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Thèse No. 3747

GENÈVE
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Chapter 1

Résumé

Formation de structures dans une nouvelle classe
de réactions de précipitation

En étudiant le phénomène de Liesegang, j’ai observé un comportement inhabituel
pour la réaction NaOH (l’électrolyte extérieur) + CuCl2 (l’électrolyte intérieur) dans un
gel de polyvinylalcool (PVA). Au lieu de la formation attendue d’une structure lamellaire
de type Liesegang, des structures très étranges sont apparues, nommées “structures en
choux” [13]. L’étude systématique des réactions NaOH +CuCl2 dans du PVA et du gel
d’agarose ainsi que l’étude de réactions telles que NaOH+Cu(NO3)2, NaOH +AgNO3

[157], et CoCl2+K3[Fe(Cn)6], CuCl2+K3[Fe(Cn)6] [159], montrant des caractéristiques
similaires, m’ont conduit à conclure que j’avais découvert une nouvelle classe de réactions
chimiques “non-linéaires” formant des structures.

Les expériences dans ce domaine peuvent être conduites dans des géométries simi-
laires à celles utilisées dans l’étude des structures de Liesegang. Les expériences ont été
réalisées soit dans des gels de type PVA soit dans des gels d’agarose. Ces gels neutres,
sont d’un emploi facile et leurs réticulations ne font pas appel à d’autres composés chim-
iques qui pourraient perturber les réactions de précipitation. L’électrolyte extérieur est
déposé sur une feuille ou dans une colonne de gel qui contient l’électrolyte intérieur; une
grande variété de structures peuvent se former dans le sillage du front de diffusion de
l’électrolyte extérieur. Les structures qui résultent de ces réactions peuvent être divisées
en deux classes principales: les structures primaires et les structures secondaires.

Les structures primaires (les plus simples) sont formées lorsque les réactions se
déroulent dans des feuilles de gel. Leurs formes élémentaires sont constituées de régions
trapézöıdales de précipité. Ces structures présentent deux types de surfaces limitro-
phes. La précipitation a lieu seulement sur les bordures actives tandis qu’aucun pro-
cessus chimique n’a lieu le long des bordures passives. Nos expériences ont démontré
que les bordures passives sont semi-perméables et limitent la diffusion de l’ion réactif
contenu dans l’électrolyte extérieur. Lorque ce dernier traverse les bordures actives, il va
rencontrer et réagir avec l’électrolyte intérieur seulement à l’avant des bordures actives.

Nous avons aussi découvert que les réactions conduisent initialement à un composé
intermédiaire diffusif (DC). Un des aspects les plus significatifs du modèle est l’apparition

vii
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d’une concentration critique, ou seuil de croissance, du composé intermédiaire diffusif,
nécessaire pour qu’une précipitation continue puisse se développer [158, 161]. En rai-
son de la semi-perméabilité des bordures passives, le composé intermédiaire diffusif sera
présent essentiellement à l’avant des bordures actives. Si le seuil de croissance n’est
pas atteint sur une portion du front de précipitation avant un certain temps τ depuis
de sa formation, on suppose que la portion de bordure active perd sa perméabilité et
devient passive. Puisque la vitesse du front de précipitation diminue avec le temps, une
valeur constante de τ impliquerait que celui-ci s’arrêtera après un temps fini. Cepen-
dant, les résultats expérimentaux suggèrent qu’en ayant une concentration constante
de l’électrolyte extérieur, on obtient une propagation du front durant un temps arbi-
trairement long[157]. Un tel comportement peut être reproduit par notre modèle en
supposant que τ = τ(v) augmente lorsque la vitesse v du front diminue.

Dans le cas le plus simple, quand les réactions se déroulent dans des feuilles de
gel minces, les caractéristiques qualitatives les plus importantes de la formation des
structures primaires sont la contraction des segments des bordures actives qui laissent
derrière elles une zone de précipité de forme trapézöıdale, zone qui à son tour évolue vers
un triangle de précipité [157, 158, 161]. Pour expliquer ce comportement, nous avons
supposé que la concentration du composé intermédiaire diffusif n’atteint pas le seuil
de croissance autour des points extrêmes des segments de la bordure active durant le
temps τ(v). Des simulations numériques ont démontré que cette situation est générique.
L’apparition de bords des zones actives en mouvement est attribuée au fait que la
concentration du composé intermédiaire diffusif est supérieure au seuil de nucléation
qui, lui, est supposé être supérieur au seuil de croissance[166]. L’explication qualitative
donnée ci-dessus est corroborée par plusieurs faits expérimentaux obtenus dans le cadre
de diverses conditions expérimentales. Les observations les plus importantes sont les
suivantes:

1. Un phénomène interessant a lieu lorsqu’un front de précipitation, se déplaçant le
long d’une bordure passive, atteint le sommet d’un triangle de précipité. Les figures
1.1 (b.) and (f.) représentent la situation où une des marges du front se déplace
le long d’une zone de précipité. La bordure passive du précipité formé auparavant
est supposée agir comme un obstacle dans lequel le composé intermédiaire diffusif
ne peut pas pénétrer. Alors, la concentration du composé intermédiaire diffusif
n’est pas diminuée sur cette marge du front. Lorsque le front approche le sommet
du triangle de précipité, le composé intermédiaire diffusif au voisinage de la fin du
front commence à diffuser dans un espace beaucoup plus grand que précédemment.
Il en résulte que sa concentration diminuera. Si elle descend en dessous de la
concentration critique requise pour la progession de la bordure active, pendant
des temps supérieurs à τ , alors le point extrême du front de précipitation peut
devenir “ion-sélectif” et une transition “active-passive” peut alors avoir lieu (figs.
1.1 (c.) and (g.)). Plus tard, la portion de la bordure qui est toujours active va se
contracter et évoluer de la manière décrite plus haut. Un scénario identique peut
avoir lieu lorsqu’un front de précipité passe à travers un obstacle ayant des bords
acérés.
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2. Lorsqu’un segment d’un front de précipité rencontre un obstacle, tel une bulle
d’air ou une esquille de verre de taille de l’ordre d’environ 0.1 − 1 mm, la vitesse
de cette portion de front crôıt jusqu‘à ce qu’elle touche la barrière (fig. 1.1 (h.)).
L’accélération débute lorsque le front se trouve à environ 60 µm de l’obstacle. Si
le composé intermédiaire diffusif ne peut pas passer à travers la barrière, sa con-
centration peut crôıtre entre l’obstacle et le front. Une plus grande concentration
du composé intermédiaire diffusif est la raison la plus probable pour expliquer les
plus grandes vitesses du front de précipité.

Comme déjà mentionné, la transition active-passive peut prendre place lorsque le
front de précipité passe à travers un obstacle. Il en résulte que la bordure active
se divise en deux segments.

3. Lorsque deux fronts de précipité se rencontrent et fusionnent, la vitesse du front
résultante est fortement augmentée au voisinage du point de rencontre (fig. 1.1
(i.)). Cette accélération résulte des deux bordures actives possédant, devant elles,
des régions riches en composé intermédiaire diffusif. Dans le voisinage immédiat
de ces points, ces régions se recouvrent et donc la concentration du composé in-
termédiaire diffusif augmente. Les fronts sont supposés avoir une vitesse plus
grande lorsqu’ils balayent de telles regions. Notons encore que la concavité du
front engendre aussi une augmentation de sa vitesse.

Dans la réaction NaOH+AgNO3 le précipité ne redémarre pas à l’avant des bordures
passives, alors que dans le système NaOH + CuCl2, le redémarrage du précipité est
aussi retardé. Dû au fait que dans ces systèmes le radical OH− est le ion réactif de
l’électrolyte extérieur, il est alors légitime de supposer que la précipitation s’arrête parce
que les bordures passives bloquent le passage des ions OH−. Pour confirmer cette
hypothèse, des mesures de pH ont été effectuées des deux côtés des bordures passives
environ 14 h après l’arrêt de la réaction. Comme le pH ne s’égalisa pas durant cette
période, il est raisonnable de supposer que les bordures passives ralentissent de manière
significative la diffusion des ions determinant le pH . Des mesures similaires faites pour la
réaction NaOH +CuCl2, 4 heures après la formation de bordures passives, ont conduit
à des conclusions similaires. Il est également plausible de supposer que dans le système
CuCl2 + K3[Fe(CN)6], le passage des ions cuivre est prohibé par les bordures passives
(hypothèse soutenue par des observations visuelles). Cependant, il n’est actuellement
pas clair si les bordures passives sont des membranes totalement isolantes ou provoquent
une diffusion restreinte pour certains ions seulement. Les réponses à de telles questions
peuvent être apportées par des mesures de résistance (ou de conductance) de segments
appropriés de gel pour lesquels toute la section est formée par une bordure passive.
Une haute résistance caractérise une membrane totalement isolante alors qu’une faible
résistance indique que certains ions peuvent toujours traverser la bordure passive.

Nos mesures électrochimiques ont montré que les parties réelles des impédances
étaient toujours relativement petites (< 7 Ω), et les valeurs mesurées à f = 10 kHz
et f = 788.5 Hz, qui peuvent être univoquement identifiées avec la résistance de la
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Figure 1.1: Expériences corroborant le modèle phénoménologique. (a.) Bordures active (1) et passive

(2) pour le système NaOH + CuCl2 dans un gel de type PVA, vu d’une direction oblique. On notera

la différence des opalescences des couleurs. La feuille de gel, d’une épaisseur de 1.6 mm est située

entre deux plaques de verre. a0 = 8 M NaOH, b0 = 0.732 M CuCl2. (b.)-(d.) Transition active-

passive dans le système NaOH + CuCl2. La réaction a lieu dans une feuille de gel d’agarose d’une

épaisseur de 1.6 mm, située entre deux plaques de verre. a0 = 4 M NaOH, b0 = 0.586 M CuCl2,

l’étalon a une longueur de 2mm. Les figures (c.) et (d.) représentent la situation à 871 s et à 1398 s

respectivement après celle de la figure (b.). La bordure active (1) est limitée d’un côté par la bordure

passive de précipité formé précédemment (2), et de l’autre côté, par un bord régressif (3), point de

rencontre des bordures active et passive du nouveau précipité [figure (b.)]. Lorsque la bordure active

atteint le sommet du triangle de précipité, une nouvelle bordure passive va apparâıtre [figure (c.)]. Le

front de précipité devient entouré par deux bords régressifs et va donc se contracter [figure (d.)], puis

finalement disparâıtre. Notons la décroissance du précipité bleu-vert dans le précipité brun. (e.)-(g.)

