by applying one step of Newton’s method, any consistent
sequence of estimators can be turned into an asymptotically efficient sequence.

An interesting (albeit extreme) example is the normal mean problem. Let θ̂n be the

sample median based on X1, . . . , Xn
iid∼ N(θ, 1). We know that this sequence is consistent. In

this case, `′(θ) = n(X̄ − θ) and `′′(θ) = −n, so the one-step estimator is

θ̃n = θ̂n −
`′(θ̂n)

`′′(θ̂n)
= θ̂n +

n(X̄ − θ̂n)

n
= X̄.

We already know that the MLE X̄ is (asymptotically) efficient.

3.8.4 Remarks

There are lots of tools available for doing optimization, the Newton method described above
is just one simple approach. Fortunately, there are good implementations of these methods

47



already available in the standard software. For example, the routine optim in R is a very
powerful and simple-to-use tool for generic optimization. For problems that have a certain
form, specifically, problems that can be written in a “latent variable” form, there is a very
clever tool called the EM algorithm for maximizing the likelihood. Section 6.6 in HMC gives
a good but brief description of this very important method.

An interesting and unexpected result is that sometimes optimization can be used to do
integration. The technical result I’m referring to is the Laplace Approximation. Some further
comments on this will be made in Chapter 6.

3.9 Confidence intervals

Point estimation is an important problem in statistics. However, a point estimator alone is
not really a good summary of the information in data. In particular, we know that, with
large probability, θ̂ 6= θ, so the chance that our point estimator is “correct” is very small.
So, in addition to a point estimator, it is helpful to provide some convenient summary of the
variability of θ̂. This information is contained in the sampling distribution of θ̂, but the full
sampling distribution is not a convenient summary; also the full sampling distribution may be
unknown. One could report, for example, the point estimator and its variance. Alternatively,
it is common to report what is called a confidence interval for θ. The basic idea is to report
an interval which we believe to have large probability under the sampling distribution of
θ̂. In these notes I will explain what confidence intervals are and how maximum likelihood
estimators (MLEs) can be used to construct them.

Let X = (X1, . . . , Xn) be an iid sample from a distribution with PDF/PMF fθ(x), where
θ ∈ Θ is unknown. Let α ∈ (0, 1) be a specified (small) number, like α = 0.05; in an applied
statistics course, this number is the significance level. A 100(1−α)% confidence interval for
θ, denoted by Cn,α = Cn,α(X), is an interval such that

Pθ{Cn,α 3 θ} = 1− α, ∀ θ ∈ Θ. (3.5)

The event in the probability statement is “the interval Cn,α contains θ.” We want this
probability to be large, as it gives us some confidence that the interval Cn,α (which we can
calculate with given data X) contains the parameter we’re trying to estimate.

The most common example is that of a confidence interval for the mean of a normal
distribution. Let X = (X1, . . . , Xn) be an iid N(θ, 1) sample, and consider the interval

Cn,α(X) =
[
X̄ − z?αn−1/2, X̄ + z?αn

−1/2
]
, (3.6)

where z?α satisfies Φ(z?α) = 1− α/2. In Homework 01 you showed that this interval satisfies
(3.5) and, hence, is a 100(1 − α)% confidence interval for θ. This is sometimes called a
z-confidence interval. There are other popular confidence intervals, e.g., the t-interval, that
are introduced in applied statistics courses. Here the goal is not to enumerate examples;
instead, I want to discuss how MLEs, and their good properties, can be used to construct
(approximate) confidence intervals.
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Before I go on to these details, I should make some comments on the interpretation of
confidence intervals.

• We do not interpret (3.5) as “there is 1− α probability that θ is inside the confidence
interval.” The point here is that θ is not a random variable, so there are no meaningful
probability statements for events concerning the location of θ. This is why I write the
event as “Cn,α 3 θ” as opposed to “θ ∈ Cn,α”—the latter seems to indicate that θ is
random and Cn,α is fixed, while the former (correctly) indicates that Cn,α is random
and θ is fixed.

• Once we observe X = x, the interval Cn,α(x) is fixed and can be calculated. Since θ is
unknown, I cannot say for sure if Cn,α(x) contains θ or not—property (3.5) is of no help.
All that (3.5) tells us is that the procedure is good, i.e., the “sampling distribution” of
Cn,α(X), as a function of random vector X, has a desirable property. So one must be
careful when interpreting (3.5) in a real data analysis problem.

Where does Cn,α come from? Often, confidence intervals take the form of Cn,α = θ̂± SD,

where θ̂ is some estimator of θ, and SD is something like a standard deviation of the sampling
distribution of θ̂. If θ̂ is the MLE, then we may not know the sampling distribution exactly,
but for large n we have a general result. Theorem 3.4 says that, if n is large, then θ̂n
is approximately normal with mean θ and variance [nI(θ)]−1. So, if we assume n is large
enough for this approximation to hold, then we are back to that normal distribution problem
from before, and the z-interval (3.6) looks like

Cn,α = θ̂n ± z?α[nI(θ)]−1/2. (3.7)

Asymptotic normality of the MLE (Theorem 3.4) implies that

lim
n→∞

Pθ{Cn,α 3 θ} = 1− α, ∀ θ, (3.8)

so, if n is large, we have coverage probability Pθ{Cn,α 3 θ} ≈ 1− α. Therefore, Cn,α is what
is called an asymptotically correct confidence interval for θ.

The calculations above are fine; however, observed that the right-hand side of (3.7)
depends, in general, on the unknown θ. That is, we cannot evaluate the right-hand side in
practice! To deal with this problem, there are two common fixes. The first and simplest is
to plug in θ̂n for θ on the right-hand side of (3.7). The second is based on a suitably chosen
transformation and an application of the delta theorem.

Wald-style plug-in

Clearly, a simple fix to the problem of dependence on θ is to plug-in an estimator for θ. That
is, the plug-in approach, named after Abraham Wald, uses the interval

Cn,α = θ̂n ± z2
α[nI(θ̂n)]−1/2.
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Figure 3.4: Coverage probability Pθ{Cn,α 3 θ} in Example 3.7 as a function of θ for n = 50
and α = 0.05.

While this interval usually works fairly well, a result like (3.8) is not an immediate conse-
quence of asymptotic normality. In fact, there are known cases where this procedure works
rather poorly.5 However, the method’s simplicity has kept it in common use, despite its
shortcomings.

Example 3.7. Let X1, . . . , Xn be iid Ber(θ). We know that θ̂n = X̄ and I(θ) = 1/θ(1− θ).
Therefore, the plug-in confidence interval is

Cn,α = X̄ ± z?α

√
X̄(1− X̄)

n
.

A plot of the coverage probability Pθ{Cn,α 3 θ}, as a function of θ, for n = 50 and α = 0.05,
is shown in Figure 3.4; R code is given in Section 3.10.5. Here we see that the coverage
probability tends to be too low (less than 0.95) for most θ values.

Example 3.8. Let X1, . . . , Xn be iid Exp(θ). In this case, we know that θ̂n = X̄ and
I(θ) = 1/θ2. Therefore, the plug-in style confidence interval is

Cn,α = X̄ ± z?αX̄n−1/2.

The coverage probability Pθ{Cn,α 3 θ} can be calculated by using the CDF of the Gamma(n, θ)
distribution. Moreover, one can show that the coverage probability does not depend on θ.
So, in this case, Figure 3.5 shows the coverage probability as a function of n for θ = 1 and
α = 0.05; see Section 3.10.6. Here we see that, even for n ≈ 1500, the coverage probability
is still below the target 0.95. However, it is close and continues to get closer as n increases.

5Brown, Cai, and DasGupta, “Interval estimation for a Binomial proportion” Statistical Science, 2001
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Figure 3.5: Coverage probability Pθ{Cn,α 3 θ} in Example 3.8 as a function of n for θ = 1
and α = 0.05.

Variance-stabilizing transformations

The second approach to correct for the dependence on θ in (3.7) is based on the idea of
transformations. The Delta Theorem provides a way to get the asymptotic distribution of
g(θ̂n) from the asymptotic distribution of θ̂n when g is a nice enough function. In particular,
if we can choose a function g such that the asymptotic variance of g(θ̂n) is free of θ, then we
can construct an asymptotically correct confidence interval for g(θ). Then by undoing the
transformation g, we can get an asymptotically correct confidence interval for θ. The catch,
here, is that the interval will no longer be of the nice form θ̂n ± SD like before.

A function g is said to be variance-stabilizing if it satisfies the differential equation
[g′(θ)]2 = c2I(θ), where c > 0 is some constant. If we apply the Delta Theorem now,
for variance-stabilizing g, then we get

n1/2[g(θ̂n)− g(θ)]→ N(0, c2), in distribution.

Notice that the asymptotic variance of g(θ̂n) is a constant free of θ; that is, the variance has
been “stabilized.”

Now an asymptotically correct confidence interval for g(θ) is g(θ̂n)±z?αcn−1/2. From here,
we get a confidence interval for θ:

Cn,α = {θ : g(θ) ∈ g(θ̂n)± z?αcn−1/2}.

One should choose g such that this interval is, indeed, an interval.

Example 3.9. Let g(θ) = arcsin
√
θ. From calculus you might recall that

g′(θ) =
1

2

1√
θ(1− θ)

=⇒ [g′(θ)]2 =
1

4
I(θ).
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Figure 3.6: Coverage probability Pθ{Cn,α 3 θ} in Example 3.9 as a function of θ for n = 50
and α = 0.05.

Therefore, g is variance-stabilizing with c = 1/2, and an asymptotically correct confidence

interval for g(θ) is arcsin
√
X̄ ± z?α(4n)−1/2. A little work reveals a confidence interval Cn,α

for θ: [
sin2{arcsin

√
X̄ + z?α(4n)−1/2}, sin2{arcsin

√
X̄ − z?α(4n)−1/2}

]
.

A plot of the coverage probability, as a function of θ, for n = 50 and α = 0.5, is shown in
Figure 3.6; see Section 3.10.7. There we see the coverage probability is, overall, a bit closer
to the target 0.95 compared to that of the plug-in interval above.

Example 3.10. Let g(θ) = log θ. Then g′(θ) = 1/θ, so [g′(θ)]2 = I(θ). Hence g is variance-
stabilizing with c = 1. So an asymptotically correct confidence interval for log θ is log X̄ ±
z?αn

−1/2. Changing back to the θ scale gives a confidence interval for θ:

Cn,α =
[
X̄e−z

?
αn
−1/2

, X̄ez
?
αn
−1/2
]
.

A plot of coverage probability as a function of n, for θ = 1 and α = 0.05, is shown in
Figure 3.7; see Section 3.10.8. We see that it’s closer to the target than was the plug-in
interval coverage probability, especially for relatively small n.

3.10 Appendix

3.10.1 R code implementation Newton’s method

newton <- function(f, df, x0, eps=1e-08, maxiter=1000, ...) {
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Figure 3.7: Coverage probability Pθ{Cn,α 3 θ} in Example 3.10 as a function of n for θ = 1
and α = 0.05.

if(!exists("ginv")) library(MASS)

x <- x0

t <- 0

repeat {

t <- t + 1

x.new <- x - as.numeric(ginv(df(x, ...)) %*% f(x, ...))

if(mean(abs(x.new - x)) < eps | t >= maxiter) {

if(t >= maxiter) warning("Maximum number of iterations reached!")

break

}

x <- x.new

}

out <- list(solution=x.new, value=f(x.new, ...), iter=t)

return(out)

}

3.10.2 R code for Example 3.4

X <- c(0.27, 0.83, 0.27, 1.52, 0.04, 0.43, 0.92, 0.58, 0.20, 0.32,

0.82, 0.91, 0.66, 0.01, 0.56, 1.21, 1.44, 0.64, 0.53, 0.30)

dl <- function(theta) length(X) * (mean(X) / theta - 1) / theta

ddl <- function(theta) length(X) * (1 - 2 * mean(X) / theta) / theta**2

exp.newton <- newton(dl, ddl, 0.5)
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print(exp.newton$value)

print(cbind(xbar=mean(X), newton.soln=exp.newton$solution))

3.10.3 R code for Example 3.5

X <- c(6.37, 12.01, 7.34, 6.28, 7.09, 7.51, 8.24, 7.35, 10.72, 4.95,

5.14, 6.70, 3.67, 6.35, 9.71, 7.20, 9.21, 7.88, 5.80, 8.27)

n <- length(X)

dl <- function(theta) n - 2 * sum(exp(theta - X) / (1 + exp(theta - X)))

ddl <- function(theta) -2 * sum(exp(theta - X) / (1 + exp(theta - X))**2

logis.newton <- newton(dl, ddl, median(X))

print(logis.newton$solution)

3.10.4 R code for Example 3.6

X <- c(6.00, 5.98, 7.81, 6.77, 10.64, 13.63, 10.53, 8.92, 3.77, 5.78,

6.32, 4.44, 5.34, 1.54, 4.42, 4.71, 6.12, 2.57, 9.47, 9.03)

dl <- function(theta) {

alpha <- theta[1]

beta <- theta[2]

n <- length(X)

o1 <- -n * log(beta) - n * digamma(alpha) + sum(log(X))

o2 <- -n * alpha / beta + n * mean(X) / beta**2

return(c(o1, o2))

}

ddl <- function(theta) {

alpha <- theta[1]

beta <- theta[2]

n <- length(X)

o11 <- -n * trigamma(alpha)

o12 <- -n / beta

o22 <- -n * (2 * mean(X) / beta**3 - alpha / beta**2)

return(matrix(c(o11, o12, o12, o22), 2, 2, byrow=TRUE))

}

theta0 <- c(mean(X)**2 / var(X), var(X) / mean(X))

gamma.newton <- newton(dl, ddl, theta0)

print(cbind(start=theta0, finish=gamma.newton$solution))

3.10.5 R code for Example 3.7

binom.wald.cvg <- function(theta, n, alpha) {

z <- qnorm(1 - alpha / 2)

f <- function(p) {

t <- 0:n
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s <- sqrt(t * (n - t) / n)

o <- (t - z * s <= n * p & t + z * s >= n * p)

return(sum(o * dbinom(t, size=n, prob=p)))

}

out <- sapply(theta, f)

return(out)

}

n <- 50

alpha <- 0.05

theta <- seq(0.01, 0.99, len=200)

plot(theta, binom.wald.cvg(theta, n, alpha), ylim=c(0.5, 1), type="l", lwd=2,

xlab=expression(theta), ylab="Coverage Probability")

abline(h=1-alpha, lty=3, lwd=2)

3.10.6 R code for Example 3.8

expo.wald.cvg <- function(N, alpha) {

z <- qnorm(1 - alpha / 2)

theta <- 1

f <- function(n) {

f1 <- 1 - pgamma(n * theta / (1 - z / sqrt(n)), shape=n, rate=1/theta)

f2 <- pgamma(n * theta / (1 + z / sqrt(n)), shape=n, rate=1/theta)

return(1 - f1 - f2)

}

out <- sapply(N, f)

return(out)

}

alpha <- 0.05

n <- seq(100, 1500, by=50)

plot(n, expo.wald.cvg(n, alpha), ylim=c(0.945, 0.95), type="l", lwd=2,

xlab="n", ylab="Coverage Probability")

abline(h=1-alpha, lty=3, lwd=2)

3.10.7 R code for Example 3.9

binom.vst.cvg <- function(theta, n, alpha) {

z <- qnorm(1 - alpha / 2)

f <- function(p) {

t <- 0:n

a <- asin(sqrt(t / n))

s <- z / 2 / sqrt(n)

o <- (a - s <= asin(sqrt(p)) & a + s >= asin(sqrt(p)))
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return(sum(o * dbinom(t, size=n, prob=p)))

}

out <- sapply(theta, f)

return(out)

}

n <- 50

alpha <- 0.05

theta <- seq(0.01, 0.99, len=200)

plot(theta, binom.vst.cvg(theta, n, alpha), type="l", lwd=2,

xlab=expression(theta), ylab="Coverage Probability")

abline(h=1-alpha, lty=3, lwd=2)

3.10.8 R code for Example 3.10

expo.vst.cvg <- function(N, alpha) {

z <- qnorm(1 - alpha / 2)

theta <- 1

f <- function(n) {

f1 <- 1 - pgamma(n * theta * exp(z / sqrt(n)), shape=n, rate=1/theta)

f2 <- pgamma(n * theta * exp(-z / sqrt(n)), shape=n, rate=1/theta)

return(1 - f1 - f2)

}

out <- sapply(N, f)

return(out)

}

alpha <- 0.05

n <- seq(100, 1500, by=50)

plot(n, expo.vst.cvg(n, alpha), ylim=c(0.949, 0.95), type="l", lwd=2,

xlab="n", ylab="Coverage Probability")

abline(h=1-alpha, lty=3, lwd=2)

3.10.9 Interchanging derivatives and sums/integrals

Condition R4 requires that derivatives of integrals/sums can be evaluated by differentiating
the integrand/summand. The question of whether these operations can be interchanged has
nothing to do with statistics, these are calculus/analysis issues. But, for completeness, I
wanted to give a brief explanation of what’s going on.

Let f(x, θ) be a function of two variables, assumed to be differentiable with respect to θ
for each x. Here f need not be a PDF/PMF, just a function like in calculus. Let’s consider
the simplest case: suppose x ranges over a finite set, say, {1, 2, . . . , r}. Then it’s a trivial
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result from calculus that
d

dθ

r∑
x=1

f(x, θ) =
r∑

x=1

∂

∂θ
f(x, θ).

This is referred to as the linearity property of differentiation. Similarly, suppose x ranges
over a bounded interval [a, b], where neither a nor b depends on θ (this last assumption can
easily be relaxed). Then the famous Leibnitz formula gives

d

dθ

∫ b

a

f(x, θ) dx =

∫ b

a

∂

∂θ
f(x, θ) dx.

In these two cases, derivative and sum/integral can be interchanged with essentially no
conditions. The common feature of these two situations is that summation/integration is
over a bounded range. Things are messier when “infinities” are involved.

Both the summation and integration problems over bounded and unbounded ranges can
be lumped together under one umbrella in a measure-theoretic context, and the question of
interchange with differentiation can be answered with the Lebesgue Dominated Convergence
Theorem. The general details are too technical, so I’ll work on the two cases separately.

Start with the summation problem. That is, we want to know when

d

dθ

∞∑
x=1

f(x, θ) =
∞∑
x=1

∂

∂θ
f(x, θ). (3.9)

The three sufficient conditions are

S1.
∑∞

x=1 f(x, θ) converges for all θ in an interval (a, b);

S2. ∂
∂θ
f(x, θ) is continuous in θ for all x;

S3.
∑∞

x=1
∂
∂θ
f(x, θ) converges uniformly on every compact subset of (a, b).

That is, if S1–S3 hold, then (3.9) is valid.
In the integration problem, we want to know when

d

dθ

∫ ∞
−∞

f(x, θ) dx =

∫ ∞
−∞

∂

∂θ
f(x, θ) dx. (3.10)

In this case, there is just one sufficient condition, with two parts. Suppose that there exists
a function g(x, θ) and a number δ > 0 such that∣∣∣f(x, θ + δ′)− f(x, θ)

δ′

∣∣∣ ≤ g(x, θ) for all x and all |δ′| ≤ δ,

and ∫ ∞
−∞

g(x, θ) dx <∞.

Then statement (3.10) is valid.
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Chapter 4

Sufficiency and Minimum Variance
Estimation

4.1 Introduction

We have discussed various properties of point estimators. In particular, we have discussed
the idea of mean-square error (MSE) and that it is desirable for an estimator to have small
MSE. Unfortunately, it is generally not possible to construct “optimal” estimators that have
smallest MSE over all parameter values—typically, given two estimators, the MSE for one
estimator will be smaller than that of the other estimator at some parameter values, and
larger for other parameter values. Maximum likelihood estimators (MLEs) have a variety
of desirable properties, the most striking being that they are asymptotically efficient, i.e.,
MLEs are asymptotically unbiased and their asymptotic variance is the smallest possible
among unbiased estimators. This is a really nice result, but one could still ask for some kind
of optimality for finite n. No such results are available for MLEs.

