
AUI’OPOIESIS: THE ORGANIZATION OF LIVING 
SYSTEMS, ITS CHARACTERIZATION AND A P4OODEL 

1. Introduction 

Notwithstanding their diversity, all living 
systems must share a common organization 
which we implicitly recognize by calling them 
“livi$. At present there ir no formulation of 
this organization, mainly because the great de- 
velopments of molecular, genetic and evolu- 
tionary notions in contemporary biology have 
led to the overemphasis of isolated compo- 
nents, e.g. to consider reproduction as a nec- 
essary feature of the living organization and, 
hence. not to ask about the organization 
which makes a Living system a whole, autonc- 
mous unity that is alive regardless of whether 
it reproduces or not. As a result, processes 
that are history depondenl (evolution, onto- 
genesis) and histow independent (individual 
organization) have been confused in the at- 
tempt to provide a single mmzchanistic explana- 
tion for phenomena which, although related, 
are fundamentally distinct. 

We assert that reproduction and evolution 
are not constitutive features of the living oI- 
ganization and that the properties of a unity 

cannot be accounted for only through ac- 
counting for the properties of its components. 
In contrast, we claim ihat the living organiza- 
tion can only be characterized unambiguously 
by specifying the network of interactions of 
components which constitute a living syst:m 
IIS a whole, that is, as a “unity”. We also claim 
that all biological phenomenology, including 
reproduction and evolution, is secondary to 
the establishment of this unitary organization. 
Thus, instead of asking “What are the neces- 
sary properties of the components that make 
a living system possible?” we ask “What is the 
necessary and sufficient organization for a 
given system to be a living unity?” In other 
words, instead of asking what makes a living 
system reproduce, we ask what is the orgat;r 
zation reproduced when a tiving system gives 
origin to snother living unity? In what follow; 
we shall specify this organization. 

2. Organization 

Every unity can he treated either as an un- 



analyzable whole endowed with constitutiue 
properties which define it as a unity, or else as 
a complex system that is realized as a unity 
through its components and their mutual rela- 
tions. If the latter is the case, a complex sys- 
tem is defined as a unity by the relations te- 
tween its components which realize the 
system as a whole, and its properties as a uni- 
ty are detertubed by the way this unity is 
defined, and not by particular properties of 
its components. It is these relations which de- 
fiie a complex system as a unity and consti- 
tute its organization. Accordingly, the same 
organization may be realized in different 
systems with different kinds of components 
as long as these components have the proper- 
ties vhich realize the required relations. It is 
obvious that with respect to their organiza- 
tion such systems are members of the same 
clas,, even though with respect to the nature 
of 1 heir components they may be distinct. 

3. Autopoietic Organization 

It is apparent that we may define classes of 
systems (classes of unities) whose organiza- 
tiln is specifiable in terms of spatial relations 
bt tween components. This is the case of 
crystals, different kinds of which are defined 
0.11~ by different matrices of spatial relations. 
I. is also apparent that one may define other 
c.iasses of systems whose organization is speci- 
liable only in terms of relations between proc- 
esses generatee by the interactions of compo- 
nents, and not by spatial relations between 
these components. Such is the case of mecha- 
niitic systems in general, different kinds of 
i;;Lcb are defiied by different concatenations 
(relations) of processes. In particular this is 
the case of living systems whose organization 
as a subclass of mechanistic systems we wish 
to specify. 

ihe autoi;oietic organization is defined as a 

unity by a network of productions of comps- 
nents which (i) participate recursvely in the 
same network of productions of components 
which produced these components, and (ii) 
realize the network of productions as a unity 
in the space in which the components exist. 
Consider for example the case of a cell: it is a 
network of chemical reactions which produce 
molecules such that (i) through their interac- 
tions generate and participate recursively in 
the same network of reactions which pro 
duced them, and (ii) realize the cell as a mate- 
rial unity. Thus the cell as a physical unity, 
topographically and operationally separable 
from the background, remains as such only 
insofar as this organization is continuously 
realized under permanent turnover of matter, 
regardless of its changes in form and specitici- 
ty of its constitutive chemical reactions. 