Transition active-passive dans le système NaOH +AgNO3. La réaction a lieu dans un gel de type PVA

situé entre une lame de microscope et un verre recouvrant. a0 = 8 M NaOH, b0 = 0.412 M AgNO3,

l’étalon a une longueur de 0.5 mm. Les figures (f.) et (g.) ont été prises à des temps de 552 s et 672 s

respectivement après la figure (e.). La figure (e.) montre une bordure active se rétrécissant, laissant

derrière elle une région de précipité de forme trapézöıdale. La figure (f.) montre une bordure active

qui s’approche du sommet du triangle de précipité formé au cours du scénario précédent. Lorsqu’elle

atteint le sommet, une transition active-passive a lieu et une nouvelle bordure passive apparâıt (2)

[figure (g.)]. (h.) Accélération d’un segment de front de précipité rencontrant un obstacle. La réaction

a lieu dans un gel de type PVA entre une lame de microscope et un verre couvrant. Les lignes noires

représentent le front de précipité à des intervalles de 30 s, et la région noire représente l’obstacle. Les

flèches indiquent la direction du front de précipitation. a0 = 8 M NaOH, b0 = 0.732 M CuCl2, et la

longueur de l’étalon est 150 µm. (i.) Fusion des fronts de précipitation dans le système NaOH+CuCl2.

La réaction a lieu dans un gel de type PVA entre une lame de microscope et un verre couvrant. Les

lignes noires decrivent le front de précipité à des intervalles de 30 s, excepté pour les deux petites

courbes au milieu. Ces petites courbes indiquent la position du front fusioné, 5 et 15 s après que les

derniers des segments non connectés du front aient été tracés. a0 = 8 M NaOH, b0 = 0.732 M CuCl2,

et l’étalon a une longueur de 150 µm.
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solution et de la phase précipité-gel entre les électrodes de référence, sont pratiquement
indépendantes du temps durant l’évolution de la stucture précipitée dans le gel. Des
résultats similaires ont été obtenus pour le système NaOH + AgNO3. En conséquence,
nous en concluons que les bordures passives ne sont pas complétement isolantes, mais
possèdent des propriétés sélectives pour les ions.

Quand la réaction NaOH +CuCl2 se déroule dans un gel PVA placé dans des tubes
à essai et des bôıtes de Petri, on observe la formation d’une structure lamellaire de
Liesegang irrégulière, qui peut être de types cible, cardiöıdale, spirale rotative et, aux
concentrations plus élevées, une structure en choux irrégulière.

Les précipités formés dans les réactions NaOH + AgNO3 et CuCl2 + K3[Fe(CN)6]
qui ont lieu dans des bôıtes de Petri peuvent mener à un diagramme de Voronoi. On
rappele qu’un diagramme de Voronoi planaire est donné par la carte des plus proches
voisins pour un ensemble initial de points donnés.

Figure 1.2: (a.) Examen sur fond noir de la structure juste après l’apparition du précipité
collöıdal. L’étalon a une longueur de 200 µm. (b.) Deux étapes importantes dans la
formation des bandes de précipité. Le précipité collöıdal (5) se forme à l’avant de la
bordure active et se transforme en un précipité de couleur brune (3). L’étalon est de
100 µm. (c.) Strutures similaires en examen sur fond noir. L’étalon a une longueur
200 µm. (d.) Examen sur fond noir de la formation des bandes. Tout d’abord, une
impureté de petite taille se forme (8) qui se développe pour former un gros grain collöıdal.
L’étalon a une longueur 100 µm. a0 = 8.0 M NaOH , b0 = 0.732 M CuCl2.

Notons que le composé qui forme les structures primaires n’est pas identifiable au
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microscope optique. Des réactions telles que NaOH + CuCl2 et NaOH +AgNO3 dans
un gel PVA peuvent également conduire à des structures microscopiques régulières [160].
Dans le cas du processus NaOH + CuCl2, quand la vitesse d’une bordure active est
inférieure à 0, 8 µm/s environ, un précipité collöıdal d’aspect granulaire, distribué de
manière homogène, se forme à l’avant de la bordure active.

Quand la vitesse est encore plus faible, la formation de ce collöıde devient discontinue,
formant des structures secondaires composées par des couches presque équidistantes.
Ceci est très différent de la formation d’une structure lamellaire de type Liesegang. La
longueur d’onde de ces structures régulières peut être aussi petite que 20 µm et ces
structures peuvent agir comme une grille optique. Les structures secondaires formées
dans la réaction NaOH + AgNO3 peuvent avoir une longueur d’onde encore bien plus
petite.

Les structures secondaires, formées par des bandes de particules collöıdales, ne sont
pas sans défauts. Un aspect dynamique interessant de la réaction est l’apparition des
défauts qui intéragissent entre eux. Ils apparaissent généralemet lorsqu’il y a une légère
différence de vitesses entre certaines parties de la bordure active. Bien que la longueur
d’onde des structures dépende de la vitesse de progression des bordures actives, dans
la majorité des cas les différences ne sont pas suffisantes pour générer des modifications
significatives de la longueur d’onde de la grille. Toutefois, la partie du front ayant une
vitesse supérieure, produit plus de bandes de précipité que la partie avec une plus petite
vitesse. Si la longueur d’onde est approximativement constante, toutes les bandes ne
peuvent pas être continues le long de la bordure active. A l’endroit du front ayant la
plus grande vitesse, de nouvelles bandes sont insérées, et des défauts interstitiels de type
fourche sont créés.

La formation des structures primaires a été modélisée en combinant une approche
de type automate cellulaire à une approche de type équations de réaction-diffusion. La
partie automate cellulaire modélise les phenoménes ayant lieu à une échelle plus petite
que celle pertinente pour le phénomène de réaction-diffusion.

Les caractéristiques qualitatives les plus importantes des structures primaires ont
été reproduites par simulations numériques [162]. Les équations ainsi que les règles
d’automate cellulaire du modèle sous forme adimensionnelle sont les suivantes:

∂a(x, y, t)

∂t
= Da(x, y) · ∆a(x, y, t) − r · a(x, y, t) · b(x, y, t)

∂b(x, y, t)

∂t
= Db(x, y) · ∆b(x, y, t) − r · a(x, y, t) · b(x, y, t)

∂c(x, y, t)

∂t
= Dc(x, y) · ∆c(x, y, t) + r · a(x, y, t) · b(x, y, t) − [R]
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R0:
[

c(x, y, t) > c∗∗
]

∧
[

d(x, y, t) = vide
]

→ d(x, y, t + ∆t) = bordure active

R1:
[

c(x, y, t) > c∗
]

∧
[

d(x, y, t) = bordure active
]

∧
[

d(xnn, ynn, t) = vide
]

→
→

[

d(xnn, ynn, t + ∆t) = bordure active
]

∧
[

d(x, y, t + ∆t) = précipité volumique
]

∧
[

c(x, y, t + ∆t) = 0
]

R2:
[

c(x, y, t) < c∗
]

∧
[

d(x, y, t) = bordure active
]

∧
[

T (x, y, t) ≤ τ(v)
]

→
→ T (x, y, t + ∆t) = T (x, y, t) + ∆t

R3:
[

c(x, y, t) < c∗
]

∧
[

d(x, y, t) = bordure active
]

∧
[

T (x, y, t) > τ(v)
]

→
→ d(x, y, t + ∆t) = bordure passive

R4:
[

d(x, y, t) = bordure active
]

∧
[

d(xnn, ynn, t) = non vide ∀ (xnn, ynn)
]

→
→ d(x, y, t + ∆t) = précipité volumique

Da(x, y) =

{

0, si d(x, y) = bordure passive ou obstacle
Da autrement

Db,c(x, y) =

{

0, si d(x, y) = non vide
Db,c autrement

Les coordonnées x and y localisent un point de la couche de gel. t est le temps et ∆t
est le pas d’intégration. Les termes a(x, y, t) et b(x, y, t) représentent les densités des ions
en intéractions pour, respectivement, l’ électrolyte extérieur et intérieur; c(x, y, t) décrit
le composé intermédiaire qui diffuse; c∗∗ est le seuil de nucléation alors que c∗ correspond
au seuil de croissance. Le couplage avec les règles d’automate est donné par les règles
[R]. Le terme d(x, y, t) décrit le précipité et n’est pas relié à une concentration. Il prend
un nombre discret de valeurs, identifiant le précipité de volume, les bordures actives ou
passives, ainsi que les régions sans précipité. Les obstacles sont des sites inertes dans
lesquels aucun des composants ne peut entrer par diffusion. T (x, y, t) représente l’âge
alors que τ(v) décrit le temps de vie maximum d’une cellule. v est la vitesse du front
de précipitation. En général, le temps de vie maximum est supposé dépendre de v. Les
sites plus proche voisins du point (x, y) sont dénotés par (xnn, ynn). Le symbole ‘∧’
represente la fonction logique “et”.

Initiallement, seul le composé b de concentration initiale b0, et quelques obstacles
inertes sont présents. Le composé a a une concentration a0 le long du bord x = 0. Les
conditions aux bords sont telles que les flux sont nuls sur les autres bords du champ
de réaction. Le Laplacien entrant dans le terme de diffusion est noté ∆ alors que les
coefficients de diffusion des composés respectifs sont Da, Db, et Dc. Dans notre modèle,
le coefficient de diffusion de l’électrolyte extérieur est nul sur les bordures passives, ce
qui veut dire qu’il ne peut pas traverser de telles surfaces. L’électrolyte intérieur ne peut
pas diffuser dans le précipité. Cependant, des altérations de Db sur les bordures passives
ainsi que dans le précipité volumique ne modifient pas les résultats de la simulation. Le
précipité ne peut pas diffuser du tout. La réaction, de taux de réaction constant r, est
supposée linéaire dans les concentrations des réactants.
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Les règles d’automate cellulaire ont la signification suivante. L’apparition d’un nou-
veau front de précipité est encodée par la régle “0”. Si en un point du champ de réaction
il n’y a ni précipité ni obstacle (site vide) et si la concentration de c est plus grande
que le seuil de nucléation c∗∗, alors des nouveaux segments de front apparaissent (sites
actifs). La règle 1 décrit l’évolution d’une bordure active. Si la concentration de DC est
plus grande que le seuil c∗ en un site d’une bordure active alors tous les sites plus proche
voisins qui sont “vides” deviennent actifs. Le composé DC est supposé être consommé
durant ce processus et, en conséquence, il disparâıt du site source. Le modèle suppose
que la précipation ne peut avoir lieu qu’à la surface du précipité. Aussi, une cellule qui
a activé son voisinage doit devenir passive. Ce fait est aussi encodé dans la règle 1. Les
règles 2 et 3 expriment le fait que la concentration de DC doit atteindre le seuil c∗, dans
le temps τ(v), mesuré à partir de l’apparition de la cellule active, pour rester actif, sinon
l’élément va se trouver dans un état passif. Le veillissement des cellules est décrit par
la règle 3. Les diverses formes considérées pour la fonction τ(v) sont discutées dans le
paragraphe 4.2.