In many cases, if one focuses attention strictly to unbiased estimators, there is such an
estimator with smallest MSE—smallest variance, in this case—uniformly over all parameter
values. Typically, this variance-minimizing estimator will be unique, and we shall call it
the minimum variance unbiased estimator, or MVUE for short.1 These MVUEs will be our
version of “optimal” estimators. Unbiased estimation is a fundamental development in the
theory of statistical inference. Nowadays there is considerably less emphasis on unbiasedness
in statistical theory and practice, particularly because there are other more pressing concerns
in modern high-dimensional problems (e.g., regularization). Nevertheless, it is important for
students of statistics to learn and appreciate these classical developments.

Before we get to this optimality stuff, we must first discuss the fundamentally important
notion of sufficiency. Besides as a tool for constructing optimal estimators, the notion of
sufficiency helps to solidify our understanding of Fisher information.

Along the way, we shall also encounter an important class of distributions, known as the

1In some texts, the adjective “uniformly” is appended to the front, making the acronym UMVUE, to
emphasize that the minimum variance is uniform over the parameter values; see Definition 4.2.
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exponential family. Distributions in this class are “nice” for a variety of reasons. First, all
those annoying regularity conditions (R0–R5) in Chapter 3 hold for distributions belonging to
the exponential family. Second, for each distribution in this family, construction of optimal
estimators is relatively straightforward. Finally, the exponential family is quite broad—
essentially all the distributions we encounter here are members—so we automatically get
nice properties of estimators, etc in a wide range of examples from one general result.

4.2 Sufficiency

4.2.1 Intuition

Suppose we have collected a sample X1, . . . , Xn and stored the observed values in the com-
puter. Unfortunately, your laptop crashed and you lost the file. Is there some way to produce
an “equivalent” set of data, say, X̃1, . . . , X̃n, without redoing the experiment? In particular,
is there some characteristic of the X-sample such that knowledge of this characteristic would
allow us to simulate a X̃-sample with the same basic properties? Of course, the values in
the X- and X̃-samples would be different, but we want both samples to contain the same
amount of information about the underlying parameter of interest.

The basic idea is that, if we remember the observed value t of a “sufficient” statistic
T , calculated from the X-sample, then, at least in principle, it is possible to generate a
X̃-sample from the conditional distribution of (X1, . . . , Xn) given T = t, and this X̃-sample
will contain the same information about the parameter θ as did the original X-sample.

The idea is not to prepare ourselves for crashing computers, though it was useful in pre-
computer times. Instead, the importance is that we should always base our estimators on
the “sufficient” statistic T , since, otherwise, we’re wasting some of the information in the
sample. This fundamental idea is due to Fisher, the same guy the Fisher information is
named after. The technical point being that the Fisher information based on the full sample
X1, . . . , Xn is exactly the same as that based on the reduced sample T if and only if T is a
“sufficient” statistic.

4.2.2 Definition

Recall the usual setup: X1, . . . , Xn
iid∼ fθ(x), where θ is the unknown parameter of interest,

and fθ(x) is the PDF/PMF that describes the distribution. The formal definition of a
sufficient statistic is as follows.

Definition 4.1. A statistic T = T (X1, . . . , Xn) is sufficient for θ (or for fθ) if the joint
conditional distribution of (X1, . . . , Xn), given T = t, does not depend on θ.

To relate this to the intuition from before, note that if T is sufficient for θ, then the
X̃-sample can be simulated from the conditional distribution of (X1, . . . , Xn), given T = t.
If T were not sufficient, then one could not simulate from this distribution because it would
depend on the unknown parameter θ.
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Exercise 4.1. Are sufficient statistics unique?

A technical point. We will not be careful about the definition of conditional distributions
in Stat 411. Complete rigor requires concepts of measure-theoretic probability which is
beyond the prerequisites for the course. So, in continuous problems, our calculations will be
somewhat sloppy; when the problem is discrete, there’s no measure-theoretic challenges to
overcome, so our solutions are perfectly fine.

Exercise 4.2. Let X1, . . . , Xn
iid∼ Ber(θ). Show that T =

∑n
i=1 Xi is a sufficient statistic.

Exercise 4.3. Let X1, . . . , Xn
iid∼ Pois(θ). Show that T =

∑n
i=1Xi is a sufficient statistic.

Example 4.1. Let X1, X2
iid∼ N(θ, 1), and let T = X1+X2. We know know that T ∼ N(2θ, 2).

Let’s figure out the conditional distribution of (X1, X2) given T = t. Here, for this continuous
problem, we do a bit of fudging with the conditional distribution.

“Pθ(X1 = x1, X2 = x2 | T = t)” =
Pθ(X1 = x1, X2 = x2, T = t)

Pθ(T = t)

=
Pθ(X1 = x1, X2 = t− x1)

Pθ(T = t)

=
Pθ(X1 = x1)Pθ(X2 = t− x1)

Pθ(T = t)

=
1

2π
exp
{
−1

2
[(x1 − θ)2 + (t− x1 − θ)2]

}
1

2
√
π

exp
{
−1

4
(t− 2θ)2

} .

This last expression is messy but, fortunately, we don’t need to evaluate it. A little extra work
shows that this expression is free of θ. Therefore, the conditional distribution of (X1, X2),
given T = t, does not depend on θ, so T is a sufficient statistic for θ. Note, also, that there
is nothing special about n = 2; the claim for general n, i.e., T =

∑n
i=1 Xi is a sufficient

statistic for θ based on a sample of size n.

An important remark. We use the terminology “T is a sufficient statistic for θ” even
though this is a bit misleading. For example, suppose we are interested not in θ but, say,
eθ—do we need to consider finding a sufficient statistic for eθ? The answer is NO. When
we say that a statistic T is sufficient, we mean that T contains all the information in data
relevant to distinguishing between fθ and fθ′ . So, if T is sufficient for θ, then it’s also
sufficient for eθ or any other function of θ. The same remark goes for minimal sufficiency
and completeness, discussed below. You will want to remember this point when we get to
finding MVUEs for functions of θ in Sections 4.4–4.5. In summary, we should actually say
“T is sufficient for the family {fθ : θ ∈ Θ},” to make clear that it’s not specific to a particular
parametrization, but it is not customary to do so.

It is apparent from the exercises, example, and discussion above that the definition is
not so convenient for finding a sufficient statistic. It would be nice if there was a trick that
allowed us to not only quickly check if something is sufficient but also help to find a candidate
statistic in the first place. Fortunately, there is such a result...
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4.2.3 Neyman–Fisher factorization theorem

It turns out that sufficient statistics can be found from an almost immediate inspection of
the likelihood function. Recall that, in our iid setting, the likelihood function is

L(θ) =
n∏
i=1

fθ(Xi),

with notations LX(θ) or Ln(θ) to indicate, where needed, that the likelihood depends also
on X = (X1, . . . , Xn) and n.

Theorem 4.1 (Neyman–Fisher). Let X1, . . . , Xn
iid∼ fθ(x). A statistic T = T (X1, . . . , Xn) is

sufficient for θ if and only if there are functions K1 and K2 such that

L(θ) = K1(T (X1, . . . , Xn); θ)K2(X1, . . . , Xn). (4.1)

Here K1 depends on θ but K2 does not.

Proof. Idea is simple, but, to be rigorous, one must be careful in dealing with conditional
distributions; we won’t be careful here. Note thatK1(T ; θ) is (essentially) just the PDF/PMF
of T , so, in the conditional distribution ratio, the parts with θ cancel out.

Alternatively: T is a sufficient statistic if and only if the shape of the likelihood function
depends on (X1, . . . , Xn) only through the value of T = T (X1, . . . , Xn).

Example 4.2. Let X1, . . . , Xn
iid∼ N(θ, 1). As we have seen previously, the likelihood function

can be written as

L(θ) =
n∏
i=1

1√
2π
e−(Xi−θ)2/2 =

( 1√
2π

)n
e−

∑n
i=1(Xi−θ)2/2

= (2π)−n/2e−
∑n
i=1X

2
i /2︸ ︷︷ ︸

K2(X1,...,Xn

· eθ
∑n
i=1Xi−θ2/2︸ ︷︷ ︸

K1(
∑n
i=1Xi;θ)

.

Therefore, by the factorization theorem, T =
∑n

i=1Xi is sufficient.

Note that a sufficient statistic in this problem is T =
∑n

i=1Xi, and we know that the
MLE is X̄ = T/n. It is not a coincidence that the MLE is a function of the sufficient statistic.
In fact, in many cases, we can take the MLE as the sufficient statistic.

Exercise 4.4. Redo the sufficiency calculations in the Ber(θ) and Pois(θ) examples above
using the Neyman–Fisher factorization theorem.

Exercise 4.5. Use the Neyman–Fisher factorization theorem to find a sufficient statistic T

if (a) X1, . . . , Xn
iid∼ Unif(0, θ), and (b) if X1, . . . , Xn

iid∼ N(0, θ), with θ > 0 the variance.
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4.3 Minimum variance unbiased estimators

As we discussed earlier in the course, unbiasedness is a good property for an estimator to
have; however, I gave several examples which showed that unbiasedness does not necessarily
make an estimator good. But if one insists on an unbiased estimator of θ, then it is natural
to seek out the best among them. Here “best” means smallest variance. That is, the goal is
to find the minimum variance unbiased estimator (MVUE) of θ.

Definition 4.2. An estimator θ̂ is the minimum variance unbiased estimator (MVUE) if,
for all θ, Eθ(θ̂) = θ and Vθ(θ̂) ≤ Vθ(θ̃) for any other unbiased estimator θ̃.

First, note that θ̂ in the definition is called the MVUE. This choice of word suggests
that MVUEs are unique. Let’s check this now. Let θ̂1 and θ̂2 be two MVUEs; that is,
both are unbiased and both have smallest possible variance, say v. Define a new estimator
θ̂3 = (θ̂1 + θ̂2)/2. Clear θ̂3 is also unbiased. Its variance is

Vθ(θ̂3) = Vθ(θ̂1)/4 + Vθ(θ̂2)/4 + 2Cθ(θ̂1, θ̂2)/4 = v/2 + Cθ(θ̂1, θ̂2)/2.

Since Vθ(θ̂3) ≥ v, it follows that Cθ(θ̂1, θ̂2) ≥ v. Now consider the difference θ̂1 − θ̂2:

Vθ(θ̂1 − θ̂2) = Vθ(θ̂1) + Vθ(θ̂2)− 2Cθ(θ̂1, θ̂2) ≤ 2v − 2v = 0.

The only random variable with zero variance is a constant; therefore, θ̂1 − θ̂2 must be a
constant, and the constant must be zero, so θ̂1 = θ̂2. Indeed, there is only one MVUE.

Second, let’s recall what we know about the variance of unbiased estimators. The
Cramer–Rao lower bound tells us that, if θ̂ is an unbiased estimator of θ, then its vari-
ance cannot be less than [nI(θ)]−1, where I(θ) is the Fisher information. So, if we can find
an estimator with variance equal to the Cramer–Rao lower bound, then we know that no
other unbiased estimator can beat it. However, there are two things to consider here.

• In some problems, it may be too difficult to find an exact formula for the variance of a
candidate unbiased estimator. In that case, it is not possible to check if the estimator
is efficient.

• It can happen that the smallest possible variance of an unbiased estimator is strictly
bigger than the Cramer–Rao lower bound, i.e., the lower bound is not always attainable.
In such cases, there can be an MVUE but its efficiency is not equal to 1, so our old
method for ranking estimators won’t work.

In light of these challenges, it would be desirable to find techniques or special results that
will allow us to identify MVUEs without explicitly calculating variances, efficiencies, etc.
The next two sections describe two powerful techniques.
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4.4 Rao–Blackwell theorem

Based on the calculations above, we see some connection between sufficient statistics and
the “good” estimators (e.g., MLEs) we are familiar with from the previous notes. Is this a
coincidence? The answer is NO—it turns out that, in some sense, only functions of sufficient
statistics are good estimators.

The first result, the Rao–Blackwell theorem, makes this claim precise. Specifically, if you
give me an unbiased estimator, then the Rao–Blackwell theorem tells me how I can improve
upon the one you gave me, i.e., maintain the unbiasedness property, but potentially reduce
the variance.

Theorem 4.2 (Rao–Blackwell). Let T be a sufficient statistic and θ̃ an unbiased estimator of
θ. Define the function g(t) = E(θ̃ | T = t), the conditional expected value of θ̃ given the value
t of the sufficient statistic T . Then θ̂ = g(T ) is an unbiased estimator and Vθ(θ̂) ≤ Vθ(θ̃)
for all θ, with equality if and only if θ̃ and θ̂ are the same.

Proof. Write ϕ(a) = (a − θ)2. This function is a parabola opening up and, therefore, is
clearly convex (concave up). It follows from Jensen’s inequality that

ϕ(Eθ(θ̃ | T = t)) ≤ Eθ[ϕ(θ̃) | T = t],

or, equivalently, [Eθ(θ̃ | T = t) − θ]2 ≤ Eθ[(θ̃ − θ)2 | T = t]. Replacing t with it’s random
variable version T gives

[Eθ(θ̃ | T )− θ]2 ≤ Eθ[(θ̃ − θ)2 | T ],

with equality if and only if θ̃ = Eθ(θ̃ | T ), i.e., if θ̃ is itself a function of T . Taking expected
value on both sides gives Vθ(θ̂) ≤ Vθ(θ̃), completing the proof.

The proof given here is different from the one using iterated expectation given in Theo-
rem 2.3.2 in HMC; see, also, the exercise below. The two proofs are equivalent in the case
considered here. However, if one wants to change from comparing estimators based on vari-
ance to comparing based on Eθ{d(θ̂ − θ)} for a convex function d, then the proof based on
Jensen’s inequality is easier to modify.

Exercise 4.6. Let X, Y be random variables with finite variances.

(a) Show that E(Y ) = E{E(Y | X)}.
(b) Show that V(Y ) = E{V(Y |X)}+ V{E(Y |X)}.
(c) Let X = T and Y = θ̃. Use the two results above to prove Theorem 4.2.

The utility of the Rao–Blackwell theorem is that one can take a “naive” unbiased estima-
tor and improve upon it by taking conditional expectation given a sufficient statistic. This
has two important consequences. First, it says that if one cares about unbiasedness, then
there is no reason to consider an estimator that is not a function of the sufficient statistic.
Second, it gives an explicit recipe for improving upon a given unbiased estimator; this is
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different/better than typical existence theorems that say “there exists a better estimator...”
but do not explain how to find it.

To apply the Rao–Blackwell theorem, one should try to find the simplest possible unbiased
estimator to start with. That way, the conditional expectation will be relatively easy to
calculate. For example, it can help to use only a subset of the original sample. The examples
that follow should help illustrate the technique.

Example 4.3. Let X1, . . . , Xn
iid∼ N(θ, 1). The goal is to estimate θ. We know that θ̂ = X̄ is a

good estimator. Let’s try to apply the Rao–Blackwell theorem. Start with a naive unbiased
estimator: θ̃ = X1 is a reasonable choice. We know, by the factorization theorem, that
T =

∑n
i=1Xi is a sufficient statistic. Therefore, we need to calculate g(t) = E{X1 | T = t}.

But if I tell you that the sum of iid random variables is t, then, at least on average, each X1

contributes equally to the total. Therefore, the expected value of X1 given T = t must be
g(t) = t/n. It follows from the Rao–Blackwell theorem that g(T ) = X̄ is a better estimator
than X1 in terms of variance. We already knew this, but note that here we didn’t need to
do any variance calculations to confirm it.

Exercise 4.7. Let X1, . . . , Xn
iid∼ N(θ, 1) and T =

∑n
i=1Xi. Show that the conditional

distribution of X1, given T = t, is N( t
n
, n−1

n
).

Example 4.4. Let X1, . . . , Xn
iid∼ Pois(θ). The goal is to estimate η = e−θ. Here’s an

example we’ve encountered before. We know that the MLE e−X̄ is not unbiased, but we
don’t know how to construct a good unbiased estimator. The Rao–Blackwell theorem tells
us how to do it. We need first a naive unbiased estimator of η. Note that η = Pθ(X1 = 0),
so a good choice is η̃ = I0(X1), i.e., η̃ = 1 if X1 = 0, and η̃ = 0 otherwise. Clearly E(η̃) = η.
We also know from the factorization theorem that T =

∑n
i=1 Xi is a sufficient statistic. Let’s

calculate the conditional expectation g(t) directly:

Eθ(I0(X1) | T = t) = Pθ(X1 = 0 | T = t)

=
Pθ(X1 = 0, T = t)

Pθ(T = t)

=
Pθ(X1 = 0, X2 + · · ·+Xn = t)

Pθ(T = t)

=
Pθ(X1 = 0)Pθ(X2 + · · ·+Xn = t)

Pθ(T = t)
.

If we remember that T ∼ Pois(nθ) and X2 + · · · + Xn ∼ Pois((n− 1)θ), both derived using
moment-generating functions, then we can plug in Poisson PMF formulas in the numerator
and denominator. This gives

Eθ(I0(X1) | T = t) =
e−θe−(n−1)θ[(n− 1)θ]t

e−nθ[nθ]t
=
(

1− 1

n

)t
.

Therefore, η̂ = (1− 1
n
)T is, by the Rao–Blackwell theorem, unbiased and has smaller variance

than η̃ = I0(X1). It will be seen later that η̂ is actually the MVUE for η = e−θ.
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To re-iterate, the important aspect of the Rao–Blackwell theorem is that it gives a par-
ticular recipe for improving a given, or “naive,” unbiased estimator by making it a function
of a sufficient statistic. As a result, we find that there is no reason to consider unbiased
estimators that are not functions of a sufficient statistic since conditioning on a sufficient
statistic leads to an estimator that is no worse in terms of variance.

The down-side, however, to the Rao–Blackwell theorem is that the conditional expecta-
tion can be difficult to calculate, even in relatively simple problems. So it would be nice if
there was a special feature of the problem which, if we can see it, will tell us if an estimator
is the MVUE. There is such a special feature but this too can be tricky.

4.5 Completeness and Lehmann–Scheffe theorem

To be able to jump directly to MVUE conclusions without appealing to the Rao–Blackwell
theorem and conditional expectation calculations, we need something more than just suffi-
ciency of T . The new additional property is called completeness.

Definition 4.3. A statistic T is complete if Eθ{h(T )} = 0 for all θ implies the function h(t)
is (almost everywhere) the zero-function.

The definition of completeness in HMC is a bit different, but equivalent for us. They
present completeness as a property of a family of distributions. Here, we are just taking that
family to be the sampling distribution of T as θ varies over Θ.

Completeness is a tricky property, and checking it often requires some very special tech-
niques. Before we look at examples, let’s see why we should care about completeness.

Theorem 4.3 (Lehmann–Scheffe). Let T be a complete sufficient statistic for θ. If there is
a function g such that θ̂ = g(T ) is an unbiased estimator of θ, then θ̂ is the MVUE.

Proof. See Section 4.9.2.

The Lehmann–Scheffe theorem goes a bit further than Rao–Blackwell in the sense that it
gives a sufficient condition for finding the unique unbiased estimator with smallest variance.
The key ingredient is that the sufficient statistic must also be complete. In other words, if
we can find an unbiased estimator that is a function of a complete sufficient statistic, then
we know we have found the MVUE—no conditional expectation calculations are necessary.

The definition of completeness is “mathy,” what does it mean intuitively? If a statistic T
is sufficient, then we understand that it contains all the information about θ in the original

sample. However, T may not summarize the information efficiently, e.g., if X1, . . . , Xn
iid∼

N(θ, 1), then T = (X̄,X1) is also sufficient. Somehow, the statistic T = (X̄,X1) contains
redundant information. The intuitive meaning of completeness, together with sufficiency, is
that the statistic contains exactly all the information in the original data concerning θ—no
more and no less.

Exercise 4.8. For each distribution, show that T is complete and find the MVUE.
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1. X1, . . . , Xn
iid∼ Pois(θ); T =

∑n
i=1Xi.

2. X1, . . . , Xn
iid∼ Unif(0, θ); T = X(n).

3. X1, . . . , Xn
iid∼ Ber(θ); T =

∑n
i=1Xi.

