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Gene genealogies and the coalescent
process

RICHARD R. HUDSON

1. INTRODUCTION

When a collection of homologous DNA sequences are compared, the
pattern of similarities between the different sequences typically contains
information about the evolutionary history of those sequences. Under a
wide variety of circumstances, sequence data provide information about
which sequences are most closely related to each other, and about how
far back in time the most recent common ancestors of different sequences
occurred. If the sequences were obtained from distinct species, then the
information is frequently extracted and displayed in the form of an inferred
phylogenetic tree, which may represent the evolutionary relationships of
the species from which the sequences were sampled. If, instead of being
from different species, the sequences are from different individuals of the
same population, the information is genealogical, and in this case gene
trees can sometimes be inferred. A gene tree shows which sampled
sequences are most closely related to each other and perhaps the times
when the most recent common ancestors of different sequences occurred.
A hypothetical gene tree, or genealogy, of five sampled sequences is
shown in Fig. 1. In the absence of recombination, each sequence has a
single ancestor in the previous generation. (It is important to distinguish
a gene tree of sampled sequences from the pedigree of a sample of diploid
individuals, in which the number of ancestors grows as one proceeds back
in time, because each diploid individual has two parents.) The possibility
of obtaining detailed information about the genealogy of sampled genes
dramatically changes the situation for molecular population geneticists.
Before the DNA era, molecular polymorphism data were primarily in
the form of frequencies of electromorphs, alleles distinguished by their
mobility on electrophoretic gels. With protein electrophoresis, two homo-
logous copies of a gene could be classified as being the same or different.
If they were different, one could not measure how different; if the two
copies were the same, one could not with confidence distinguish whether
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Fig. 1. An example of a genealogy of a sample of five alleles, showing the time
intervals between coalescent events. In this figure, the intervals, T(i), are shown
with lengths proportional to their expected values as given by eqn (5).

they were really the same or simply convergent in certain physical proper-
ties leading to similar electrophoretic mobility. Thus detailed information
about the genealogies of genes could not be extracted from data on
electromorph frequencies. With modern DNA techniques, sequences of
homologous regions of many individuals are obtainable and detailed infor-
mation about the genealogy of sampled genes will be obtained. Examples
of genealogies inferred from sampled alleles are given in Stephens and
Nei (1985), Aquadro er al. (1986), Bermingham and Avise (1986), Avise
et al. (1987) and Cann et al. (1987).

The obvious challenge for molecular population geneticists is: How can
we utilize this information to increase our understanding of the forces
acting on molecular variation in natural populations? From the theory
side, we can begin by examining the properties of genealogies that arise
under a variety of population genetic models. It is important to ask:
Are genealogies expected to be very different under different competing
models? Can we devise statistical tests that take advantage of the different
genealogies expected? To proceed with this task, one needs to examine
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the statistical properties of genealogies of sampled genes under different
models.

In the following, 1 will describe a variety of circumstances in which
properties of genealogies can be derived analytically or by computer
simulation. This will not constitute a comprehensive review of gene gen-
ealogy theory, but rather a very personal view that concentrates on the
infinite-site model. Some properties of genealogies will be described under
selectively neutral models, with and without recombination, and with and
without geographic structure. The effects of some forms of selection will
also be described. 1 will indicate some applications of this genealogical
approach for carrying out statistical tests or estimating parameters or
simply allowing an ‘eye-ball’ test of the fit of observations to data. I will
also indicate how simulations based on the coalescent process can be
constructed and used to investigate a variety of models.

This will not be a rigorous mathematical treatment. Those interested
in a more precise analysis should consult the seminal work of Kingman
(1980, 19824,b) and the review by Tavaré (1984). Much of the very elegant
and useful work of Griffiths (1980), Watterson (1984) and Padmadisastra
(1987, 1988) on coalescents and lines of descent that focus on the infinite
allele model will not be covered. This includes a large body of work on
the ages of alleles (Donnelly 1986; Donelly and Tavaré 1986; Tavaré er
al. (1989) that is reviewed by Ewens (1989). The infinite-allele models
and the infinite-site models are very closely related, as will be described
later, and results from one can often be used immediately to answer
questions about the other. However, the questions asked and the par-
ameter values considered are often quite distinct for the two models. In
this chapter, I will concentrate on results that directly concern infinite-
site models, which I feel are most useful in the interpretation of nucleotide
variation in populations.

I will focus on properties of relatively small samples of alleles. The
work on properties of genealogies of entire populations, including fixation
times, will not be considered (Donnelly and Tavaré 1987; Watterson
1982a, 1982b). Also, the important work on the relationship between
gene trees and species trees will not be discussed (Hudson 1983b; Neigel
and Avise 1986; Pamilo and Nei 1988; Takahata 1989).

Statistical properties of genealogies depend very strongly on the kind
of sampling that occurs to produce one generation from the last. In this
chapter, only the Wright-Fisher (W-F) model will be considered. The
sampling that produces one generation from the last under this model is
described briefly in the next section. A range of alternative neutral models
have been found that have essentially the same genealogical properties as
the W-F model, with only a change of time-scale (Kingman 19824.b;
Watterson 1975; see also the reviews by Tavaré, 1984, and Ewens, 1989).
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2. SEPARATING THE GENEALOGICAL PROCESS FROM
THE NEUTRAL MUTATION PROCESS

As will be discussed in great detail in the following pages, the statistical
properties of genealogies depend on such factors as population size,
geographic structure and the presence of selectively maintained alleles.
That properties of genealogies should depend on these demographic
properties is obvious, because actual genealogies depend on who had
offspring and who did not, who migrated and to where, and whose
offspring bore selectively important mutations. It should also be clear that
strictly neutral mutations ~ mutations that have not and will not affect
fitness — should have no affect on the genealogies of random samples.
This is because, by definition, neutral mutations do not affect the number
of offspring or tendency to migrate of individuals bearing those mutations.
That being the case, we can study the properties of genealogies without
regard to a specific mutation model for neutral variants. So, for example,
the statistical properties of genealogies do not depend on whether neutral
mutations are more frequently transitions than tranversions or whether
an infinite-site, finite-site or infinite-allele model is most appropriate. Of
course, the statistical properties of our inferences about the genealogical
process are likely to depend strongly on the mutation process. For exam-
ple, if the neutral mutation rate is very low, all the sequences in a sample
may be identical and we could get no information about the genealogy of
the sample.

With the neutral mutation process that we will consider, each offspring
differs from its parent at the locus under consideration by a Poisson
distributed number of mutations. The mean number of mutations, p, will
be assumed constant, independent of genotype, population size and time.
The mutations are assumed to occur independently in different individuals
and different generations. This mutation model will be referred to as
the constant-rate neutral mutation process. This is the standard neutral
mutation model (Kimura 1983; Watterson 1975). Under these assump-
tions, mutations accumulate along lineages in an inexorable fashion inde-
pendent of, for example, population size or selection events at linked loci.
Given 1, the number of generations since the most recent common ancestor
of two sampled homologous sequences, §, the number of mutations that
have occurred in the descent to the two descendent sequences, is Poisson
distributed with mean 2us. When ¢ is a random quantity, the mean and
the variance ~ in fact all the moments of S — are determined by the
moments of 7 assuming the constant-rate neutral mutation process.

To emphasize this point, consider a population that at time 0 is com-
pletely homozygous at a locus at which only neutral mutations occur.
After  generations of evolution, one examines the sequence at the locus
in a single randomly selected individual. Under the mutation scheme we
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have described in the previous paragraph, the number of mutations that
will have occurred to distinguish our randomly sampled individual from
the individuals in the population at time 0, is just the number of mutations
that have occurred alcng a particular lineage of length ¢. This number of
mutations is Poisson distributed with mean wr. It does not matter what
the population size has been, whether selection has been occurring at
linked loci, or whether there is population subdivision. This is the basis
for the results of Birky and Walsh (1988) concerning the rate of accumu-
lation of neutral mutations when selection is occurring at linked loci. In
the example above, the number of mutations that have fixed in the entire
population between time 0 and time ¢ will depend on these demographic
aspects of the population. Similarly, the amount of polymorphism in the
population at time ¢ will depend on population size and other demographic
factors, but the number of mutations that will have occurred along individ-
ual lineages in the past  generations, that distinguish a sampled sequence
from their ancestors r generations back, is Poisson distributed with mean
wt, regardless of these other factors.

This property of the constant-rate neutral mutation process will be
exploited in the following way. Let T,,, denote the sum of the lengths of
the branches of the genealogy of a sample. As discussed in the previous
paragraph, S, the number of mutations on the genealogy, given T, is
Poisson distributed with mean pnT,,,. Once the distribution of Tior 1S
determined under a particular model, the distribution of S can easily be
obtained. For example, if the first two moments of T are determined,
then the first two moments of § can be calculated using properties of
compound distributions as:

E(S) = nE(T,,) (1)
and
Var(S) = wE(To) + p? Var(T,,,) (2)

Reiterating, under the models that we will consider, the properties of
genealogies do not depend on the neutral mutation process, and therefore
can be studied without precise specification of the neutral mutation pro-
cess. For example, we can study the statistical properties of T,,, without
specifying the rate or pattern of neutral mutation. Furthermore, statistical
properties of neutral variation in samples are completely determined by
the statistical properties of the genealogies and the neutral mutation
process. In other words, if two different models make the same assump-
tions about the neutral mutation process and if the two different models
lead to the same distribution of genealogies, then the pattern of neutral
variation will be the same for the two models. For example, if the neutral
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mutation process is as we have described above, the mean value of S is
completely determined by the mean value of T,,,. Two different models
that lead to the same mean value of T,,, will have the same mean value
of §.

Throughout this chapter, we will consider an ideal W-F model, with
either N haploids or N diploids. Briefly, this is a discrete generation model
in which, for the haploid version, the N haploids of an offspring generation
are obtained by sampling (and replicating possibly with mutation) N times
with replacement from the parent generation. In the selectively neutral
version, all parents are equally likely as parents of each of the N haploid
offspring. A detailed description of this model is contained in Ewens
(1979). We will assume that N is large and constant, in which case
individuals have approximately Poisson distributed numbers of offspring.
Most of the results concerning this model will be approximate, ignoring
terms of order (1/N?) relative to (1/N). This corresponds to the usual
assumptions made for using diffusion approximations and will be referred
to as the diffusion approximation. In contrast to the W-F model, exact
results can often be obtained for the Moran model (see, for example,
Watterson 1975). The Moran model will not be considered here.