La règle 4 décrit un second mécanisme de “passivisation” qui peut être vu comme
une extension de la règle 1. Les cellules d’une bordure active sont rendues passives pour
toute configuration lorsqu’elles deviennent entourées par des cellules actives ou pas-
sives. Remarquons qu’une cellule active entourée de cellules de précipité ou de portions
d’obstacles devient également passive. Dans l’implémentation numérique du modèle, on
applique tout d’abord les équations différentielles puis les régles d’automate dans l’ordre
R0-R1-R2-R3-R4.

Les structures secondaires ont été modélisées par une approche de type Cahn-Hilliard
pour la décomposition spinodale du produit de réaction. Un ingrédient important de
cette théorie est l’énergie libre de Ginzburg-Landau [202] entrant dans l’équation de
Cahn-Hilliard. Par un changement de l’échelle pour les concentrations, on peut con-
sidérer que les mimima de l’énergie libre correspondant aux densités des deux phases en
équilibre sont égales à ±1. Afin de se concentrer sur l’aspect formation de structures,
nous ne décrivons pas explicitement le processus de réaction-diffusion à l’origine du com-
posé chimique qui entre dans l’équation de Cahn-Hilliard. La création de ce composé
est modélisée par un terme source S(x, t; v), gaussien. L’équation d’évolution pour la
concentration c(x, y, t) de ce composé s’écrit:

∂c(x, y, t)

∂t
= −∆[c(x, y, t) − c(x, y, t)3 + ǫ∆c(x, y, t)] + S(x, y, t; v) (1.1)

où
S(x, y, t; v) = A · exp

[

−α(x + β − vt)2
]

; (1.2)

Initialement, la concentration c du composé est choisie comme étant c0(x, y, 0) = −1+η
dans tout le système, où η est un nombre aléatoire uniformément distribué entre −0.001
et +0.001 [200]. Ce bruit a été ajouté dans le but de rendre le modèle plus réaliste.

Le front qui se déplace à vitesse constante v laisse derrière lui une concentration
constante cf du composé. La vitesse v de la source, ainsi que la concentration cf près
du front de la source sont considérées comme des paramètres indépendants dans la
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Figure 1.3: Formation de structure dans le sillage d’un front en rotation. La vitesse
angulaire est ω = 0.005. La simulation est faite sur une grille de taille 1200 × 600.
ǫ = 0.5, x0 = 600, y0 = 5, A = 0.00089, α = 0.1, cf = 1, c0 = −1+ η. La région derrière
le sillage du front où l’on observe: (a.) Formation de bandes obliques au temps t = 100.
(b.) L’angle critique est atteint au temps t = 250 et la croissance des bandes devient
instable. (c.) Une morphologie oblique se développe dans le sillage du front au temps
t = 500.

simulation. Ayant fixé la vitesse v, la valeur de cf est déterminée par l’amplitude A
et la largeur α−1/2 du front de la source gaussienne. Si cf se trouve entre les points
spinodaux, c’est-à-dire, −1/

√
3 < cf < 1/

√
3, le système deviendra instable envers des

perturbations, et la séparation de phases aura lieu dans le sillage du front. A mesure que
le temps passe, le profil de la concentration c(x, y, t) tend vers des valeurs d’équilibre et
une “maturation” des régions avec des concentrations stables a lieu simultanément. Les
simulations numériques ont montré que les conditions initiales, ainsi que la dynamique
du front, affectent fondamentalement les structures émergentes. L’équation (1.1) a été
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résolue sur une grille rectangulaire utilisant la méthode des différences finies (méthode
d’Euler) pour des conditions aux limites périodiques dans les deux directions.

Des simulations numériques ont reproduit des bandes parallèles et légèrement
obliques par rapport au front. Des bandes obliques apparaissent lorsque le front change
de direction, alors que les bandes nouvellement formées gardent l’orientation des bandes
antérieures [202].

La formation de structures à l’arrière d’un front tournant de réaction-diffusion jouant
le rôle de source a aussi été étudié. La dynamique de formation des bandes est la
suivante: une première bande se forme approximativement en s’allignant avec la position
initiale du front. Bien que l’orientation du front varie continuement, les nouvelles bandes
essayent de se former paralèllement aux précédentes. Il en résulte une morphologie de
bandes obliques. Cependant, les simulations montrent que les bandes ne peuvent pas
grandir perpendiculairement au front. Leur élongation devient instable lorsque l’angle
entre les bandes et le front atteint environ 70 − 90 degrés. Dès lors, apparaissent juste
derrière le front, des bandes obliques (avec un petit angle). Dans d’autres domaines, des
domaines de morphologies irrégulières apparaissent. Le même scénario peut se répéter.

Un mécanisme alternatif conduisant aussi à une séparation de phases dans le sillage
du front est le suivant. La concentration du composé se trouve à l’intérieur de la ligne
spinodale et la température tombe au-dessous de la valeur critique à l’arrière du front.
La formation des structures dans le sillage d’un front refroidi a aussi été examinée
par ordinateur et comparée aux résultats précédents. Il a été démontré qu’en-dessous
d’une certaine vitesse du front, des bandes perpendiculaires au front apparaissent. De
plus, celles-ci vont se construire de manière à ce que leurs extrémités croissantes restent
perpendiculaires même si le front change de direction. Cet effet nous permet de “créer”
des bandes régulières sur une surface en suivant une courbe arbitraire.

Les résultats obtenus peuvent avoir d’importantes applications dans le cadre des
nanotechnologies et la lithographie.



Chapter 2

Introduction

While many things around us are designed, most of them, such as living beings or
snowflakes, are formed spontaneously. The science of pattern formation deals with the
spontaneous processes that generate complex shapes and well-ordered structures, over
the range of the molecular scale.

A great variety of pattern-forming phenomena in physical [1–6], chemical [7–13] and
biological [14–18] systems are governed by reactions coupled with diffusion.

In the following sections a review of some important reaction-diffusion governed,
physical and chemical pattern-forming processes is given. A special emphasis is put on
the short presentation of the mathematical basis of these phenomena.

2.1 Reaction-diffusion Patterns in Active Media

Behavior of reaction-diffusion systems are various. If we restrict ourselves to spatially
homogeneous systems (without the coupling represented by the diffusion term), their
dynamics can be described by ordinary differential equations. Current investigations
are centered on a few special classes of such models. Excitable media have a single
stationary state that is stable under small perturbations, while perturbations above
a certain threshold provoke a burst of activity before the system returns to rest. In
the case of oscillatory media some physical or chemical parameters show spontaneous
periodic changes in time. Multistationary media have several stable and unstable steady
states. In the case of two stable (and some unstable) steady states these are called
bistable systems; large enough perturbations can trigger transitions between the stable
states. If the system has a stable and an unstable steady state, small perturbations are
able to trigger the transition from the unstable state to the stable one [5, 15]. All of
these types of active media will be discussed later in detail.

When different locations of spatially extended systems are coupled through diffusion,
effects of a perturbation will spread, leading to various spatial and spatio-temporal
patterns that can be modeled by partial differential equations and cellular automata
[19–22]. The most important structures will be presented in the following chapters.

1



2 CHAPTER 2. INTRODUCTION

2.1.1 Classification

If the spatially homogeneous stable steady-state of a reaction-diffusion system becomes
unstable as a control parameter is varied, the first stage of the pattern formation can
usually be investigated by linear stability analysis. This method results in dispersion
relations, that allow further classification of the phenomena [1, 15, 26, 27].

Linear Stability Analysis

Several reaction-diffusion systems build up nontrivial patterns when their stable steady-
state loses stability, as one or more control parameters are changed. Depending on the
character of the instability, various static and dynamic patterns that can be periodic in
space (Turing structures), in time (homogeneous oscillations) or both in space and time
(packet waves and standing waves) might arise.

In the following, we present some basics of the linear stability analysis that will
lead us to the dispersion relations. Let us consider a two-component, one-dimensional,
infinitely extended reaction-diffusion system. The components are denoted by U and V ,
while the control parameter(s) by γ.

