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OUTLINE 

 Deep “revolution” in imaging science 

 Bridging Deep Neural Networks (DNNs) and 

Differential Equations 

 Dynamics perspective on deep learning for image 

classification 

 PDE-Net: learning PDEs from data 

 Moving endpoint control for blind image recovery  
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“DEEP REVOLUTION” IN 

IMAGING SCIENCE 

Push learning to the extreme 



30 YEARS OF IMAGE RESTORATION 
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 Image restoration: 

 Variational and Optimization Models 

 

 Total variation (TV) and generalizations:  

 Wavelet frame based: 

 Others: total generalized variation, low rank, NLM, BM3D, K-SVD, 

data-driven tight frame, etc. 

 PDEs and Iterative Algorithms 

 Perona-Malik equation, shock-filtering (Rudin & Osher), etc 

 

 

 Iterative shrinkage algorithm 

 



“DEEP REVOLUTION” IN IMAGING SCIENCE 

 Development: 

 Handcraft modeling (1990-) 

 Variational and PDE Models: total variation, 

Perona-Malik, shock-filters, nonlocal, etc.  

 Applied harmonic analysis: wavelets, wavelet 

frames, etc. 

 Handcraft + data driven modeling (1999-):  

 Linear representation learning: MOD, K-SVD, 

data-driven tight frame, Ada-frame, low rank, etc. 

 Statistical models 

 Deep learning (2012-): CNNs/RNNs 
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DEEP LEARNING 

 What are still challenging 

 Learning from limited or/and weakly labelled data 

 Learning from data of different types 

 Theoretical guidance, transparency 

 How to provide guidance and transparency to deep 

learning?  

Find “frameworks” and “links” with mathematics. 
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Deep Network 

Network Architecture 

Network Training 

Differential Equations (DE) 

Numerical DE 

Optimal Control 

Weinan. E. Communications in Mathematics and Statistics, 5(1):1–11, 2017.  

Brings new insights and applications 

Our contribution 



BRIDGING DIFFERENTIAL 

EQUATIONS WITH DEEP NETWORKS 

DNNs and numerical ODEs 

• Yiping Lu, Aoxiao Zhong, Quanzheng Li and Bin Dong, Beyond 

Finite Layer Neural Networks: Bridging Deep Architectures and 

Numerical Differential Equations, ICML 2018. 

(arXiv:1710.10121) 
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DEEP NEURAL NETWORKS 

𝑓1 𝑓2 𝑓3 ⋯ 𝑥  

Deep Neural Network A Dynamic System? 

AlexNet： [Krizhevsky et al. 2012] 



BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Residual networks as discretizations of dynamic 

systems 

 

 

 

 

ResNet: 

 K. He et al., Deep residual learning for image recognition. CVPR 2015. 

 K. He et al., Identity mappings in deep residual networks. CVPR 2016. 
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Discrete:      𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 ⋅ 𝑓(𝑢𝑛, 𝑡𝑛) 

Continuum:  𝑢𝑡 = 𝑓(𝑢, 𝑡) 



BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Residual networks as discretizations of dynamic 

systems 

 

 

 

 

 Remaining questions: 

 Can we relate more networks with dynamic systems? 

 What can we do with such observation? 

Related work: ResNet and dynamic system 

• W. E. Communications in Mathematics and Statistics, 5(1):1–11, 2017.  

• S. Sonoda and N. Murata. ICML Workshop 2017 

• Z. Li and Z. Shi. arXiv preprint arXiv:1708.05115, 2017. 

• B. Chang, et al. arXiv preprint arXiv:1709.03698, 2017. 

ResNet: 

 K. He et al., Deep residual learning for image recognition. CVPR 2015. 

 K. He et al., Identity mappings in deep residual networks. CVPR 2016. 
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BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Residual networks as discretizations of dynamic 

systems 
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PolyNet 

𝑥𝑛+1 = 𝑥𝑛 + 𝐹 𝑥𝑛 + 𝐹(𝐹 𝑥𝑛 ) 

Backward Euler Scheme: 

𝑥𝑛+1 = 𝑥𝑛 + 𝐹 𝑥𝑛+1 ⇒ 𝑥𝑛+1 = 𝐼 − 𝐹 −1𝑥𝑛 

 

Approximate the operator 𝐼 − 𝐹 −1  by 𝐼 + 𝐹 + 𝐹2 + ⋯ 

Zhang X, et al. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks, CVPR 2017. 



BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Residual networks as discretizations of dynamic 

systems 
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Larsson G, Maire M, Shakhnarovich G. FractalNet: Ultra-Deep Neural Networks 

without Residuals, ICLR 2017. 

𝑥𝑛+1 = 𝑘1𝑥𝑛 + 𝑘2(𝑘3𝑥𝑛 + 𝑓1 𝑥𝑛 ) + 𝑓2(𝑘3𝑥𝑛 + 𝑓1 𝑥𝑛 ) 

fc 

fc 

fc 

conv 
Runge-Kutta 

Scheme  

(2nd order) 



BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Residual networks as discretizations of dynamic 

systems Popular deep residual networks 
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BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Numerical differential equation inspired networks 

 Linear multi-step structure (LM-structure) 

 

 

 

 

 

 

 

 

 Can be applied to any ResNet-like networks. Examples: 

LM-ResNet and LM-ResNeXt 

ResNeXt: Xie et al.  Aggregated residual transformations for deep neural networks. CVPR 2017. 
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𝑢𝑛+1 = 1 − 𝑘𝑛 𝑢𝑛 + 𝑘𝑛𝑢𝑛−1 + Δ𝑡 ⋅ 𝑓(𝑢𝑛, 𝑡𝑛) 



BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Results: CIFAR10 (50k train, 10k test, 10 classes) 

 

 

 

 

 

 

 Modified equation perspective: 

ResNet: 

LM-ResNet: 

Speeds up and stable in (−1, 0) 
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BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Results: CIFAR10 (50k train, 10k test, 10 classes) 
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BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Results: CIFAR10 (50k train, 10k test, 10 classes) 

 

 

 

 

 

 Original motivation: 

 Nesterov ODE “Su, Boyd and Candes, NIPS 2014”; 

“Wibisono, Wilson and Jordan, PNAS 2016” 

 Nesterov PDE “Dong, Jiang and Shen, MMS, 2017 

(UCLA CAM Report, Dec. 2013)” 17 



BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Results: CIFAR100 (50k train, 10k test, 100 classes) 

 

 

 

 

 

 

 

 

 Results: ImageNet (1.28m train, 50k test, 1000 classes) 
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BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Stochastic training strategy 
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      Dynamic System 

Better generalization 



BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Stochastic training strategy as stochastic control 

 

 

 Examples (through weak convergence):  

 shake-shake regularization (Gastaldi, ICLR Workshop 2017)  

 stochastic depth (Huang et al. ECCV 2016) 

 LM-structure + stochastic training 

 

 Distribution of 𝜂𝑛 

 Gaussian 

 Bernoulli 
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BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

 Results: 𝜂𝑛 ∼ Bernoulli 
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BRIDGING DEEP ARCHITECTURES AND 

NUMERICAL DIFFERENTIAL EQUATIONS 

Summary: 

 Bridge numerical differential equations with 

deep neural networks 

 Bridge numerical stochastic differential 

equations with stochastic training strategies 

 This new perspective inspired new network 

design (LM-architecture) that can reduce 

40%~90% of the parameters of some deep 

networks with comparable accuracy 

 Such performance boost can be explained 

using modified equations 
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OTHER RELATED WORKS 

 Architecture design 
 Haber E, Ruthotto L. Stable architectures for deep neural networks. 

Inverse Problems, 2017, 34(1): 014004. 

 Chang B, Meng L, Haber E, et al. Reversible architectures for 
arbitrarily deep residual neural networks. AAAI 2018.  

 Chang B, Meng L, Haber E, et al. Multi-level residual networks from 
dynamical systems view. ICLR 2018. 

 Wang B, Yuan B, Shi Z, et al. EnResNet: ResNet Ensemble via the 
Feynman-Kac Formalism. arXiv:1811.10745, 2018. 

 Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Networks, Nonlocal 
Diffusion and Nonlocal Modeling. NeurIPS 2018. 

 Zhu M, Chang B, Fu C. Convolutional Neural Networks combined 
with Runge-Kutta Methods. arXiv:1802.08831, 2018. 

 Zhang L, Schaeffer H. Forward Stability of ResNet and Its Variants. 
arXiv:1811.09885, 2018. 

 Sun Q, Tao Y, Du Q. Stochastic Training of Residual Networks: a 
Differential Equation Viewpoint. arXiv:1812.00174, 2018. 

 He J, Xu J. MgNet: A Unified Framework of Multigrid and 
Convolutional Neural Network. arXiv:1901.10415, 2019. 

 Zhang J, Han B, Wynter L, et al. Towards Robust ResNet: A Small 
Step but A Giant Leap. arXiv:1902.10887, 2019. 
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OTHER RELATED WORKS 

 Optimization 
 Li Q, Chen L, Tai C, E W. Maximum principle based 

algorithms for deep learning. The Journal of Machine 
Learning Research, 2017, 18(1): 5998-6026. 

 Li Q, Hao S. An optimal control approach to deep learning 
and applications to discrete-weight neural networks. ICML 
2018. 

 Chen T Q, Rubanova Y, Bettencourt J, et al. Neural 
ordinary differential equations. NeurIPS 2018. (Best paper) 

 Parpas P, Muir C. Predict Globally, Correct Locally: 
Parallel-in-Time Optimal Control of Neural Networks. 
arXiv:1902.02542. 

 Theory 
 E W., Han J, Li Q. A mean-field optimal control 

formulation of deep learning. Research in the 
Mathematical Sciences, vol. 6, no. 10, pp. 1–41, 2019. 

 Thorpe M, van Gennip Y. Deep Limits of Residual Neural 
Networks. arXiv:1810.11741, 2018. 
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BRIDGING DIFFERENTIAL 

EQUATIONS WITH DEEP NETWORKS 
DNNs and numerical PDEs 
• Zichao Long, Yiping Lu, Xianzhong Ma and Bin Dong, PDE-Net: 

Learning PDEs from Data, ICML 2018. (arXiv:1710.09668) 

• Zichao Long, Yiping Lu and Bin Dong, PDE-Net 2.0: Learning PDEs 
from Data with A Numeric-Symbolic Hybrid Deep Network, 
arXiv:1812.04426, 2018. 



PDE-NET: LEARNING PDES FROM DATA 

 As data getting easier and easier to collect, with 

more and more computing power available, can we 

learn principles (e.g. PDEs) from data? 
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Dynamics of actin in Immunocytoskeleton Dynamics of Mitochondria 



PDE-NET: LEARNING PDES FROM DATA 

 As data getting easier and easier to collect, with 

more and more computing power available, can we 

learn principles (e.g. PDEs) from data? 
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S. Sato et al., Siggraph 2018 

Meteorology 

Computer Graphics 



PDE-NET: LEARNING PDES FROM DATA 

 Earlier work 

 Dictionary based sparse regression 

 Construct dictionary 

 

 

 Fit variable 𝜉 

 

 

 Sparse regression 

• S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016 

• Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017. 

• Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017. 
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PDE-NET: LEARNING PDES FROM DATA 

 Earlier work 

 Dictionary based sparse regression 

• S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016 

• Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017. 

• Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017. 
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PDE-NET: LEARNING PDES FROM DATA 

 Earlier work 

 Coefficients regression 

 Consider  
𝑢𝑡 + 𝑁 𝑢; 𝜆 = 0, 𝑥 ∈ Ω, 𝑡 ∈ 0, 𝑇  

 For example, Burgers equation: 𝑁 𝑢; 𝜆 = 𝜆1𝑢𝑢𝑥 − 𝜆2𝑢𝑥𝑥 

 Approximate 𝑢 by deep neural network(continuous time 

model) 