4. Autopoiesis and Allopoiesia 

The class of systems that exhibit the auto- 
poietic organizatioc, we shall call autopoietic 
systems. 

Autonomy is the disttnctive phenomenolo- 
gy resulting from an autopoietic organization: 
the realization of the autopoietic organization 
is the product of its operation. As long as an 
autopoietic system exists, its organization is 
invariant; if the network of productions of 
components which define the organization is 
disrupted, the unity disintegrates. Thus an 
autopoietic system has a domain in which it 
can compensate for perturbations through the 
realization of its autopoiesis, and in this do- 
main it remains a unity. 

In contradistinction, mechanistic systems 
whose organization is such that they do not 
produce the components and processes which 
realize them as unities and, hence, mechanis- 
tic systems in which the product of their 
operation is different from themselves, we call 



allopoietic. The actual realization of these 
systems, therefore, is determined by processes 
which do not enter in their organization. For 
example, although the ribosome itself is par- 
tially composed or components produced by 
ribosomes, as a unity it is produced by proc- 
esses other than those which constitute its 
operation. Allopoietic systems are by consti- 
tution non-autonomous insofar as their real- 
ization and permanence as unities is not 
related to their operation. 

5. Autopoiesis: The Living Orga~raization 

The biological evident? available today 
clearly shows that living syslemr belong to the 
class of autopoietic systems. To prove that 
the autopoietic organization is the living or- 
ganization, it is then sufficient to show, on 
the other hand, that an nutopoietic system is 
a living system. This has been done by show- 
ing that for a system to have the phenome- 
nology of a living system it suffices that its 
organization be autopoiebc (Maturana and 
Varela, 1973). 

Presently, however, it should be noticed 
that in this charactetiatlon, reproduction 
does not enter as a requisite feature of the 
living organization. In fact for reproduction 
to take place there must be a unity to be 
reproduced: the establishment of the unity is 
logically and operationally antecedent to its 
reproduction. In living systems the organiza- 
tion reproduced is the autopoietic organiza- 
Con, and reproduction tcakes place in the 
process of autopoiesis; that is, the new unity 
arises in the realization of the autopoiesis of 
the old one. Reproduction in a living system 
is a process of division which consists, in pr& 
ciple, of a process of fragmentation of an 
autopoietic unity with distributed autopoiesis 
such that the cleavage separates fragments 
that carry the same autopoietic network of 

production of components that defined the 
original unity. Yet, although self-reproduction 
is not a requisite feature of the tiving organi- 
zation, its occurrence :I? living systems as we 
know them is a necessary condition for the 
generation of a historical network of succes- 
sively generated, not necessarily identical, 
autopoietic unities, that is, for evolution. 

6. A Minimsl Case: The Model 

We wish to present a simple embodiment of 
the autopoietic organization. This model is 
significant m two respects: on the one hand, 
it permits the observation of the autopoietic 
organization at work in a system simpler than 
any known living system, as well as its sponta- 
neous generation from components; on the 
other hand, it may permit the development of 
formal tools for the analysis and synthesis of 
rutopoietic systems. 

The model consists of a two-dimensional 
universe where numerous 0 elements (“sub- 
strate”), and a few * (“catalysts”) move ran- 
domly in the spaces of a quadratic grid. These 
clemects are endowed with specific properties 
which determine interactions that may result 
in the production of other elements 0 
(“links”) with properties of their own and 
also capable of interactions (“bonding”). Let 
the interactions and transformations be as fol- 
lows: 

1nterar:ion t 11 between the catalyst * and 
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two substrate elements 2 0 is responsible for 
the composition of an unbended link LX. 
These links may be bonded through Interac- 
tion [2] which concatenates these bonded 
links to unbranched chains ofo. A chain so 
prodlxad may close upon itself, forming an 
encloswe which we assume to be penetrable 
by tbe O’s, but not f@r *. Disintegration (In- 

teraction [3]) is assumed lo be independent 
of the state of links [%, i.e., whether they are 
free or bound, and can be viewed either as a 
spontaneous decay or as a result of a collision 
with a substrate element 0. 