∂U(x, t)

∂t
= DU∆U(x, t) + f(U(x, t), V (x, t), γ)

∂V (x, t)

∂t
= DV ∆V (x, t) + g(U(x, t), V (x, t), γ) (2.1)

Assume that the system has a spatially uniform steady-state

U(x, t) = U0, V (x, t) = V0 (2.2)

where

f(U0, V0, γ) = 0, g(U0, V0, γ) = 0 (2.3)

The above solution can be either stable or unstable in respect to disturbances. In order
to examine its stability, we add small perturbative terms to the steady-state values U0

and V0:

U(x, t) = U0 + u(x, t)

V (x, t) = V0 + v(x, t) (2.4)

By replacing these expressions in (2.1), and linearizing the functions f and g around
the steady state, we have

∂u(x, t)

∂t
= DU∆u(x, t) + a11u(x, t) + a12v(x, t)

∂v(x, t)

∂t
= DV ∆v(x, t) + a21u(x, t) + a22v(x, t) (2.5)
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Evolution of the perturbations around the steady state (U0, V0) can be explored by
Fourier transforming in the x variable (here we assume that u(x, t) and v(x, t) decrease
to zero faster than any polynomial function as x → ±∞):

u(x, t) =

∫ ∞

−∞

ũ(k, t)eikx · dk

v(x, t) =

∫ ∞

−∞

ṽ(k, t)eikx · dk (2.6)

By inserting the above integrals into (2.5), and decomposing the modes with different
wave numbers k, results

∂ũ(k, t)

∂t
= −DUk2ũ(k, t) + a11ũ(k, t) + a12ṽ(k, t) = (a11 − DUk2)ũ(k, t) + a12ṽ(k, t)

∂ṽ(k, t)

∂t
= −DV k2ṽ(k, t) + a21ũ(k, t) + a22ṽ(k, t) = a21ũ(k, t) + (a22 − DV k2)ṽ(k, t)

(2.7)

This is a system of linear equations in ~W (k, t) = (ũ(k, t), ṽ(k, t)), that, in simple nota-
tions, can be written as

−̇→
W = A

−→
W (2.8)

This system has nontrivial solutions when

∣

∣

∣

∣

a11 − DUk2 − Ω(k) a12

a21 a22 − DV k2 − Ω(k)

∣

∣

∣

∣

= 0

The resulting quadratic equation in the most general case has two complex roots for the
eigenvalues Ω(k):

Ω(k)1,2 = Re(Ω(k)) ± iIm(Ω(k)) (2.9)

These functions are called dispersion relations.
Let us to denote the left and right eigenvectors of the matrix A, belonging to the

eigenvalues Ω(k)1,2 by ~l1,2(k) and ~r1,2(k). As known from the elementary theory of
differential equations, the solution of (2.7) reads as

−→
W (k, t) = α(k) exp(Ω1(k)t)~r1(k) + β(k) exp(Ω2(k)t)~r2(k) (2.10)

where α(k) = (~l1(k),
−→
W (k, 0)), β(k) = (~l2(k),

−→
W (k, 0)). Note that in the physics litera-

ture usually the exponent is multiplied by i, while in nonlinear science the above notation
is common. The (real) solutions of the linearized equations (2.5) in the physical space
can be written by using of (2.6).

Remember that the above results represent the case of an infinitely extended reaction
field. In case of a reaction field with finite extent, the Fourier integrals are replaced with
series, and special attention has to be paid to fulfill the boundary conditions.
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As mentioned above, some periodic structures that appear in reaction-diffusion (RD)
systems of the above type, can be classified on the basis of the dispersion relations. Let
us denote by k0 the wave number where the real part of the dispersion relation becomes
positive for the first time, as the parameter(s) γ are slightly varied. Let us assume that
this value is unique for k ≥ 0.

If Re(Ω(k0)) > 0 only at k0 = 0 (no spatial patterns) and Im(Ω(k0)) 6= 0 (temporal
oscillations) then a Hopf bifurcation appears, leading to bulk oscillations [7, 11, 23, 40].

Stationary spatial patterns appear when Im(Ω(k0)) = 0 (stationarity) and
Re(Ω(k0)) > 0 at k0 6= 0 (condition for spatial patterns to appear), that will be referred
to as Turing instability. However, in the majority of the literature, Turing instability is
defined as Re(Ω(0)) < 0 (stability of the homogeneous steady-state) and Re(Ω(k0)) > 0
at k0 6= 0 (condition for spatial patterns to appear) [15, 28]. If we accept this definition,
Turing patterns of reaction-diffusion systems with more than two components are not
always stationary [28]. Note that in the case of a two-component reaction-diffusion sys-
tem the latter definition entails Im(Ω(k0)) = 0, i.e. the stationarity. The degeneracy of
the terminology can be assigned to the fact that there was no comprehensive definition
in Turing’s original paper [29].

If Re(Ω(k0)) > 0 at k0 6= 0 and Im(Ω(k0)) 6= 0 then several types of spatio-temporal
patterns can appear, like “packet waves” or “standing waves” [27, 30, 31].

In the following, we give a short overview of these types of instabilities.

Oscillating Chemical Reactions

Chemical reactions in well-mixed closed vessels usually evolve in such a way that the
concentration of reactants monotonically decrease, that of the products increase, while
that of the intermediate compounds increases at the beginning of the process, but tends
towards zero at the end [32–34].

However, there are some chemical processes like the famous Belousov-Zhabotinsky
(BZ) reactions [10, 35–37], where the concentrations of the intermediate compounds
oscillate (fig. 2.1), those of the reactants decreases, while those of the products increase
in a step-like way as the reaction goes on. Such bulk oscillations can appear if instead
of a simple reaction we have a set of parallel processes, at least one of them being
autocatalytic, and one inhibitory.

The reactions can be run either in closed vessels (”batch reactors”), or in continuous-
flow well-stirred tank reactors (CSTR). The latter are open systems that have a contin-
uous inflow of fresh reactants, and a matching outflow of products. At these conditions
the BZ reactions can exhibit more complex behavior than in closed vessels [37].

The two most widely used models of the oscillating reactions are the Brusselator
and Oregonator models [7, 9–11, 15]. The two-variable Brusselator model has been de-
veloped for describing chemical dissipative structures in general. The Oregonator was
elaborated later, being designed for characterizing the BZ reactions, i.e. catalyzed oxi-
dation of malonic acid by bromate in the presence of Cerium as a catalyst. Note that the
Oregonator gives a very rough description. The MBM (Marburg-Budapest-Missoula)
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Figure 2.1: BZ reaction in a closed vessel showing oscillations in the concentrations of
two intermediate compounds [15, 36].

model represents a more faithful approach [35].
The reagents of the BZ reaction are malonic acid (CH2(COOH)2), Ce4+ (this ion is

also an intermediate compound, since it is consumed and reproduced during the reaction;
it is usually put in the reactor in the form of cerium sulphate) and BrO−

3 (applied
usually as sodium bromate). The acidity of the hydrous environment is ensured by
adding H2SO4 to the system. The most important inorganic intermediate compounds
are HBrO2, Br− and Ce4+, representing the variables of the Oregonator model. In the
following, we give an overview of the batch (closed vessel) Oregonator model of the BZ
reaction [9], for the case when the change in the reactant concentrations in the solution
during a cycle is negligibly small.

The model reactions can be approximated by the sequence

A + Y
k3−→ X + P (2.11)

X + Y
k2−→ 2P (2.12)

A + X
k5−→ 2X + 2Z (2.13)

2X
k4−→ A + P (2.14)

B + Z
k0−→ 0.5FY (2.15)

where X = [HBrO2] (bromous acid), Y = [Br−] (bromide), Z = [Ce4+], A = [BrO−
3 ]

(bromate), B = [Org] (organic species, basically the malonic acid [38]) and P = [HOBr]
(hypobromous acid).

Reaction rate constants are denoted by ki, while F is the number of Br− ions pro-
duced as two Ce4+ ions are reduced to Ce3+. The parameter F depends on the sto-
chiometry of the model. Since the Oregonator is a rough model of the reactions (that
are not known in all details), the interpretation of parameter F strongly depends on the
authors. In some models it has a constant value [39], but recent investigations suggest
that it is proportional to the concentration of the organic species, mainly bromomalonic
acid (BrCH(COOH)2) [9]. Note that reactions involving the bromomalonic acid are
not included in the Oregonator model.

Due to the autocatalytic process A + X
k5−→ 2X + 2Z, concentration of X increases

rapidly, when that of Y is small. However, Y inhibits X, representing delayed negative
feedback. Thus, in principle, the system can be driven in oscillatory mode.
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The rate equations of the Oregonator model are the following:

dX

dt
= k3AY − k2XY + k5AX − 2k4X

2

dY

dt
= −k3AY − k2XY +

1

2
k0FBZ

dZ

dt
= 2k5AX − k0BZ (2.16)

Diffusion terms are not included in the system. This is because we consider the well-
mixed case, when there are no concentration gradients, and thus no diffusive transport
is present. Concentration of the organic species (B) as well as that of the bromate (A)
are considered to be constant.

The dimensionless equations of the model are the following:

ǫ
du

dt
= qw − uw + u(1 − u)

δ
dw

dt
= −qw − uw + Fv

dv

dt
= u − v (2.17)

Here u, w and v are proportional to the concentrations of HBrO2, Br− and Ce4+,
respectively. ǫ = k0B

k5A
≈ 4 · 10−2 and δ = 2k0k4B

k2k5A
≈ 4 · 10−4, while q = 2k3k4

k2k5
≈ 8 · 10−4.

Let us regard a positive steady-state of the model, where u = us, w = ws and
v = vs = us. By linearizing around this steady-state, we get a third order equation for
the eigenvalues,

λ3 + αλ2 + βλ + γ = 0 (2.18)

where the constants α, β and γ are functions of the parameters q and F , and also
of the steady-state values us = vs and ws. The solution (u(t), w(t), v(t)) is a linear
combination of the three exponential terms exp(λit), plus a constant depending on
initial conditions. Of course the solution is always real, but the linear combination
constants can be complex.

It can be shown that the steady-state solution is linearly unstable when for a certain
function Φ

Φ(δ, F, ǫ) > 0 (2.19)

It can also be demonstrated that a supercritical Hopf bifurcation takes place when Φ = 0
[15, 23, 40]. Note that in reality other types of bifurcations can also occur [41]. As we
penetrate into the unstable region, one of the eigenvalues is real and negative, while the
other two are complex conjugated pairs, with a positive real part. As a consequence,
the phase space trajectory shrinks to a plane where it will take the form of a small loop
(fig. 2.2 (a.)). Thus, u(t), w(t) and v(t) begin to ”oscillate”. Since the bifurcation is
Hopf-type, the amplitude of the oscillations is limited.

As we move into the interior of the oscillatory region, higher-order nonlinear effects
become important and the Hopf approach for the phase space trajectory and the period
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of oscillations cannot be used accurately. However, at these conditions, the relaxation
oscillator method represents an effective way to study the oscillations. Since this scheme
was developed for two-component systems, one of the variables has to be eliminated from
the Oregonator model using the quasi steady-state approach. Both of these methods
belong to singular perturbation theory [23, 42].

The quasi-steady-state approximation (QSSA) is a mathematical way of simplifying
systems of differential equations describing some chemical processes, by replacing a part
of the differential equations with algebraic ones [43–45].