𝑢 ∶= 𝑁𝑒𝑡 𝑡, 𝑥 , 𝑥 ∈ Ω, t ∈ [0, 𝑇] 
𝑓 ≔ 𝑢𝑡 + 𝑁(𝑢; 𝜆) 

 Loss function: 𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑢 + 𝑀𝑆𝐸𝑓, where 

• M. Raissi, P. Perdikaris and G. E. Karniadakis, arXiv preprint 

arXiv:1711.10566, 2017 
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PDE-NET: LEARNING PDES FROM DATA 

 Earlier work 

 Coefficients regression 

• M. Raissi, P. Perdikaris and G. E. Karniadakis, arXiv preprint 

arXiv:1703.10230, 2017 
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PDE-NET: LEARNING PDES FROM DATA 

Remaining challenge 

 Can we go beyond sparse coding framework 

(linear dictionary)?  

—— Bigger model class with less prior knowledge 

 Can we learn discrete forms of differential 

operators and does it help? 

——More accurate estimation of the PDE and 

prediction 
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PDE-NET: LEARNING PDES FROM DATA 

 As data getting easier and easier to collect, with 
more and more computing power available, can we 
learn principles (e.g. PDEs) from data? 

 

 

 

 

 Preliminary attempt:  

 Combining deep learning and numerical PDEs 

 Objectives:  

 Predictive and expressive power (deep learning) 

 Transparency: to reveal hidden physics (numerical 
PDEs) 
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S. Sato et al., Siggraph 2018 



PDE-NET: LEARNING PDES FROM DATA 

 PDE-Net: a flexible and transparent deep network 

 

 

 PDE-Net: multi-layer 𝛿𝑡-blocks 

𝜕𝑢

𝜕𝑡
= 𝐹(𝑥, 𝑢, 𝛻𝑢, 𝛻2𝑢, … ) Assuming： 

34 

Prior knowledge on 𝐹: 
• Type of the PDE 

• Maximum order 



PDE-NET: LEARNING PDES FROM DATA 

 PDE-Net: a flexible and transparent deep network 

 

 

 PDE-Net: multi-layer 𝛿𝑡-blocks 

𝜕𝑢

𝜕𝑡
= 𝐹(𝑥, 𝑢, 𝛻𝑢, 𝛻2𝑢, … ) Assuming： 
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Prior knowledge on 𝐹: 
• Type of the PDE 

• Maximum order 



PDE-NET: LEARNING PDES FROM DATA 

 Constraints on kernels (granting transparency) 

 Wavelet transform and differential operators 
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• J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012. 

• B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017 

Proposition: 



PDE-NET: LEARNING PDES FROM DATA 

 Constraints on kernels (granting transparency) 

 Moment matrix 

 

 

 We can approximate any differential operator at any 

prescribed order by constraining 𝑀(𝑞) 

 For example: approximation of  
𝜕𝑓

𝜕𝑥
  with a 3 × 3 kernel 

 

 

 

 

 

 

1st order 

learnable 

2st order 

learnable 

1st order 

frozen 
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• J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012. 

• B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017 



PDE-NET: LEARNING PDES FROM DATA 

 Numerical experiments: results 

 Prediction 

 

 

 

 

 Model estimation 
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PDE-NET: LEARNING PDES FROM DATA 

 Numerical experiments: results 

 Prediction 

 

 

 

 

 Model estimation 
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Estimation of the parameters 

and 𝑓𝑠(𝑢) 



PDE-NET 2.0: COMBINING NUMERIC AND 

SYMBOLIC REPRESENTATIONS 

 Symbolic network (granting transparency) 
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Prior knowledge on 𝐹: 
• Addition and multiplication 

of the terms; 

• Maximum order. 