In order to visualize the dynamics of the 
system, we show two sequences (Figures 1 
and 2) of successive stages of transformation 



as they were obtained from the print-out of a 
computer simulation of this system.” 

If an t%chain closes on i self enclosing an 
element * (Fig. I), the D’s produced within 
the enclosur: by Interaction [ I I can replace 
in the chain, via [21, the ekments q that 
decay as a result of I31 (‘Fig. 7-j. In this man- 
ner, a unity is produced which constitutes a 
network of productions of components that 
generate and participate in the network of 
productions that pmduced these components 
by effectively realizing the network as a dis- 
tinguishable entity in the universe where the 
elements exist. Within this universe these 
systems satisfy the autopoietic organization. 
In fact, element * and elements 0 produce 
element q in an enclost,r~: for ned by a bidi- 
mensional chain of D’s; as a result the 01’s 
produced in the enclosure replace the decny- 
ing D’s of the boundary, so that the enclosure 
remains closed for * unds:r continuous tun- 
over of elements, and under recursive genera- 
tion of the network of productions which 
thus remains invariant (Figs. I and 2). This 
unity cannot be described in geometric terms 
because it is not defined by the spatial rela- 
tions of its components. If one stops all the 
processes of the system at a moment in which 
* is enclosed by the i%chain, so that spatial 
relations between the components become 
fixed, one Indeed has a system definable in 
terms of spatial relations, that is, .a crystal, 
bul not an autopoietic unity. 

It should be apparent from this model that 
the pnmesses generated by the properties of 
the components (Schema I) can br: concate- 
nated in a number of ways. The autopoietic 
organization is but one of them, yet it is the 
one that by definition implies the realization 
of a dynamic unity. The same components 

can generate other, allopoietic organizations; 
for example, a chain which is defined as a 
sequence of O’s, is clearly allopoietic since 
the production of the components that realize 
it as P unity do not enter into its definition as 
a unity. Thus, the autopoietic organization is 
neither represented nor embodied in Schema 
1, as in general no organization is represented 
or embodied in the prcp?rtles ‘that realize ii. 

7. Tessellation and Molecules 

In the case described, as in a broad spec- 
trum of other studies that can generically be 
calk:d tessellation automata (von Neumann, 
1966; Gardner, 1971), the starting point is a 
generalization of the physical situation. In 
fact, one defines a spree where spatially dis- 
tinguishable components interact, thus em- 
bodying the concatenation of processes which 
lead to events among the components. This is 
of course what happens to the molecular 
domain, where autopoiesis as we know it 
takes place. For the purpose of explaining and 
studying the notion of autopoiesis, however, 
one may take a more general view as we have 
done here, and revert to the tessellation do- 
main where physical space is replaced b.r any 
space (a twodimensional one in the model), 
and molecules by entities endowed with some 
properties. The phenomenology is unchanged 
in all cases: the autonomous self-maintenance 
of a unity while its organization remains in- 
variant in time. 

It i? apparent that .n order to have auto- 
poietic systems, the components cannot be 
simple in their properties. In the present case 
we required that the components have speci- 
ticity of interactions, forms of linkage, mo- 
bility and decay. None of these properties are 
dispensable for the formation of this auto- 
p&tic system. The necessary feature is the 
presence of a boundary which is produced by 
a dynamics such that the boundary creates 



the conditions Squired for this dynamics. 
These properties should provide clues to the 
kinq of molecules we should look for in order 
to produce an autopoietic system in the mo- 
lecular domain. We believe that the synthesis 
of molecular autopoiesis can be attempted at 
present, as suggested by studies like those on 
microspheres and liposomes (Fox, 1965; 
Bangham, 1968) when analyzed in the present 
framework. For example: a Iiposome whose 
membrane lipidic components are produced 
and/or tnodified by reactions that take place 
between its components, only under the con. 
ditions of concentration produced within the 
liposome membrane, would constitute an 
autopoietic system. No experiments along 
these lines have teen carried out, elthough 
they are pot)ntial keys for thk origin of living 
systems. 