Exercise 4.9. X1, . . . , Xn
iid∼ Ber(θ). The statistic T =

∑n
i=1Xi is complete and sufficient.

Use the Rao–Blackwell theorem to find the MVUE of Vθ(X1) = θ(1− θ).

Exercise 4.10. Let X1, . . . , Xn
iid∼ N(θ, θ2), θ ∈ R.

1. Use the factorization theorem to show that T = (
∑n

i=1Xi,
∑n

i=1X
2
i ) is a sufficient

statistic for θ.

2. Show that T is not complete.

The down-side to the Lehmann–Scheffe theorem is that it is not too easy to show that a
statistic is complete. We saw that special techniques and results (e.g., Laplace transforms,
power series, properties of solutions to polynomials) are needed, and there is no general
way to know ahead of time what techniques are needed. It would be great if there was a
broad class of distributions for which there is a simple way to identify a complete sufficient
statistic. Fortunately, such a class exists, and it is broad enough to contain almost all the
distributions we consider here.

4.6 Exponential families

The exponential family is a broad class of distributions—both discrete and continuous—that
has many nice properties. Most of the distributions we encounter here belong to this class.

Definition 4.4. Let fθ(x) be a PDF/PMF with support S = {x : fθ(x) > 0} and parameter
space Θ an open interval in R. Then fθ(x) is a (regular) exponential family if

fθ(x) = exp{p(θ)K(x) + S(x) + q(θ} · IS(x), (4.2)

with the following properties:

(i) S does not depend on θ,

(ii) p(θ) is non-constant and continuous, and

(iii) if X is continuous, then K ′ and S are continuous functions; if X is discrete, then K is
non-constant.

Exercise 4.11. Show that Ber(θ), Pois(θ), Exp(θ), and N(θ, 1) are exponential families.

It can be shown that the regularity conditions R0–R5 from our study of sampling distri-
butions of MLEs hold for (regular) exponential families. Therefore, we know, for example,
in exponential families, MLEs are asymptotically efficient. Here are two more important
properties of exponential families.
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• If X ∼ fθ(x) and fθ(x) is an exponential family, then

Eθ[K(X)] = −q
′(θ)

p′(θ)
and Vθ[K(X)] =

p′′(θ)q′(θ)− p′(θ)q′′(θ)
p′(θ)3

.

To prove this, differentiate under the integral sign, like how we used R4 before.

• If X1, . . . , Xn
iid∼ fθ(x) and fθ(x) is an exponential family, then T =

∑n
i=1 K(Xi) has

distribution gθ(t) an exponential family, with

gθ(t) = exp{p(θ)t+R(t) + nq(θ)}

and p, q are the same as for fθ(x). The easiest way to prove this is via moment-
generating functions; see Exercise 4.13.

Exercise 4.12. Verify the general formula for Eθ[K(X)] for each of the four exponential
family distributions in Exercise 4.11.

Exercise 4.13. For an exponential family distribution fθ(x) as in (4.2), find the moment-
generating function Mθ(s) = Eθ(e

sX).

Besides that exponential families are so common and have a lot of nice properties, they
are particularly convenient in the context of sufficient statistics, etc. In particular, (regular)
exponential families admit an easy-to-find complete sufficient statistic.

Theorem 4.4. Let X1, . . . , Xn
iid∼ fθ(x) where fθ(x) is a (regular) exponential family distri-

bution (4.2). Then T =
∑n

i=1K(Xi) is a complete sufficient statistic for θ.

Theorem 4.4 shows how one can find a complete sufficient statistic in (regular) exponential
families. Therefore, in a particular example, if we recognize that the distribution in question
is an exponential family, then we can bypass the difficult step of verifying that the sufficient
statistic is complete, saving ourselves time and energy. Moreover, once we find our complete
sufficient statistic T , the Lehmann–Scheffe theorem says as soon as we find an unbiased
estimator that’s a function of T , then we’ve found the MVUE.

Exercise 4.14. Let X1, . . . , Xn
iid∼ N(0, θ), where θ > 0 is the variance. Use the results of

this section to find the MVUE of θ.

4.7 Multi-parameter cases

Here we shall discuss extension of the main ideas in the previous sections to the case where
θ = (θ1, . . . , θd)

> is a d-dimensional (column) vector, for d ≥ 1. That is, we now assume
Θ is a subset of Rd, the d-dimensional Euclidean space. Conceptually everything stays the
same here as before. In this more general case, the notation and technical details are more
tedious.
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It helps to start out by recalling some important multi-parameter problems. The most
important is probably N(θ1, θ2) where θ1 is the mean and θ2 is the variance. Other problems
include Unif(θ1, θ2), Beta(θ1, θ2), Gamma(θ1, θ2), etc.

The first important result presented above for the one-parameter case was sufficiency.
One can define sufficiency very much like in Definition 4.1. The one key difference is the
addition of an adjective “jointly.” That is, we say a statistic T = (T1, . . . , Tm)> is jointly
sufficient for θ = (θ1, . . . , θd)

> if the conditional distribution of (X1, . . . , Xn), given the
observed vector T = t, is free of θ. Note that the number of coordinates in T may be
different from d, the number of parameters. Moreover, even if m = d, it may not be true
that T1 is sufficient for θ1, T2 sufficient for θ2, etc. In general, one needs the whole of T to
summarize all the information in (X1, . . . , Xn) about θ.

Like before, the definition of sufficient statistics is not particularly convenient for finding
them. We have a natural extension of the Neyman–Fisher factorization theorem, which goes
as follows. A statistic T = (T1, . . . , Tm)> is (jointly) sufficient for θ = (θ1, . . . , θd)

> if and
only if there exists functions K1 and K2 such that the likelihood factors as

L(θ) = K1(T (X1, . . . , Xn); θ)K2(X1, . . . , Xn).

Exercise 4.15. Find a (jointly) sufficient statistic T for the two problems below:

1. X1, . . . , Xn
iid∼ N(θ1, θ2);

2. X1, . . . , Xn
iid∼ Beta(θ1, θ2), where fθ(x) ∝ xθ1−1(1− x)θ2−1.

The two key theorems on MVUEs, namely, the Rao–Blackwell and Lehmann–Scheffe
theorems, to not depend at all on the dimension of the parameter or statistic (though the
proofs given here focus on the one-dimensional cases). Anyway, there are versions of such
theorems for multi-parameter cases. For example, we can say that if T is a (jointly) complete
and sufficient statistic for θ and g(T ) is an unbiased estimator of η = h(θ), then η̂ = g(T ) is
the MVUE of η.

Example 4.5. Here is an example of a sort of nonparametric estimation problem. Let
X1, . . . , Xn be iid with common CDF F (x), and corresponding PDF f(x) = F ′(x). Here the
CDF F (x) is completely unknown. The likelihood function is

L(F ) =
n∏
i=1

f(Xi) =
n∏
i=1

f(X(i)).

Therefore, T = (X(1), . . . , X(n)) is a (jointly) sufficient statistic for F ; note that no dimension
reduction is possible in a nonparametric problem. It turns out that T is also complete, but
I will not show this calculation. Now consider estimating θ = F (c) for a fixed constant c.
Towards finding an MVUE, consider the “naive” unbiased estimator θ̃ = I(−∞,c](X1). The
conditional distribution of X1, given T = t is

X1 | T = t ∼ Unif{t1, . . . , tn}, ti = observed X(i).
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Now apply the Rao–Blackwell theorem to get an improved estimator:

θ̂ = E{I(−∞,c](X1) | T} = P{X1 ≤ c | T} =
1

n

n∑
i=1

I(−∞,c](X(i)).

This is the sample proportion of observations less than or equal to c, an intuitively natural
choice. Because θ̂ is unbiased and a function of the complete sufficient statistic T , it follows
from the Lehmann–Scheffe theorem that θ̂ is the MVUE of θ = F (c).

Just like in the one-parameter case, verifying that a (jointly) sufficient statistic is also
complete is a difficult task. Fortunately, there is a large and convenient class of distributions
for which we can immediately find a (jointly) complete sufficient statistic, directly from the
likelihood function. This is the multi-parameter exponential family of distributions.

To be consistent with HMC, I will now use m for the dimension of θ. The distribution
fθ(x), θ ∈ Θ ⊆ Rm, is an exponential family if

fθ(x) = exp{
∑m

j=1 pj(θ)Kj(x) + S(x) + q(θ)}, x ∈ S.

We say that fθ(x) is a regular exponential family if S is free of θ, Θ contains an open
rectangle, and the pj(θ)’s are continuous and linearly independent.2

We were not careful about the distinction between exponential families and regular ex-
ponential families in the one-parameter case. Here, however, we need to be more careful.
There are examples of multi-parameter exponential families which are not regular. One
such example is N(θ, θ2). This is essentially a two-parameter problem, but there is a link
between the two parameters. This fails to be regular because the effective parameter space
is Θ = {(θ, θ2) : θ ∈ R} which is a curve in R2 and, therefore, does not contain an open
rectangle. Hence N(θ, θ2) is an exponential family, but it’s not regular. This is one example
of a general class called curved exponential families.

Exercise 4.16. Let X1, . . . , Xn
iid∼ N(θ, θ2). Verify that this is a two-parameter exponential

family and find a (jointly) sufficient statistic.

Many distributions we are familiar with belong to the (regular) exponential family. An
important example is N(θ1, θ2). A key result is an extension of Theorem 4.4 to multi-
parameter problems. In particular, in regular exponential families, the statistic T = (T1, . . . , Tm)>,
with Tj =

∑n
i=1Kj(Xi), j = 1, . . . ,m, is a (jointly) complete sufficient statistic for θ. Here

it is important to note that T and θ have the same dimension, namely, m. A somewhat
surprising fact is that this efficient reduction of data—a m-dimensional complete sufficient
statistic for a m-dimensional parameter—is available only for regular exponential families.
Compare this to the calculation in the curved exponential family example mentioned above.

Exercise 4.17. For X1, . . . , Xn
iid∼ Beta(θ1, θ2), find a (jointly) complete sufficient statistic

for (θ1, θ2).

Exercise 4.18. Let X1, . . . , Xn
iid∼ N(θ1, θ2). Find the MVUE of (θ1, θ2).

2Linear independence of functions means that there is no pair (j, k) such that cjpj(θ) + ckpk(θ) ≡ 0 for
constants (cj , ck); this is similar to the notion of linearly independent vectors in linear algebra.
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4.8 Minimal sufficiency and ancillarity

We have seen that sufficient statistics provide a summary of the full data, but there are lots of
such summaries; for example, (X1, . . . , Xn) is always a sufficient statistic. When a complete
sufficient statistic is available, then we know we have the most efficient summary of data—a
complete sufficient statistic contains exactly the information in data about parameter, no
more and no less. But there are cases where a perfectly efficient summary is not available.
One example is the curved exponential family N(θ, θ2) described above. Other examples
include a Student-t model with known degrees of freedom but unknown mean. In such
cases, there is no perfectly efficient summary, but perhaps we can describe what is the most
efficient summary. This is the concept of minimal sufficient statistics.

Definition 4.5. A sufficient statistic T is minimal if, for any other sufficient statistic T ′,
there is a function h such that T = h(T ′).

In less mathematical terms, a statistic T is minimal sufficient if knowing the value of any
other sufficient statistic T ′ is enough to know the value of T . It is not immediately clear how
to find a minimal sufficient statistic, in general. For us in Stat 411, here are some convenient
rules of thumb:

• If T is complete and sufficient, then it’s minimal (converse is false);

• If the MLE θ̂ exists and is both unique and sufficient, then it’s minimal sufficient.

Exercise 4.19. Let X1, . . . , Xn
iid∼ Unif(−θ, θ), θ > 0. Show that θ̂ = max{−X(1), X(n)}, the

MLE, is a minimal sufficient statistic.

Example 4.6. Consider the model Xi = θ + Zi where Z1, . . . , Zn
iid∼ f(z) and f(z) is a

known PDF. If f(z) is a standard normal PDF, then the MLE θ̂ = X̄ is both complete
and sufficient; therefore, it’s also minimal sufficient. If f(z) = e−z/(1 + e−z)2, a logistic
distribution, then the MLE exists (and can be computed numerically) but it is not sufficient;
therefore, it’s not minimal sufficient.

On one end of the spectrum are sufficient statistics, functions of X1, . . . , Xn that retain
all the available information about θ. On the other end are functions that retain none of the
information about θ. At first sight, these functions would seem to be useless for statistics;
however, that is not the case. First a definition.

Definition 4.6. A statistic U = U(X1, . . . , Xn) is called ancillary if its sampling distribution
does not depend on the parameter θ.

In words, we can understand ancillary statistics as containing no information about θ.
This is because the sampling distribution is where the information about θ is stored, so a
sampling distribution free of θ carries no such information.

It turns out that ancillary statistics are actually not useless. In fact, there’s two primary
applications of ancillary statistics in statistical theory. One application is via Basu’s theorem
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(below), and the other is what’s called conditional inference. Some remarks will be given
below about the latter, but this concept is a bit too advanced for Stat 411.

Before we get to the applications, let’s first consider some special examples where ancillary
statistics arise quite naturally.

Location parameter problems.

Suppose the model can be expressed as Xi = θ +Zi, i.e., the parameter θ controls the
“location” of the distribution. The N(θ, 1) problem is one example. Then a statistic
U = U(X1, . . . , Xn) is ancillary if

U(x1 + a, . . . , xn + a) = U(x1, . . . , xn) ∀ a ∈ R, ∀ (x1, . . . , xn).

Examples of such statistics are ones that involve differences, e.g.,
∑n

i=1(Xi − X̄)2.

Scale parameter problems.

Suppose the model can be expressed as Xi = θZi, i.e., the parameter θ controls the
“scale” of the distribution. The Exp(θ), where θ is the mean, is one example. In this
case, a statistic U = U(X1, . . . , Xn) is ancillary if

U(ax1, . . . , axn) = U(x1, . . . , xn), ∀ a > 0, ∀(x1, . . . , xn).

Examples of such statistics are ones that involve ratios, e.g., X̄/(
∑n

i=1X
2
i )1/2.

Location–scale parameter problems.

Suppose the model can be expressed by Xi = θ1 + θ2Zi, i.e., θ1 controls the “location”
of the and θ2 controls the “scale.” A statistic U = U(X1, . . . , Xn) is ancillary if

U(a+ bx1, . . . , a+ bxn) = U(x1, . . . , xn), ∀ a,∀ b,∀ (x1, . . . , xn).

Any function of {X1−X̄
S

, . . . , Xn−X̄
S
} is an ancillary statistic.

Those of you familiar with algebra, in particular, group theory, might find it interesting
that these three classes of problems all fall under the umbrella of what are called group
transformation problems where the model exhibits a certain kind of invariance under a group
of transformations on the sample space. We won’t discuss this in Stat 411.

Our first application of ancillary statistics is in their relationship with complete sufficient
statistics. This is summarized in the famous result of D. Basu.

Theorem 4.5 (Basu). Let T be a complete sufficient statistic, and U an ancillary statistic.
Then T and U are statistically independent.

Proof. Here I will follow our usual convention and not be precise about conditional probabil-
ities, etc. Pick some arbitrary event A for U . Since U is an ancillary statistic, the probability
pA = Pθ(U ∈ A) does not depend on θ. Define πA(t) = Pθ(U ∈ A | T = t). By the iterated
expectation property, we have Eθ{πA(T )} = pA for all θ, i.e.,

Eθ{πA(T )− pA} = 0 ∀ θ.

Since T is complete, it must be that πA(t) = pA for all t, i.e., Pθ(U ∈ A | T = t) = Pθ(U ∈ A)
for all t. Since the event A was arbitrary, the independence claim follows.
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Basu’s theorem can be used to simplify a number of calculations. Below are some par-
ticular applications of this phenomenon.

Exercise 4.20. Let X1, . . . , Xn
iid∼ N(θ1, θ

2
2), where θ2 is the standard deviation. Use Basu’s

theorem to show that X̄ and S2 are independent.3

Exercise 4.21. Let X1, . . . , Xn
iid∼ N(θ, 1). Use Basu’s theorem to evaluate the covariance

between X̄ and Mn, the sample median.

Exercise 4.22. Let X1, . . . , Xn
iid∼ N(0, θ2), where θ > 0 is the standard deviation. Use

Basu’s theorem to evaluate Eθ{X2
1/(X

2
1 + · · ·+X2

n)}.

I will end this section with some remarks about the use of ancillary statistics for what’s
called “conditional inference.” The basic idea is this: since an ancillary statistic does not
depend on θ, we can sometime develop better statistical methods by looking at the condi-
tional sampling distribution of estimates, given the observed value of the ancillary statistics.
Example 7.9.5 in HMC gives some description of the basic idea. Let me give a much simpler
and exaggerated example for illustration. Suppose X1, X2 are independent observations from
a discrete uniform distribution, Unif{θ − 1, θ + 1}. That is, each Xi equals θ − 1 or θ + 1,
both with probability 0.5. Since θ is the mean of this distribution, X̄ is a reasonable choice
of estimator. However, we can write

X̄ =

{
θ if |X1 −X2| = 1,

either θ − 1 or θ + 1 if |X1 −X2| = 0.

Note that U = |X1 −X2| is ancillary, in fact, U ∼ Ber(0.5), free of θ. If we ignore U , then
X̄ is still a good estimate, i.e., consistent, etc. But if look at the observed value of U , then
we know that X̄ is exactly θ when U = 1; when U = 0, we don’t really get any help. So,
in some sense, the observed value of U can help us sharpen our claims about the sampling
distribution of estimators.

Conditional inference was another big idea of Fisher’s, but this has been much slower to
develop than his ideas on maximum likelihood, efficiency, and randomization in experimental
design. Perhaps the reason is that ancillary statistics are not well understood, e.g., it is not
always clear how to find a good one, and the calculations with conditional distributions are
generally much more difficult. One particular instance where this can be useful is if, say, the
MLE θ̂ is not minimal sufficient, but (θ̂, U) is minimal sufficient, for an ancillary statistic U .
In this case, the conditional sampling distribution of θ̂, given U = u, is a better choice for
inference (constructing confidence intervals, etc), than the marginal distribution of θ̂. The
details behind these arguments are complicated, but quite nice. A more advanced course in
statistical theory could present some of these ideas.

3Other standard proofs of this fact make extensive use of linear algebra and properties of the multivariate
normal distribution.
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4.9 Appendix

4.9.1 Rao–Blackwell as a complete-class theorem

In this chapter, the Rao–Blackwell theorem was used basically as a tool that can be used to
create a good unbiased estimator from any not-so-good unbiased estimator. However, the
result is deeper than this, which I will explain briefly here. There is a notion of a complete
class theorem, which we will touch on briefly in Chapter 6. The point of a complete class
theorem is to identify all those estimators (or tests, or whatever) which are “equivalent”
in the sense that no other estimator is better for all possible θ values. The discussion in
Chapter 2 about how, say, the mean square error of an estimator is a function of θ and,
for any two estimators, usually the mean square error curves would intersect, meaning that
one is better than the other for some θ but not all θ. These estimators could be considered
“equivalent” in the sense here.

What the Rao–Blackwell theorem says is that, any estimator which is not a function of a
sufficient statistic, can be beaten by an estimator that is a function of a sufficient statistic;
moreover, the theorem describes how to construct that “better” estimator. So, the conclusion
is that the collection of all estimators that are functions of a sufficient statistic only forms
a complete class. A subtle point is that, even among estimators that depend on a sufficient
statistic, there may be some which are everywhere worse than another estimator depending
on a sufficient statistic. Technically, there may be some estimators which are functions of a
sufficient statistic which are inadmissible. Anyway, the deeper implication of Rao–Blackwell
about sufficient statistics should be clear now.

4.9.2 Proof of Lehmann–Scheffe Theorem

I will start by proving a more general result from which the main theorem will follow. Perhaps
the reason why this theorem is not the “main” theorem is because the conditions required
are too difficult to check. Surprisingly though, the proof is rather straightforward. For this
I will need a bit of new notation. Let Z denote the set of all “unbiased estimators of 0,” i.e.,

Z = {Z : Eθ(Z) = 0 for all θ}.