3. THE SIMPLEST CASE: NO SELECTION AND NO
RECOMBINATION

Although genealogical processes are implicit in much of the work on
identity coefficients that has been carried on for many years, it was the
knowledge of the nature of the genetic material and the possibility of
obtaining sequence data (or restriction map data) that stimulated some
of the earliest work that considers the genealogical process directly. Wat-
terson’s (1975) remarkable paper describes the basic properties of gen-
ealogies under neutral models and marks the beginning of modern coalesc-
ent theory. The following description of the no-recombination genealogy
under the W-F neutral model draws heavily from the work of Watterson
(1975), Kingman (1980, 1982a,b) Griffiths (1980) and Tajima (1983).

To begin, we consider an ideal haploid species without recombination,
without geographic subdivision and without selection — a typical garden-
variety haploid species. We wish to examine properties of the genealogy
of a random sample of n individuals from this population. Let us label
the population from which the sample was drawn, generation 0. The
ancestral population ¢ generations back in time will be referred to as
generation .

The basic property of a sample drawn from such a population, upon
which much of the following is based, concerns the probability, P(n), that
all the n sampled individuals have separate distinct ancestors in the
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preceding generation. Consider first a sample of two individuals. The
probability that the second individual sampled has the same parent as the
first is 1/N, as under the W-F neutral model each individual of the previous
generation is equally likely to be the parent of any individual of the
current generation. Thus P(2) is 1—-1/N. If three individuals are sampled,
the probability that all three have distinct ancestors in the previous gener-
ation, is the probability that the first two have distinct parents X the
probability that the parent of the third individual drawn is distinct from
the first two parents. As there are N-2 individuals that are distinct from
the parents of the first two sampled individuals, the probability that the
third individual has a distinct parent from the first two, given that the
first two have distinct parents, is (N=2)/N = 1-2/N. In general, the
probability that n sampled individuals have n distinct parents in the
previous generation is:

4

n—1
2

P(n) = [[] (1=iN)~1- =+ (3)

We can ask the same question about these n distinct ancestors: What is
the probability that they have n distinct ancestors one generation earlier?
Clearly, this is also P(n). This means that the probability that the »
sampled individuals have n distinct ancestors in each of the preceding ¢
generations, and that in the ¢ + 1 generation back in time, two or more
of the sampled individuals have common ancestors is:

T

P(n) [1-P(n)] = N €

In words, the time back until the first occurrence of a common ancestor
is geometrically distributed and will be approximated by an exponential
n

2
throughout, the probability that more than two individuals of our sample
have common ancestors in a single generation is very small and will be
ignored. Thus with high probability, the recent history of our sample
consists of 1 generations in which n distinct lineages exist, and then at
generation ¢ + 1, a single pair of lineages ‘coalesce’ at the most recent

distribution with mean N/( ) For large N and small n, as we will assume

common ancestor of two of the sampled individuals. Each of the (;)

possible pairs of lineages are equally likely to form the coalescing pair.
To continue tracing the history of our sample back in time, we note that
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in the generations preceding the first coalescence, there are n — 1 ances-
tors or lineages to follow. The probability — each generation - that all of
these ancestors have distinct ancestors in the preceding generation is
P(n—1). So the time to the next coalescence is approximately exponen-
n—1

5 ) At this coalescence, each of the

tially distributed with mean N/(

-1
<n2 ) possible pairs of lineages are equally likely to coalesce at this node.

Note that one of these (n—1) lineages has two descendants in our original
sample, the other lineages having a single descendant in the sample. We
can continue in this way until all the lineages have coalesced into a single
lineage, the common ancestor of the entire sample of n individuals.

A genealogy of five sampled alleles is shown in Fig 1. The stochastic
process that generates a genealogy, referred to as the coalescent process,
can be summarized verv briefly. The time, 7(j), during which there are
J distinct lineages is approximately exponentially distributed, and if time
is measured in units of N generations, the mean of T(j) is:

£y = 1) )

The two lineages that coalesce at a node in the genealogy, say in gener-
ation ¢ + 1, are two lineages randomly chosen from the lineages present
in generation r. Notice that we have not had to concern ourselves with
lineages other than those that are ancestral to our sample. Also note that
the intervals between coalescences, the T(j)’s, are statistically independent
of each other. Also, it is important to note that the older parts of the
genealogy (the upper parts of the genealogy in Fig. 1), are identical in
statistical properties to the genealogies of smaller samples. For example,
the part of the genealogy above the most recent coalescent event in the
history of a sample of size n, is distributed exactly as the genealogy of a
sample of size n — 1. Generating such genealogies on a computer is trivial
(an example of a program is given in the Appendix).

These properties of genealogies apply to mitochondrial genomes as well
as to garden-variety haploid organisms. If mitochondrial inheritance is
strictly maternal and polymorphism within individual females is negligible,
then N is the number of females.

For a large population of N diploids, under the W-F model with random
mating, no recombination and no selection, the results are also the same,
except that N is replaced by 2N. The genealogy in this case should be
thought of as the genealogy for a specific locus within which no recombi-
nation occurs. The locus might consist of a single nucleotide site or, if
the recombination rate is sufficiently low, of many contiguous nucleotide
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sites that can be considered completely linked. For the model being
considered, sufficiently low means that Nr < 1, where r is the recombi-
nation rate per generation between the ends of the region being con-
sidered. If time is measured in units of N generations for haploid models,
and in units of 2N generations for diploid models, the results are exactly
the same for haploids and diploids, i.e. the mean of 7(j) is given by eqn
(5).

Unlinked loci in large populations are essentially independent and
will have their own independent genealogies. Linked loci, which have
correlated genealogies, will be considered later.

4. ADDING NEUTRAL MUTATIONS TO THE GENEALOGY

Given the properties of the genealogies just described, we can predict
properties of samples under various mutation schemes. As discussed in
the previous section, we will assume a constant-rate neutral mutation
process, in which each offspring gamete differs from its parent by an
average of y mutations. In addition, we will assume an infinite-site model
(Kimura 1969). Under this model, the locus is composed of many sites,
so that no more than one mutation occurs at any site in the genealogy of
our sample. The oft-employed infinite-allele model (Kimura and Crow
1964) is similar, assuming that each mutation produces a new allele, not
present anywhere else in the genealogy of the sample. For our purposes,
the infinite-site model and the infinite-allele model are essentially the
same but under the infinite-allele model one ignores how many mutations
distinguish alleles and notes only whether alleles are the same or different.

The first properties to be considered concern the distribution of the
number of mutations that occur on the branches of the genealogy of a
sample. Under the infinite-site model, this number of mutations is ident-
ical to the number of nucleotide sites that would be polymorphic in the
sample. The number of polymorphic sites in the sample, denoted S, is
often referred to as the number of segregating sites in the sample. First,
we consider the expected value of S.

From eqn (1) we can calculate the expectation of S from the expectation
of T, the total length of the genealogy. It follows easily from the
definition of Z(j), that the sum of the lengths of the branches of the

genealogy is _gziT(i). Therefore, from eqn (5), now measuring time in
units of 2N generations, it follows that

n n—1

ES) = g > E(T()) = 8 2} 1i (6)

i=2

where 6 = 4NVu (Watterson 1975). The variance of the total time is also
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easily obtained, and using eqns (2) and (6), one obtains (Watterson 1975):
n—1 n—1

Var($) =8 > 1i+62> 1/ (7)
i=1 i=1

In fact, any moment of S can be expressed in terms of the moments of
the T,. Watterson also showed that the number of segregating sizes is
approximately normally distributed in samples of sufficient size.

We can obtain the entire distribution of S, but first we consider the
probability that S = 0, for a sample of size 2. This is equivalent to the
expected homozygosity, E(F), or the probability that two sampled alleles
are identical. This probability will be derived in two ways. For two
sampled alleles to be identical under the infinite-site model (or the infinite-
allele model), it must be the case that no mutations have occurred on the
lineages that descend to them from their most recent common ancester
(denoted MRCA). Given ¢, the number of generations back to their
MRCA, the probability that no mutations have occurred in the descent
to the sampled alleles is e=2*. This follows from our Poisson assumption
about mutation. Therefore, if we take the expectation of e~2* over the
distribution of ¢, which is exponential with mean 2N in the diploid model,
we find:

x e—rlzN 1

—Zul e
L 2N ¢ T

E(F) = E(e~2) = (8)

This is a classic result (Kimura and Crow 1964) that can, of course, be
derived from recursions, but here one gets a sense of its connection to
the genealogy.

Equation (8) also illustrates a general connection between the infinite-
allele model and the coalescent process. For any model of the population
process, which determines the genealogical process, if the mutation pro-
cess is the infinite-allele constant-rate neutral mutation process that we
have been assuming, then the probability that two randomly sampled
alleles are identical is C(6) = E(e®), where this expectation is with
respect to the distribution of ¢, the time back to the most recent common
ancestor of two random alleles measured in units of 2N generations. The
identity coefficient with —6 as argument, C(—8), is also the moment-
generating function of ¢. The moments of ¢, and consequently moments
of §, are easily obtained from C(6) by standard methods. For example,
E(r) is —C'(0) and E(S) is —8C’(0), where C’'(0) represents the derivative
of C(6) with respect to 8 evaluated at 8 = 0. This is quite general. For
example, in models of gene conversion in multigene families, identity
coefficients have been obtained for pairs of alleles sampled in various
ways (Nagylaki and Petes 1982). The moments of the number of sites
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that would distinguish these alleles under an infinite-site model, can be
calculated as just described by taking derivatives of the identity coef-
ficients.

An alternative derivation of eqn (8) involves tracing the history of the
two sample alleles back in time, until either the MRCA of the alleles is
found or a mutation on one of the lineages is found. In each generation,
the probability, Pc,, that the MRCA occurs is 1/2N. Also, in each
generation, the probability, P,,,,, that one or the other of the two lineages
experiences a mutation is 2p. The two alleles can be identical if, and only
if, the first event encountered is a common ancestor event. Given that
one or the other event has occurred, and ignoring the possibility that
both occur in the same generation, the probability that the first event
encountered is the common ancestor event is:

Pca 12N 1

Pop+ Py 12N+2p 148 )

E(F) =

In a similar fashion, one can derive the entire distribution of the number
of mutations that have occurred since the MRCA of the sample of size
2. The probability, P,(j), of j mutations occurring on the lineages since
the MRCA, is the probability that the first j events, as we trace backwards
in time, are mutations and the (j + 1) event is a common ancestor event.
Thus, we have (Watterson, 1975):

. 6 \/ 1
Pa0) = (1+e)) 1+6 (10)
Using a similar argument, we can obtain the probability, Q,(j), that j
mutations occur in the time in which there are n ancestral lineages. To
get j mutations during this time, the first j events, during the time there
are n lineages, must be mutations, and the (j + 1)* event must be a
common ancestor event. Hence, this probability is

2

ny ’ 2N

0.(7) = (g) (;)

np,‘f"zw nu-’rﬁ

=< 0 )/ n—1 (i1)

0+n—1/ 6+n—1

The number of segregating sites in a sample of size n is the sum of the
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number that occur while there are n lineages, and the number during the
rest of the genealogy distributed just like the number in a sample of size
n—1. It follows that P,(j), the probability of j segregating sites in a sample
of size n, can be written as:

P.() = Z P 1(j=0)0,() (12)

The distribution of the number of segregating sites can quickly be calcu-
lated using this recursion. Tavaré (1984) obtained an explicit expression
for P,(j). The distribution of S is shown in Fig. 2 for 8 = 5 and n = 20.