We shall summarize the basic notions that 
have been develtped in this paper: 

A. There are mechanistic systems that are 
defined as unities by a particular organization 
which we call autopoietic. These systems are 
different from any other mechanistic system 
in that the product of their operation as sys- 
tents thus defined is necessarily always the 
system itself. If the network of processes that 
constitutes the autopoietic system is diFr 
rupteti, the system disintegrates. 

B.The phenomdnology of an autopoietic 
system is the phenomenology of autonomy: 
d changes of state (internal relations) in the 
system that take place without disintegration 
are changes in autopoiesis which perpetuate 
autopoiesis. 

C. An autopoietic system arises sponta- 
neonsly from the interaction of otherwise in- 
dependent elements when these interactions 
constitute a spatially contiguous network at’ 

productions which manifests itself as a unity 
in the ipace of its elements. 

D. The properties of the components of an 
autopoietic system do nol determine its f$op- 
et-ties as a unity. The properties of an auto- 
poietic system (as is the case for every sys- 
tem) are determined by the constitution of 
this unity, and are, in fact, the properties of 
the network created by, and creating, its com- 
ponents. Therefore, to ascribe a determinant 
value to any component, or to any of its 
properties, because they seem to be “es?en- 
til”, is a semqtic artifice. In other words, all 
the components, and the components’ proper- 
ties, as weI as the circum&ances which permit 
their productive interactions, are necessary 
when they participate in the realization of an’, 
autopoietic network, and none is determinant 
of the constitution of Le network or VI its 
properties as a unity. 

9. Key 

The following is a six-point key for deter- 
mining whether or not a given unity is auto- 
poietic: 

1. Determine, through interactions, if the 
unity has identifiable boundaries. If the 
boundaries can be determined, proceed to 2. 
If not, the entity is indescribable and we can 
say nothiig. 

Z.Determine if there are constitutive ele- 
ments of the unity, that is, components of the 
unity. If these components can be described, 
proceed to 3. If not, the unity is an unanatyz- 
able whole and therefore not an autopoietic 
system. 

3. Determine if the unity is a mechanistic 
system, that is, the component properties are 
capable of satisfying certain relations that de 
termine in the unity the interactions and 
transformations of these Pcomponents. If this 



is the case, proceed to 4. If not, the unity is 
not an autopoietic system. 

4. Determine if the components that con- 
stitute tlib bouncaries of the unity constitute 
these boundaries throuBh preferential neigh- 
borhood re1atior.s and interactions between 
themselves, as uetennined by their properties 
In the space of their interactions. If this is not 
tbe,case, you do not have an autopoietic uni- 
ty because you are det:!rmining its bounda- 
ries, not the unity itself. If 4 is the case, how- 
eve?, proceed to 5. 

5.Determine if the components of the 
boundaries of the unity are’ produced by the 
interactions of the components of the unity, 
either by transformatiorl of previously pro- 
duced components, or hy transformations 
and/or coupling of r~on-cemponent elements 
that enter the unity through its boundaries. If 
not, you do not have an autopoietic unity; if 
yes, proceed to 6. 

6. If all the other components of the unity 
are also produced by the inleractions of its 
components as in 5, and if those which are 
not produced by the interactions of other 
components participate as necessary perma- 
nent constitutive components in the produc- 
tion of other components, you have an auto- 
poietic unity in the space in which its cumpo- 

nents exist. If this is not the case and there 
are components in the unity not produced 
by components of the Iunity as in 5, or if 
there are components of the unity which do 
not participate in the production of other 
components, you do uot have an autopoietic 
unity. 
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APPENDIX 

Conventions 

We shall use the following alphanumeric 
symbols to designate the elements referred to 
earlier: 

Substrata: 0 +s 
Catalyst: * +K 
Link: fB +L 
Bonded link: -&+BL 

The algorithm has two principal phases 
concerned, respectively, with the motion of 
the components over the two dimensional ar- 
my of positions, ar,d with production and dia- 
integration of the L components out of and 
back into the substrate s’s. The rules by 
which L components bond to form a bound- 
ary complete the algorithm. 