Then a characterization of the MVUE θ̂ can be given based on the correlation, or covariance
Cθ(θ̂, Z), between θ̂ and unbiased estimators Z of zero.

Lemma 4.1. θ̂ is a MVUE if and only if Cθ(θ̂, Z) = 0 for all θ and for all Z ∈ Z.

Proof. I’ll prove the “if” and “only if” parts separately.
“If” part. Suppose that Cθ(θ̂, Z) = 0 for all θ and for all Z ∈ Z. Set θ̃ = θ̂ + aZ for any
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number a and any Z ∈ Z. Clearly θ̃ is an unbiased estimator of θ. Moreover,

Vθ(θ̃) = Vθ(θ̂ + aZ)

= Vθ(θ̂) + a2Vθ(Z) + 2aCθ(θ̂, Z)

= Vθ(θ̂) + a2Vθ(Z)

≥ Vθ(θ̂).

The last “≥” is “=” if and only if a = 0 or Z ≡ 0. Since all unbiased estimators θ̃ of θ can
be written in the form θ̃ = θ̂+ aZ for some a and some Z ∈ Z, it follows that Vθ(θ̃) ≥ Vθ(θ̂)
for all θ; therefore, θ̂ is a MVUE.

“Only if” part. Suppose θ̂ is a MVUE. Then for any number a and any Z ∈ Z, θ̃ = θ̂+aZ
is an unbiased estimator and, by assumption, Vθ(θ̃) ≥ Vθ(θ̂). We can express Vθ(θ̂ + aZ) in
terms of variances and covariances; that is,

Vθ(θ̂ + aZ) ≥ Vθ(θ̂) =⇒ Vθ(θ̂) + a2Vθ(Z) + 2aCθ(θ̂, Z) ≥ Vθ(θ̂).

Canceling out Vθ(θ̂) on both sides above gives a2Vθ(Z) + 2aCθ(θ̂, Z) ≥ 0 for all θ. This is a
quadratic in a so there exists some value of a for which the left-hand side is negative unless
Cθ(θ̂, Z) = 0 for all θ. So if θ̂ is a MVUE, then Cθ(θ̂, Z) = 0 for all θ and all Z ∈ Z, proving
the “only if” part.

The above lemma gives a necessary and sufficient condition for θ̂ to be the MVUE. How-
ever, the condition is not so easy to check—how could we proceed to verify that Cθ(θ̂, Z) = 0
for all Z ∈ Z? The Lehmann–Scheffe theorem gives a more convenient condition to check,
one that depends on the original model and the choice of sufficient statistic. Essentially, the
condition reduces the set Z to a single element for which the covariance condition is obvious.

Proof of Theorem 4.3. The MVUE must be a function of T ; otherwise, it could be improved
via conditioning by the Rao–Blackwell theorem. By restricting to functions of T , the set Z
shrinks down to

ZT = {Z : Z is a function of T and Eθ(Z) = 0 for all θ} ⊂ Z.

Since T is complete, the only Z ∈ ZT is the trivial statistic Z ≡ 0 (constant equal to zero).
It is clear that Cθ(θ̂, 0) = 0 and so, by Lemma 4.1, θ̂ is the unique MVUE.

4.9.3 Connection between sufficiency and conditioning

No doubt that sufficiency has been fundamental to our understanding of statistics and what
are the relevant portions of the data. Here let’s consider the dimension-reduction aspect of
sufficiency. That is, when we have n iid samples and a single scalar parameter, we hope
that we can reduce our data down to a single (minimal) sufficient statistic. That the data
dimension can be reduced to that of the parameter is a desirable feature.
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What I want to demonstrate here is that this same dimension-reduction can be achieved
by using conditioning, which we discussed briefly at the end of Section 4.8. To keep things

clear and simple, let’s consider an example. Let X1, X2
iid∼ N(θ, 1). Of course, we can keep

T = X̄ as the (minimal) sufficient statistic and, for example, a 95% confidence interval
for θ based on this is T ± 1.96/

√
2. As an alternative, take T = X1 as our statistic, also

one-dimensional. Now consider the distribution of T = X1 given X2 −X1, the latter being
observable and also ancillary. Then

T | (X2 −X1) ∼ N(θ + X2−X1

2
, 1

2
),

which can be easily found by doing the conditional distribution calculations directly, or by
making use of special properties of the multivariate normal distribution. Anyway, if we ask
for a 95% confidence interval for θ based on this conditional distribution we get

X1 −
X2 −X1

2
± 1.96√

2
= X̄ ± 1.96√

2
,

which is exactly the same as what we got from sufficiency.
The point here is that sufficiency may not be all that important, since the same dimension-

reduction can be achieved by other means, namely, by conditioning. The example used here
is too simple to be particularly convincing, but these same ideas can be applied in many
other (but probably not all) problems. I’m not sure exactly how well this point is understood
by statisticians, and could be worth exploring.
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Chapter 5

Hypothesis Testing

5.1 Introduction

Thus far in the course, we have focused on the problem where the parameter of interest θ
is unknown, and the goal is to estimate this unknown quantity based on observable data.
However, one could consider a somewhat simpler goal, namely, to determine if the unknown
θ belongs to one subset Θ0 or another subset Θ1. In other words, we don’t really care about
the actual value of θ, we only want to know where it lives in the parameter space Θ. In
this sense, the hypothesis testing problem is simpler than the estimation problem. Probably
the reason why we present the simpler hypothesis testing problem after the more difficult
estimation problem is that the important concepts of likelihood, sufficiency, etc are easier to
understand in the estimation problem.

In this chapter, we will consider first the motivation and terminology in the hypothesis
testing problem. Terminology can be a difficult hurdle to overcome in these problems, in
part because there’s some inconsistencies across books, papers, etc. We then proceed to
describe the kinds of properties we like a hypothesis test to satisfy. This parallels our earlier
discussion on the basic properties of estimators, in that these are all characteristics of the
sampling distribution of some statistic. The main characteristics of tests we are interested
in are the size and power. We will also discuss the somewhat elusive p-value.

We move on to take a more formal approach to hypothesis testing. Section 5.4 describes
the ideal situation where a “best possible” test is available. There is a very general result
(Neyman–Pearson lemma1) that allows us to find a test of given size with the highest power.
Unfortunately, such an optimal test is only available in relatively simple problems. A more
flexible approach to construct tests is via likelihood ratios. This theory overlaps with what
we discussed regarding maximum likelihood estimators (MLEs). In fact, the important
theorem of Wilks says that likelihood ratios are asymptotically chi-square; this is similar
to the asymptotic normality theorem for MLEs, and it allows us to construct tests with
approximately the correct size.

1Same Neyman as in the factorization theorem.
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5.2 Motivation and setup

To understand the testing problem setup, consider the following example. I offer you the
opportunity to play a game in which you win $1 if a coin lands on Heads and you lose $1
if the coin lands on Tails. If the coin is fair, then you might be willing to play; otherwise,
probably not. So, the goal is to determine if the coin is fair or, more precisely, to determine
if the probability θ that the coin lands on Heads is at least 0.5 or not. This can be done by
watching a sequence of plays of the game: conclude that the coin is unfair (θ < 0.5) if and
only if you observe too many tails in the sequence of plays. This is a very natural strategy;
things can get technical is in setting the “too many” cutoff.

To be specific, let X1, . . . , Xn
iid∼ fθ(x), where θ is the unknown parameter, assumed to lie

in a parameter space Θ. For us, Θ will usually be a subset of R and occasionally a subset of
Rd for some d > 1; in general, Θ can be basically anything. The hypothesis testing problem
is specified by splitting Θ, i.e., Θ = Θ0 ∪Θ1, with Θ0 ∩Θ1 = ∅. This decomposition is then
written in the following form:

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1.

The statement H0 is called the null hypothesis and H1 is called the alternative hypothesis.
In the motivating example above, the null hypothesis is H0 : θ ≥ 0.5 and the alternative
hypothesis is H1 : θ < 0.5, corresponding to Θ0 = [0.5, 1] and Θ1 = [0, 0.5).

The goal is to use observable data X1, . . . , Xn to decide between H0 and H1. Formally,
a test is a function ϕ(·) that maps (x1, . . . , xn) to the interval [0, 1]; in almost all cases, the
test can be chosen to take only values 0 and 1. Suppose, for the moment, that ϕ(·) takes
only values 0 and 1. Then the possible conclusions of the hypothesis testing problem are

ϕ(X1, . . . , Xn) = 1 ⇐⇒ Reject H0

ϕ(X1, . . . , Xn) = 0 ⇐⇒ Do not reject H0.

Note that the conclusions (i) never say anything about directly H1 and (ii) never say that
one of the two hypothesis is true. In particular, we cannot conclude from sample data that
either H0 or H1 is true. In what follows (and in class), for simplicity of presentation, I may
write (or say), e.g., “accept H0” but please understand this to mean “Do not reject H0.”
Practically there is no difference, but logically the difference is drastic: it is impossible for an
experiment to confirm a theory, but when enough evidence exists to suggests that a theory
is false, it is standard to reject that theory and develop a new one.23 Tests ϕ(·) are like
estimators in the estimation problem, and our primary focus is how to choose a “good” test.

2Such questions fall under the umbrella of “Philosophy of Science.” In particular, Cournot’s principle
helps to connect probability to how decisions can be made, which is the backbone of statistical inference.

3This is exactly the process by which scientists have recently reached the conclusion that the Higgs’ Boson
particle exists.
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H0 is true H0 is false
accept H0 correct Type II error
reject H0 Type I error correct

Table 5.1: Four possible outcomes in a hypothesis testing problem. Remember that “accept
H0” actually means “Do not reject H0.”

5.3 Basics

5.3.1 Definitions

In a hypothesis testing problem, there are four possible outcomes; these are described in
Table 5.1. Two of the four possible outcomes result in a correct decision, while the other
two result in an error. The two errors have names:

Type I error = Rejecting H0 when it’s true

Type II error = Accepting H0 when it’s false

We want to choose the test ϕ such that the probability of making is small in a certain sense
to be described below.

Before we discuss the choice of test, I want to present an alternative, but equivalent, way
to formulate the test. Before we defined a function ϕ defined on the set of all (x1, . . . , xn) that
takes values 0 or 1. The alternative strategy is to specify direct the set of all (x1, . . . , xn)
such that the function ϕ takes value 1. This set, which I will denote by C, is called the
critical region. To see that the two are equivalent, note that

C = {(x1, . . . , xn) : ϕ(x1, . . . , xn) = 1} ⇐⇒ ϕ(x1, . . . , xn) = IC(x1, . . . , xn),

where IC(·) is the indicator function of C. Whether one works with a test function ϕ or a
critical region C is really just a matter of taste. I personally like to use the test function
because the definitions below are easier to state in terms of ϕ.

The two primary characteristics of a test ϕ (or C) are size and power.

Definition 5.1. Given Θ0, the size of the test ϕ (or C), denote by size = sizeϕ is

size = max
θ∈Θ0

Eθ{ϕ(X1, . . . , Xn)} = max
θ∈Θ0

Pθ{(X1, . . . , Xn) ∈ C}.

In words, the size of the test is the probability of a Type I error.

Definition 5.2. The power of the test ϕ (or C), denoted by pow(·) = powϕ(·), is a function

pow(θ) = Eθ{ϕ(X1, . . . , Xn)} = Pθ{(X1, . . . , Xn) ∈ C}.

In words, pow(θ′) is the probability of rejecting H0 when θ = θ′.
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Since size is an error probability, it is clear that we want it to be small. For power,
we’re primarily interested in how it looks for θ outside Θ0. In that case, pow(θ) denotes the
probability of correctly rejecting H0 when it’s false. Alternatively, for θ 6∈ Θ0, 1 − pow(θ)
denotes the probability of making a Type II error. In this light, we see that we want the
power to be large. Things are often difficult because power is function, not a number.

With this terminology, we are now in a position to formally state our goal. In particular,
we want to fix the size at some small value, say α = 0.05, and then seek a test ϕ (or C) that
maximizes the power pow(·) in some sense. The reason we fix size and try to maximize pow
is that the two quantities are competing in the following sense: if we force the test to have
small size, then we indirectly reduce the power, and vice versa. That is, improving in one
area hurts in the other. So the accepted strategy is to allow a little chance of a Type I error
with the hopes of making the power large.

5.3.2 Examples

Before we get into formalities about “best” tests, etc, we should do some simple intuitive
examples. At this point, it may not be clear why the various steps are taken.

Exercise 5.1. (z-test) Let X1, . . . , Xn
iid∼ N(θ, 1), and consider H0 : θ = 0 vs. H1 : θ > 0.

(a) Define a test with critical region C = {(x1, . . . , xn) : x̄ > k}. Find k such that the size
of the test is α = 0.05.

(b) For the test you derived in (a), find the power function pow(θ).

Exercise 5.2. (t-test) A particular car is advertised to have gas mileage 30mpg. Suppose
that the population of gas mileages for all cars of this make and model looks like a normal
distribution N(µ, σ2), but with both µ and σ unknown. To test the advertised claim, sample
n = 10 cars at random and measure their gas mileages X1, . . . , X10. Use these data to test
the claim, i.e., test H0 : µ = 30 vs. H1 : µ < 30. Assume x̄ = 26.4 and s = 3.5 are the
observed sample mean and standard deviation, respectively. Use α = 0.05. (Hint: Use a
Student-t distribution.)

Example 5.1. Let X1, . . . , Xn
iid∼ Ber(θ), and consider H0 : θ = θ0 vs. H1 : θ < θ0, for fixed

θ0. Define a critical region C = {(x1, . . . , xn) :
∑n

i=1 xi ≤ k}. This is like the coin-tossing
example from before—we should reject the claim that the coin is fair (θ0 = 0.5) if too few
heads are observed in the sample, i.e., that the total number of heads

∑n
i=1Xi is below a

threshold k. Given k, the size of such a test is

Pθ0

{ n∑
i=1

Xi ≤ k
}

= P{Bin(n, θ0) ≤ k} =
k∑
t=0

(
n

t

)
θt0(1− θ0)n−t.

There is no nice expression for this quantity on the right-hand side, call it Fn,θ0(k), but it
can be easily evaluated with software (e.g., R). However, recall that Bin(n, θ0) is a discrete
distribution, so Fn,θ0(k) has only finitely many values possible values. So, it is quite possible
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that there is no k that solves the equation, Fn,θ0(k) = α, for a particular α, such as α = 0.05.
Therefore, for given α, there may not exist4 a test of exact size α.

To avoid such a difficulty, one might consider an approximation, in particular, an ap-
proximation of the discrete Bin(n, θ) distribution of Y =

∑n
i=1Xi with a continuous one for

which an exact size-α test is available. In particular, recall the CLT-based approximation:
Y ∼ N(nθ, nθ(1− θ)). In this case, the size can be approximated by

Pθ0(Y ≤ k) = Pθ0

( Y − nθ0√
nθ0(1− θ0)

≤ k − nθ0√
nθ0(1− θ0)

)
≈ Φ

( k − nθ0√
nθ0(1− θ0)

)
.

If we set the right-hand side equal to α we can solve for k, that is,

k = nθ0 + z?α
√
nθ0(1− θ0), where Φ(z?α) = α.

Thus, the CLT-based approximate size-α test rejects H0 iff Y ≤ nθ0 + z?α
√
nθ0(1− θ0).

Power calculations for this test can be carried out similar to that in Exercise 5.1(b).

5.3.3 Remarks

First I give some “philosophical” remarks. Recall our discussion of properties of estimators
earlier in the course, e.g., unbiasedness, consistency, etc. These are properties of the sampling
distribution of the estimator and, in particular, they do not guarantee that, for a particular
data set, the estimator obtained is “good.” The same is true in the hypothesis testing
problem. That is, for a given data set, even the best test can lead to a wrong decision
(Type I or Type II error). Having exact size α and a large power function are properties
to help one select a test to use—once the data set is fixed, these properties are meaningless
in terms of explaining the uncertainty that a correct decision was made. So one should be
careful in interpreting size and 1 − pow(θ). These are not probabilities that a Type I and
Type II error is committed for the given data.

In practice, we usually focus on null hypotheses that consist of a single point, i.e., H0 :
θ = θ0. This is essentially without loss of generality. For example, suppose we want to test
H0 : θ ≤ θ0 versus H1 : θ > θ0. In most cases, the power function pow(θ) is continuous and
monotone in θ, in this case, monotone increasing. Since the size of the test is maxθ≤θ0 pow(θ),
monotonicity of pow implies that the size is simply pow(θ0), the power at the upper end point.
This is actually the same as the size of the test of H0 : θ = θ0. Therefore, we usually will
formulate the test in terms of just the point θ0 in Θ0 that is closest to Θ1. These “point null
hypotheses” are also intuitively easier.

5.3.4 P-values

There are a couple of issues that arise in the testing problem that are somewhat undesir-
able. First, as we saw above, not all problems admit an exact (non-randomized) size-α test.

4An exact size-α test always exists if one considers randomized tests; see Appendix 5.7.3. These random-
ized tests, however, are rather strange, so people rarely use them in practice.
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Second, the neither the size nor the power are directly related to the data that is actually
observed. One tool that can help to rectify this is the p-value.

Definition 5.3. Let T = T (X1, . . . , Xn) be a statistic, and consider H0 : θ = θ0 vs. H1 : θ <
θ0 (or H1 : θ > θ0). Suppose the test rejects H0 if T ≤ k (or T > k). Let t = T (x1, . . . , xn)
for the given sample x1, . . . , xn. Then the p-value is

pval(t) = Pθ0(T ≤ t) or pval(t) = Pθ0(T > t).

The p-value is sometimes called the “observed size” because the calculation looks similar;
in my opinion, this is a potentially misleading name. Note also that there’s no reason to
worry about T having discrete instead of continuous sampling distribution as there was in
the previous binomial example.

How do we interpret the p-value? Formally, p-value represents the probability, assuming
H0 is true, of a “more extreme” observation (with respect to H1) compared to what was
actually observed. To understand how such a quantity relates to H0 and H1, consider two
possible scenarios:

• Large p-value means the observed t sits near the middle of the sampling distribution
of T under fθ0 , i.e., the observed t is consistent with H0. This is evidence consistent
with H0 being true.

• Small p-value means the observed t sits in one of the tails of the sampling distribution
of T under fθ0 , i.e., the observed t is inconsistent with H0. This suggests one of two
things: either H0 is false or t is an outlier/extreme observation. Since the latter is
deemed unlikely, one tends to believe the former—that is, small p-value is evidence
inconsistent with H0 being true.5

At a high level, p-values are “measures of evidence” in the truthfulness of H0. That is, small
p-value means little evidence in favor of H0 and large p-value means substantial evidence in
favor of H0. I view pval(t) as representing the plausibility of H0 given observation t.

From an operational point of view, one might consider defining a test based on the
p-value. In particular, one can test H0 : θ = θ0 with the p-value:

reject H0 iff pval(t) ≤ α. (5.1)

When T has a continuous sampling distribution, the test above has exact size α; in general,
its size is bounded above by α. This is the standard use of p-values, but I personally feel
(as did Fisher, the inventor of p-value) that p-values are more valuable than just as a tool
to define a testing rule like in (5.1).

Example 5.2. Recall the setup in Exercise 5.2. That is, X1, . . . , Xn
iid∼ N(µ, σ2) and the

goal is to test H0 : µ = 30 versus H1 : µ < 30. Let T = n1/2(X̄ − 30)/S be the t-statistic; its
observed value, based on x̄ = 26.4 and s = 3.5 is

t = 101/2(26.4− 30)/3.5 = −3.25.

5This reasoning is consistent with Cournot’s principle for the use of probability to test theories.
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Because the alternative has “<” the p-value is defined as

pval(−3.25) = P30(T < −3.25) = G10−1(−3.25) ≈ 0.005.

This calculation is based on the fact that, when µ = 30, T has a Student-t distribution
with 10 − 1 = 9 degrees of freedom; G9 is this distribution’s CDF. The value 0.005 can
be obtained from software (in R, use pt(-3.25, df=9)) or from Table IV in HMC, p. 660.
Since the p-value is small, data in this case provides evidence against H0. Formally, if we
take α = 0.05, then an exact size-0.05 test would, in this case, reject H0 because the p-value
is less than 0.05.