The use of eqn (12) is illustrated by the following example. Recent.
surveys of polymorphism in the yellow-achaete-scute region of Drosophila
melanogaster revealed 9 polymorphic sites in 2112 nucleotide sites in 64
chromosomes examined (Aguadé er al. 1989). Estimates of 0 per base
pair from other regions of the D. melanogaster genome have averaged
about 0.005. Aguadé er al. wanted to determine if the observation of 9
polymorphic sites was consistent with the hypothesis that @ per base pair
in the yellow-achaete-scute region is 0.005. Using eqn (12), we can calcu-
late that the probability of 9 or fewer polymorphisms, in a sample of 64

Frequency

0.08 7
0.06
i R=0
B R=20 (Monte Carlo)
0.04
0.02 1
Q.OOJ HEHEBRL

< .35... .40, ., .45, ...

Fig. 2. The distribution of S, the number of segregating sites, in a sample of 20
alleles with 6 (=4Nyw) = 20. The no-recombination distribution (R = 4N = 0)
was calculated with eqn (12). For R = 20, the distribution is an estimate obtained
by generating 100 000 replicates by a Monte Carlo method described in the text.
The expected value of S for both distributions is 17.7, which can be calculated

using eqn (6).
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with 6 = 2112(0.005) = 10.6, is approximately 2 X 107°. Assuming the
equilibrium neutral model is correct, one must reject a value of 0.005 as
the per base pair mutation parameter for this region. If one assumed that
some recombination occurs in this region, the probability of 9 or fewer
polymorphic sites is even smaller.

5. RECOMBINATION

Let us consider first two loci. It is assumed that no recombination occurs
within each locus but, between the two loci, the probability of recombi-
nation is r per generation per offspring produced. If r = 0, the two loci
will always have the same genealogy. If r is large, in a large random
mating population, the genealogies of the two loci will be essentially
independent (see eqn 13). The difficult case is with intermediate levels of
recombination, when the genealogies at the two loci are correlated. Cle-
arly, the marginal distribution of genealogies for each locus under a
neutral model, is the single locus no-recombination distribution described
above. The only effect of linkage is to produce a correlation between the
genealogies for the two loci.

Let us begin by describing how one might simulate on a computer the
genealogy of a sample of two gametes, denoted a,(0)b,(0) and a,(0)b,(0).
We proceed, as before, backward in time. We trace the two lineages back
until either a coalescent occurs (probability 1/2N per generation) or a
recombination event occurs (probability 2r per generation). The time back
until one of these events is exponentially distributed with mean 2N/(1+R),
where R is 4Nr. The probability that the first event is a coalescent event
is 1/(1+R). In this case, both loci have their MRCA at this time and the
genealogies are complete. The other possibility is that the first event is a
recombination event. The first event is a recombination event with prob-
ability R/(1+R). In this case, one of the two lineages splits in two as
illustrated by the genealogy in Fig. 3. In this example, the first event, as
one traces backward in time, is a recombination event that occurs in
generation ;. In this example, the ancestral gamete, a(t,~1)by(t,—1), is
the recombinant descendant of two individuals in generation f;, which are
denoted a,(;)- and -b,(r,). At this point, there are three lineages to follow
back in time from the three ancestral gametes in generation f,. One
ancestral gamete, denoted a,(f,)b,(z,), is an ancestor at both loci to one
of the sampled gametes. One of the ancestral gametes, denoted a,(f;)-,
is an ancestor of the a, allele in the sample, but the b allele of this
ancestral gamete, indicated by a hyphen, has no descendant in the sample.
The history of this allele represented by the hyphen is of no direct interest.
The third ancestral gamete, -b,(1;), is the ancester at the b locus of the
b, allele in the sample. We continue back in time until the next event,
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Past

}

ai(ty) bi(ty) as{ty) — —ba(tt) ceeeeeeee- .
——
az(ty-1) ba(ty-1)

Present 21(0) bs(0) a,(0) bz(0)

Sampled alleles

Fig. 3. An example two-locus genealogy for a sample of size 2. In this case, the
first event, which occurs in generation ¢,, is a recombination event such that the
ancestor gamete a)(f,—1)b,(r;—1) is the recombinant descendant of the two
gametes ay(f,)- and -by(1;). The second event is a common ancestor event, labeled
CA,, at which time, the lineages of a,(0)b,(0) and a,(r,)- coalesce. It is at this
point in time, ¢, +1, generations ago, that the most recent common ancestor of the
sampled ‘a’ locus alleles occurred. The next event is a common ancestor event,
labeled CA,. At this time, 7,+1,+; generations ago, the most recent common
ancestor of the sampled ‘b’ alleles occurred.

Fig. 4. An example genealogy for an infinite-site recombination model. The two
samples gametes, labeled 1 and 2, are represented by the hatched and dotted
bars. Recombination events can occur anywhere along the bars. There are five
events in this genealogy, designated RE,, RE,, CA,, CA, and CA., in order from
most recent to most ancient. The most recent event, RE,, is a recombination
event that brought two segments together to form the ancestor of gamete 2.
Following lineages backward in time, as usual, the result of RE, is the splitting
of the lineage of gamete 2 into two parts, one being the lineage of the left end
of the gamete, and the other being the lineage of the right part of the gamete.
The next event back in the genealogy, labeled RE,, is also a recombination event
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with a crossover in the right-hand segment of an ancestor of gamete 2. At this
point in time, there are three distinct ancestors of gamete 2, each being an ancestor
of a different part of gamete 2. In contrast, gamete 1 still has a single ancestor.
The next event, CA,, is a common ancestor event involving two ancestors of
gamete 2. At this point, one of the two ancestors of gamete 2 is an ancestor for
two non-contiguous portions of gamete 2. The next event, CA,, is a common
ancestor event where finally the most recent common ancestor of parts of gametes
1 and 2 occur. The segments with most recent common ancestor at this point are
the left end, marked MRCA, and the right end also marked MRCA. The last
event, is a common ancestor event where the most recent common ancestor of
the sample gametes for the middle segment occurred.
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either a coalescent event between any of the three lineages (probability
(3)/2N per generation) or a recombination event (probability r per
generation). Note that, during this part of the genealogy, only recombi-
nations involving the lineage of a,(r;)b,(s,) are relevant. Recombinations
in the lineage of ay(f;)- do not result in any change in the state of
the process and are irrelevant to the genealogy of the sampled alleles.
Eventually, the two alleles at the a locus will coalesce and the two alleles
at the b locus will coalesce, and the two-locus genealogy will be complete.

By consideration of this two-locus process, it is possible to derive various
properties of the joint distributions of the times, ¢, and #,, back to the
most recent common ancestors of the a and b alleles, respectively.

Griffiths (1981a) derived properties of the joint distribution of the
number of segregating sites at each locus in samples of size 2, when each
locus is assumed to be an infinite-site Jocus. From Griffiths’ result. the
correlation of 7, and ¢, the times to the MRCA at locus a and b can be
found (Hudson 1983a; Kaplan and Hudson 1985):

R+18
Cor(tarto) = FriT3R+18 (13)

Consideration of this two-locus coalescent shows that the probability that
f, = I, is exactly the same as the correlation of 1, and 1, (Hudson,
unpublished).

Simulations based on the two-locus coalescent were used by Hedrick
and Thomson (1986) to study two-locus sampling properties of the neutral
model. Kaplan and Hudson (1985) considered the coalescent process for
several linked loci to calculate the homozygosity at a global locus made
up of several sub-loci between which recombination could occur.

Hudson (1983a4) and Kaplan and Hudson (1985) also considered an
infinite-site version of the above coalescent process, in which recombi-
nation could take place anywhere on a continuous interval that represents
a contiguous stretch of nucleotide sites. Figure 4 shows a representation
of the genealogy of a sample of two gametes under this model. The
process is very similar to the preceding two-locus case, except that recom-
bination takes place at random positions along the continuous interval
that represents the sequence. In this case, small contiguous segments are
likely to have similar genealogies, but the segments farther apart would
be likely to have quite different genealogies. The details of how to carry
out such a simulation are described in Hudson (1983a).

In the genealogy in Fig. 4, the MRCA of the segment of DNA in the
middle occurs farther back in time than the MRCA of the end segments.
In this sense, the size of the genealogy is larger for the middle segment
than for the end segments,and assuming that the neutral mutation rate is
the same all along the segment, we would expect the number of neutral
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mutations per unit length to be greater in the middle segment. In Fig. 5,
the outcome of a single realization of this genealogical process is shown
for a large contiguous chunk of DNA for a sample size 10. This figure
indicates how much the size of the genealogy, as measured by T,,,, can
vary from one segment to the next. The size of the segment of DNA
considered in Fig. 5 is such that 4Nr equals 100, where r is the recombi-
nation rate per generation between the ends of the region. Although
estimates are very rough, this has been estimated to correspond to approxi-
mately 5000 base pairs in D. melanogaster. (This number can be obtained
from estimates of per base pair recombination rate 0.5 X 10~% and effec-
tive population size 10°: (Hudson and Kaplan 1988; Hudson 1987.)

As before, the total number of segregating sites in a sample, S, con-
ditional on the genealogies of all the segments, is Poisson distributed with
mean 87/2, where in this case T is an average of the sizes of the genealogies
of each of the segments weighted by their lengths and 6 is 4N times the
mutation rate for the entire sequence. As the recombination rate
increases, the weighted average, T, is made up of greater numbers of

Sample size 10

Total time in tree

1+ ¥ T T T T T T

0 10 20 30 40 50 60 70 80 90 100
Position (in units of 4Nr)

Fig. 5. The total time in the genealogy of the sample, T,,, measured in units of
4N generations, plotted as a function of position, for a single realization of the
coalescent process for a neutral infinite-site recombination model. The total length
of the region of DNA considered is such that the 4Nr = 100, where r is the
recombination rate between the ends of the region. The horizontal axis is the
nucleotide position, as measured by the product of the 4N and the recombination
rate between the site and the left end of the region considered. Evidently, T,
varies considerably from site to site, over a region this size.
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relatively smaller segments that have less correlated genealogies. The
result is that the variance of T tends to zero, and S becomes Poisson as
the recombination parameter (R) tends to infinity (see Ewens 1979, p.
276). Kaplan and Hudson (1985) showed that the variance of S is

n—1

Var(S) = 6 (E 1/1') +62 Var(T) (14)
i=1
and that
n—1
2( 1/1'2) 23R+101 2R+13—\f’§; 13+\'5§’
Var(T) = ”LIIQZ* (—R+ = log( = __) (15)
2V97 2R+13+V97 13-197
. R—Sl <R2+13R+18))
2 °8 18

For sample size 2, the approximation for Var(7) was based on the
usual ‘diffusion approximations’, but for larger sample sizes there is no
theoretical justification for the approximation, except that Monte Carlo
simulations indicated that it works quite well in the cases examined,
namely with small to moderate values of R (Kaplan and Hudson 19853).
The number of recombination events in the genealogy of a sample has
been examined by Hudson and Kaplan (1985), and an estimator of R
based on inferred numbers of events was investigated. A recombination
event was inferred to have occurred between two polymorphic sites when
all four possible gametic types (haplotypes) involving the two sites were
present in the sample.