The “space” is a rectangular array of 
points, indhdually addressable by their row 



,md column position9 ‘within the array. In its 
nitial state this space cdntains one or more 

r:atalyst moleculbs K with all remaining posi- 
:ions contain& substrate S. 

In botb the motion and production phases, 
it is necessary to make random selections 
among certain sets of positions neighboring 
the particular point in the space at which the 
algodthm is being applied. The numbering 
scheme of Figure 3 is then applied, with loca- 
tion 0 in the figure being identified with the 
point of application (oi course, near the array 
boundaries, not all of the neighbor locations 
identified in the tigute wit1 actually be 
found). 

Regarding motion, the components are 
ranked by increasing “mass” as S, L, K. The 
S’s may not displace any other species, and 
thus are only able to move into “holes” or 
empty spaces in the grid, though they can 
pass th:rougb a single thickness of bonded Fnk 
B I’s to do so. On the other hand the L and K 
rxdily displace S’s, pushing them into adja- 
cent holes, if these exist, or else exchanging 
positions with them, thus passing freely 
through the substrate S. The most massive, K, 
can similarly displace free L links. However, 
neither of these can pass through a bonded 
Iii segment, and are thus effectively con- 
tained by a closed membrane. Concatenated 

L’s, forming bondlld link segments, are sob- 
iect to no motions at all. 

Regarding production. the initial state con- 
tains no bonded links at all; tI,.:se appear only 
as the result of formation from substrate S’s 
in the presence of the catalyst. This occurs 
whenever two adjacent neighboring positions 
of a catalyst are occupied by s’s (e.g., 2 and 
7, or 5 and 4 ln Figure 3). Only one L is 
formed per time step. per catalyst, with multi- 
ple possibilities being resolved by random 
choice. Since two s’s are combined to form 
one L, each such production leaves a new hole 
in the space, into which S’s may diffuse. 

The disintegration of L’s is applied as a uni- 
form probability of disintegration per time 
step for each L whether bonded or free, which 
results in a proportionality between failure 
rate and size of a chain structure. The sharply 
limited rate of “repair”, which depends upon 
random motion of S’s through the membrane, 
random production of new L’s and random 
motion to the repair site, makes the disinte- 
gration a very powerful controller of the max- 
imum size for a viable boundary structure. A 
disintegration probability of less than about 
.Ol per time step is required in order to 
achieve any viable structure at all (these must 
contain roughtly ten L units at least to form a 
closed structure with any space inside). 

Algorithm 

1. Motion, fist step 
1.1. Form a list of (he coordinates of all 
holes hP 
1.2. For each b. make a random selection, 
ni, in the range I through 4, specifying a 
neighboring location. 
1.3. For each hi in turn, where possible, 
move occupant of selected neighboring lo- 
cation in hi. 
1.31. If the neighbor is a hole or lies out- 
side the space, take no action. 



1.32. If the neighbor n,, contains a bonded 
L, examine the location n I. If n 1 contains 
an S, move this S to hi. 
1.4. Bond any moved I., if possible (Rules, 
6). 

2. Motion, second ste? 
2. I. Form a list of the coordinates of free 
L’s, mi. 
2.2. For each q, r.lake a random selection, 
ni, in the range I through 4, specifying a 
neighboring locatiw. 
2.3. Where possible, move the L occupying 
the location mi into the specified neighbor- 
ing location. 
2.31. If location specified by ni contains 
another I,, or a K, then take no action. 
2.32. If location specificed by ni contains an 
S, the S will be displace~d. 
2.321. If there is a hole adjacent to the S, it 
will move into it. If more than one such 
hole, select randomly. 
2.322. If the S can be moved into a hole by 
passing through bonded links, as in step 1, 
then it will do so. 
2.323. IT the S cannot be moved into a 
hole, it will exchange locations with the 
moving I.. 
2.33. If the location :specified by ni is a 
hole, then L simply mores into it. 
2.4. Bond each moved I,, if possible. 