Exercise 5.3. Find an expression for the p-value, as a function of the observed Y = y, for
the CLT-based test in Example 5.1. State your conclusions if n = 100, θ0 = 0.3, and y = 33,
i.e., which hypothesis is supported by data?

To conclude the discussion, let me list two common misinterpretations. If you remember
anything about p-values from Stat 411, you should remember these warnings.

• The p-value is not the probability that H0 is true. The null is fixed and either true or
not true, so there are no non-trivial probabilities here. However, one can introduce
non-trivial probabilities by taking a Bayesian point of view.

• The p-value is not the probability a Type I error is made, given data. The p-value
calculation has nothing to do with accept/reject decisions. It’s simply a tail probability
for the sampling distribution of the test statistic T , which can be used to measure the
amount of support in data for H0. One can, of course, use p-values to make decisions
but then the p-value obviously cannot be the probability of making a Type I error.

5.4 Most powerful tests

5.4.1 Setup

The material in this section parallels that in the section on minimum variance unbiased
estimation. Indeed, we will focus on tests which have a given size α, and seek the one with
the largest power. Fixing the size to be α is like requiring the estimators to be unbiased,
and looking for the size-α test with largest power is like looking for the unbiased estimator
with the smallest variance.

A general theory of most powerful tests exists only for the relatively simple problem of
testing H0 : θ = θ0 versus H1 : θ = θ1, where θ1 6= θ0; this is called a simple-versus-simple
hypothesis testing problem. We can now define what is meant by most powerful test.

Definition 5.4. Consider testing H0 : θ = θ0 versus H1 : θ = θ1 (θ1 6= θ0) based on
X = (X1, . . . , Xn) iid samples from fθ(x). Given α ∈ (0, 1), let

Tα = {ϕ : Eθ0 [ϕ(X)] = α}

be the collection of all tests ϕ with size α. Then the most powerful size-α test ϕ? satisfies
(i) ϕ? ∈ Tα, and (ii) for any ϕ ∈ Tα, Eθ1 [ϕ(X)] ≤ Eθ1 [ϕ

?(X)].
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The point here is that by focusing just on two points, θ0 and θ1, and insisting on size-α,
we only need to worry about the power function at θ = θ1, i.e., just the number Eθ1 [ϕ(X)].
In general, power is a function not just a number, and we know that comparing functions is
much harder than comparing numbers. We will see below that, in some cases, it is possible
to extend the most powerful claim to more general alternatives.

5.4.2 Neyman–Pearson lemma

The idea of most powerful tests is simple, but it is not at all clear how to find ϕ? for a given
problem. Fortunately, the Neyman–Pearson lemma, given next, is at our disposal.

Theorem 5.1 (Neyman–Pearson). Consider testing H0 : θ = θ0 versus H1 : θ = θ1 based
on continuous data X with likelihood function LX(θ). Then the most powerful size-α test is
given by

ϕ?(X) =

{
1 if LX(θ0) /LX(θ1) ≤ k

0 if LX(θ0) /LX(θ1) > k,

where k is chosen such that Eθ0 [ϕ
?(X)] = α.

Here’s a few remarks about this important result:

• An equivalent formulation of the most powerful test, in terms of a critical region C?,
writes ϕ?(X) = IC?(X), where

C? = {x : Lx(θ0) /Lx(θ1) ≤ k},

and k is just as in the statement of the theorem. It turns out that this latter formulation
is a bit more convenient for proving the result; see Appendix 5.7.2.

• Also note the version of the Neyman–Pearson lemma stated above only handles con-
tinuous distribution data. This is not true. It applies for discrete problems as well, but
with a slight modification. Recall that, in discrete problems, it may not be possible to
define a test with exact size α. The remedy is to allow what’s called randomized tests.
Appendix 5.7.3 gives the extended version of the Neyman–Pearson lemma. This is a bit
trickier and, frankly, quite impractical, so we won’t focus on this here. Here, we agree
that, for discrete problems, randomization can be ignored unless you are specifically
asked to consider it.

• The Neyman–Pearson lemma makes no claims on the dimension of data or parameter
θ. So, the result holds for vector or even function parameters without changing a word.
The only limitation of the result is that it holds only for simple-vs-simple hypotheses;
but see the next remark.

• In general, the most powerful test will depend on θ1. However, in many cases, it can
be shown that the test actually does not depend on θ1. In those cases, the optimality
of the test can be extended to a sort of uniform optimality for a more general kind of
alternative hypothesis; see Section 5.4.3.
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Exercise 5.4. For each case below, write down the form of the most-powerful size-α test of
H0 : θ = θ0 versus H1 : θ = θ1, with θ1 > θ0. Please simplify the test as much as possible.
For discrete problems, you may ignore randomization.

(a) X1, . . . , Xn
iid∼ Ber(θ);

(b) X1, . . . , Xn
iid∼ Pois(θ);

(c) X1, . . . , Xn
iid∼ N(θ, 1);

(d) X1, . . . , Xn
iid∼ N(0, θ).

Exercise 5.5. Let X1, . . . , Xn
iid∼ Unif(0, θ). Use the Neyman–Pearson lemma to find the

most powerful size-α test of H0 : θ = θ0 versus H1 : θ = θ1, with θ1 < θ0.

5.4.3 Uniformly most powerful tests

Observe that, in Exercise 5.4, none of the tests derived based on the Neyman–Pearson lemma
depend on the particular θ1 value; all that mattered was that θ1 was greater than θ0, although
the direction of the inequality isn’t really important either. In such cases, it is possible to
extend the claimed optimality to more general kinds of alternatives hypotheses.

Definition 5.5. A size-α test is uniformly most powerful (UMP) for H0 : θ = θ0 versus
H1 : θ ∈ Θ1 if it’s most powerful for H0 : θ = θ0 versus H1 : θ = θ1 for each θ1 ∈ Θ1.

For the examples in Exercise 5.4, the set Θ1 is {θ1 : θ1 > θ0}. So, there, we can make a
stronger conclusion and say that those tests derived from the Neyman–Pearson lemma are
uniformly most powerful size-α tests for H0 : θ = θ0 versus H1 : θ > θ0. One should keep
in mind that these are special examples (exponential families) and that, in general, there
may be no UMP test. When a UMP test exists, the following definition and result gives a
convenient tool for find it.

Definition 5.6. A distribution with likelihood function L(θ) has the monotone likelihood
ratio (MLR) property in a statistic T = T (X1, . . . , Xn) if, for θ0 < θ1, L(θ0)/L(θ1) is a
monotone function of T .

Proposition 5.1. If the distribution has the MLR property in T , then the UMP test of
H0 : θ = θ0 versus H1 : θ > θ0 or H1 : θ < θ0 exists and can be expressed in terms of T
instead of the full likelihood ratio.

Proof. Use the Neyman–Pearson lemma and use MLR property to simplify.

So, the MLR property provides a convenient way to identify when a UMP test exists
and, when it does, how to actually write it. The nice thing is, we are already very familiar
with likelihood ratios from our investigation of MLEs, sufficient statistics, etc.
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Exercise 5.6. Let X1, . . . , Xn
iid∼ fθ(x), where fθ(x) is a regular one-parameter exponential

family with PDF/PMF fθ(x) = exp{p(θ)K(x) + S(x) + q(θ)}. Show that the likelihood has
the MLR property in T =

∑n
i=1K(Xi). Apply this result to identify UMP tests for the

examples in Exercise 5.4.

Exercise 5.7. For the Unif(0, θ) problem in Exercise 5.5, is the test derived a UMP test?

To conclude this section, I will give some remarks on non-existence of UMP tests. We have
focused on tests of simple nulls versus simple or “one-sided” alternatives, e.g., H1 : θ = θ1,
H1 : θ > θ0, or H1 : θ < θ0. We have left out the “two-sided” alternative H1 : θ 6= θ0. In
general, there are no UMP tests for two-sided alternatives. The argument goes like this, but
you should draw a picture to make this clear. Consider a N(θ, 1) example. We have already
found UMP tests for H1 : θ < θ0 and H1 : θ > θ0, and these two are clearly different from
one another. If we assume that there exists a UMP test for H1 : θ 6= θ0, then its power
function is everywhere ≥ than the two UMP test power functions, with > for some θ values.
But this contradicts the claim that the two one-sided tests are UMP; therefore, there cannot
be a UMP test for the two-sided alternative.

5.5 Likelihood ratio tests

5.5.1 Motivation and setup

As we saw in the previous section, optimality results can be applied only to some relatively
simple problems, such as simple-vs-simple hypotheses. Therefore, there is some reason to
consider a more flexible approach. This parallels the material presented in the section on
MLEs; that is, we consider a general approach for constructing a test (based on likelihood),
and show that the resulting tests have good properties. The key to the broad applicability
of estimation via MLE is that there is a general asymptotic normality theory that unifies all
problems. There is something similar here in the context of testing.

Let X1, . . . , Xn be iid with some some PDF/PMF fθ(x). The likelihood function is
L(θ) =

∏n
i=1 fθ(Xi); the MLE θ̂ is the value that maximizes the likelihood function. In what

follows, we will consider a general two-sided hypothesis testing problem, H0 : θ = θ0 versus
H1 : θ 6= θ0. But, if θ is a vector, then “θ 6= θ0” is not really “two-sided.”

5.5.2 One-parameter problems

Define the likelihood ratio statistic

Λ = Λ(X1, . . . , Xn; θ0) = L(θ0)/L(θ̂).

By definition of θ̂, note that Λ ≤ 1. Recall our interpretation of likelihood: it provides a
ranking of parameter values in terms of how well the postulated model fits the observed data,
i.e., L(θ′) > L(θ′′) means the model fθ′ gives a better fit to the observed data compared to
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fθ′′ . So the intuition is that, if H0 is true, then we expect Λ to be close to 1. With this
intuition, we define a critical region for the test as

C = {(x1, . . . , xn) : Λ(x1, . . . , xn; θ0) ≤ k},

and the test function ϕ = IC with k chosen such that the size of the test is a specified
α ∈ (0, 1). In words, we reject H0 iff the observed likelihood ratio statistic Λ is too small.

Exercise 5.8. For each case below, write down the likelihood ratio statistic Λ.

(a) X1, . . . , Xn
iid∼ Ber(θ);

(b) X1, . . . , Xn
iid∼ Pois(θ);

(c) X1, . . . , Xn
iid∼ N(θ, 1);

(d) X1, . . . , Xn
iid∼ N(0, θ);

(e) X1, . . . , Xn
iid∼ Unif(0, θ);

(f) X1, . . . , Xn
iid∼ fθ(x) = e−(x−θ)I[θ,∞)(x).

Take the N(θ, 1) problem above as an example. It was shown that Λ = e−
n
2

(X̄−θ20), where
X̄ is the sample mean and θ0 is the hypothesized mean. Then the likelihood ratio test is
determined by Λ ≤ k for a suitably chosen k. Let’s work on this:

Λ := e−n(X̄−θ0)2/2 ≤ k ⇐⇒ −2 log Λ := n(X̄ − θ0)2 ≥ −2 log k.

Set k′ = −2 log k. Then we want to choose k′ such that

Pθ0{n(X̄ − θ0)2 ≥ k′} = α.

Recall that, if Z ∼ N(0, 1), then Z2 ∼ ChiSq(1). In our case, n1/2(X̄ − θ0) ∼ N(0, 1), so the
probability in question is a right-tail probability for a ChiSq(1) random variable. That is, if
G1 is the CDF of ChiSq(1), then we want to find k′ such that 1−G1(k′) = α or, equivalently,
G1(k′) = 1 − α. Therefore, k′ is the (1 − α)-quantile of ChiSq(1), denoted by χ2

1,1−α, which
can be obtained from the chi-square table (HMC, Table II, p. 658). In particular, if α = 0.05,
then k′ = χ2

1,0.95 = 3.841. If we wanted to, we could convert k′ back to k, but this is generally
not necessary.

Exercise 5.9. Find the likelihood ratio test for the N(0, θ) problem above. In this case, an
exact test can be derived, also using chi-square distribution. (Hint: If Xi ∼ N(0, θ), then
X2
i /θ ∼ ChiSq(1); also, 1

θ

∑n
i=1X

2
i ∼ ChiSq(n).)

The cutoff k (or k′ or whatever) can, in principle, be found exactly like in the normal
example above. In the normal example, −2 log Λ had a nice distributional form, namely,
−2 log Λ ∼ ChiSq(1). In general, however, Λ or −2 log Λ may not have a convenient sampling
distribution, so solving for k or k′ can be difficult.6 Therefore, it may be of interest to consider
a more convenient approximation. The following theorem, due to Wilks, shows that the chi-
square distribution of −2 log Λ in the normal example above serves as a good approximation
in general, provided that n is sufficiently large.

6You can use Monte Carlo to get it in general.
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Theorem 5.2 (Wilks, one parameter). Assume those regularity conditions R0–R5 from the
material on MLEs. If H0 : θ = θ0 is true, then −2 log Λ→ ChiSq(1) in distribution.

Proof. This will just be a quick sketch of the proof; details in HMC, p. 344. Let `(θ) =
logL(θ), and take a Taylor approximation of `(θ) around θ = θ0, evaluated at θ = θ̂:

`(θ̂) = `(θ0) + `′(θ0)(θ̂ − θ0) + `′′(θ0)(θ̂ − θ0)2/2 + error,

where the derivatives are given by

`′(θ0) =
n∑
i=1

∂

∂θ
log fθ(Xi)

∣∣∣
θ=θ0

and `′′(θ0) =
n∑
i=1

∂2

∂θ2
log fθ(Xi)

∣∣∣
θ=θ0

.

We will ignore the error term in what follows. Then −2 log Λ is approximately

−2 log Λ = 2{`(θ̂)− `(θ0)}
= 2`′(θ0)(θ̂ − θ0) + `′′(θ0)(θ̂ − θ0)2

= 2n−1/2`′(θ0) · n1/2(θ̂ − θ0) + n−1`′′(θ0) ·
[
n1/2(θ̂ − θ0)

]2
.

By the LLN, n−1`′′(θ0)→ −I(θ0) in probability. Also, from the proof of asymptotic normality
of MLEs, we have that

n−1/2`′(θ0) = n1/2I(θ0)(θ̂ − θ0) + Zn,

where Zn → 0 in probability. Plugging these things in above we get

−2 log Λ ≈ 2nI(θ0)(θ̂ − θ0)− I(θ0)[n1/2(θ̂ − θ0)]2 = {[nI(θ0)]1/2(θ̂ − θ0)}2.

Since [nI(θ0)]1/2(θ̂ − θ0) → N(0, 1) in distribution, the square converges in distribution to
ChiSq(1), completing the proof.

Again, the point of Wilks theorem is that we can construct an approximate size-α test
based on likelihood ratio Λ, without considering its exact sampling distribution. The theorem
says, if n is large, then −2 log Λ is approximately ChiSq(1) when H0 is true. So, all we need
is to calculate Λ and find the chi-square quantile like in the normal example.

Exercise 5.10. For the Bernoulli and Poisson problems above, find an approximate size-α
likelihood ratio test based on Wilks theorem.

Example 5.3. Let X1, . . . , Xn
iid∼ Exp(θ), where θ is the mean. The likelihood function is

L(θ) = θ−ne−nX̄/θ, so that the MLE is θ̂ = X̄. The corresponding likelihood ratio statistic is

Λ = L(θ0)/L(θ̂) = (X̄/θ0)ne−n(X̄/θ0−1).

Write T = nX̄/θ0; we know that, under the stated model, T ∼ Gamma(n, 1). Then the
likelihood ratio, as a function of T , is

Λ = g(T ) = n−nT ne−(T−n).
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Figure 5.1: Figures for the exponential mean likelihood ratio tests in Example 5.3.

It is easy to check that Λ ≤ k iff T ≤ k1 or T ≥ k2 for suitable constants k1, k2; see
Figure 5.1(a). Therefore, the exact size-α likelihood ratio test is

Reject H0 iff T ≤ k1 or T ≥ k2,

where k1, k2 are chosen to make the size of this test equal to α. We can take k1 = γn,α/2 and
k2 = γn,1−α/2, where γn,p is the pth quantile of the Gamma(n, 1) distribution. (This is the
same test as in Example 6.3.1 in HMC.) As an alternative, we can apply Wilks theorem to
get an approximate size-α test. Simply, the test is

Reject H0 iff −2n(log X̄ − log θ0) + 2n(X̄/θ0 − 1) ≥ χ2
1,α.

This is much easier to write down compared to the exact size-α test; however, we are sacri-
ficing a bit on size and also on power; see Figure 5.1(b). R codes are given in Section 5.7.1.

5.5.3 Multi-parameter problems

When θ is a vector, i.e., Θ ⊆ Rd for d > 1, the problem is the same, at least in principle,
though the details become more cumbersome. The problem is formulated as follows:

H0 : θ ∈ Θ0 versus H1 : θ 6∈ Θ0.

This looks the same as before, though, there is a special feature hidden in the notation.
The set Θ0 will have effective dimension d0 < d. That is, the null hypothesis specifies a
lower-dimensional subset of the full parameter space. For example, in the N(θ1, θ2) example,
we might want to test if θ1, the mean, is equal to zero. In this case, Θ0 is a one-dimensional
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subset {(θ1, θ2) : θ1 = 0, θ2 > 0} of the two-dimensional plane. As we will see below, the
dimension of the null hypothesis parameter space is important.

As before, we can write the likelihood function L(θ) for θ based on the given data

X1, . . . , Xn
iid∼ fθ(x). For the testing problem above, the likelihood ratio statistic is

Λ =
maxθ∈Θ0 L(θ0)

maxθ∈Θ L(θ̂)
;

the denominator is just L(θ̂) where θ̂ is the global MLE, while the numerator is the con-
strained maximum of L(θ). In most cases, it is best to think carefully about the structure
of the problem when H0 is true—in those cases, it may be possible to borrow our previous
simpler calculations of MLEs.

Exercise 5.11. Let Xj1, . . . , Xjn
iid∼ Ber(θj), for j = 1, 2; that is, we have two Bernoulli

samples of the same size n but with potentially different success probabilities. The goal is to
test H0 : θ1 = θ2 versus H1 : θ1 6= θ2. Find the likelihood ratio statistic Λ. (Hint: if θ1 = θ2,
then we have a sample of size 2n from a Bernoulli distribution with parameter θ being the
common value of θ1, θ2.)

Exercise 5.12. Let Xj1, . . . , Xjn
iid∼ N(θj, σ

2), for j = 1, 2, with σ > 0 known. The goal is
to test H0 : θ1 = θ2 versus H1 : θ1 6= θ2. Find the likelihood ratio statistic Λ.

The interpretation of Λ here is the same as in the one-parameter case, i.e., if H0 is true
then we expect Λ to be close to 1. Therefore, it is reasonable to define the size-α likelihood
ratio test as follows:

Reject H0 iff Λ ≤ k

where k is chosen to make the size of the test equal to α. It is often the case that the
exact distribution of Λ is not available, so finding k is not possible. Then it helps to have a
result by which we can derive an approximate test. In the one-parameter case we had Wilks
theorem and, as it turns out, we have a version of Wilks theorem in this more general case
too.

Theorem 5.3 (Wilks, multi-parameter). Under certain regularity conditions, if H0 : θ = θ0

is true, then −2 log Λ→ ChiSq(d− d0) in distribution.

The (assumptions and) conclusions of this theorem are essentially the same as those in
the previous Wilks theorem. The main difference is in the degrees of freedom in the chi-
square approximation. To see that this is a generalization of the one-parameter case, note
that, in the latter case, H0 is equivalent to Θ0 = {θ0}, which is a d0 = 0-dimensional subset
of R; then d− d0 = 1− 0 = 1, just like in the first Wilks theorem.

Exercise 5.13. Use Wilks theorem to find an approximation size-α test in Exercise 5.12.
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5.6 Likelihood ratio confidence intervals

A useful tool for constructing confidence intervals/regions for unknown parameters is to
“invert” a hypothesis test. That is, for a given test of size α, define a subset of the parameters
(depending on data X) as follows:

Cα(X) = {θ0 : the test does not reject H0 : θ = θ0}.