The distribution of S in a sample of size 20 for 8 = 5 and with R = 0
and R = 20 are shown in Fig. 2. The mean of S does not depend on R,
but this figure shows clearly how recombination can reduce the variance
in §. The distribution shown for R = 20 is based on 100 000 samples
generated by the algorithm described above. The variance of S in the
Monte Carlo samples was 28.04, whereas the variance calculated with

eqns (14) and (15) is 28.28.

6. ESTIMATING 6 OR N

One can use S to estimate 6 or, if the neutral mutation rate () is known,
the population size N. The two commonly used methods are moment
estimators. Because the expected number of differences between two
alleles is 8, an obvious estimator of 8 is 8, the average pairwise number
of differences between alleles in a sample (see Nei 1987, eqn 10.6). This
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is an unbiased estimator of 6. Tajima (1983) showed that under the W-F
mode] with no recombination, the variance of this estimator is (see also
Nei 1987, eqn 10.9):

n+1 2(n’+n+3) (16)

Va‘(é):a(n—n T on(n=1)

Watterson (1975) suggested an estimator based on eqn (6), namely:

6= S (17)

This estimator is clearly unbiased. Under the no-recombination model,
the variance of this estimator can easily be calculated using eqn (7),
because:

Var($)
5] ()

The variance of 6 is always less than the variance of 6. With recombination,
both of these estimators have substantially reduced variance. The variance
of 6 in the presence of recombination can be estimated using eqns (14),
(15) and (18).

In some circumstances, the reduced variance of S in the presence of
recombination may be justification for considering nuclear genes instead
of mitochondrial genes for certain problems. For example, recent studies
(Avise er al. 1988) of mitochondrial genes were used to estimate effective
population sizes, using prior estimates of n. Although practical consider-
ations concerning the relative ease of isolation of mtDNA compared to
nuclear DNA may mitigate against the use of nuclear DNA, more precise
estimates might be obtained with nuclear data.

For the no-recombination model, maximum likelihood estimates of 6
based on § can be obtained, and it has been shown that the maximum
likelthood estimates always exceed 6 (Tavaré 1984). I have examined a
small number of cases and always found that the mean square error of
the maximum likelihood estimate exceeds the mean square error of 6.

Var(f) =

7. MIGRATION AND GEOGRAPHIC STRUCTURE

A number of authors have utilized the genealogical approach to consider
properties of samples when there is geographic structure (Griffiths 19815;
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Slatkin 1987, 1989; Strobeck 1987; Tajima 1989, Takahata 1988). To
illustrate the concepts, let us consider a two-population symmetric island
model. Each subpopulation consists of N diploids. Each generation, a
small fraction m of each subpopulation is made up of migrants from the
other subpopulation. In other words, each individual’s parent was resident
in the same population with probability 1-m, and in the other subpopul-
ation with probability m. As with the panmictic model, the probability
that two alleles from the same subpopulation have a common ancestor in
the previous generation is 1/2N. Two alleles from different subpopulations
have negligible probability of having a common ancestor in the previous
generation. Putting these properties together, we can describe the genea-
logical process for a sample of alleles, n, from subpopulation 1 and n,
from subpopulation 2. We denote the state of the ancestral lineages-by
an ordered pair, (i,)), indicating that i ancestors reside in subpopulation
I and j reside in subpopulation 2. As usual, we trace the lineages back
In time, in this case until either a common ancestor occurs or one of the
lineages changes residence. This time is exponentially distributed with
mean

1
(3] (3)+ o)

measuring time in units of 2N generations and where M = 4Nm. Given
that one of the two events occurs, the probability that it is a common
ancestor event among the n, lineages in subpopulation i/ is:

)
(3] + () rrn )

If the common ancestor event occurs in subpopulation 1, the state of the
ancestral lineages changes to (n,—1, n,). The probability that the event
is a change of residence of a lineage in subpopulation ; is:

M

I‘l,-?

((3)+ (5] ema)

If a lineage changes from subpopulation 1 to subpopulation 2, working
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backward in time, then the state of the ancestral lineages changes to
(=1, ny+1). And the process continues.

As described, the process is amenable to implementation as a Monte
Carlo simulation. Strobeck (1987), Tajima (1989) and Slatkin and Maddi-
son (1989) have carried out Monte Carlo simulations based on this
approach.

To illustrate how analytical results can be obtained by this approach,
we calculate the probability of identity of two alleles sampled from the
same subpopulation, P(6), and the probability of identity of two alleles
from different subpopulations, P,(6). As noted earlier, we can calculate
the moments of § once these identity coefficients are obtained. We assume
a symmetric island model, as above, except with n subpopulations. We
trace backward in time in the genealogy of two alleles from the same
subpopulation, until either a coalescent, mutation or a migration event
occurs. If the first event is a coalescent event, probability 1/(1+6+ M),
the two alleles are identical. If the first event is a mutation, probability
6/(1+6+M), the two alleles are not the same. If the first event is a
migration, then the probability of identity of the two alleles is P4(6). This
leads to the following equation for P.(6):

1 6 M
PO = e m  Trera O e P® (19)

For two alleles from two distinct populations, only mutations and
migration events that bring the two lineages into the same subpopulation
need to be considered. If the first event is a mutation event, probability
8/(6+M/n), the two alleles are different. If the first event is a migration
event that takes one of the lineages into the subpopulation of the other,
probability (M/n)/(6+M/n), the probability of identity is P(6). This leads
to the following equation for P,(8):

M
n
Py(6) = 7 () (20)
0+—
n
Solving eqns (19) and (20),
_ (n-1)0+M
Fi(8) = (n=1)8°+6(n—1+Mn)+M @)
and
ad 22)

S PR o o By e
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These results are not new, having been obtained by several others without
consideration of the coalescent process (see Crow and Aoki, 1984, and
references therein). To obtain the expectation of the times to the common
ancestor, ¢, and t,, for two alleles from the same subpopulation and
different subpopulations, respectively, we can use the method described
earlier in Section 4. Treating the identity coefficients P,(8) and P4(6) as
moment-generating functions, the expectations of ¢, and ¢, are:

E(t) = Py(0)=n (23)

and

E() = —PA0) = n+" 1 @24)

The expected number of differences between two alleles from the same
subpopulation is 8 E(t,) = n#, and for two alleles from different subpopula-
tions 8E(r;) = n8+(n—1)6/M (Li 1976; Slatkin 1987; Strobeck 1987).
Therefore, the expected time to the common ancestor of two alleles
sampled from one subpopulation, as well as the expected number of
differences, is independent of migration rate. If M is small, the expected
time to the common ancestor of two alleles from different populations is
relatively large, as is their divergence. This is consistent with our intuition
that if the migration rate is low, the two subpopulations will be substan-
tially differentiated. This is illustrated by the genealogies in Fig. 6. Tajima
(1989) has used the coalescent approach to study the expected number of
segregating sites in samples larger than 2.

Although the mean number of differences between two alleles from the
same subpopulation does not depend on the migration rate, other aspects
of the distribution do depend on the migration rate. In Fig. 7, the
distribution of the average pairwise difference between 10 alleles sampled
from the same subpopulation is shown. In this case, there were a total of
three subpopulations and M = 4Nm = 0.2, and 6 = 5.0. Also shown is
the distribution of the same statistic when M = =, i.e. a panmictic popu-
lation with 8 = 15.0, and for a panmictic population with 6 = 5.0. The
distributions with M = 0.2 and M = = have the same mean, but otherwise
the distributions are quite different. The M = 0.2 case has its mode and
much of its mass around 5, with a very long tail. Except for the long tail,
the distribution looks much like the distribution for a panmictic population
with 8 = 5.0. This is because with the small migration rate, most of
the time coalescent events occur within the subpopulation without any
migration, and therefore the sample is like a sample from a single popu-
lation with parameter § = 5.0. In contrast, the M = = case has its mode

around 15.
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(a) (b) f
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Subpopulation 1 Subpopulation 2 Subpopulation 1 gubpopuiation

Low
Moderate migration

migration

Fig. 6. (a) An example of a genealogy for a sample of size 8, 4 from each of 2
subpopulations, when the migration rate is moderately high. Each migration event
is indicated by a dotted line with an arrow that indicates the actual direction of
movement of an individual migrant. In this case, there would be relatively little
differentiation of the two subpopulations. (b) An example genealogy with low
migration rate. In this genealogy there is a single migration event. Alleles from
within a subpopulation will be much more similar than alleles from different
subpopulations.

These genealogies can also be interpreted as genealogies of gametes bearing
different selected alleles (see Section 8). Subpopulation 1 would represent the
pool of S-bearing gametes, and subpopulation 2 would represent the pool of F-
bearing gametes. In this case, the dotted lines with arrows indicate mutations
making an F aliele into an S allele, and vice versa. If the mutation rate between
the selected alleles is high, sequences bearing different alleles will be no more
diverged than alleles bearing the same allele. If the mutation rate between F and
S is low, S- and F-bearing gametes will be relatively diverged from each other.
The genealogies could also represent the genealogy of a site linked to the selected
locus. In this case, the dotted lines with arrows would represent mutations between
the selected alleles and/or recombination events between the site and the selected

locus.
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Fig. 7. (a) The distribution of m, the average pairwise number of differences
between alleles in a sample of size 10 from a single subpopulation. The population
is made up of three subpopulations, each of diploid size N, with 8 = 4Np = 5,
and with M = 4Nm = 0.2 (solid bars) and M = = (hatched bars). The mean for
both distributions is approximately 15. (b) The distribution of the same quantity,
for a single panmictic population, with 8 = 4N = 5. Note the similarity with the

low migration case in (a).