Let us consider a system of ordinary differential equations:

du

dt
= f1(u, w, v) (2.20)

ǫ
dw

dt
= f2(u, w, v) (2.21)

dv

dt
= f3(u, w, v) (2.22)

If the parameter ǫ is very small and we are far from the surface f2(u, w, v) = 0, the value
of f2

ǫ
is much higher then the values of the functions f1 and f3. Thus, a phase space

trajectory starting far from the surface f2 = 0 will have a high-valued ẇ, in comparison
with u̇ and v̇. As a consequence, the first segment of the phase space trajectory will be
almost perpendicular to the plane (u, v). Let us assume that the surface f2 = 0 attracts
the phase space trajectories. When reaching the immediate vicinity of this surface, the
amplitude of ẇ decreases, and after a while will be of the same order of magnitude as
the other two speeds. Note that the reason why w is called fast, while u and v slow
variables is that w relaxes much faster to f2 = 0 as the variables u and v vary.

When f2 = 0 has an arbitrary, but smooth shape and ǫ is very small, the trajectory
will run in the immediate vicinity of the surface. Therefore, ẇ will be small. The other
components of the speed are determined by the dynamics of u and v. However, since
the movement takes place in the very neighborhood of f2 = 0, the resultant velocity
vector has to be tangent to the surface.

What error would result if we performed the calculations as if the trajectory were
exactly on the f2 = 0 surface? According to (2.21) this means ẇ = 0, which is obviously
an unacceptable simplification. However, we can consider f2 = 0 in a different way, only
as being a geometric constraint: although we disregard the dynamics of w, and only
the dynamics of u and w shift the phase space point, the movement has to proceed on
f2 = 0. If this surface is not parallel to the (u, v) plane, the fact that the phase space
point moves on f2 = 0 ”causes” a nonzero speed ẇ. Rather than considering w to lie in
the immediate vicinity of the surface f2 = 0, w may be expressed from f2 = 0 with u
and v given, and the system 2.20-2.22 can be reduced (the QSSA approximation). Note
that the constraint can be such that ẇ is even greater than u̇ or v̇, and the QSSA still
holds.

The error caused by this method is small when the QSSA trajectory (embedded in
f2 = 0), and the corresponding ”real” trajectory (that can be found by exact solutions,
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or can be estimated by an accurate numerical integration), are close to each other. It
can be shown that in the case when the partial derivative of f2 with respect to w, that is
responsible for ”pushing” the trajectory to f2 = 0, is great at the points in the vicinity
of f2 = 0, the error of the QSSA will be small even if ẇ of the ”real” trajectory is large
at that point [45].

However, if the surface f2 = 0 is almost parallel to the (u, w) or (u, v) plane, the
partial derivative of f2 with respect to w becomes so small that the trajectory will not
reach the vicinity of the surface, and will not be governed by the dynamics of u and v
and the geometry of the surface. Here the QSSA cannot be applied.

Let us turn back to the Oregonator model of the BZ reaction. Depending on the ini-
tial concentrations and the estimates of the rate constants, different values are obtained
for ǫ and δ. We will follow the approach presented in [9], where δ ≪ ǫ ≪ 1, and thus
the QSSA can be applied for the variable w. The functions fi are shaped in such a way
that the phase trajectory, besides moving along the surface f2 = 0, sometimes performs
jumps between two parts of this curved surface. When the phase space point moves
far from the surfaces, the QSSA obviously cannot be applied. The QSSA approach is
valid only when the trajectory moves in the immediate vicinity of f2 = 0. However,
we are interested only in sketching a phase space trajectory. The system spends the
overwhelming majority of the cycle in the vicinity of f2 = 0 (”stable branches”), and
the straight ”jumps” connecting the stable branches are very short in time. Having
noticed this, QSSA can formally be applied for the whole cycle.

Performing the quasi steady-state approximation, we obtain the following system of
two equations:

ǫ
du

dt
= u(1 − u) − u − q

u + q
Fv = f(u, v)

dv

dt
= u − v = g(u, v) (2.23)

Further study of the oscillatory behavior of this system can be achieved by the relaxation
oscillator method [1]. This approach describes, in an intuitive way, the trajectory of the
system in the concentration phase space, and also gives an estimate for the period of the
oscillation. It can be applied when the limit cycle is divided into distinct segments, some
where the concentrations are varying slowly and others where there are sharp changes.
Note, that this classification of fast and slow changes has nothing to do with the one
performed in the QSSA. For a system having nullclines as in fig. 2.2, this holds if one of
the derivatives is multiplied by a small constant term. All of these conditions hold for
the system 2.23. The ”fast” segment of the trajectory can be approximated by a straight
line. When calculating the period of an oscillation, these segments are neglected, since
the overwhelming majority of the time, the system is on the nullcline portions h− and
h+. Using the first equation of 2.23, the estimate for the time period is

T =

∫ v>

v<

dv

g(h+(v), v)
+

∫ v<

v>

dv

g(h−(v), v)
(2.24)
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Figure 2.2: Approximate phase trajectories of the Oregonator model close to the Hopf
boundary (a.) and in the relaxation oscillator approach (b.) [1].

Finally, we mention that by changing the parameter F , the reaction can be driven
to oscillatory and excitable modes, but not to a bistable mode. In the case of the
extended flow-Oregonator models that describe the reactions proceeding in a CSTR
(continuous-flow well-stirred tank reactor), bistable modes can also be achieved [37].

Turing Mechanism

Turing patterns are known as spatial structures having a characteristic wavelength. As
mentioned above, the Turing bifurcation has not been defined in a unique way. We will
adopt the definition that Turing instability leads to spatially periodic patterns that are
stationary in time.

In the two-component case it can be proved that for the above instability to appear
we must have

a11 + a22 < 0 (2.25)

and
DV a11 + DUa22 > 0 (2.26)

Having positive diffusion coefficients, these relations can hold only if the following con-
ditions are satisfied [7]:

1. One of the diagonal elements of the Jacobian is positive, and the other negative.
For specificity, let us suppose that a11 > 0. This means that the species U enhances
the rate of its own production, while V diminishes this rate. Thus, U is involved in
an autocatalytic process. Compound U is called the activator, while V is called the
inhibitor [7, 14, 46, 47].

2. It is also required that
DU

DV
< 1 (2.27)

i.e. the inhibitor must diffuse more rapidly than the activator [7].
Note that after a certain time the amplitude of the periodic patterns are “growing

out” from the linear regime, where they become limited by the nonlinearities of the
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system. Obviously, the nonlinear effects are not taken into account in the linear stability
analysis. A more detailed analysis of the Turing instability (e.g. deciding whether dot-
like or labyrinth-like patterns will appear) can be performed using amplitude equations
[48].

In his famous paper from 1952, A. M. Turing suggested that the above mechanism
can account for the formation of various processes in biological morphogenesis [29].
Later, the ideas of Turing were improved, and today it is believed that the development
of animal coat patterns (fig. 2.3), plant phyllotaxis and chicken feathers follows the
Turing mechanism [17, 49, 50]. However, up to this time (2004) there is no experimental
evidence that proves this hypothesis.

Figure 2.3: Marine angelfish Pomacanthus semicirculatus (juvenile). The patterns on
the skin are supposed to be Turing patterns [49, 51].

We should mention that there are several other mechanisms that yield periodic struc-
tures in space. Moreover, according to some recent results, periodic patterns where the
number of stripes is smaller than four, or where the pattern must be precisely defined,
are assumed to be built up not by the Turing mechanism, but by a so-called hierarchical
process [52].

Beginning from the 90’s, several chemical systems have been developed in which the
emergence of Turing patterns was observed. The main difficulty in the construction
of such a system is the assurance of significantly high differences between the diffusion
coefficients of the activator and the inhibitor [53, 55].

The first chemical process where Turing patterns were found was the CIMA (chlorite-
iodide-malonic acid) reaction in polyacrylamide gel impregnated with starch. The big
starch molecules are unable to diffuse in the gel, and by forming starch-triiodide com-
plexes, the effective diffusivity of iodine and iodide molecules is slowed relative to the
chlorite and chlorine dioxide [54].

A recent accomplishment is the development of the so-called BZ-AOT chemical sys-
tem [55], where – among others – Turing patterns can also emerge (fig. 2.4). Here
nanometer-sized droplets of water (the aqueous pseudo-phase), surrounded by a surfac-
tant called AOT, are dispersed in octane (the oil phase). Communication between the
droplets may occur via diffusion (nonpolar molecules) or as a result of mass exchange
during droplet collision/fission/fusion (polar molecules). Thus, the diffusion of the non-
polar species is 2 · 10−5cm2/s, while that of the polar species is one or two orders of
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magnitude smaller.

Figure 2.4: Turing patterns in the BZ-AOT system [55].

Initially, the BZ reagents are present in the aqueous phase, but the nonpolar com-
pounds can diffuse into the oil phase. Highly hydrophilic ions and the polar compounds
remain in the micelles. Although the inhibitor species Br− cannot leave the micelles,
Br2 (that is in dynamical equilibrium with Br−) can travel through the oil phase. The
most important autocatalytic species, HBrO2, is a polar molecule. Thus, the inhibitor
has a large effective diffusion coefficient, while the activator HBrO2 is diffusing very
slowly. In this way, the main condition for the appearance of the Turing patterns is
fulfilled. Note that the above scenario is valid when the droplet fraction Φd is smaller
than 0.5, i.e. we are below the percolation threshold of the micelles.

Packet Waves and Standing Waves

In the recently developed BZ-AOT chemical system, the formation of a new spatiotem-
poral structure, the packet wave [27, 30, 31], has been observed for certain parameter
values. The emergence of these structures was previously predicted in theoretical works
and computer simulations [58]. The modeling of this system shows that the stability is
lost in such a way that Re(Ω(k0)) > 0 at k0 6= 0 and Im(Ω(k0)) 6= 0, leading to patterns
that are periodic in space and time.

The amplitude of the packet waves is much smaller than that of the pulses or wave-
trains in excitable media. It is important to mention that in linear stability analysis
their amplitude (as well as the amplitude of Turing patterns) cannot be predicted. In
a very short time they “grow out” from the linear region, and higher order terms limit
their amplitude. The ”component-waves” of a packet cannot exist alone, only as part
of a wave packet that is slowly expanding in time. The collision of two packet waves
leads to an increase in the amplitude of oscillations at the point of collision, and can be
regarded as an example of ’chemical interference’.