Then it is easy to see that, for any θ0,

Pθ0{Cα(X) 3 θ} = Pθ0(test does not reject H0 : θ = θ0) = 1− size = 1− α.

Therefore, Cα(X) is a 100(1− α)% confidence interval/region for θ.
Since the likelihood ratio test is a general tool for constructing tests, it makes sense that

it would also be used for constructing (approximate) confidence intervals. Define

Clrα (X) = {θ0 : −2 log Λ(θ0) ≤ kα},

where Λ(θ0) = L(θ0)/L(θ̂) and kα is either the cutoff required for the likelihood ratio test
to have exactly size α, or the chi-square percentile as in the case of Wilks theorem. In the
latter case, Clrα (X) is only an asymptotically approximate confidence interval, i.e.,

lim
n→∞

Pθ0{Clrα (X) 3 θ0} = 1− α.

That is, when n is large, the coverage probability for Clrα (X) is approximately 1− α.

Example 5.4. Let X1, . . . , Xn be iid Beta(θ, 1), with density fθ(x) = θxθ−1, x ∈ (0, 1).
Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 for some fixed θ0. We have

L(θ) = θn
( n∏
i=1

Xi

)θ−1

,

and, by direct calculation, the MLE is θ̂ = −{n−1
∑n

i=1 logXi}−1. Then

−2 log Λ(θ0) = 2n log(θ̂/θ0)− 2(θ0 − θ̂)
n∑
i=1

logXi.

I simulated n = 25 observations from a Beta(5, 1) distribution, and a plot of −2 log Λ(θ0) as
a function of θ0 is shown in Figure 5.2. The horizontal line at χ2

1,0.95 = 3.84, the Wilks test
cutoff, determines the (asymptotically approximate) 95% confidence interval on the θ0-axis.
The particular interval in this case is (3.53, 7.76), which contains the true θ = 5.
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Figure 5.2: Plot of −2 log Λ(θ0) based on simulated data for the beta distribution problem
in Example 5.4.

5.7 Appendix

5.7.1 R code for Example 5.3

power.exact <- function(theta) {

p1 <- pchisq(theta0 * qchisq(alpha / 2, 2 * n) / theta, 2 * n)

p2 <- 1 - pchisq(theta0 * qchisq(1 - alpha / 2, 2 * n) / theta, 2 * n)

return(p1 + p2)

}

power.approx <- function(theta) {

M <- 1e4

pow <- 0 * theta

for(i in 1:length(theta)) {

Xbar <- rgamma(M, shape=n, rate=1 / theta[i]) / n

lrt <- 2 * n * ((Xbar / theta0 - 1) - log(Xbar) + log(theta0))

pow[i] <- mean(lrt >= qchisq(1-alpha, 1))

}

return(pow)

}

n <- 7

theta0 <- 1

alpha <- 0.05

g <- function(t) n**(-n) * t**n * exp(-(t - n))

curve(g, xlim=c(1, 20), lwd=2, xlab="t", ylab="g(t)")
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abline(h=0.1, lty=3, lwd=2)

Theta <- seq(1, 5, len=20)

curve(power.exact, xlim=range(Theta), lwd=2, xlab=expression(theta),

ylab=expression(pow(theta)))

lines(Theta, power.approx(Theta), lwd=2, lty=2)

legend(x="bottomright", inset=0.05, lwd=2, lty=1:2, c("Exact", "Approx"))

5.7.2 Proof of Neyman–Pearson lemma

Take any test ϕ = IC in Tα, and let ϕ? be the test described in the Neyman–Pearson lemma.
Then the power functions, at generic θ, for ϕ and ϕ? are given by

pow(θ) =

∫
C

Lx(θ) dx =

∫
C∩C?

Lx(θ) dx+

∫
C∩Cc?

Lx(θ) dx,

pow?(θ) =

∫
C?

Lx(θ) dx =

∫
C?∩C

Lx(θ) dx+

∫
C?∩Cc

Lx(θ) dx,

which is a straightforward property of the integral and the decomposition, e.g., C = (C ∩
C?) ∪ (C ∩ Cc

?). Note that the common term—with integration over C ∩ C?—will cancel
out if we take a difference between these two. Next note that if we take θ = θ0, then both
expressions above must equal α by the size assumption, so taking a difference of the two
expressions reveals that ∫

Cc∩C?
Lx(θ0) dx =

∫
C∩Cc?

Lx(θ0) dx. (5.2)

Now we take a difference pow?(θ1) − pow(θ1), with the goal of showing that this difference
is non-negative. The key is the observation that, if x ∈ C?, then Lx(θ1) ≥ Lx(θ0)/k and,
likewise, if x ∈ Cc

?, then Lx(θ1) < Lx(θ0)/k. Therefore,

pow?(θ1)− pow(θ1) =

∫
Cc∩C?

Lx(θ1) dx−
∫
C∩Cc?

Lx(θ1) dx

≥ 1

k

∫
Cc∩C?

Lx(θ0) dx− 1

k

∫
C∩Cc?

Lx(θ0) dx

=
1

k

[∫
Cc∩C?

Lx(θ0) dx−
∫
C∩Cc?

Lx(θ0) dx
]
.

By (5.2), the term inside the brackets is zero and, hence, the difference in powers is non-
negative. This completes the proof.

5.7.3 Randomized tests

In some cases, the likelihood ratio has a discrete distribution, e.g., when the Xi’s are discrete.
Then it may not be possible to achieve exact size α with the test in Theorem 5.1. In practice,
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people generally don’t concern themselves with this, mostly because the remedy for this
size restriction is silly in real problems. The particular remedy is to consider a test which
sometimes relies on a flip of a coin to choose between H0 and H1. Obviously, basing decisions
on the result of a coin flip, even after resources have been spent to collect data X1, . . . , Xn,
is generally unsatisfactory in applications. Nevertheless, the notion of randomized tests is
interesting, if only for historical purposes.

The generalization of the Neyman–Pearson most powerful test is to add a constant p ∈
(0, 1) to the mix, which can be determines based on the size condition. That is, the most
powerful size-α randomized test is given by

ϕ?(X) =


1 if LX(θ0) /LX(θ1) < k,

0 if LX(θ0) /LX(θ1) > k,

p if LX(θ0)/LX(θ1) = k,

where (k, p) satisfy

α = Pθ0

{LX(θ0)

LX(θ1)
< k
}

+ pPθ0

{LX(θ0)

LX(θ1)
= k
}
.

The calculation of (k, p) for a given problem starts by finding the largest k such that the
first term is ≤ α; then p can be chosen after k.

The way one interprets a randomized test is as follows. After X is observed, one flips
a count with probability ϕ?(X) probability of landing on heads; then reject H0 iff this coin
lands on heads. To my knowledge, randomized tests are never used in practice. A perhaps
more reasonable strategy is to simply adjust the desired size α to some value that can be
achieved in the given problem.
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Chapter 6

Bayesian Statistics

6.1 Introduction

Up to know, our focus in Stat 411 has been on what’s called frequentist statistics. That
is, our main objective was sampling distribution properties of our estimators, tests, etc.
Why the name “frequentist?” Recall that the sampling distribution of, say, an estimator
θ̂ = θ̂(X1, . . . , Xn) describes the distribution of θ̂ as the sample X1, . . . , Xn varies according
to its law. In particular, the sampling distribution describes the frequency of certain events
concerning θ̂ in repeated sampling.

Here we want to shift gears and briefly discuss the other dominant school of thought in
statistics, namely, the Bayesian school. The name comes from Reverend Thomas Bayes, who
developed Bayes theorem you learn in a basic probability course. It is maybe not clear why
such a simple result could have paved the way for the substantial amount of work on Bayesian
analysis that’s been done to date. Presentations of Bayes theorem in basic probability courses
usually side-step the philosophical importance of a result like this—it’s a fundamental tool
that describes how uncertainties can be updated when new information becomes available.
So one can think of Bayes’ theorem as a statement about how information is processed and
beliefs are updated. In the statistics context, Bayes theorem is used to take prior or initial
beliefs about the parameter of interest and, after data is observed, those beliefs are updated
to reflect what has been learned. Expressed in this way, one should see that Bayes theorem
is a bit more than just a simple manipulation of the symmetry in P(A ∩B).

What sets the Bayesian framework apart from what we’ve previously seen is the way
that uncertainty is defined and represented. The usual setup we’ve encountered is that
observable data X1, . . . , Xn is available from a distribution fθ(x). The starting point is that
θ is unknown and to be estimated/tested from the data. But we’ve not really said what
it means that θ is “unknown.” Do we really know nothing about it, or do we not know
how to summarize what knowledge we have, or are we uneasy using this knowledge? It
seems unrealistic that we actually know nothing about θ, e.g., when θ is the mean income
in Cook county to be estimated, we know that θ is positive and less than $1 billion; we’d
also likely believe that θ ∈ ($40K, $60K) is more likely that θ ∈ ($200K, $220K). In what
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we’ve discussed so far in Stat 411, such information is not used. The jumping off point for
a Bayesian analysis is the following belief:

The only way to describe uncertainties is with probability.

Such a concept permeates even our everyday lives. For example, suppose you and several
friends have been invited to a party next saturday. When your friend Kevin asks if you
will attend, you might respond with something like “there’s a 90% chance that I’ll go.”
Although not on the scale of probabilities, this has such an interpretation. The same thing
goes for weather reports, e.g., “there’s a 30% chance of rain tomorrow.” What’s particularly
interesting is the nature of these probabilities. We’re used to using probabilities to describe
the uncertain results of a random experiment (e.g., rolling dice). The two scenarios above
(party and weather) are not really random; moreover, these are singular events and not
something that can repeated over and over. And yet probabilities—in particular, subjective
probabilities—are introduced and can be used. In the statistics problem, to that thing
θ about which we are uncertain, we must assign probabilities to certain events, such as
{θ > 7}, {−0.27 ≤ θ < 0.98}, etc. Once this probability assignment has been made to all
such events, what we have is a probability distribution, what’s called the prior distribution
for θ. This is effectively the same as assuming that the unknown parameter itself is a random
variable with a specified distribution. It is a common misconception to say that Bayesian
analysis assumes the parameter is a random variable. On the contrary, a Bayesian starts by
assigning probabilities to all such things which uncertain; that this happens to be equivalent
to taking θ to be a random variable is just a (convenient or unfortunate?) consequence.

There are reasons to take a Bayesian approach, other than these rather philosophical
reasons mentioned above. In fact, there is a remarkable theorem of deFinetti which says that,
if data are exchangeable, i.e., if permuting the data does not change its joint distribution,
then there exists a likelihood and prior like assumed in the Bayesian setting. Also, there
is a very surprising result that says, roughly, given any estimator, there exists a Bayes
(or approximate Bayes) estimator that’s as good or better in terms of mean-square error.
In other words, one cannot do too bad by using Bayes estimators. Finally, there’s some
advantage to the Bayesian approach in the high-dimensional problems because a suitable
Bayes model will result in some automatic penalties on models with higher dimensionality.
Outside the Bayesian context, one must actively introduce such penalties. Some additional
details about these and other aspects of Bayesian analysis can be found in Section 6.4.

As you can probably tell already, Bayesian analysis is not so easy to come to grips
with, at least at first. Here, we will not dwell on these philosophical matters. My focus in
these notes is to give you a basic introduction to the ideas and terminology in the Bayesian
setting. In particular, I hope that students will understand the basic steps in a Bayesian
analysis—choosing a prior distribution, updating the prior to a posterior distribution using
data and Bayes theorem, and summarizing this posterior. Some additional important points
are mentioned in the last section.
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6.2 Mechanics of Bayesian analysis

6.2.1 Ingredients

The Bayesian problem starts with an important additional ingredient compared to the fre-
quentist problem we’ve considered so far. This additional ingredient is the prior distribution
for the parameter θ. Here I will modify our familiar notation a bit. Now Θ will denote a
random variable version of the parameter θ—we’ll let the parameter space (our usual use of
the notation Θ) be implicit and determined by context.

The prior distribution for the parameter is a statement that Θ ∼ π(θ), where π(θ) is
a distribution (i.e., a PDF/PMF) defined on the parameter space. The idea is that the
distribution π(θ) encodes our uncertainty about the parameter. For example, if θ is the
mean income in Cook County, my belief that this value is between $25K and $35K is given
by the probability calculation

∫ 35K

25K
π(θ) dθ. Where this prior distribution comes from is an

important question—see Section 6.3—but for now just take π as given.
In addition to our prior beliefs about the parameter, we get to observe data just like in

our previous settings. That is, given Θ = θ, we get X1, . . . , Xn
iid∼ fθ(x). Note the emphasis

here that fθ(x) is the conditional distribution of X1 given the random parameter Θ happens
to equal the particular value θ. From this sample, we can again define a likelihood function
L(θ) =

∏n
i=1 fθ(Xi). I may add a subscript LX(θ) to remind us that the likelihood is a

function of θ but it depends on data X = (X1, . . . , Xn).
To summarize, the Bayesian model specifies a joint distribution for (Θ, X1, . . . , Xn), with

a “density”1 π(θ)L(θ). But this specification is done in two stages: first a marginal distribu-
tion for Θ and then a conditional distribution for (X1, . . . , Xn) given Θ = θ. Such a model
could be called a hierarchical model, because it’s done in stages; I’ll call it a Bayes model.

6.2.2 Bayes theorem and the posterior distribution

The key feature of a Bayesian analysis is that the prior distribution for Θ is updated after
seeing data to what is called the posterior distribution. Bayesian inference is based entirely
on this posterior distribution—see Section 6.2.3. The key to this transformation is the
simple Bayes’ formula: for given a probability space, consisting of a collection of events and
a probability P, if A and B are events with positive P-probability, the conditional probability
P(A | B), defined as P(A ∩B)/P(B) satisfies

P(A | B) = P(B | A)P(A)/P(B).

In our case, A is some event concerning Θ and B corresponds to our observable data. To make
the connection more precise, consider a simple discrete problem involving only PMFs. Let
Θ take two values—0.25 and 0.75—with equal probability and, given Θ = θ, let X ∼ Ber(θ).

1Quotes here indicate that π(θ)L(θ) may not be a genuine PDF for (Θ, X1, . . . , Xn) because the data
may be discrete and parameter may be continuous or vice-versa. But this is not really a problem.

96



The posterior probability that Θ = 0.25, given X = x, can be obtained via Bayes formula:

P(Θ = 0.25 | X = x) =
f0.25(x) · 0.5

f0.25(x) · 0.5 + f0.75(x) · 0.5
.

Depending on which x is used, this can be easily evaluated. In general, P(Θ = 0.25 | X = x)
will be different from P(Θ = 0.25), so Bayes formula is, indeed, updating our prior beliefs
about the possible values of Θ.

This is a very simple version of the problem. Fortunately, there is a version of Bayes
formula for the case where both data and parameter are continuous. The proof is more
difficult than the simple Bayes formula, but the formula itself is very similar. Essentially,
one just pretends that π(θ) and L(θ) are PMFs instead of PDFs, and apply the familiar
Bayes’ formula. In particular, the posterior distribution of Θ, given X = x, has a PDF/PMF
π(θ | x) given by

π(θ | x) =
Lx(θ)π(θ)∫
Lx(θ)π(θ) dθ

,

where, in the denominator, integration is over the entire parameter space. If Θ is a discrete
random variable, i.e., it’s prior is a PMF instead of a PDF, the formula looks the same but
the denominator has a sum over all possible θ values instead of an integral.

Exercise 6.1. Suppose that, given Θ = θ, X ∼ Bin(n, θ). If Θ ∼ Unif(0, 1), find the
posterior distribution π(θ | x).

6.2.3 Bayesian inference

Bayesian analysis is really focused on the posterior distribution, which is assumed to describe
all uncertainty about the parameter after data X = x is observed. But it is often of interest
to answer questions like those we’ve encountered previously in the course. For example, if we
want to produce an estimator or do a hypothesis test, we can do such things from a Bayesian
perspective as well.

Point estimation

The most basic problem in statistics is one of producing an estimator of unknown parameter
θ. Of course, in the Bayes context, the parameter is random, not fixed, so it’s not immediately
clear what we’re trying to estimate. The way to understand this from a Bayesian point of
view is that the goal is to report the “center” of the posterior distribution π(θ | x), which
is some function of the observed X = x, as statistic. This “center” is often the mean of the
posterior distribution, but it doesn’t have to be.

To properly describe how Bayes methods are derived, one should first introduce what
is called a loss function `(δ(x), θ), which measures the penalty one incurs by using, say, an
procedure generically written δ(x) when the true parameter value is θ. Once this loss function
is specified, the Bayes method is derived by choosing δ(x) to minimize the expectation∫
`(δ(x), θ)π(θ | x) dθ, called the posterior Bayes risk. In the estimation problem, the loss
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function is usually `(θ̂(x), θ) = (θ− θ̂(x))2, called squared-error loss, so the goal is to choose
θ̂ such that ∫

(θ − θ̂(x))2π(θ | x) dx is minimized.

It is a relatively simple calculus exercise to show that the minimizer is the mean of the
posterior distribution, i.e., the Bayes estimator of θ is

θ̂(x) = E(Θ | x) =

∫
θπ(θ | x) dθ.

If the loss function is different from squared-error, then the Bayes estimator would be some-
thing different. For Stat 411, we will only consider squared-error loss.

Exercise 6.2. Reconsider the binomial problem in Exercise 6.1. Find the posterior mean
E(Θ | x) and calculate its mean-square error. Compare it to that of the MLE θ̂ = X̄.

Hypothesis testing

The hypothesis testing problem also has a loss function type of description, but I’ll not get
into that here because it’s a bit more difficult to explain in this context. I’ll also use some
notation that’s a bit different from what we’ve used before, though it should be clear. Start
with the hypothesesH0 : θ ∈ U0 versusH1 : θ ∈ U1, where U1 = U c

0 . With a prior distribution
π for Θ, we can calculate prior probabilities for H0 and H1, which are π(U0) =

∫
U0
π(θ) dθ

and π(U1) = 1 − π(U0), respectively. Now we just want to update these probabilities in
light of the observed data. In other words, we calculate the posterior probabilities of H0

and H1, which are readily available once we have the posterior distribution π(θ | x). These
probabilities are

π(U0 | x) =

∫
U0

π(θ | x) dθ and π(U1 | x) = 1− π(U0 | x)

Finally, to decide whether to reject H0 or not, we just compare the relative magnitudes of
π(U0 | x) and π(U1 | x) and choose the larger of the two. Because U1 = U c

0 , it is easy to see
that we reject H0 if and only if π(U0 | x) < 1/2. This is the Bayes test.

One remark to make here is that, in a certain sense, we can accomplish here, in the
Bayesian setting, what we could not in the frequentist setting. That is, we know have mea-
sures of certainty that H0 is true/false given data. The frequentist approach has nothing like
this—size and power are only sampling distribution properties and have nothing to do with
observed data. The trade-off is that, in the Bayesian setting, one requires a prior distribu-
tion, and if the prior distribution is “wrong,” then the Bayes test may give unsatisfactory
answers. Also, note that the Bayes test has no “α” involved, so it makes no attempt to con-
trol the tests size at a particular level. Of course, the test has a size and power associated
with it, but one must calculate these separately. For example, the size of the Bayes test
would look like

max
θ∈U0

Pθ{π(U0 | X) < 1/2}.
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If the posterior probability π(U0 | x) has a nice looking form, then perhaps this calculation
would not be too difficult. Alternatively, one could use Monte Carlo to evaluate this. But
keep in mind that size and power and not really meaningful to a Bayesian, so there’s no need
to do these things unless it’s of interest to compare the performance of a Bayes test with
that of a frequentist test.

Notice that the explanation above implicitly requires that π(U0) > 0. If H0 : θ = θ0 and
Θ is continuous, then this will automatically be zero, so we need to adjust the methodology.
The standard approach here is to use Bayes factors to perform the test. For the nice problems
we consider in Stat 411, the necessary Bayes factor calculations are relatively simple, and
the result resembles a likelihood ratio test. But the interpretation of Bayes factors is less
straightforward than that of the posterior probabilities π(U0 | x) from above, so I’ll not
discuss this here. A formal course on Bayesian analysis would not ignore this issue.