8. BALANCING SELECTION

Kaplan et al. (1988) have shown how the coalescent process can be
analyzed under models with certain forms of selection. They focus primar-
ily on the case where some form of balancing selection maintains a two-
allele polymorphism at a particular nucleotide site, the ‘selected site’. It
is assumed that recurrent mutation between the two ’selected’ alleles,
designated F and S, occurs at rate v per replication. The analysis addresses
the question: For sites completely linked to the selected site, how is the
genealogy different from a genealogy of a neutral site isolated from any
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selection? When selection is weak and the frequency of the alleles at the
selected site can drift considerably, numerical results can be obtained with
some pain (Darden er al. 1989). Results are fairly simple when selection
is strong and unchanging, so that the frequencies of the selected alleles,
S and F, remain constant.

In the case of strong and constant selection, the coalescent process of
sampled alleles is analogous to the coalescent process for the subdivided
population model considered earlier, except that migration is no longer
symmetric. If the frequencies of S and F are p and ¢, respectively, then
one can consider the population to be subdivided into two subpopulations
of size 2Np and 2Ng. Mutation plays the role of migration. Each gener-
ation, an average of 2Ngv F alleles mutate (migrate) to the S allele
(subpopulation) and 2Npv alleles mutate in the other direction. This
means that a fraction, 2Ngv/2Np, of the S alleles in each generation,
approximately, are descendants of F alleles of the previous generation.
In other words, an § allele of one generation has as parent an F allele
with probability gv/p. If one is considering #, S alleles, the probability,
Pgk, that one of them has as parent an F allele is, approximately:

v
PSanlg“

p

Similarly, the probability, P, that one of n, F alleles has an S allele as
parent in the previous generation is:

pv
Pes = n,—
Fs zq

The quantities pv/q and gv/p are the analogues of migration in the subdiv-
ided population model. In this case, ‘migration’ is not symmetric and the
sizes of the two ‘subpopulations’ are not equal.

The probability of coalescent events are functions of the size of each
subpopulation of alleles. For example, the probability that two S gametes
have a common ancestor in the previous generation is approximately
1/2Np, and the corresponding probability for two F gametes if 1/2Ngq.
More generally, the probability, P, s, that for n, S alleles some pair will
have a common ancestor in the previous generation is:

)

PCA.S = 2A,}7

Similarly, for n, F alleles, the probability, P-4 s, that some pair of the
alleles will have a common ancestor in the previous generation is:
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Common ancestor events involving alleles of different type, F and S,
would require both a mutation and a common ancestor event in the same
generation. With low mutation rates and large population size, this is very
unlikely, and we ignore the possibility.

Putting the elements of the process together, for a sample of n; S alleles
and n; F alleles, the tota] Tate per generation of events is-

Ptot:PCA,S+PCA,F+PFS+PSF

the first event would consist of n,~1 S alleles and n,+1 F alleles. Eventu-
ally, as with the other models, coalescent events will lead to the most
fecent common ancestor of the entire sample.

Analysis of this coalescent process shows that, if the mutation rate
between S and F are small, the mean time to the common ancestor of a

tion model is that with geographic subdivision, all locj should be affected
in the same way, whereas with selection, only sites tightly linked to the
selected site would show the large genealogy.

Hudson and Kaplan (1988) showed that incorporating recombination
in the selection mode] described above is straightforward. Consider the

to recombination, the genealogy of a sample at locus A is not necessarily
the same as the genealogy at the selected site. The genealogical process
is, however, very similar. Consider a sampled gamete that has the S allele
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at the selected site. We refer to this as an S-bearing gamete. The parent
(at the A locus) of this gamete is most likely also linked to an S allele,
but because of the possibility that mutation or recombination occurred in
producing our sampled gamete, the parent at the A locus might be linked
to an F allele. Hudson and Kaplan show that the probability per generation
of this change (from being linked to an S to being linked to an F aliele)
is gvlp + 2pqrlp = (v + pr)g/p. Similarly, the probability that the parent
at the A locus of an F-bearing gamete is an S-bearing gamete is
(v + gr)p/q. Thus, the coalescent process for linked sites is just like the
process for completely linked sites, except that v is replaced by v + pr,
in some cases, and by v + gr in other cases. Assuming that p, r, v and
N remain constant, the time between events is exponentially distributed.
The mean time between events and the relative probabilities of the
different possible changes in state depend on 2Nv, 2Nr and p.

As one would expect, if a site is tightly linked to the selected site (2Nr
small), and 2Nv is small, the expected time to the common ancestor at
the site of an S-bearing and an F-bearing gamete is large compared to
the strictly neutral case. In other words, sites tightly linked to the selected
site will be relatively highly diverged when sequences bearing the different
selective alleles are compared. Loosely linked sites will be relatively little
affected by the balancing selection. Thus, in comparisons of sequences
bearing different selected alleles, there is expected to be a peak in
sequence divergence centered on the selected site.

A single nucleotide site with a selectively maintained polymorphism can
raise the level of neutral polymorphism at linked sites sufficiently to be
detectable in samples. There exists, therefore, the potential for detecting
selectively maintained variation by looking for regions of the genome with
unusually high levels of polymorphism. One problem with this approach
is that selective constraint is expected to vary from site to site and region
to region, so that high levels of polymorphism in particular regions might
be plausibly explained by an assumption of lowered constraint. It is
possible, however, to test the hypothesis of lowered constraint by making
a comparison of sequences between closely related species. This is
because, under a strictly neutral model, the level of constraint not only
determines the expected level of polymorphism within species, but also
the level of divergence between species. Thus, if a region has a relatively
high level of polymorphism within a species because of lowered constraint,
it ought to show a relatively high level of divergence between species. In
other words, one should see a strong correlation between the level of
divergence and the level of polymorphism as one examines different
regions of the genome.

The presence of a polymorphism maintained by balancing selection can
cause large deviations from this pattern of correlation between divergence
between species and polymorphism with species. A polymorphism main-
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tained by balancing selection and which arose since the divergence of the
two species, will have no affect on the accumulation of neutral mutations
that differentiate two species, as discussed in Section 2. Balanced polymor-
phisms that arose before the divergence of the species and that have been
maintained continuously since their origin, can result in greater between-
species neutral divergence at linked sites than at unlinked sites. The size
of this effect diminishes with time since divergence of the two species.
Thus, depending on when the balanced polymorphism arose, the balancing
selection may have little affect on the divergence between species but, as
argued above, will greatly increase the level of neutral polymorphism
within species at tightly linked sites.

A statistical test of neutrality was devised to test whether between-
species divergence and within-species polymorphism show the correspon-
dence expected under neutrality (Hudson er al. 1987; Kreitman and Agu-
adé 1986). Application of this test to data from the alcohol dehydrogenase
(Adh) region of Drosophila melanogaster and D. sechellia resulted in a
rejection of neutrality. The departure of the data from the neutral expec-
tations was consistent with the existence of a balanced polymorphism in
the coding region of Adh. There is a great deal of independent evidence
suggesting the importance of selection in the maintenance of the F/S
polymorphism of Adh (Oakeshott er al. 1982).

If this departure of the data from the expectations of the neutral model
is due to balancing selection acting on the F/S protein polymorphism of
Adh, the model with balancing selection and recombination described
above should be applicable. We should be able to predict quantitatively
the increased level of divergence at tightly linked sites that result from
a large genealogy induced by selection. The F/S polymorphism of Adh is
produced by a nucleotide polymorphism at codon 192 of the Adh gene.
To predict the level of polymorphism at sites linked to codon 192 of the
Adh gene under the selection model, one must assign values to a number
of parameters. The parameters needed are: p, the frequency of the S
allele; 2Nv, where v is the mutation rate between the selected alleles; 6,
the neutral mutation rate per base pair at linked sites; and R = 4Nr, where
ris the recombination rate per base pair. For all of these parameters, some
prior information was available to permit us to assign approximate values
to these parameters and then make comparisons between expected levels
of divergence between sequences and observed levels in the sequence
data of Kreitman (1983).

To display the observed and predicted divergence between sequences,
as a function of position along the sequence, a sliding window method
was used. In this method, a window is sequentially slid along the aligned
sequences. At each position of the window, the level of polymorphism is
noted for the collection of contiguous sites in the window. In this way,
polymorphism as a function of nucleotide position can be displayed. The
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level of polymorphism was measured by the average number of pairwise
differences between sequences in the window. The protein coding con-
straints were also incorporated by varying the window width so that the
number of silent changes possible remained constant. A reasonable fit of
observed and expected was achieved for F/S comparisons, using our prior
estimates of the parameters, except for R. Our prior estimate of R was
24.0, but the best fit was obtained with R = 4.0. However, there was
considerable discrepancy between the expected and the observed diver-
gence between sequences bearing the S allele. The interested reader
should consult Hudson and Kaplan (1988) for more details.

Hudson and Kaplan’s (1988) predictions were based on the assumption
that all sites that do not affect the amino acid sequence of the Adh
enzyme, that is non-coding sites and silent sites of the coding exons, have
the same neutral mutation rate parameter, 6. It was also assumed that
sites at which zero, one or two silent nucleotide changes are possible,
have neutral mutation parameters of 0, 6/3 and 26/3, respectively. With
these assumptions, only one neutral mutation parameter was needed. It
is quite plausible, however, that the level of constraint, and hence the
neutral mutation parameter, is not the same for all non-amino acid chang-
ing sites.

A more detailed analysis is possible using sequence data from a closely
related species, Drosophila simulans, to estimate the mutation parameter
at different sites. To use the between-species data to estimate mutation
parameters, we can proceed as follows. Let us suppose that the neutral
mutation parameter varies from site to site, denoting the neutral mutation
parameter for site i by 6,. Let ¢ denote the average time since the most
recent common ancestor of two sequences, one from D. melanogaster and
one from D. simulans. If 8, is small enough, the probability that the two
sequences from the species are different at site i is approximately 6.
Consequently, the average value of 8 for a small region, consisting of /
nucleotides, can be estimated by d/tl, where d is the number of sites
differing between the two species in the region / nucleotides long. Such
estimates were used as follows.

A window (the same that will be used to display the observations and
predictions of within-species polymorphism) is slid along an aligned pair
of sequences, one from D. melanogaster and one from D. simulans. At
each position of the window, the number of differences between the
sequences in the window is counted and divided by the product of ¢ and
the width of the window. This quantity is taken as an estimate of 8 for
the site in the middle of the window. This is clearly a smoothing procedure,
which assigns a value of 8 to a site that is determined by the variation of
a collection of sites surrounding the site. The value of r was chosen to
produce a good fit, that is, to give an average level of polymorphism that
fits the observations. With these 6,’s in hand, one can predict the level of
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polymorphism at any collection of sites linked to the selected site.