In order to characterize the dynamics of the packet waves, we have to use the concept
of group and phase velocities. Let us regard the one-dimensional case. Group velocity
(i.e. the speed of the maximum point of the packet’s envelope) is defined as

cg(k0) =
d Im(Ω(k))

dk

∣

∣

∣

∣

k=k0

(2.28)
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Figure 2.5: Propagation of chemical “packet waves” having the group and phase veloc-
ities of different signs (a.) Experiments in BZ-AOT system. The white arrows show
the traveling direction of the packet, while the black arrows show the traveling direc-
tion of the ”component-waves” [30]. (b.) Computer simulation of a ”packet wave” [27].
The arrow marks the propagating direction of the ”component-waves”. u represents the
dimensionless concentration of the activator.

where k0 is the approximate wave number of the ”component-waves”. The phase velocity
of the ’component-waves’ is

cp(k0) =
Im(Ω(k0))

k0

(2.29)

If the signs of the group and phase velocities are the same, the packet and the
”component-waves” shift to the same direction. If the signs are different, they move
in opposite directions, i.e. the ’component-waves’ appear at the leading edge of the
packet, and propagate toward its tail (fig. 2.5) 1.

Another interesting feature of the packet waves is their ability to yield standing
waves, i.e. a pattern having a constant wavelength that does not vary in space, but
oscillates in time [27, 55]. When the group velocity is nonzero, the ”component-waves”
of the wave packet will reach the end of the experimental vessel. Here they are reflected
and interfere with oncoming waves of the same amplitude, giving rise to standing waves.

2.1.2 Traveling Fronts, Pulses and Wavetrains

Chemical fronts, pulses and wavetrains are traveling variations of concentrations of
some species. These structures occur in nonlinear reaction-diffusion systems far from
equilibrium, and they cannot be investigated by the methods of the linear stability
analysis outlined above. Traveling fronts convert the reactants to final products, so the
compositions ahead and behind of it are different [8–10, 15, 59–61]. In pulses (”solitary
chemical waves”), some intermediate species are produced by a front that are converted

1Note that in the case of one-dimensional systems it is a plausible convention to assign positive
frequency (Im(Ω(k)) > 0) for each k ∈ R. However, there are several other conventions in this field.
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back by a recovery process [9, 33]. Wavetrains are comprised of a series of pulses which
follow each other, being continuously initiated at a pacemaker region [9, 15, 62, 63].

Pulses and wavetrains are also called trigger waves. We do not deal with the ”arti-
ficial” kinematic waves, that are strictly speaking ”optical” illusions [62].

Figure 2.6: Front, pulse and wavetrain [9].

Fronts in Multistationary Media

The spread of reaction-diffusion fronts is a characteristic of non-recoverable autocat-
alytic media (in which no physical or chemical processes occur after the front has swept
through). In contrast to the diffusion fronts, these travel with a constant speed. The
simplest (one-component) equation that describes such processes in one dimension, has
the following form:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ f(u) (2.30)

where the function f(u) is defined in such a way that the above equation has at least two
steady-states (fig. 2.7). A moving front represents a transition from one steady-state to
another. Transitions can occur between two stable steady states, as well as between an
unstable and a stable steady state.

Figure 2.7: Possible functions f of (a.) Multistationary media having one stable (u1)
and one unstable (u2) steady-states. (b.) Bistable media, having two stable (u1 and u3)
and one unstable (u2) steady-states.

The most widely known model of fronts in media where a stable steady-state invades
an unstable one, is given by the Fisher equation [23], having the form

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ ku(x, t)(1 − u(x, t)) (2.31)
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where k ∈ R
+ is a constant.

Originally it was proposed as a model for the propagation of an advantageous gene,
but the same equation describes flame propagation, and spreading of some types of
autocatalytic reaction fronts. Suppose, for example, that we have a long tube filled with
compound A, where the A + B → 2B reaction can take place at rate k[A][B]. If we put
a small amount of B in one of the ends of the tube, its concentration will rise at that
point, and also spread by diffusion along the tube, its autocatalytic growth starting at
neighboring points. Thus, B will spread much faster than the speed of diffusion. The
unstable state (the tube region filled with A) can be maintained for an indefinitely long
time, until the medium is not reached by the autocatalytic species B. Note that fronts
invading an unstable state, where the leading edge is sufficient to catalyze its continued
propagation, are called pulled fronts because they are ”pulled” by their leading edge
[64, 65].

As follows, we will look for traveling front solutions of the Fisher equation. First we
observe that the equation is invariant for the x → −x change of variable. Therefore, if
we get a front solution F (x, t) propagating towards the positive direction, we also have
a solution F (−x, t) propagating in the opposite direction.

The traveling front solutions will be investigated using the phase-space method. If
such a solution exists, it can be written as g(z) = u(x, t), z = x − ct, (c > 0). For the
sake of simplicity, we will consider D = 1 and k = 1. Thus, the equation (2.31) reduces
to an ordinary differential equation:

g′′(z) + cg′(z) + g(z)(1 − g(z)) = 0 (2.32)

that can be transformed to a system of first-order differential equations:

g′ = φ

φ′ = −g(1 − g) − cφ (2.33)

The above system has got two fixed points, namely (g = 0, φ = 0) and (g = 1, φ = 0)
Linearizing around (g = 0, φ = 0), we get the characteristic equation

λ2 + cλ + 1 = 0 (2.34)

having the roots

λ1,2 =
−c ±

√
c2 − 4

2
(2.35)

As a consequence, this fixed point is a stable node for c ≥ 2, and a stable focus for
c ∈ (0, 2) [56, 57].

Linearizing around the fixed point (g = 1, φ = 0), we have

λ2 + cλ − 1 = 0 (2.36)

Regardless of the value of c, the roots of this equation are real, having opposite signs.
Thus, this fixed point is a saddle.
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The front solution is represented by a phase space trajectory that starts from (0, 0)
and finally reaches (1, 0) (fig. 2.8). Note that having z = x−ct, as time t → ∞, z → −∞.
Physically realistic are only those trajectories where g ≥ 0, that is, c ≥ 2. Here we
mention that the above front solutions, propagating towards the positive direction, are
compatible only with the boundary conditions

g(∞) = 0, g(−∞) = 1 (2.37)

Figure 2.8: Phase space of the system of ODE resulting from the Fisher equation for
the change of variable z = x − ct. The curve running from (0, 0) to (1, 0) as t increases
represents the orbit corresponding to the traveling wave solution.

The problem of the front speed in the Fisher equation and its generalizations has
been studied by Kolmogorov, Petrovsky and Piskunov. According to the classical “KPP”
theorem, the above ’node-saddle’ type problem where f ′(u1) > 0, f ′(u2) < 0, f(u) > 0
for u ∈ (u1, u2), g(∞) = u1, g(−∞) = u2, has traveling wave solutions above a certain
front speed c∗. It is also demonstrated that the stable front has this smallest speed. The
following estimate is given for speed of the stable front

√

4Df ′(0) ≤ c∗ ≤

√

4D · sup

(

f(u)

u

)

(2.38)

where u ∈ (u1, u2) [20, 23]. When f ′(u) < f ′(u1) ∀u ∈ (u1, u2) (that holds e.g. for the
Fisher equation), the stable front speed can be exactly given [8],

c∗ =
√

4Df ′(0) (2.39)

Note that the theorem holds only for sufficiently sharp initial conditions. Regarding
the Fisher equation, it can be shown that for a broad class of initial conditions the
asymptotic speed of the traveling front solution is c = 2, that is, the front with c = 2 is
stable. However, up to this time, the solution has not been found analytically [15].

As mentioned previously, the front solutions propagating in the opposite direction
can be investigated by getting use of the symmetry of the Fisher equation (if F (x, t) is a
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solution, than F (−x, t) is a solution too; note that changing of the boundary conditions
is also required), as well as the subsequent ordinary differential equation (if G(z, c) is
a solution, than G(−z,−c) is also a solution). However, they can also be studied by
performing the g(z) = u(x, t), z = x + ct, (c > 0) change of variable. The phase space
space for this case is represented in fig. 2.8.

Figure 2.9: Phase space of the system of ODE resulting from the Fisher equation for
the change of variable z = x + ct. The curve running from (0, 0) to (1, 0) as t increases
represents the orbit corresponding to the traveling wave solution.

Note that the trajectories in the phase space, corresponding to the front solutions are
unstable for both cases, but this is not related to the physical stability of the traveling
fronts.

As an example, we mention the fronts propagating in the iodate-arsenite reaction
in excess of iodate [66–68], having mixed quadratic and cubic autocatalysis [9]. In this
reaction (fig. 2.10) the solution connects a saddle to a node, and the KPP theorem can
be applied in order to estimate the speed of the front.

Figure 2.10: Chemical front of I2 in the iodate-arsenite reaction in excess of iodate [68].

The Fisher equation shows an example for front propagation in an active media
having an unstable and a stable steady state. The phase space of fronts propagating
in bistable media have two saddles and a node or focus in between. Traveling wave
solutions can connect the saddles, as well as a saddle and a node. According to the
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Kanel theorem, the saddle-saddle case has a traveling wave solution only for a single
speed c∗, and this solution is stable [20]. However, the speed can be calculated only for
some special cases of the function f .

Finally, we mention that under certain conditions fronts propagating in two-
dimensional fields can show nontrivial front geometry [69, 70].

Pulses and Wavetrains in Excitable Media

Another category of well studied active media represent the excitable systems, that are
stable for small perturbations, but are temporarily ”bursting” for perturbations above
a certain limit. The role of such a perturbation can be played by a diffusional flow from
the neighboring elements of the medium as well. This can result in the propagation of
a traveling excitation pulse. Since an excitable medium goes back to (the neighborhood
of) its initial state after the spreading of a pulse, the formation of traveling wavetrains
is also possible. After a traveling pulse sweeps through, the recovery of the medium may
either be incomplete (as in closed chemical systems), or roughly complete, but requiring
an external source of energy (as in biological systems).

Many physical, chemical and biological systems can be driven into excitable states.
The most well-known examples in Chemistry are the BZ reactions (fig. 2.11), that have
been outlined in the preceding sections.

Figure 2.11: Wavetrains in a BZ system in excitable state. The diameter of the dish
is 9 cm. The frames were taken at 1 min, 3 min 30 s, 7 min 15 s, 7 min 35 s and
16 min 20 s after the mixing of the solution [33].