3. Motion, third step 
3.1. Form a list of tb: coordinates of all 
K’s, ci. 
3.2. For each ci, make a rando,n selection 
ni, in the range I through 4 qxxifying a 
neighboring location. 
3.3. Where possible, move the K into the 
selected neighboring location. 
3.31. If the location specified by ni con- 
tains a BL or another K, take no action. 
3.32. If the location r~pccified by ni con- 
tains a free L, which may be displaced ac- 

cording to the,rules of 2.3, ther. the L will 

be moved, and the K moved into its place. 
(Bond the moved L, if possible). 
3.33. If the location specified by ni con- 
tains an S, then move the S by the rules of 
2.32. 
3.34. If the location specified by ni con- 
tains a free L, not movable by rules 2.3, 
exchange the positions of the K and the L. 
(Bond L if possible). 
3.35. If the location specified by q is a 
hole, the K moves i&o it. 

4. Production 
4. I. For each catalyst ci, form a list of the 
neighboring positions nij. which are occu- 
pied by S’s, 
4. Il. Delete from the list of nij all posi- 
tions for which neither adjacent neighbor 
position appears in the list (i.e., “1” must 
be deleted from the list ofnij’s. if neither 5 
nor 6 appears, and a “6” must be deleted if 
neither I nor 2 appears). 
,4.2. For each ci with a non-null list of njj, 
choose randomly one .of the nij, let Its 
value be pi, and at the corresponding loca- 
tion. replace the S by a free L. 
4.21; If the list of qj contains only one 
which is adjacent lo pi, then remove the 
corrspondinlg S. 
4.22. If the list of “ij includes both loca- 
tions adjacent to pi, randomly select the 15 to 
be removed. 
4.3. Bond each produced L, if possible. 

5. Disintegration 
5. I. For each L, bonded or unbonded. se- 
lect a random real number, d, in the range 
(0.1). 
5. I I. If d < Pd (Pd an adjustable parameter 
of the algorithm), then remove the corm- 
spending L, attempt to r&bond (Rules, 7). 
5.12. Otherwise proceed to next L. 



6. Bonding 
This step must be given the coordinates of a 

free L. 
6.1. Form a list Iof the neiaboring posi- 
tiocs n+ which contain free L’s, and the 
neighboring positions m,, which contain 
singly bonded L’s. 
6.2. Drop from the mi any which >vould 
result in a bond angle less than 90’. (Bond 
angle is determined as in Figure. 4). 
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6.3. If there are two or more of the ml, 
select two, form the corresponding bonds, 
and exit. 
6.4. If there is exactly one mi, form the 
corresponding bond. 
6.41. Remove from the I\ any which would 
now result in a bond angle of less that 90”. 

6.42. If there are no ni, exit. 
6.43. Select one of the n,, form the bond, 
and exit. 
6.5. If there are no ni, exit. 
6.6. Select one of the ni, fo;m the cor-re- 
sponding bond, and drop it from the list. 
6.61. If the ni list is non-null, execute steps 
6.41 through 6.43. 
6.62. Exit. 

Rebond 
7. I. Form a list of ;I neigbor positions mi 
occupied by singly bonded L’s, 
7.2. Form a second list, p.. of pairs of the 
mi which can be bonded. “’ 
7.3. If there are any pij, choose a maximal 
subset ar.d form the bonds. Remove the L’s 
involved from the list mi. 
7.4. Add to the bond m, any neighbor !oca- 
tions occupied by free L’s. 
7.5. Execute steps 7.1 through 7.3, then 
exit. 