Applying this method to the polymorphism data of Kreitman (1983),
supplemented by additional 5’ and 3’ sequence data from D. melanogaster
and a sequence from D. simulans (all kindly provided by Martin Kreitman,
(pers. com.), the observed and predicted levels of polymorphism are
shown in Fig. 8. Assuming complete neutrality, ignoring the F/S polymor-
phism entirely, the expected number of differences between two sampled
sequences in a region is the sum of the 8’s for the sites in the region.
This prediction is shown in Fig. 8a. Because the 6,’s are proportional to
the divergence between the two species, the predicted level of polymor-
phism in Fig. 8a is proportional to the level of divergence between D.
melanogaster and D. simulans. There appear to be regions of higher and
lower constraint. Note especially the low predicted and low observed
level of polymorphism in the 5’ flanking region, numbered approximately
400450 in Fig. 8. Note also that the silent sites of the third coding exon
of Adh are predicted to have a relatively high level of polymorphism.
This is due to a relatively high level of divergence between species for
these sites. And yet the observed level of polymorphism for these sites is
still much higher than the predicted. If a balanced polymorphism is
assumed at the F/S site in codon 192, this high level of polymorphism can
be accounted for quite easily, as shown in Fig. 8b. The recombination
parameter that produces this fit is R = 12.0, only a factor of 2 lower than
the a priori estimate given by Hudson and Kaplan (1988). Expected and
observed levels of polymorphism between S alleles are shown in Fig. 9.
The fit of observed and expected shown in Fig. 9, obtained using the 6,’s
estimated from between-species data, is considerably better than the fit
obtained by Hudson and Kaplan using a constant value of 8. The observed
and predicted divergence between F alleles are both low and are not
shown.

Analyses utilizing both within-species polymorphism and between-spec-
ies divergence may be extremely powerful for detecting the action of
natural selection, both balancing as indicated here and also recent fixations
of advantageous mutants as described in the next section. Population
geneticists have for more than 20 years debated about whether selection
plays a significant role in maintaining the electrophoretically detectable
polymorphisms of soluble enzyme loci. It seems that significant headway
could be made if 20-30 such loci could be examined in the same detail as
Adh in D. melanogaster. With modern polymerase chain reaction methods,
such an undertaking does not seem out of the question. Many situations
where selection is already strongly indicated, such as Ldh in Fundulus
(Powers et al. 1983), Lap in Mytilis (Hilbish and Koehn 1985), Gpt in
Tigriopus (Burton and Feldman 1983), Gpdh in D. melanogaster (Barnes
and Laurie-Ahlberg 1986; Oakeshott er al. 1984), and others described
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Fig. 8. The predicted and observed number of differences between F- and S-
bearing sequences in a ‘sliding window’ plotted as a function of nucleotide position.
The coding exons of Adh and the duplicate locus, are shown by the low rectangles
on the position axis. The site of the F/S polymorphism, codon 192 of Adh, is
indicated by the black triangle. The width of the window was adjusted so that
there were always 300 possible silent changes in the window.

(a) The predicted curve based on the strict neutral model without balancing
selection. The between-species comparison of sequences from D. melanogaster
and D. simulans was used to estimate 6 for each site as described in the text. The
predicted pairwise difference under the neutral model is simply the sum of the 0’s
for the sites in the window. The value assumed for ¢, the time since divergence
of the species in units of 2N generations, was 5. (b) The predicted curve is based on
the balancing selection mode] with parameter values: B = 0.001, R = 4Nr =12.0,
t=35, and p = 0.7 (see the text for an explanation of these parameters).
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Fig. 9. The predicted (under the balancing selection model) and observed number
of differences between S-bearing sequences in a ‘sliding window" plotted as a
function of nucleotide position. All parameters are as in Fig. 8b.

by Koehn ez al. ( 1983) and Zera et al. (1985) may provide good test cases,
if sequence data can be obtained.

The statistical power of Hudson er al.’s test (1987) to detect selection
needs investigation. Also needed are measures of the goodness of fit of
observed and predicted curves such as those shown in Figs 8 and 9.

9. HITCHHIKING

Using coalescent methods, Kaplan et al. (1989) have analysed a model
in which rare advantageous variants sweep through a population. They
reanalyzed the ‘hitchhiking’ effect (Maynard Smith and Haigh 1974) of
these advantageous variants on selectively neutral variation at linked sites.
The process is very similar to the balancing selection model, except that
the frequency of the selected alleles change through time and therefore
the probability of coalescent events, as well as other events, change
through time. Consequently, the time intervals between events are not
exponentially distributed. If the frequency of the advantageous allele can
be approximated by a deterministic function, results can be obtained by
straightforward numerical methods. In this way, one can assess how
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neutral variation at linked nucleotide sites is reduced by the rapid fixation
of a favored variant.

A genealogy is shown in Fig. 10 that illustrates how a gene tree can be
very different in shape after a recent hitchhiking event compared to
genealogies under the equilibrium neutral model (Fig. 1). Most of the
genealogy in Fig. 10 consists of lineages that descend without branching
to a single sampled gamete. With this form of genealogy, a ‘star’ gen-
ealogy, most neutral mutations would result in a polymorphism such that,
at each polymorphic site, the mutant nucleotide is present only once and
the non-mutant nucleotide is present in all the remaining sequences. That
is, most polymorphic nucleotide sites would have a low-frequency allele,
present once or twice in the sample, and a very high-frequency allele. No
particular gamete would carry a large number of the rare mutations, as
would be expected if there was one highly diverged lineage. This pattern
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Fig. 10. An example genealogy of a sample of six alleles when a selectively
advantageous mutant has recently fixed. The bold curve shows the frequency of
the advantageous mutant as a function of time. The genealogy of the sample,
taken at time , is shown superimposed on the plot. No recombination is depicted
in this example. If ¢ is considerably less than N, most coalescent events will occur
close to the time marked 0. In this case, compared to the genealogy without
selection, the overall size of the genealogy will be small, and so there will be
relatively little variation. Also, the shape of the genealogy is different than the
neutral equilibrium genealogy (see text).
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of mostly low-frequency polymorphisms would also be characteristic of
populations after a recent very severe bottleneck, which results in most
lineages coalescing in a relatively short period of time. In contrast to the
hitchhiking model, after a population bottleneck, all loci are expected to
have the distinctive genealogy. The frequency spectrum of polymorphisms
may prove to be an extremely useful characteristic of nucleotide variation.

10. CONCLUSIONS

Focusing on the coalescent process can be a useful way of thinking about
sampling properties in a variety of circumstances. We have seen that the
coalescent process can be relatively simply described in a variety of
circumstances. In addition to the situations described in the preceding
sections, the coalescent process has been used to examine the variation
of alleles in multigene families with conversion (Kaplan and Hudson 1987,
Watterson 198956), in transposable element families (Hudson and Kaplan
1986b), and highly repetitive dispersed elements such as ALU (Kaplan
and Hudson 1987). In many of the analyses described here, the entire
complexity of genealogies was reduced to one or two statistics, namely
how big is the genealogy or, equivalently, how many mutations, S, would
be expected to occur on the genealogy. In some cases, it was also asked
how big the genealogy would be for a sample from within a subpopulation
or within a certain selectively maintained allelic class, or how divergent
different classes or alleles would be. (Results are also available for the
size of the genealogy of a subsample of sequences all bearing a particular
electrophoretic allele: Hudson and Kaplan 1986a.) It should be noted that
these properties are often obtainable by classic methods, without explicit
reference to the genealogy of a sample, using one-generation recursions
or diffusion approaches (Watterson 1989a). However, the genealogical
approach is broad and intuitive, providing a general approach for deriving
results and visualizing the pattern of variation expected under a variety
of models. For non-recombining regions, genealogies will be a useful way
to summarize complex information, both empirical and theoretical, as
exemplified by the work of Avise et al. (1987) and Cann er al. (1987) on
mitochondrial variation.

Methods that exploit actual details of the genealogy of samples, as
opposed to just S, may in some cases be extremely powerful. Noteworthy
in this regard is the work of Golding (1987; Golding er al. 1986) and
lizuka (1989), which examines the distribution of different classes of
mutations on the genealogy in order to detect selection. Slatkin (1989)
and Slatkin and Maddison (1989) have begun to explore methods of
inferring geographic structure using detailed genealogical information.
Estimation of mutation parameters using detailed genealogical information
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in the form of an unrooted tree has been examined (Strobeck 1983). A
great deal of information resides in the genealogy of sampled alleles.
Additional methods of exploiting this information are needed.

For regions with high levels of recombination, detailed genealogies may
be impossible to infer with any reliability. With nuclear genes, genealogies
can differ substantially for sites a few hundred base pairs apart. Our ability
to make inferences about the genealogies of segments a few hundred base
pairs long is very limited. The genealogy for a sample of sequences of
moderate length will frequently be an incredibly complex network of
lineages, coalescing and breaking apart.

Although some kinds of genealogical information may resist at least
moderate levels of recombination (Golding 1987), summary statistics,
rather than detailed genealogical reconstruction, may be essential when
analysing data from highly recombining regions. Possible useful quantities
include the level of polymorphism (measure by S or the average number
of pairwise differences), the frequency spectrum of variation, and contrasts
of these quantities between different classes of variants. e.g. silent vs.
coding, insertion/deletion vs. substitution, or between variants linked to
different electrophoretic alleles. Sawyer er al. (1987) used such an
approach. Comparisons of patterns seen within species to patterns
observed between species will be very informative (Kreitman 1987), sug-
gesting sites where balancing selection, hitchhiking events, or drastic
changes in mutation rates or constraints have occurred. Ten or fifteen
other loci with enzyme polymorphisms might usefully be examined in the
same fashion as Adh has. The coalescent process can be useful in deriving
some statistical properties of these quantities under a variety of models.
No-recombination analyses apply, after all, to genealogies of single sites
regardless of how much recombination occurs. (If mutation rates are
sufficiently low per nucleotide site, infinite-site or infinite-allele models
can still be accurate even for single nucleotide sites. For higher mutation
rates, finite-allele models may be required.). However, adequately taking
into account the non-independence of linked sites may prove extremely
difficult analytically by any approach, classical or coalescent. For this
reason, simulations based on the coalescent process will play an important
role in the investigation of statistical methods, testing and estimation.

Intuition from consideration of no-recombination models, together with
Monte Carlo simulation, may be an important route for the development
of methods of analysis of molecular variation within species. Simulations
based on the coalescent process with recombination can be orders of
magnitude faster than the analogous simulations implemented the old-
fashioned way with entire generations represented in the computer and
the time-consuming sampling to produce large numbers of successive
generations. The method of simulation can straightforwardly incorporate,
simultaneously, recombination, geographic structure, population size vari-
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ation and non-equilibrium situations, as well as circular genomes and
some forms of selection, and a variety of mutation schemes. Such simula-
tions will play a role in establishing confidence intervals of estimates,
significance points for test statistics, and the power of tests against a
variety of alternative models.