Reactions on catalytic surfaces, like the oxidation of CO on Platinum(110) can ex-
hibit excitable, bistable and oscillatory behavior as well. Modeling of pattern formation
in such kind of excitable systems can be achieved by reaction-diffusion equations, having
S-shaped nullclines [71–76].

Although most of the electrochemical systems exhibit oscillatory behavior, excitable
ones, like corrodation of steel surfaces in the presence of nitric acid (Fe−HNO3 system)
[79] have also been developed. Modeling of electrochemical systems differs from that
of the reaction-diffusion processes, since they bear a nonlocal coupling through the
potential drop in the electrolyte. When constant speed pulse propagation was observed,
the geometry of the system (the size and positioning of the electrodes) was arranged in
such a way that the coupling was almost local [77–80].
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The speed of pulses (trigger waves) and wavetrains in excitable media can be esti-
mated by methods of singular perturbation analysis [1, 10, 15, 23–25, 42]. This approach
has been elaborated by Tyson and Fife for two-component reaction-diffusion models:

∂u(x, t)

∂t
= Du

∂2u(x, t)

∂x2
+

1

ǫ
f(u, v)

∂v(x, t)

∂t
= Dv

∂2v(x, t)

∂x2
+ g(u, v) (2.40)

Here ǫ is a small constant parameter, and the functions f and g have similar shapes
as in fig. 2.12 (a.). Note that the fast growth of the compound u that starts when a
disturbance overtakes the excitability limit, is attributed to its autocatalysis.

We can rescale the spatial variable in such a manner that the diffusion coefficient
Du transforms to unity:

x →
√

Du

ǫ
x1

∂2

∂x2
→ ǫ

Du

∂2

∂x2
1

(2.41)

Thus, after multiplying the first equation by ǫ, we get

ǫ
∂u(x1, t)

∂t
= ǫ2∂2u(x1, t)

∂x2
1

+ f(u, v)

∂v(x1, t)

∂t
= δǫ

∂2v(x1, t)

∂x2
1

+ g(u, v) (2.42)

where δ = Dv/Du is of the order of unity.

Figure 2.12: Pulse propagation in a two-component excitable system (singular pertur-
bation approach). (a.) Phase-space of the concentrations. (b.) Concentration profiles
[15].

The phase plane of the system shows that the concentration of u suffers more abrupt
changes than v (fig. 2.12 (b.)). Moreover, if we perform the transformation

X =
x1 − ct

ǫ
(2.43)
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the change of v in the new coordinate X is so small, that it can be considered constant
during the abrupt changes of u. As a consequence, its value v0 in the neighborhood of
the frontal part of the pulse, where it begins to grow, can be regarded as being the same
as far from the pulse, v0 = v(X = ±∞). The value of v can also be regarded constant
around the ’front-back’ where it reaches its maximum v1. Thus, in these regions the
diffusion coefficient of v can be neglected, and (2.42) reduces to

u′′(X) + cu′(X) + f(u(X), v0) = 0, u(±∞) = U±(v0) (2.44)

By using Kanel’s theorem, we obtain the relation plotted on fig. 2.13 between the
concentration of v and the speed of the appropiate regions of the pulse. The ’back’ of

Figure 2.13: Speed of a pulse, as a function of v0, in the singular perturbation approach
[8].

the pulse can be regarded as a front that is ”retreating” in the positive direction (a front
having negative speed). By analyzing figs. 2.13 and 2.12 (b.)), it can be shown that a
pulse will have a constant thickness.

The initiation of a wave train built up by several pulses does not take place spon-
taneously. According to our present knowledge, most probably the pulses start from a
pacemaker region where an external perturbation is present. This can be an impurity, or
a deliberate disturbance. The T bursting period length of a pacemaker region does not
depend on the properties of the excitable media, which determines only a lower cutoff
Tmin.

Note that in theoretical investigations of wavetrains we disregard the irreversible
changes of the medium; the rising of the lowest value of v in between the ”waves” of a
wavetrain is not caused by the depletion of the reactants, but only by the lack of time for
recovery. A relation similar to 2.24 can be deduced between the extremal concentration
values v0, v1 and the period T . The wavelength of the pattern can be calculated by the
well-known formula λ = cT .

An interesting relation can be deduced between the speed c of the waves generated
by a pacemaker, as a function of its bursting period T . Since the attrition of the media
is neglected, the lowest value of the compound v in between the ”waves” of a wavetrain
will be determined by the period T . For higher T a more complete recovery (smaller
value of v) will be achieved that, according to fig. 2.13, leads to a higher speed.
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Recently, the following relation has been deduced for systems like (2.40) [81, 82].

c(T ) = c0 · tanh(
T

T∗

) (2.45)

where c0 is the speed of a single pulse traveling in an unperturbed media, and T∗ is a
chemical timescale that can be calculated from the model.

Chemical waves can also spread in two or three-dimensional excitable media. In
these cases a new effect appears, namely the dependence of the wave velocity on the
shape of the wave itself. The mathematical form of this coupling is given by the eikonal
equation [19, 25]:

cN(R) = c + DuK (2.46)

where cN(R) is the normal component of the speed, c is the velocity of the plane wave,
K the curvature and Du the diffusion coefficient of the autocatalytic species u. Thus, a
concave wave has greater speed than a convex one. The explanation of this phenomenon
lies in the fact that the autocatalytic species of a convex front becomes more diluted
[83], since it has to diffuse into a larger field than in the case of a straight or a concave
front. This relation has great importance in the theoretical investigation of spiral waves.

The most common patterns in excitable media are the rotating spirals. Spiral waves
are extremely stable patterns, their shape and rotation frequency are uniquely deter-
mined by the properties of a given excitable medium. In the middle of the spirals there
is a region called the core where no front propagation takes place.

If we start with the initial conditions in the form of a front segment or broken circular
pulse, the wave tips begins to sprout, simultaneously curling, and finally give rise to
spiral waves [15]. Spiral waves will build up in the case of random initial conditions as
well. They do not require the presence of a pacemaker region as the target patterns.
Some examples of spiral waves are presented in figure (2.14).

Wavetrains in Oscillatory Media

Trigger waves spreading in oscillatory media are called phase diffusion waves [62]. It is
believed that they are also generated by foreign pacemaker regions, where the rate of
reaction is accelerated compared to the immediate neighborhood. Due to this difference
in reaction rates, there are established differences in the phase of oscillations, equivalent
to differences in concentrations. The concentration differences spread through diffusion,
and thus phase diffusion occurs [5].

There are several differences between waves in excitable and oscillatory media. The
concentration gradients are much shallower in phase diffusion waves. Unlike in excitable
systems, a single pulse cannot survive in oscillatory media: pulses in oscillatory media
are erased by the background oscillation, i.e. each oscillatory cycle may ”kill” one
pulse. However, wavetrains generated by pacemakers, or autonomous rotating spirals
are stable.

Because of experimental difficulties, phase diffusion waves are not as ”popular” as
waves in excitable media [85, 86]. We do not enter into the details of their theory.
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Figure 2.14: Examples of spiral waves in excitable me-

dia. (a.) Population of spiral waves with different

rotation periods and wavelengths in the catalytic CO-

oxidation on a platinum surface, visualized with photoe-

mission electron microscopy (PEEM). Image area: 450

× 400 µm, rotation period of spirals with intermediate

wavelength 20 s (from Nettesheim et al., 1993). (b.)

Spiral wave in the Belousov-Zhabotinsky reaction. The

distribution of light intensity reveals the front of oxi-

dized cerium catalyst at 344 nm as a black band moving

through a reduced solution layer of 0.7 mm thickness

(bright background). Wave length: 2.1 mm; rotation

period 40 s. (c.) Spiral Ca2+-wave pattern observed

in Xenopus laevis oocytes (wavelength 60 µm, period

3 s). IP3-mediated Ca2+-release is detected by confocal

laser scanning microscopy (from Lechleiter and Clapham,

1992). (d.) Aggregation of social amoebae in the cel-

lular slime mold Dictyostelium discoideum observed in

dark field-optics. In bright areas cells move chemotac-

tically towards the spiral core, while in dark bands no

directed cell migration is found.Wavelength 2.5 mm; ro-

tation period 7 min (taken from Foerster et al., 1990).

(e.) Colliding spiral-shaped front in neural tissue: These

”spreading depression” waves on chicken retina are visu-

alized by white light scattered in zones of increased tur-

bidity. (f.) Clock-wise rotating wave in a slice (20 x 20

x 0.5 mm) of isolated canine cardiac muscle. Visualized

by use of a potentiometric dye (with fluorescence excited

at 490 nm; measured at 645 nm). Rotation period: 180

ms (from Davidenko et al., 1992) [84].

Here we just mention that so-called lambda-omega models and amplitude equations are
adequate for their handling [15, 21].

2.2 Precipitation and Solidification Processes

2.2.1 The Liesegang Phenomenon

Pattern formation can also emerge behind moving fronts that ”activate” the field they
sweep through. In the Liesegang phenomenon [117] a rhythmic precipitate forms in
the wake of the diffusion front of electrolyte A that penetrates into a gel containing
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electrolyte B [13, 118–121]. The observed precipitation patterns usually consist of a set
of bands, rings or spherical shells (depending on the geometry of the system) clearly
separated in the direction perpendicular to the motion of the front (fig. 2.15). Note that
the gel is required in order to prevent convection and to keep the colloidal precipitate
where formed. It can also affect the nucleation and growth processes [119, 122]. In
most cases the empty space between consecutive bands increases (normal banding),
but in some cases it decreases (inverse banding). However, up to this time (2004) no
inverse Liesegang banding has been reproducibly obtained, although its emergence has
been reported in several cases [13, 123–125]. Inverse banding of NaOH + CuCl2 in
agarose gel described in [13] does not form via a Liesegang-like mechanism, while that
of NaOH + MgCl2 in PVA gel could not be reproduced using very pure water supplied
by Millipore and Labconco filter series. My attempts to reproduce the inverse bandings
reported in [123] and [124] also failed. Finally we mention that irregular banding refers
to the random distribution of precipitate regions.

Figure 2.15: Liesegang banding of (a.) CuCl2 + K2CrO4 system in silica gel column,
and (b.) that of NH4OH + MgCl2 system in PVA gel column. (c.)Picture taken with
Environmental Scanning Electron Microscopy of the colloidal particles that build up a
Liesegang band formed in the experiment on panel (b.) [13]. (d., courtesy of Prof. M.
Zŕınyi) Cross-section of Liesegang shells of NH4OH + MgCl2 system in PVA gel.