𝜕𝑢

𝜕𝑡
= 𝐹 𝑢, 𝛻𝑢, 𝛻2𝑢, … , 𝑢 ∈ ℝ𝑑 Assuming： 



PDE-NET 2.0: COMBINING NUMERIC AND 

SYMBOLIC REPRESENTATIONS 

 Symbolic network (granting transparency) 
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𝜂1 

𝜉1 
𝜂2 

𝜉2 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓(⋅,⋅) 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓(⋅,⋅) 

𝑣 

𝑤 

⋯ 

𝑢 

⋯ 

𝐹(𝑢, 𝑣, 
𝑤, … ) 

W3

⋅ +𝑏3 

W1

⋅ +b1  

W2

⋅ +b2  

identity identity 

More Constraints: 
• Pseudo-upwind 

• Sparsity on moment matrices 

• Sparsity on the symbolic network 

Similar to 𝐸𝑄𝐿/𝐸𝑄𝐿÷: Sahoo, Lampert, and Martius, ICML 2018. 



PDE-NET 2.0: COMBINING NUMERIC AND 

SYMBOLIC REPRESENTATIONS 

 Efficiency of the symbolic network 
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𝜂1 

𝜉1 𝜂2 

𝜉2 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓 

𝑣 

𝑤 

⋯ 

𝑢 

𝑓 

𝑣 

𝑤 

⋯ 

𝑢 

⋯ 

𝐹 

… 

𝑣 

𝑤 

𝑢𝑣 

𝑢 

𝑢𝑤 

𝐹 

SymNet SINDy 

• Proposition: Let 𝑃 ∈ 𝑃𝑘[𝑥1, … , 𝑥𝑚] and suppose 𝑃 have monomials 

of degree ≤ 𝑙. 
• The memory load of 𝑆𝑦𝑚𝑁𝑒𝑡𝑚

𝑘  that approximates 𝑃 is 𝑂 𝑚 +  𝑘 . The 

number of flops for evaluating it is 𝑂 𝑘 𝑚 +  𝑘 . 

• Constructing a dictionary with all possible polynomials of degree 𝑙 

requires 𝑂
𝑚 + 𝑙

𝑙
. 

 

 



PDE-NET 2.0: COMBINING NUMERIC AND 

SYMBOLIC REPRESENTATIONS 

 Fully unknown 𝐹 

 Example: Burger’s equation 
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𝜈 = 0.05 

Remainer weights of 𝒖, 𝒗 

Prediction 

Model recovery 



RECENT DEVELOPMENTS  

 IPAM knows better! 
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BRIDGING DIFFERENTIAL 

EQUATIONS WITH DEEP NETWORKS 

An application in image restoration 

• Xiaoshuai Zhang, Yiping Lu, Jiaying Liu and Bin Dong, 

Dynamically Unfolding Recurrent Restorer: A Moving Endpoint 

Control Method for Image Restoration, ICLR 2019. 

(arXiv:1805.07709 ) 
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MOTIVATION: DENOISING WITH UNKNOWN 

NOISE LEVEL 

input output 

processing 



47 

MOTIVATION: DENOISING WITH UNKNOWN 

NOISE LEVEL 
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MOVING ENDPOINT CONTROL APPROACH 

Dynamically Unfolding Recurrent Restorer (DURR) 
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DENOISING WITH UNKNOWN 𝜎 

BSD68 Image Denoising Data Set 

Generalization beyond training noise level! 

DnCNN-B: K. Zhang et al. TIP 2017; UNLNet: S Lefkimmiatis, CVPR 2018 
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JPEG DEBLOCKING WITH UNKNOWN QFS 

SA-DCT: A. Foi et al., TIP 2007;  

AR-CNN: C. Dong et al., CVPR 2015; 

DnCNN-3: K. Zhang et al., TIP 2017. 



SOME RELATED WORKS 

 Jin M, Roth S, Favaro P. Noise-blind image deblurring. 

CVPR 2017. 

 

 

 

 

 

 Y. Nan, Y. Quan, H. Ji, Learning for Non-blind 

Deconvolution: The Devil Is STILL in Details, preprint 2019.  
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CONCLUSIONS 

 We suggested a (heuristic) bridge between 

numerical differential equations and deep neural 

architectures, and proposed some new 

architectures for different tasks. 

 Future directions: 

 Theoretical analysis of architectures: optimization, 

generalization, recovery guarantees, etc. 

 Robustness and compactness of DNNs. 

 Learning “principles” from data (beyond PoC). 
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THANKS FOR YOUR ATTENTION! 
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