Credible intervals

Bayesians have an analog of the frequentist’s confidence intervals, which are called credible
intervals. There are a couple of ways to do this, which I’ll explain only briefly. Throughout,
take α ∈ (0, 1) fixed.

• Equal-tailed credible interval. Let Π(θ | x) denote the posterior CDF. An equal-tailed
100(1− α)% credible interval looks like

{θ : α/2 ≤ Π(θ | x) ≤ 1− α/2}.

This is just the central 1− α region for the posterior distribution.

• Highest posterior density credible interval. For a cutoff c > 0, define an interval2

H(c) = {θ : π(θ | x) ≥ c}.

Note that, as c changes, the posterior probability of H(c) changes, in particular, this
posterior probability increases as c decreases, and vice versa. If it varies continuously,
then by the intermediate value theorem, there is a point c = cα such that the posterior
probability of H(cα) equals 1− α. The set H(cα) is the 100(1− α)% highest posterior
density credible interval.

Note that these credible intervals are not understood the same way as confidence intervals.
In particular, they may not have coverage probability equal to 1 − α. In this case, 1 − α
represents the amount of probability the posterior assigns to the interval. But in many cases,
Bayesian credible intervals do have reasonable frequentist coverage probabilities, though this
is not guaranteed by the construction.

2This set may not be an interval if the posterior PDF π(θ | x) has multiple bumps.
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6.2.4 Marginalization

An important point that was glossed over in the earlier chapters concerns marginal inference.
That is, suppose θ = (θ1, θ2) is a pair of unknowns, but interest is only in θ1. In that case,
we consider θ2 a nuisance parameter, and inference about θ1 in the presence of a nuisance
parameter θ2 is called marginal inference. Consider, for example, a Gam(θ1, θ2) problem. We
can produce the MLE for the pair (θ1, θ2) numerically (we did this in Chapter 3) and we
know that the limiting distribution is normal with covariance matrix characterized by the
inverse of the Fisher information matrix. However, how might we construct a confidence
interval for θ1? A natural choice would be “θ̂1 ± something” but it’s not exactly clear how
to pick the “something.” The main challenge is that the θ1-component of the asymptotic
covariance matrix depends on both parameters (θ1, θ2). So, a natural choice is to plug in
(θ̂1, θ̂2) into that covariance and do the confidence interval thing as usual. (Another idea is to
use some variance stabilizing transformation, but this is tricky and may not always work.)
The problem is that there is no way to be sure that plug-in estimators of the confidence
interval margin of error will be reliable in terms of coverage probabilities, etc. This question
of how to do marginal inference turns out to be rather difficult in classical statistics. However,
it is straightforward in the Bayesian setting.

If I have a prior density π(θ1, θ2), then I can easily get a posterior density π(θ1, θ2 | x)
using Bayes formula. Now, if we want to do marginal inference on θ1 as a Bayesian, all we
need is the marginal posterior density π(θ1 | x), which is given by

π(θ1 | x) =

∫
π(θ1, θ2 | x) dθ2,

which is exactly the usual formula for the marginal density given in basic probability courses.
So, the basic rules of probability tell the Bayesian exactly how to do marginal inference. Once
the marginal posterior density is available, carry out the summaries just as before, e.g., get
a marginal credible interval for θ1.

The point to be made here is that the Bayesian marginalization operations deals with
the uncertainty about θ2 in a natural way. In the classical setting, the naive strategy is to
plug in an estimator of θ2, which can perhaps over- or under-estimate the variability, giving
unreliable marginal confidence intervals. This is not to say that the Bayesian version is
without shortcomings, but at least it is simple and not obviously flawed.

6.3 Choice of prior

In the previous discussion, the prior distribution seem to appear from thin air. Indeed, if a
prior is provided, then the statistics problem really reduces to some simple algebra/calculus.
In real life, however, one must select the prior. Here I discuss the three ways in which one
can come up with the prior.
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6.3.1 Elicitation from experts

The most natural way to get a prior distribution is to go and ask experts about the problem
at hand what they expect. For example, if θ ∈ (0, 1) represents the probability that some
widget manufacturing machine will produce a defective widget, then the statistician might go
to speak to the experts, the people who designed and built the machine, to get their opinions
about reasonable values of θ. These experts might be able to tell the statistician some helpful
information about the shape or percentiles of the prior distribution, which can be used to
make a specific choice of prior. However, this can be expensive and time-consuming, and
may not result in reasonable prior information, so this is rarely done in practice.

6.3.2 Convenient priors

Before we had high-powered computers readily available, Bayesian analysis was mostly re-
stricted to the use of “convenient” priors. The priors which are convenient for a particular
problem, may not be so realistic. This is perhaps the biggest reason it took so long for
Bayesian analysis to catch on in the statistics community. Although computation with re-
alistic priors is possible these days, these convenient are still of interest and can be used as
prior distributions for high-level hyperparameters in hierarchical models.

The most popular class of “convenient priors” are called conjugate priors. A class of priors
is said to be conjugate for a given problem if, when combined with the likelihood in Bayes’
formula, the resulting posterior distribution is also a member of this class. This is convenient
because calculations for the posterior distribution can often be done in closed-form or with
very easy numerical methods. Here are a few examples.

Example 6.1. Let X1, . . . , Xn
iid∼ Ber(θ) given Θ = θ. We shall consider a prior distribution

Θ ∼ Beta(a, b), where a and b are some fixed positive numbers. Here the likelihood is

L(θ) = cθ
∑n
i=1Xi(1− θ)n−

∑n
i=1Xi ,

where c is a constant depending on n and Xi’s only. Also, the prior density for Θ is

π(θ) = cθa−1(1− θ)b−1,

where c is a (different) constant depending on a and b only. We can see some similarities
in these two formulas. Indeed, if we multiply them together, we see that the the posterior
distribution π(θ | x) satisfies

π(θ | x) = Cθa+
∑n
i=1 xi−1(1− θ)n+b−

∑n
i=1 xi−1,

where C is some constant depending on n, xi’s, a and b. This is clearly of the same form as
as the prior density π(θ), but with different parameters. That is, the posterior distribution
for Θ, given X = x, is also a beta distribution but with parameters a′ = a +

∑n
i=1 xi and

b′ = b + n −
∑n

i=1 xi. So, the Bayes estimate of θ can be found easily from the standard
formula for the mean of a beta distribution, i.e.,

θ̂(x) = E(Θ | x) =
a′(x)

a′(x) + b′(x)
=

a+ nx̄

a+ b+ n
.
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This estimator depends on both the prior parameters (a, b) and the observable data. In fact,
the posterior mean is just a weighted average of the prior mean a/(a+ b) and the data mean
x̄. This is a fairly general phenomenon.

Exercise 6.3. Suppose the model is X1, . . . , Xn
iid∼ N(θ, 1) given Θ = θ. Show that the class

of normal distributions for Θ is conjugate.

Exercise 6.4. Suppose the model is X1, . . . , Xn
iid∼ Pois(θ) given Θ = θ. Show that the class

of gamma distributions for Θ is conjugate.

Conjugate priors are nice to work with but, as mentioned above, may not be realistic rep-
resentations of prior uncertainty. Some additional flexibility can be achieved, while keeping
the convenience, by working with priors that are “mixtures” of conjugate priors.

6.3.3 Non-informative priors

Since a “real” prior is rarely available, there can be a number of reasonable priors to choose
from and, generally, the posterior distributions for these different priors will have some
differences. How can one justify a particular choice of prior? One popular strategy is to
choose the prior that, in some sense, influences the posterior as little as possible, so that
the data drives the Bayesian analysis more than the choice of prior. Such a prior is called
non-informative3—it gives data the freedom to find the “best” parameters.

It is not even clear how to define non-informative priors. It is easy, however, to give an
example of an informative prior: take Θ = θ0 with prior probability 1. In this case, the
posterior also assigns probability 1 to the value θ0, so the data can do nothing to identify
a different parameter value. This is an extreme example, but the general idea is similar—a
prior is informative if it imposes too much restriction on the posterior. Formal definitions of
non-informative priors are complicated and somewhat technical,4 so I won’t go into these. I
will try to give some intuition, and a good technique for choosing a non-informative prior in
standard priors.

One might think that some kind of uniform prior is, in some sense, non-informative
because all values are equally likely. For along time, this was the case—both Bayes and
Laplace, the first “Bayesians,” used such a prior in their examples. But Fisher astutely
criticized this approach. Here is my summary of Fisher’s argument, say, for Θ the success
probability for a binomial experiment:

Suppose we don’t know where Θ is likely to be, and for this reason we choose to
take Θ ∼ Unif(0, 1). Then we also don’t know anything about Λ = − log Θ either,
so, if we express the problem in terms of Λ, then we should also take a uniform
prior for Λ. But there’s an inconsistency in the logic, because we should also be

3Such priors are also sometimes called objective—I think this is a potentially misleading name.
4The formal definitions require some notion of an infinite sequence of experiments and prior is chosen to

maximize the limiting distance between prior and posterior or, alternatively, by some sort of “probability
matching.”
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able to apply standard results from probability theory, in particular, transforma-
tion formulas, to get the prior for Λ from the prior for Θ. But it’s easy to see
that a uniform prior for Θ does not correspond to a uniform prior for Λ obtained
from the transformation theorem of PDFs. Hence, a logical inconsistency.

So, this suggests uniform is not a good definition of non-informative. However, with an
adjustment to how we understand “uniformity,” we can make such a definition. In fact, the
priors we will discuss next are uniform in this different sense.5

A standard form of non-informative prior is Jeffreys’ prior. This has a close connection to
some of the calculations we did when studying properties of maximum likelihood estimators.
In particular, these priors depend critically on the Fisher information. Suppose that, given

Θ = θ, data are modeled as X1, . . . , Xn
iid∼ fθ(x). From the distribution fθ(x), we can

calculate the Fisher information:

I(θ) = −Eθ
{ ∂2

∂θ2
log fθ(X1)

}
.

Then Jeffreys’ prior is defined as
πJ(θ) = cI(θ)1/2,

where c > 0 is a constant to make πJ integrate to 1; sometimes there is no such constant
c, so it can be chosen arbitrarily. I cannot explain the properties πJ has here, but a very
compelling case for Jeffreys’ prior in low-dimensional problems is given in Chapter 5 of
Ghosh, Delampady, and Samanta, Introduction to Bayesian Analysis, Springer 2006.

Example 6.2. Suppose, given Θ = θ, dataX1, . . . , Xn are iid Ber(θ). The Fisher information
for this problem is I(θ) = {θ(1− θ)}−1, so Jeffreys’ prior is

πJ(θ) =
c

θ1/2(1− θ)1/2
.

It is easy to check that this is a special case of the Beta(a, b) priors used in Example 6.1
above, with a = b = 1/2. Therefore, the posterior distribution of Θ, given X = x, is
simply Θ | x ∼ Beta(nx̄ + 1/2, n − nx̄ + 1/2), and, for example, the posterior mean is
E(Θ | x) = (nx̄ + 1/2)/(n + 1), which is very close to the MLE x̄. Notice, as we could
anticipate from the previous discussion, the non-informative prior is not uniform!

Exercise 6.5. Find the Jeffreys’ prior πJ for Θ when, given Θ = θ, data are iid N(θ, 1).
Calculate the corresponding posterior distribution.

Exercise 6.6. Find the Jeffreys’ prior πJ for Θ when, given Θ = θ, data are iid Pois(θ).
Calculate the corresponding posterior distribution.

5One should use a different sort of geometry defined on the parameter space, not necessarily the usual
Euclidean geometry. With this adjusted geometric, basically a Riemannian metric induced by the Fisher
information, one can recover the Jeffreys’ prior as a sort of uniform distribution in this geometry.
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There are some potential difficulties with Jeffreys’ prior that should be mentioned. First,
it can happen that I(θ)1/2 does not integrate to a finite number, which means that Jeffreys’
prior may not be a proper prior. People generally do not concern themselves with this issue,
provided that the posterior is proper. So, when using non-informative improper priors, one
should always check that the corresponding posterior is proper before using it for inference.
If it’s not proper, then posterior means, for example, are meaningless. The second point is
a more philosophical one: by using Jeffreys’ prior, one assumes that the prior for Θ depends
on the model for data. Ideally, the prior is based on our beliefs about Θ, which has no direct
connection with the particular model we use for observable data.

6.4 Other important points

In this last section, I shall give some brief comments on some important aspects of Bayesian
analysis that we don’t have time to discuss in detail in Stat 411. In a formal Bayesian
analysis course, one would surely spend a bit of time on each of these items.

6.4.1 Hierarchical models

The particular models considered here are so simple that it really doesn’t matter what kind
of analysis one uses, Bayesian or non-Bayesian, the result will generally be the same. How-
ever, in more complicated problems, the advantages of a Bayesian analysis become more
pronounced. A now classical problem is the so-called “many-normal-means” problem. Sup-
pose X1, . . . , Xn are independent (not iid) with Xi ∼ N(θi, 1), i = 1, . . . , n. The maximum
likelihood (or least-squares) estimator of the mean vector θ = (θ1, . . . , θn)> is the observed
data vector X = (X1, . . . , Xn)>. However, there is a famous result of C. Stein which says
that this estimator is bad (for a certain kind of loss function) whenever n ≥ 3, in particular,
there is another estimator that is at least as good for all possible θ values. For this rea-
son, one must make some kind of adjustments to the MLE, and the particular adjustments
are often of the form of “shrinking” X towards some fixed point in Rn. This shrinkage is
somewhat ad hoc, so it might be nice to have a more formal way to accomplish this.

In a Bayesian setting, this can be accomplished quite easily with a hierarchical model.
Consider the following model:

Xi | (θi, v) ∼ N(θi, 1), i = 1, . . . , n (independent)

Θ1, . . . ,Θn | v
iid∼ N(0, v)

V ∼ π(v).

The idea is that there are several layers of priors—one for the main parameters θ = (θ1, . . . , θn)>

and one for the “hyperparameter” v. The key to the success of such a model is that one
can initially marginalize away the high-dimensional parameter θ. Then there is lots of data
which contains considerable information for inference on V . That is, the posterior distribu-
tion π(v | x) is highly informative. The goal then is to calculate the posterior mean of Θi as
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an estimate:

E(Θi | xi) =

∫
E(Θi | xi, v)π(v | x) dv.

The inner expectation has a closed-form expression, vxi/(1 + v), so it would be easy to
approximate the full expectation by Monte Carlo. The point, however, is that the resulting
estimator with have certain “shrinkage” features, since v/(1 + v) ∈ (0, 1), which occur
automatically in the Bayesian setup—no ad hoc shrinkage need be imposed.

As an alternative to the “full Bayes” analysis described above, one could perform an
empirical Bayes analysis and estimate v from the data, say, by v̂; typically, v̂ is found via
marginal maximum likelihood. Then one would estimate θi via

θ̂i = E(Θi | xi, v̂) =
v̂xi

1 + v̂
, i = 1, . . . , n.

Such empirical Bayes strategies are popular nowadays.

6.4.2 Complete-class theorems

There are a collection of results, which fall under the general umbrella of “complete-class
theorems,” which gives some frequentist justification for Bayesian methods. Recall that in a
frequentist estimation problem, one is looking for estimators which have small mean-square
error. Complete-class theorems identify the collection of estimators which are admissible—
not uniformly worse than another estimator. In other words, admissible estimators are the
only estimators one should consider, if one cares about mean-square error. There is one such
theorem which says that, roughly, Bayes estimators (and limits thereof) form a complete
class. That is, one can essentially restrict their frequentist attention to estimators obtained
by taking a prior distribution for Θ and produce the posterior mean as an estimator. So,
you see, Bayesian methods are not only of interest to Bayesians.

6.4.3 Computation

We did not discuss this matter in these notes, but computation is an important part of
Bayesian analysis, perhaps more important than for frequentist analysis. Typically, unless
one uses a convenient conjugate prior, some kind of numerical simulations are needed to carry
out a Bayesian analysis. There are so many such techniques available now, but they all fall
under the general class of a Monte Carlo method, the most popular are Gibbs samplers and
Markov chain Monte Carlo (MCMC). One could devote an entire course to MCMC, so I’ll
not get into any details here. Instead, I’ll just show why such methods are needed.

Suppose I want to estimate θ. I have a Bayes model with a prior π and, at least formally,
I can write down what the posterior distribution π(θ | x) looks like. But to estimate θ, I
need to calculate the posterior mean E(Θ | x), which is just the integral

∫
θπ(θ | x) dθ. One

way to approximate this is by Monte Carlo. That is,

E(Θ | x) ≈ 1

T

T∑
t=1

θ(t),
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where θ(1), . . . , θ(T ) is an (approximately) independent sample from the posterior distribution
π(θ | x). If such a sample is can be obtained, and if T is sufficiently large, then we know
by the law of large numbers that this sample average will be a good approximation to the
expectation. These MCMC approaches strive to obtain this sample of θ(t)’s efficiently and
with as little input as possible about the (possibly complex) posterior distribution π(θ | x).

6.4.4 Asymptotic theory

We discussed briefly the question about how to choose the prior. But one can ask if the
choice of prior really matters that much. The answer is “no, not really” in low-dimensional
problems because there is an asymptotic theory in Bayesian analysis which says that, under
suitable conditions, the data wash away the effect of the prior when n is large. These results
can be rather technical, so here I’ll only briefly mention the main result. It parallels the
asymptotic normality of MLEs discussed earlier in the course.

Let I(θ) be the Fisher information and θ̂n the MLE. Then the Bayesian asymptotic
normality, or the Bernstein–von Mises theorem, says that the posterior distribution of Θ,
given X = x, is approximately normal with mean θ̂n and variance [nI(θ̂n)]−1. More formally,
under suitable conditions on likelihood and prior,

[nI(θ̂n)]1/2(Θ− θ̂n)→ N(0, 1), in distribution. (6.1)

(This is not the only version, but I think it’s the simplest.) Notice here that the statement
looks similar to that of the asymptotic normality of the MLE, except that the order of the
terms is rearranged. Here the random variable is Θ and the distribution we’re talking about
is it’s posterior distribution. Stripping away all the details, what the Bernstein–von Mises
theorem says is that, no matter the prior, the posterior distribution will look like a normal
distribution when n is large. From this, one can then reach the conclusion that the choice
of prior does not really matter, provided n is sufficiently large.

An interesting tool that can be used to prove this Bernstein–von Mises theorem is what
is called the Laplace Approximation. This is a general method for analytic approximation of
integrals. The result holds for integrals of functions over Rp, though here we will focus on
the case p = 1. Consider an integral of the form

integral =

∫
q(θ)enh(θ) dθ,

where both q and h are smooth functions of a scalar θ. Here it is assumed that n is large
or increasing to ∞. Let θ̂ be the unique maximum of h. Then the Laplace approximation
provides a way to calculate the integral without integration—only optimization!

Theorem 6.1 (Laplace approximation). Let h′ and h′′ denote derivatives of h. Then, as
n→∞,

integral = q(θ̂)enh(θ̂)(2π)1/2n−1/2{−h′′(θ̂)}−1/2{1 +O(n−1)}.

(Note that h′′(θ̂) is negative, by assumption, so −h′′(θ̂) is positive.)
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Sketch of the proof. The first observation is that, if h has a unique maximum at θ̂ and n is
very large, then the primary contribution to the integral is in a small interval around θ̂, say
θ̂±a. Second, since this interval is small, and q(θ) is smooth, it is reasonable to approximate
q(θ) by the constant function q(θ̂) for θ ∈ (θ̂ − a, θ̂ + a). Now the idea is to use a Taylor
approximation of h(θ) up to order two around θ = θ̂:

h(θ) = h(θ̂) + h′(θ̂)(θ − θ̂) + (1/2)h′′(θ̂)(θ − θ̂)2 + error.