Despite the difficulties of analyzing data from recombining DNA, such
data may be preferred in some circumstances. Consider a sample of
mitochondria which, because it lacks recombination, has a single gen-
ealogy for the entire molecule. With the large number of sites that
constitute a mitochondrial genome, one can hope to make accurate infer-
ences about that genealogy. But the genealogy one gets is a single realiz-
ation of the stochastic process that governs the evolution of that molecule
in the population from which the sample is drawn. The confidence one
can have in inferences about the stochastic process is limited from one
observation. With nuclear genes, we may frequently be unable to infer a
genealogy accurately, but the information that we do gather comes from
many segments, with different degrees of statistical independence. Each
segment will have experienced the same history of population subdivision
and population size. If there are statistical properties of such samples that
can help us estimate parameters or test hypotheses, then the possibility of
accumulation of information from distinct loci makes the nuclear genome
potentially much more informative. Estimation of migration rates and
mutation parameters, for example, may be much more precise using
nuclear data. The type of analysis used to examine variation in and near
the Adh locus could not be carried out with mitochondrial data alone.
One could, however, employ Hudson e al.’s (1987) test using mtDNA as
one locus and a nuclear gene for the other locus.

The genealogies that are expected under neutral models and under
certain models with constant selection coefficients have been characterized
to some extent. An important class of models for which predictions
about genealogies are not available are random environment models. It is
important to know if these models predict genealogies that are very
different in some way from the genealogies predicted from neutral models.

DNA polymorphisms within populations have already shown their use-
fulness in addressing longstanding questions about genetic variation within
populations. As more data are collected, it is clear that genealogical
analysis will play a large part in understanding the patterns that are

revealed.

ACKNOWLEDGMENTS

I'am very grateful to Norm Kaplan for many useful hours of discussion
over a period of several years. Thanks also to Janis Antonovics, Norm



Gene genealogies and the coalescent process 37

Kaplan, Marty Kreitman and Marcie McClure for comments on the manu-
script.

REFERENCES

Aguadé, M., Miyashita, N. and Langley, C. H. (1989). Reduced variation in the
yellow-achaete-scute region in natural populations of Drosophila melanogaster.
Genetics 122, 607-615.

Aquadro, C. F., Deese, M. M., Bland, C. H., Langley, C. H. and Laurie-Ahlberg,
C. C. (1986). Molecular population genetics of the alcohol dehydrogenase gene
region of Drosophila melanogaster. Genetics 114, 1165-90.

Avise, J. C., Arnold, 1., Ball, R. M., Bermingham, E., Lamb, T., Neigel, I E.,
Reeb, C. A. and Saunders, N. C. (1987). Intraspecific phylogeography: The
mitochondrial DNA bridge between population genetics and systematics. Ann.
Rev. Ecol. Sysi. 18, 489-522.

— ., Ball, R. M. and Arnold, J. (1988). Current versus historical population
sizes in vertebrate species with high gene flow: A comparison based on mito-
chondrial DNA lineages and inbreeding theory for neutral mutations. Mol.
Biol. Fvol. 5, 331-44.

Barnes, P. T. and Laurie-Ahlberg, C. C. (1986). Genetic variability of flight
metabolism in Drosophila melanogaster. 111. Effects of GPDH allozymes and
environmental temperature on power output. Generics 113, 267-94.

Bermingham, E. and Avise, J. C. (1986). Molecular zoogeography freshwater
fishes in southeastern United States. Genetics 113, 939-65.

Birky, C. W. and Walsh, J. B. (1988). Effects of linkage on rates of molecular
evolution. Proc. Natl Acad. Sci. USA 85, 6414-18.

Burton. R. S. and Feldman, M. W. (1983). Physiological effects of an allozyme
polymorphism: Glutamate-pyruvate transaminase and response to hyperosmotic
stress in the copepod Tigriopus californicus. Biochem. Genet. 21, 239-51.

Cann, R. L., Stoneking, M. and Wilson, A. C. (1987) Mitochondrial DNA and
human evolution. Nature 325, 31-6.

Crow. J. F. and Aoki, K. (1984). Group selection for a polygenic behavioral trait:
Estimating the degree of population subdivision. Proc. Nail Acad. Sci. USA 81,
6073-7.

Darden, T., Kaplan, N. L. and Hudson, R. R. (1989). A numerical method for
calculating moments of coalescent times in finite populations with selection. J.
Math. Biol. 27, 355-68.

Donnelly, P. (1986). Partition structures,, Polya urns, the Ewens sampling for-
mula, and the age of alleles. Theoret. Popul. Biol. 30, 271-88.

and Tavaré, S. (1986). The ages of alleles and a coalescent. Adv. Appl.

Prob. 18, 1-19.

and Tavaré, S. (1987). The population genealogy of the infinitely-many
neutral alleles model. J. Math. Biol. 25, 381-91.

Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret.
Popul. Biol. 3, 87-112.

—— (1979). Mathematical population genetics. Springer-Verlag, New York.

—— (1989). Population genetics theory — the past and the future. In Mathematical




38 Richard R. Hudson

and statistical problems of evolutionary theory (ed. S. Lessard), pp. Kluwer
Academic, Dordrecht.

Golding, G.B. (1987). The detection of deleterious selection using ancestors
inferred from a phylogenetic history. Genet. Res. Camb. 49, 71-82.

» Aquadro, C. F. and Langley, C. H. (1986). Sequence evolution within
populations under multiple types of mutation. Proc. Natl Acad. Sci. USA 83,
427-31.

Griffiths, R. C. (1980). Lines of descent in the diffusion approximation of neutral
Wright-Fisher models. Theorer. Popul. Biol. 17, 37-50.

(1981a). Neutral two-locus multiple allele models with recombination. Theo-

ret. Popul. Biol. 19, 169-86.

(1981b). The number of heterozygous loci between two randomly chosen
completely linked sequences of loci in two subdivided population models. J.
Math. Biol. 12, 251-61. :

Hedrick, P. W. and Thomson, G. (1986). A two-locus neutrality test: Applications
to humans, E. coli and lodgepole pine. Generics 112, 135-56.

Hilbish , T. J. and Koehn, R. K. (1985). The physiological basis of natural
selection at the Lap locus. Evolution 39, 1302-1317.

Hudson, R. R. (1983a). Properties of a neutral allele model with intragenic
recombination. Theoret. Popul. Biol. 23, 183-201.

(1983b). Testing the constant-rate neutral model with protein sequence data.

Evolution 37, 203-217.

(1987). Estimating the recombination parameter of a finite population model
without selection. Genet. Res. Camb. 50, 245-50.

—— and Kaplan, N. L. (1985). Statistical properties of the number of recombi-
nation events in the history of a sample of DNA sequences. Genetics 111,
147-64.

and Kaplan, N. L. (19864). On the divergence of alleles in nested subsamples

from finite populations. Generics 113, 1057-76.

and Kaplan, N. L. (1986b).On the divergence of members of a transposable

element family. J. Math. Biol. 24, 207-215.

and Kaplan, N. L. (1988). The coalescent process in models with selection
and recombination. Genetics 120, 831-40.

——, Kreitman, M. and Aguadé, M. (1987). A test of neutral molecular evolution
based on nucleotide data. Genetics 116, 153-9.

lizuka, M. (1989). Population genetical model for sequence evolution under
multiple types of mutation. Gener. Res. Camb. 54, 231-7.

Kaplan, N. L. and Hudson, R. R. (1985). The use of sample gencalogies for
studying a selectively neutral M-loci model with recombination. Theorer. Popul.
Biol. 28, 382-96.

——— and Hudson, R. R. (1987). On the divergence of genes in multigene families.
Theoret. Popul. Biol. 31, 178-94.

~——, Darden, T. and Hudson, R. R. (1988). The coalescent process in models
with selection. Genetics 120, 819-29.

» Hudson, R. R. and Langley, C. H. (1989). The ‘hitchhiking effect’ revisited.
Genetics 123, 887-99.

Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in
a finite population due to steady flux of mutations. Genetics 61, 893-903.




Gene genealogies and the coalescent process 39

—— (1983). The neutral theory of molecular evolution. Cambridge University

Press, Cambridge.

— and Crow, J. F. (1964). The number of alleles that can be maintained in a
finite population. Genetics 49, 725-38.

Kingman, J. F. C. (1980). Mathematics of genetic diversiry. CBMS-NSF Regional
Conference Series in Applied Mathematics, No. 34. Society for Industrial and
Applied Mathematics, Philadelphia.

—— (1982a). The coalescent. Stochast. Proc. Appl. 13, 235-48.

— (1982b). On the genealogy of large populations. J. Appl. Prob. 19A, 27-43.

Koehn, R. K., Zera, A. J. and Hall, J. G. (1983). Enzyme polymorphism and
natural selection. In Evolution of genes and proteins (ed. M. Nel and R. K.
Koehn), pp. 115-36. Sinauer, Sunderland, Mass.

Kreitman, M. (1983). Nucleotide polymorphism at the alcohol dehydrogenase
locus of Drosophila melanogasicr. Nature 304, 412-17.

(1987). Molecular population genetics. In Oxford surveys in evolutionary
biology (ed. P. H. Harvey and L. Partridge), Vol. 4, pp. 3860. Oxford
University Press, Oxford.

—— and Aquadé, M. (1986). Excess polymorphism at the Adh locus in Drosophila
melanogaster. Genetics 114, 93-110. :

Li, W.-H. (1976). Distribution of nucleotide differences between two randomly
chosen cistrons in a subdivided population: The finite island model. Theorer.
Popul. Biol. 10, 303-308.

Maynard Smith, J. and Haigh, J. (1974). The hitchhiking effect of a favorable
gene. Genet. Res. Camb. 23, 23-35.

Nagylaki, T. and Petes, T. D. (1982). Intrachromosomal gene conversion and the
maintenance of sequence homogeneity among repeated genes. Genetics 100,

315-37.
Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New

York.

Neigel, J. E. and Avise, J. C. (1986). Phylogenetic relationships of mitochondrial
DNA under various demographic models of speciation. In Evolutionary pro-
cesses and theory (ed. E. Nevo and §. Karlin), pp. 513-34. Academic Press,
London.

Oakeshott, J. G., Gibson, J.B., Anderson, P. R., Knibb, W. R., Anderson, D.G.
and Chambers, G. K. (1982). Alcohol dehydrogenase znd glycerol-3-phosphate
dehydrogenase clines in Drosophila melanogaster on three continents. Evolution
36, 86-96.