Since h′(θ̂) = 0 by definition of θ̂, plugging this into the exponential term in the integral
(and ignoring the error terms) gives

integral ≈
∫ θ̂+a

θ̂−a
q(θ) exp{n[h(θ̂) + (1/2)h′′(θ̂)(θ − θ̂)2]} dθ

≈
∫ θ̂+a

θ̂−a
q(θ̂) exp{nθ̂ − (θ − θ̂)2/2σ2} dθ

= q(θ̂)enh(θ̂)

∫ θ̂+a

θ̂−a
e−(θ−θ̂)2/2σ2

dθ,

where σ2 = [−nh′′(θ̂)]−1, small. The last integrand looks almost like a normal PDF, except
that it’s missing (2πσ2)−1/2. Multiply and divide by this quantity to get

integral ≈ q(θ̂)enh(θ̂)(2π)1/2n−1/2[−h′′(θ̂)]−1/2.

One simple yet interesting application of the Laplace approximation is the famous Stir-
ling’s approximation of n!. By writing n! = Γ(n+ 1) in integral form, we get

n! = Γ(n+ 1) =

∫ ∞
0

θne−θ dθ =

∫ ∞
0

en(log θ−θ/n) dθ.

In this case, h(θ) = log θ − θ/n, q(θ) = 1, ḧ(θ) = −1/θ2, and, obviously, θ̂ = n. Therefore,
Laplace approximation with p = 1 gives

n! ≈ en(logn−n/n)(2π)1/2n−1/2n = (2π)1/2nn+1/2e−n,

which is Stirling’s approximation.
The connection to the normal distribution we found in the above proof sketch is the key

to posterior normality. The idea is to approximate the log-likelihood by a quadratic function
via Taylor approximation. Let U = n1/2(θ − θ̂) be the rescaled parameter value. Then

Πn(−a < U < a) = Πn(θ̂ − an−1/2 < θ < θ̂ + an−1/2) =
num

den
.

Write Ln(θ) for likelihood. Letting

q(θ) = π(θ) and h(θ) =
1

n
logLn(θ) =

1

n

n∑
i=1

log fθ(Xi),
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then the denominator above can be approximated, via Theorem 6.1, by

den =

∫
Ln(θ)π(θ) dθ =

∫
π(θ)enh(θ) dθ ≈ Ln(θ̂)π(θ̂)(2π/nv)1/2,

where v = −h′′(θ̂) = −n−1
∑n

i=1(∂2/∂θ2) log fθ(Xi)
∣∣
θ=θ̂

; this is called the “observed” Fisher
information.6 The numerator can be similarly approximated:

num =

∫ θ̂+an−1/2

θ̂−an−1/2

Ln(θ)π(θ) dθ ≈ Ln(θ̂)π(θ̂)n−1/2

∫ a

−a
e−vu

2/2 du.

Taking the ratio of num to den gives

Πn(−a < U < a) =
num

den
≈
Ln(θ̂)π(θ̂)n−1/2

∫ a
−a e

−vu2/2 du

Ln(θ̂)π(θ̂)(2π/nv)1/2
=

∫ a

−a

√
v√

2π
e−vu

2/2 du,

and this latter expression is the probability that a normal random variable with mean zero
and variance v−1 is between −a and a, which was what we set out to show.

6Here we are replacing I(θ̂n) in (6.1) with this observed Fisher information; the two are asymptotically
equivalent, so there is no contradiction here.
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Chapter 7

What Else is There to Learn?

7.1 Introduction

The first six chapters of these notes covers at least a large chunk of what would be considered
classical statistical theory. A natural question for students who have completed this or a
similar course is: what else is there to learn? I think it is important for students to get an
answer to this question, even if the answer is not a precise one. In this chapter I give just a
taste of some things not covered in these notes, with the hope that seeing a bit about some
of these more advanced topics might inspire some students to take more advanced courses on
statistics to further their knowledge. Of course, there are probably other important topics
that are not included here—this just a (biased) sample of some topics that students would
see in later courses in statistics.

7.2 Sampling and experimental design

It was briefly mentioned at the beginning of these notes that we will take the availability
of an iid sample from the reference population as given. It turns out, however, that this is
a very strong assumption, i.e., it is not particularly easy to get a good sample. Issues one
would encounter in trying to get a “representative sample”1 include

• Not knowing the sampling frame, i.e., if we don’t know who all is a member of the
population of interest, then how can we be sure to give them and appropriate chance
of being included in the sample?

• Even if the sampling frame is known, how to be sure that different subgroups of the
population are represented in the sample? Such an issue would be important because,
arguably, a sample of individuals that contains only males, while perhaps being a

1An interesting point is that, to my knowledge, there is no real definition for a representative sample.
For sure, no matter what the definition would be, one could not tell whether a given sample satisfies that
definition without knowing the population in question; and if the population is known, then there is no point
of doing sampling...
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random sample, should not be considered “representative” in any sense. Stratified
sampling is one way to avoid this.

• What to do if the units sampled do not respond to the survey or whatever? This is an
issue of non-response.

• etc, etc, etc.

These are just a few of the issues that one could encounter in trying to construct a good
representative sample from a population. A very nice book devoted to sampling is Hedayat
and Sinha, Design and Inference in Finite Population Sampling, Wiley, 1991.

A related issue is, in certain cases, our data is to be collected based off a suitable exper-
iment. For such cases, we would like to select the settings of this experiment so that the
data collected will be as informative as possible. I expect that you’re wondering how we can
design an experiment to get good results if you don’t already know what we’re looking for.
This is a good question, and for “linear models” (see below) there is a lot already known
about how to design good experiments. Outside of the linear model case, in general, arguably
not so much is known. There are very deep results about optimal designs for “polynomial
models” and for a few other models. A book that was recommended to me is Silvey, Optimal
Designs, Chapman & Hall, 1980; surely there are some more modern textbook references,
but I don’t know this area well enough to make any recommendations.

7.3 Non-iid models

In Stat 411 we focused exclusively on models where the data points are iid. However, there
are lots of more general kinds of structures that one could encounter in practice. Perhaps
the most common is independent but not iid, that is, the data points are independent, but
each has its own distribution, which might be different from that of another data point. A
standard example of this situation is in the linear regression model. That is

Yi = α + βxi + εi, i = 1, . . . , n,

where xi is a fixed number, ε1, . . . , εn are iid N(0, σ2), and (α, β, σ2) are parameters. In that
case, we could write

Yi ∼ N(α + βxi, σ
2), i = 1, . . . , n,

and we see that, while Yi and Yj are independent, in general they have different distributions.
This linear model, along with various extensions, is arguably the most common statistical
model used in applications. At UIC, both Stat 481 and Stat 521 would cover the linear
model in depth. A comprehensive book on applied linear models is Kutner, Nachtsheim,
Neter, and Li’s Applied Linear Statistical Models, Wiley 2004, and a good book I know
on the theory of linear models is Seber and Lee’s Linear Regression Analysis, Wiley 2003.
So-called generalized linear models are hugely important in applications of statistics, and
for this material I would recommend Agresti’s Categorical Data Analysis, Wiley 2013, and
McCullagh and Nelder’s Generalized Linear Models, Chapman–Hall 1989.
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There are other models where the data points are actually dependent. Such data can
occur if measurements on the same subject are taken at multiple time points. For example,
if you have a set of patients and you measure the blood pressure Yi,t of patient i at time t for
a range of t values, then Yi,t and Yi,t′ are generally dependent. Examples like these fall under
the umbrella of time series models, and are obviously of great importance. Another example
that one is familiar with is the pricing of stocks, etc, in finance. Obviously, the price Xt+1

of a given stock at time t + 1 will depend on the price Xt at time t, so again we see some
dependence. Famous models used in such applications, such as the Black–Scholes model, are
basically just some normal distribution model that allows for some kind of dependence. A
nice book on dependent-data models, with a slant towards financial applications, is Ruppert’s
Statistics and Data Analysis for Financial Engineering, Springer 2011.

7.4 High-dimensional models

In Stat 411, we have focused on models with only a few parameters, so that, typically, we
have much more samples than parameters to estimate. However, there are real applications
where this is not the case. A canonical example is the following independent but not iid
model:

Xi ∼ N(θi, 1), i = 1, . . . , n.

In this case, every sample has its own parameter so, even if n is large, we cannot expect
to be able to do a good job at estimating all the parameters, because ultimately we only
have one sample for each parameter. This may seem like an unrealistic example and while
it is oversimplified, it does match up with the challenges faced in many examples. One is
in genetics where the goal is to identify which genes, among thousands of possible genes,
are relevant in distinguishing between individuals with and without a particular disease,
like cancer. The basic idea is to construct two sets of patients, one with the disease and
one without. Then each individuals genetic structure is measured, and the two groups are
tested for significant differences on each particular gene. So, if a particular gene has a
significant difference across the two groups, then the conclusion is that that gene can help to
distinguish between people who will and will not get cancer. With this information, doctors
can identify at-risk patients early in life and hopefully provide some preventative treatments.
For some details on this, I recommend the books: Dudoit and van der Laan, Multiple Testing
Procedures with Applications to Genomics, Springer, 2008, and Efron, Large-Scale Inference,
Cambridge, 2010.

There are other versions of the high-dimensional problem, some of them are related to
the linear model described above. I will not go into any details here, but I’ll recommend the
book: Bühlmann and van de Geer, Statistics for High-Dimensional Data, Springer, 2011.
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7.5 Nonparametric models

Nonparametrics means two different things. Classically, the name refers to methods that
make minimal assumptions about the underlying model. For example, suppose that fθ is a
density that is symmetric about the point θ. This could be a N(θ, 1) density or something
else. The goal then is to estimate the point of symmetry θ. The challenge is that the point
of symmetry can have different interpretations depending on the underlying distribution,
which is not being specified. In the normal case, θ is the mean, so estimating it with the
sample mean is reasonable (and optimal). However, in the Cauchy case, there is no mean,
so opting to estimate θ by X̄ will be terrible. So, the point is to find an estimator which is
not sensitive—or robust—to the shape of the distribution. Nonparametric methods, in this
classical sense, are those which can give reasonable results with only minimal assumptions
(e.g., symmetry was the only assumption in the illustration above) on the underlying model.
Of course, these methods are not as good as the model-specific methods when the model is
correctly specified. So, there is a trade-off between efficiency and robustness that one must
consider in deciding which methods to apply in a given problem.

The second, more modern interpretation of “nonparametrics” is for those problems where
there are infinitely many parameters. For a simple example, suppose X1, . . . , Xn are iid from
a density f , but f itself is unknown and to be estimated. This is a nonparametric problem
because the unknown parameter, f in this case, is infinite-dimensional. To see this, note
that in order to fully characterize f , in the absence of any structural assumptions, one must
know f(x) for each x ∈ R. This is (uncountably) infinitely many quantities, so we say f
is infinite-dimensional and the problem is a nonparametric one. The histograms we drew
occasionally in this course are examples of estimators of a density function f ; we normally
think of these just as pictures, but there is a formula that describes that picture, and this
defines an estimator of f . Other density estimators include kernel estimators, and mixture
models; these have both Bayesian and non-Bayesian versions too. What is essential in these
problems are notions of smoothness of the function being estimated. In a certain sense,
knowing that f is smooth means that there are “fewer” parameters to be estimated. For
example, if you know that f is differentiable, then knowing f at a value x means that we
also effectively know f at all x′ close to x, which makes the problem simpler. For more
on nonparametrics, I’d recommend the book: Wasserman, All of Nonparametric Statistics,
Springer, 2010.

7.6 Advanced asymptotic theory

We spent a considerable amount of time in Stat 411 discussing the asymptotic theory for
maximum likelihood estimators and likelihood ratio tests. However, these results are just
“baby” versions of what is known. Here is a short list of things that can be considered
beyond the results presented in these notes.

• Recall the long list of regularity conditions needed for the MLE asymptotic normality
result. It turns out that most of those conditions can be removed, being replace
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by just one condition, namely that fθ is differentiable in quadratic mean (DQM).
Obviously, all regular exponential families would satisfy this condition, but there are
other distributions which are DQM but do not satisfy the regularity conditions discuss
here. One example is the Laplace location model, with density fθ(x) ∝ e−|x−θ|. The
usual regularity conditions fail because fθ(x) is not everywhere differentiable in θ, but
this model is DQM and the MLE is asymptotically normal.

• One can even develop theory for models in which asymptotic normality cannot hold.
Recall the uniform and shifted exponential models (which don’t satisfy the regularity
conditions because their support depends on the parameter) have asymptotic distribu-
tion results, but that the limiting distribution is not normal. This can be formalized
to some general results about asymptotics for non-regular models. One can also give
versions of the Cramer–Rao inequality for cases where the Fisher information is not
well-defined due to irregularity of the model.

• Finally, all this talk about asymptotic normality for the MLE actually has nothing
to do with the MLE at all! These are properties of the underlying model, not of the
choice of estimator. Certain models, such as those satisfying the DQM property, can be
lumped under the category of local asymptotically normal (LAN) which means, roughly,
that any choice of estimator (MLE, Bayes, or something else), if it has a limiting
distribution, then it must inherit the limiting normal from the underlying structure.
Such results are of considerable help in unifying the various kinds of asymptotic results,
and for identifying asymptotically optimal estimators, tests, etc.

All of these things are discussed in considerable detail in the excellent (albeit technical)
book: van der Vaart, Asymptotic Statistics, Cambridge, 1998.

There are other other extensions of the theory presented in Stat 411, one is to give more
refined approximations. In the proof of the asymptotic normality result, we used a second-
order Taylor approximation. However, it is clear that some more precise approximations are
available if we keep some higher-order terms, but this comes at the expense of additional
technicalities. Such extensions are called higher-order asymptotics. Actually, just keeping
higher-order terms in the Taylor approximation is not exactly how this is done. The main
tools used are saddle-point and Edgeworth approximations. A nice introduction to these
ideas is in the book: Young and Smith, Essentials of Statistical Inference, Cambridge, 2004.

Finally, I should mention that empirical process theory is now a powerful and widely-
used tool in statistics. To illustrate these ideas, I will use a simple but fundamentally
important example. Let X1, . . . , Xn be iid with distribution function F . If we pick some
fixed value, say, x0, then we can easily get a good estimator of F (x0) by thinking of the

problem as a binomial, i.e., write Yi = IXi≤x0 , so that Y1, . . . , Yn
iid∼ Bin(n, F (x0)). But this

trick works only for a fixed x0, what if we want to estimate the entire distribution function
F? An natural estimator (same as what one gets from the binomial trick) is the empirical
distribution function:

F̂n(x) =
1

n

n∑
i=1

IXi≤x,
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which is just the proportion of the sample less than or equal to x. The first result from
empirical process theory is the following:

sup
x
|F̂n(x)− F (x)| → 0, with probability 1 as n→∞.

This result is a special case of the Glivenko–Cantelli theorem, often called the “fundamental
theorem of statistics.” The reason why this result might have such a strong name is that
it shows that, with enough data, it is possible to learn everything about a distribution F .
Empirical process theory concerns various generalizations and extensions of the above result.
van der Vaart’s book is probably the best introduction to these ideas.

7.7 Computational methods

In Stat 411, the focus was primarily on estimators, tests, etc, that we can write down a
simple formula for, such as X̄. However, there are actually many cases where there are
no simple formulae available; we saw a few of these examples in Chapters 3 and 6. It is
important for students to be aware of the fact that, those problems with simple formulae are
the exception, rather than the rule. That is, essentially all real problems will require some
non-trivial computation, which means that students must have some exposure to statistical
software and the various algorithms that are employed.

We talked briefly about Monte Carlo methods and bootstrap in Chapter 1, about op-
timization methods in Chapter 3, and about some Monte Carlo methods in Chapter 6. I
should mention that there are folks whose research focuses on developing efficient algorithms
and software for carrying out these computations in these and other more sophisticated
problems. Stat 451 at UIC would cover some of the basics of these computational methods.
I would recommend the following books: Givens and Hoeting, Computational Statistics, Wi-
ley, 2013 and Lange, Numerical Analysis for Statisticians, Springer, 2010. There are some
books devoted (almost) entirely to Monte Carlo methods: Robert and Casella, Monte Carlo
Statistical Methods, Springer, 2004 and Liang, Liu, and Carroll, Advanced Markov Chain
Monte Carlo Methods, Wiley, 2010.

7.8 Foundations of statistics

Finally, in Stat 411, the focus is primarily on answering the questions: what methods are
available and what are their properties? We did not address the question of why are these
the approaches taken. The two mainstream approaches to statistics are frequentist and
Bayesian, and we have discussed both in these notes. The frequentist approach, often at-
tributed to Neyman, is based on the idea that one should choose estimators, tests, etc with
good repeated-sample properties, such as unbiasedness, consistency, etc. This is what moti-
vated our study of sampling distribution properties of statistics. The Bayesian approach, on
the other hand, is based on the idea that probability is the correct tool for summarizing un-
certainty, and, in order to have a posterior distribution for inference, one must have a prior
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distribution to start with. Later is was learned that Bayes methods often have desirable
frequentist properties as well, e.g., the complete-class theorems from decision theory.

Although these two are the mainstream approaches, it is important for students to know
that there is no solid justification for these being the “correct” way to do statistical inference.
That is, there is really no solid foundations of statistics. This doesn’t mean that statistics is
not a scientifically sound subject, just that it is still not yet fully developed. As an analogy,
in mathematics, calculus is several hundred years old, while statistics as a subject is only
about 100 years old. Anyway, the point is that we should not just accept what is now
mainstream statistics as “correct” and not look to other ideas that might be better.

You might ask what else is there besides Bayesian and frequentist statistics. Although
Fisher’s name has come up a lot in these notes, he was part of neither of these two camps.
Fisher was adamantly non-Bayesian because he didn’t like the influence the prior distribution
had on the conclusions; he also was non-frequentist because he thought the focus on repeated-
sample properties was only for mathematical convenience and not for any scientific relevancy.
Fisher was a scientist, not a mathematician or a statistician, so he was interested in solving
problems, not in putting down and following some rigid set of rules of how a solution should
be obtained. For that reason, much of Fisher’s ideas about the foundations of statistical
inference are not completely clear. Some might say that Fisher had his own school of thought
on statistics—the Fisherian school—but I think it’s hard to say exactly what that is.

Fisher had one idea that he was very serious about throughout his career, what he called
the fiducial argument. The basic goal is to use the sampling model and data alone, no prior,
to produce a distribution on the parameter space to be used for inference.2 He called this the
fiducial distribution. This is a very appealing idea but, unfortunately, Fisher did not lay out
a clear explanation of how the framework should go, just basically a list of examples. Because
Fisher’s ideas on fiducial inference were not clear, it never really gained any traction as an
approach for statistics, and eventually almost disappeared. But Neyman’s idea for confidence
intervals, which is a cornerstone of modern statistics, is basically his interpretation of Fisher’s
fiducial idea. So, even though fiducial itself has not yet had a major impact, it has had an
indirect impact through confidence intervals.

Anyway, Fisher’s thoughts on fiducial inference have inspired a number of other not-
yet-mainstream ideas. Dempster–Shafer theory (due to Art Dempster and Glenn Shafer),
developed in the 1960s and has a considerable following in computer science, can be con-
sidered as an extension of Fisher’s fiducial, and introduced some interesting concepts about
random sets and belief functions. More recently, there has been a surge of interest in statis-
tics on prior-free distributional inference. One example of this is “objective” Bayes, where
priors are chosen not based on prior beliefs but based on a goal to get good sampling distri-
bution properties; this is now probably the norm in application of Bayesian methods. There
is also a generalized fiducial inference, championed by Jan Hannig, which has successfully
been applied in a number of interesting and important problems. Confidence distributions

2The word “fiducial” means based on trust or faith. To see the connection with Fisher idea, consider the
following simple example. For an observation X ∼ N(θ, 1), write X = θ + U , for U ∼ N(0, 1). If X = x is
observed, and we trust that observing X = x does not change our belief that U ∼ N(0, 1), then we can write
θ = x− U and take a distribution N(x, 1) as a summary of our uncertainty about θ after observing X = x.
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have recently been proposed by Kesar Singh, Min-ge Xie, and others. Most recently, my col-
laborator, Chuanhai Liu, and I have developed a new framework, which we call inferential
models (IMs). This framework provides meaningful prior-free probabilistic inference, and is
based off of the use of predictive random sets and belief/plausibility functions. A book (Liu
and Martin, Inferential Models: Reasoning with Uncertainty, Chapman & Hall) on IMs is
scheduled to be published in 2015.
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