» McKechnie, S. W. and Chambers, G. K. (1984). Population genetics of
the metabolically related Adh, Gpdh and Tpi polymorphisms in Drosophila
melanogaster. 1. Geographic variation in Gpdh and Tpi allele frequencies in
different continents. Genetica 63, 21-9.

Padmadisastra, S. (1987). The genetic divergence of three populations. Theorer.
Popul. Biol. 32, 347-65.

— (1988). Estimating divergence times. Theoret. Popul. Biol. 34, 297-319.

Pamilo, P. and Nei, M. (1988). Relationships between gene trees and species
trees. Mol. Biol. Evol. 5, 568-83.

Powers, D. A., DiMichele, L. and Place, A. R. (1983). The use of enzyme Kinetics
to predict differences in cellular metabolism, developmental rate, and swimming




40 Richard R. Hudson

performance between Ldh-B genotypes of the fish. Fundulus heteroclitus. In
Isozymes: Current topics in biological and medical research, Vol. 10: Genetics
and evolution (ed. M. C. Rattazzi, J. G. Scandalios and G. S. Whitt), pp.
147-70. Alan R. Liss, New York.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1988).
Numerical recipes in C. Cambridge University Press, Cambridge.

Sawyer, 8. A., Dykhuizen, D. E. and Hartl, D. L. (1987). Confidence interval
for the number of selectively neutral amino acid polymorphisms. Proc. Natl
Acad. Sci. USA 84, 6225-8.

Slatkin, M. (1987). The average number of sites separating DNA sequences drawn
from a subdivided population. Theoret. Popul. Biol. 32, 42-9.

— (1989). Detecting small amounts of gene flow from phylogenies of alleles.
Genetics 121, 609-612.

—— and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from
the phylogenies of alleles. Genetics 123, 603-613.

Stephens, J. C. and Nei, M. (1985). Phylogenetic analysis of polymorphic DNA
sequences at the Adh locus in Drosophila melanogaster and its sibling species.
J. Mol. Evol. 22, 289-30C.

Strobeck, C. (1983). Estimation of the neutral mutation rate in a finite population
from DNA sequence data. Theoret. Popul. Biol. 24, 160-72.

(1987). Average number of nucleotide differences in a sample from a single
subpopulation: A test for population subdivision. Genetics 117, 149-53.

Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite popu-
lations. Genetics 105, 437-60.

— (1989). DNA polymorphism in a subdivided population: The expected num-
ber of segregating sites in the two-subpopulation model. Generics 123, 229-40.

Takahata, N. (1988). The coalescent in two partially isolated diffusion populations.
Genet. Res. Camb. 52, 213-22.

(1989). Gene genealogy in three related populations: Consistency probability
betweeen gene and population trees. Genetics 122, 957-66.

Tavaré, S. (1984). Line-of-descent and genealogical processes, and their appli-
cations in population genetic models. Theoret. Popul. Biol. 26, 119-64.

» Ewens, W. J. and Joyce, P. (1989). Is knowing the age-order of alleles in
a sample useful in testing for selective neutrality? Generics 122, 705-711.

Watterson, G. A. (1975). On the number of segregating sites in genetical models
without recombination. Theorer. Popul. Biol. 10, 256-76.

—— (1982a). Mutant substitutions at linked nucleotide sites. Adyv. Appl. Prob.

14, 206-224.
—— (1982b). Substitution times for mutant nucleotides. J. Appl. Prob. 19A,

59-70.

—— (1984). Lines of descent and the coalescent. Theoret. Popul. Biol. 26, 77-92.

—— (1989a). Aliele frequencies in multigene families. 1. Diffusion equation
approach. Theoret. Popul. Biol. 35, 142-60.

—— (1989b). Allele frequencies in multigene families. 1I. Coalescent approach.
Theoret. Popul. Biol. 35, 161-80.

Zera, A. J., Koehn, R. K. and Hall, J. G. (1985). Allozymes and biochemical
adaptation. In Comprehensive insect physiology, biochemistry and pharmacology




Gene genealogies and the coalescent process 41

(ed. G. A. Kerkut and L. I. Gilbert), Vol. 10, pp. 633-74. Pergamon Press.
New York.

APPENDIX

Monte Carlo simulations based on the coalescent process are an efficient way to
investigate properties of samples of alleles under a variety of models. In contrast
to standard simulation methods, where entire populations are represented in the

to use “diffusion approximations’, the population size does not enter as a separate
parameter. Instead, all other parameters enter as products with the population
size, such as 4Nr, 4Nw and 4Nm.

It is frequently usefu] to generate the genealogy first, then add mutations to
produce gametes. The subroutine shown below is based on the simplest neutral
model with no recombination and illustrates the basic ideas. As with most of the
models considered in this chapter, the coalescent process consists of a random
series of events, separated by exponentially distributed time intervals. For this
neutral model, there are only common ancestor events. The times of all the
common ancestor events can be generated prior to determining the topology, that
is, which lineages coalesce at which time. The time intervals are the 7(7) referred
10 in the main text, and have means given by eqn (5).

The following subroutine, make__tree, was written in C and generates a
genealogy of a sample of alleles. Times are measured in units of 2N generations.
The genealogy is represented by an array of nodes, designated ‘tree’ in this
routine. Let n denote the sample size, which is called sample__size in the program.
The first n nodes represent the sampled alleles. The next N—1 nodes represent
the actual nodes of the genealogy. Each node in the genealogy is represented in
the computer by a structure, which records the time of the node, the node that
is ancestral to the node and the nodes that are descendants of the node. The
arguments to make___tree are a pointer at the first node and the sample size. The
function ranl is a subroutine that returns a random variable that is uniformly
distributed on the open interval (0, 1).

struct node {
double time;
struct node *descl;

struct node *desc2;
struct node *ancestor:

|

make_tree(tree, sample_size)
Struct node *tree;
int sample_size;

int in, pick ;
double t, ranl(), x ;
struct node **list ;

/* Initialize things */
list = (struct node **)mallec( sample_size*sjizeof (struct node *) };
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for(in=0; in<sample_size; in++} {
tree({in].time = Q. ;
tree(in] .descl = tree{in}.desc2=0 ;
list{in] = tree + in :

}

/* Generate the times of the nodes %/

t = 0. ;
for(in = sample_size ; in>1; in--){(
L 4= -2.0 * log(l.-ranl()) / ( ({double}in}*(in-1) )

tree[Z'sample_size - in).time = t ;

}
/* Generate the topology of the tree */

for( in=sample_size; in>1; in--){
pick = in*ranl();
list{pick)->ancestor = tree + 2 * sample size - ip ;
tree(2 * sample_size - in}.descl = list[;ickj :
list{pick)=list(in-1);
pick = (in-1)*ranl();
list[pick])->ancestor = tree + 2 * sample size - in;
tree2 * sample_size - in).desc? = listl;ick];
list([pick]) = tree + 2 » sample_size -~ in ;

)

free(list);

The following program, which illustrates the use of make___tree( ), can be used

to study the frequency spectrum of variation under the neutral model at equilib-
rium. This program can also be used to study how the frequency spectrum will
be affected by a single change in population size at some time in the past. The
input to the program consists of 8, the sample size, the number of independent
samples to generate, the time since the population changed, and the factor by
which the population size before the change differs from the current population
size.
For each sample generated, the following steps are performed. A genealogy is
generated (make___tree). The tree is distorted by changing the times of nodes
before the population size change by the ‘factor’ (bottleneck). (Because the only
effect of population size changes is to change the time-scale, all that needs to be
done is change the times of the nodes.) The lineage above each node is assigned
a Poisson distributed number of mutations, with mean 6t/2, where ¢ is the duration
of the branch above the node. The number of descendants of the node is counted
(count__desc). The number of descendants of the node is the frequency in the
sample of the variants produced by mutations that occur in the lineage above the
node under consideration. The numbers are tabulated. After all the samples have
been generated, the fraction of all mutations that produce variants of each possible
frequency are output.

The reader must supply his or her own version of the subroutine Poisson, which
returns a Poisson distributed random variable with mean equal to the argument
(see, for example, Press er al. 1988).

This program can be used to see how low-frequency variants are more common
after a severe bottleneck. When the size factor equals 1, there is no change in
population size, and the program output results for the equilibrium neutral mode.
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In this Case, the results can be checked against the Ewens (1972) sampling
distribution.

finclude <stdio.h>

Struct node {
double t ime;
struct node *descl;
struct node *desc2;
struet node “ancestor;
yo

main ()

{
Struct node *tree;
int sample_size, number_samples, in, *spectrum, nmuts, ndes, node;
double theta, time, total‘muts, time_ot_size_change, factor ;

scanf (v %Jf",&theta): /* @ */

scanf (" %d",&sample_size); /* sample size */

scanf (» %d",snumber_samples): /* number of samples ¢ generate =/
scanf (" ®1r~, ctime‘of_size_change); /* in tits ef N generations =/

scanf (" s1fw, &factory; /* the Zactor by which the
Population size differed befere por:ilation size cranged. =/

Lree = (struct node *) mallocy 2'sample_size'sizecf(struc: node ));
Spectrum = (jint *)malloc( sample size‘sizecf(int) Yo /* for storing

B the results =/
for(in=0:in<sample‘size.‘in4+) spectrum{in! = ¢ :
total muts = 0.0 ;

for(in=0;_in<number_samples; in++) ¢
make_tree(tree, sample_size);
bottleneck(tree,sample_size.time_of_size_change,factor):
for( node = 0; node< Sample_sjze*2 - ¢ node++)
time = (tree[node).ancestor—>time) T Lree(node).time H
/* time is the length of the branch above the node w/
nmuts = poisso(time'theta/2.): /* returns a poisson deviate
with mean QY2 +
if( nmuts > 0 {
ndes = ccunt‘desc(tree+nodeL
spectrum[ndes} *= nmuts ;
total muts += nmuts

printf(« Average number of mut g Per sample: &lf\n\n",totai_muts/number_samples);

printf("freq of mut fraction or mutations\n\pwy;
for( in=1; in<sample_size: in++)
Printf (*sd tlt\n",in,spectruw{inj/to:al_muts);

/* a Tecursive method for counting the number of descendents of a node */
int

count_desc(node)
struct node *node;

{
int sum=0

if¢ node->desc] == NULL) return( 1 j;
SUm += count desc( node->desc1 ) ;
sum += count_desc( node~>desc? )z
return(sum);
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/* When the population size Prior to a certain "time" differs from the current
population size by a certain “factor", pass the tree through this routine. */
int
bottleneck(tree, sample_size,time,factor
Struct node *tree;
int sample_size;
double time, factor;

int in;

for (in=sample size; in<2*sample size-1 ; in+s)

if( tree(in).time > time } treelin].time = factor*(tree[in].cime ~ time ) +

time ;