Although the Liesegang phenomenon has been studied for over a century since its
discovery in 1896 [117], the mechanisms responsible for these structures are still un-
der discussion. The models that try to explain the pattern formation can be divided
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into three main classes: supersaturation, sol coagulation and phase separation theories.
All of these theories can reproduce the most important macroscopic characteristics of
the bandings, but none of them is able to explain all the experimental findings. It is
reasonable to assume that several mechanisms account for the Liesegang banding.

Supersaturation Theories

Supersaturation theories represent the simplest model of the Liesegang banding [118,
126, 139]. The basic idea of the supersaturation theories has been worked out by Wilhelm
Ostwald around 1900, shortly after the discovery of the Liesegang phenomenon [126].
The model is based on the observation that saturated solutions do not precipitate. In
order for precipitation to start, the concentration of the dissolved matter has to reach
the so-called nucleation threshold, i.e. the solution has to be supersaturated.

According to the simplest version of these models, the formation of precipitate bands
takes place as follows. When the outer electrolyte A penetrates into the gel containing
the inner electrolyte B, the ion-product at the top of the gel column gradually grows,
and finally reaches the critical value required for nucleation. At this point a large amount
of colloidal particles are formed. Since the ion product is still high, and the growth of
the particles requires only a very low value of the ion product, the particles will grow
very fast. Thus, the growing particles deplete their surroundings where the ion product
used to be about as high as the nucleation product. As the diffusion front of the outer
electrolyte passes over the depleted domain, and moves into gel regions with high inner
electrolyte concentration, the ion product in the wake of the front increases again. As
a consequence, the precipitation process will restart in a new place. As it will be shown
later, supersaturation theories are able to reproduce in a simple way the most important
macroscopic characteristics of the normal banding.

This model was formulated mathematically, and investigated through approximative
(semianalytic) methods for the first time by C. Wagner, who found that the model is able
to reproduce the rhythmic banding [127]. Wagner’s theory was improved and simplified
by S. Prager [128], as well as T. Antal and Z. Rácz [118].

Here we present in detail some semianalytic results of the simplest supersaturation
model presented in [118], where the outer electrolyte A and inner electrolyte B react to
form precipitate C when the ion product ab reaches the nucleation product I0. Initial
concentrations of the reactants are a0 and b0. It is also assumed that the critical ion
product necessary for the growth of the already formed precipitate is negligible. The
outer electrolyte is supposed to be of sufficiently high concentration that the effect of
depletion due to band formation on its profile is negligible. Depletion of the inner
electrolyte has been taken into consideration by fixing to zero its value at the last band.
The precipitate C cannot diffuse at all. λ and γ are reaction rate constants having large
values in order to deplete B when a precipitate band forms.
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The equations of the model are the following [118]:

∂a(x, t)

∂t
= Da

∂2a(x, t)

∂x2
− γΘ(a(x, t)b(x, t) − I0) − λa(x, t)b(x, t)c(x, t)

∂b(x, t)

∂t
= Db

∂2b(x, t)

∂x2
− γΘ(a(x, t)b(x, t) − I0) − λa(x, t)b(x, t)c(x, t)

∂c(x, t)

∂t
= γΘ(a(x, t)b(x, t) − I0) + λa(x, t)b(x, t)c(x, t) (2.47)

The concentration profiles are approximated by

a(x, t) = a0

(

1 − x√
2Dat

)

(2.48)

and

b(x, t) =
b0

√

2Db(t − tN)
(x − XN ) (2.49)

where XN is the position of the band N , and tN is its time of appearance (fig. 2.16).

Figure 2.16: Concentration profiles in the supersaturation theory of the Liesegang band-
ing (computer simulation, adopted from [118]).

The condition for the band N + 1 to appear is

a(XN+1, tN+1)b(XN+1, tN+1) = I0 (2.50)

After performing the calculations and applying the asymptotic approximation

XN+1

XN
≈ XN

XN−1
= 1 + p (2.51)

we obtain the spacing law [131]

XN ∼ (1 + p)N ∼ exp(Nln(1 + p)) (2.52)
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as well as the time law [132]

K =
XN√
tN

(2.53)

and an approximate form of the Matalon-Packter law, that connects the spacing constant
p to the initial concentrations of the reactants [129, 130]

p ≈ 0.02 +
α

a0b0

(2.54)

where α is a constant depending on the parameters of the model.
The theory at the next level of complexity assumes that the A + B reaction yields

the precipitate C through an intermediate compound M . This compound is supposed
to be produced continuously, with a certain rate proportional to the local concentration
product of the reactants, and precipitates when its concentration exceeds a threshold
M∗. The precipitate C is able to grow by collecting the neighboring M [118, 133]. Beside
the time, spacing and Matalon-Packter laws, similar “nucleation and growth” models
are able to reproduce the width law, giving the thickness of the rings, as well [133]:

Wn ∼ Xα
N , α > 0 (2.55)

Here we mention that supersaturation theories were implemented by a cellular automata
approach, that also led to the correct form of the time, spacing and width laws [134].

The above-mentioned theories do not allow the presence of the precipitate in the
space in between the precipitate bands. However, rhythmic banding was observed in
the experiments performed by E. Hatschek and S. Gosh, where, before starting the
experiments, small crystallites of the precipitate were homogenized in the gel [135, 136].
According to the previous theories, these could prevent the reaching of the critical ion-
product I0, and the threshold M∗, respectively. Moreover, according to the experiments
of M.E. LeVan and J. Ross, performed in the usual way, precipitate can exist in the
region in between the bands as well [137].

An advanced “nucleation and growth”-type model, worked out by G.T. Dee is able
to reproduce a small amount of precipitate in between the bands. In this approach, the
threshold at M∗ is not sharp any more, but it is deduced from the theory of nucleation
[138]. The results of this model may also answer why pattern formation occurred in the
experiments of Hatschek and Gosh: the number of the critical nuclei emerging when the
nucleation threshold is reached, is huge in comparison with the amount of the crystallites
present in the gel. Therefore, the overall surface of the crystallites may not be enough
to initialize a considerable amount of heterogeneous nucleation.

Sol Coagulation Theories

Albeit the successes of the supersaturation theories, there are a plenty of experimental
findings, they are unable to explain. As follows, we present the most relevant of these
results.
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Hedges and Henley managed to obtain rhythmic banding by an unusual method.
First a colloidal sol was prepared by reacting two electrolytes. This sol was homogenized
in the gel phase of the experimental setup. Later, one of the electrolyte solutions was
poured on the top of the gel column. In a certain concentration range, a series of
precipitate bands emerged, although no chemical reactions were going on in the system
(fig. 2.17). The experiment suggested that the formation of the precipitate bands
may be concerned with a secondary process, occuring after the reaction [144]. Similar
experiments have been performed by Flicker and Ross as well [145].

Figure 2.17: Precipitate bands resulting from sol coagulation without chemical reactions.
(a.) PbI sol coagulated with Pb(NO3) solution. (b.) Mg(OH)2 sol coagulated with
NH4OH solution [144].

Results of a series of experiments, performed by S. Kai, S.C. Müller and J. Ross, also
supported the assumption that the precipitate bands build up from a previously formed
colloidal sol [141]. In these investigations, the bands were produced by reacting NH4OH
highly basic outer electrolyte with MgCl2 inner electrolyte, the latter being previously
homogenized in gelatine gels. The changes of the pH , indicating the advent of the outer
electrolyte, were made optically observable by introducing an indicator solution into
the gel phase. In order to investigate the precipitation processes going on in the gel, a
laser beam was passed through the gel column at different locations after the reactions
had been started. Scattering, transmission and deflection of the laser beam were all
measured. According to the experimental results, the light scattering was enhanced in
the wake of the diffusion front of the outer electrolyte, defined by the pH = 9 front
(fig. 2.18). This can be interpreted as a consequence of the appearance of a colloidal
sol. Moreover, the deflection of the light beam can be assigned to the significant growth
of the volume fraction of the colloidal particles at those regions where later the visible
precipitate regions appear.

Several experiments were performed in order to explore the effect of gravity on the
characteristics of Liesegang banding [141, 149]. The investigations where the gel columns
were located in different orientations while the experiments were running, showed that
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Figure 2.18: Plot of the scattered light intensity along the gel column [141].

the spacing coefficient p is greatest in the “normal” setup when the outer electrolyte
diffuses downward, and it is smallest in the reverted position when it has to diffuse
upwards. Since the effect of the gravitational force on the diffusion of the ions can be
neglected, this experiment also indicates the presence of a colloidal material which acts
as a precursor to precipitate bands.

Figure 2.19: Effect of gravity on Liesegang band formation [119]

Sol coagulation models [118, 140, 141] assume that the formation of the colloidal
bands takes place in two steps. First, a colloidal sol is formed that cannot be observed
by the naked eye, and later the bands arise from the coagulation of the sol. Sol forma-
tion takes place when the outer electrolyte penetrates into the gel, and the nucleation
threshold is reached. The size of the sol particles is assumed to be so small that the
gel does not inhibit their diffusion. Theoretical predictions indicate that, for a broad
class of reactions, the sol concentration has to be constant in the wake of the outer
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electrolyte’s diffusion front [142, 143]. Since the sol, after it has been formed, is elec-
trostatically stabilized [166], it cannot coagulate into big colloidal particles. However,
as the outer electrolyte concentration increases at certain points in the gel column, the
overall ionic strength of the electrolytes at that point also increases. The model assumes
that the coagulation of the sol, and thus the formation of the visible precipitate bands,
takes place when the ionic strength reaches the critical coagulation concentration, and
the sol concentration is also above a critical value. Once a precipitate band is formed,
the sol particles are carried by diffusion and incorporated into it. Thus a depleted zone
is formed, where the amount of sol particles is significantly reduced. In order to start
the formation of a new band, the diffusion front of the outer electrolyte has to overtake
the depleted region.

Earliest versions of the sol coagulation theories have been elaborated by N.R. Dahr
and A.C. Chatterjee at the beginning of 1920’s [146, 147]. They were investigated using
computer simulations first time by A. Büki [140], and it turned out that they correctly
reproduce the time and spacing laws. This has also been demonstrated by semianalytic
calculations [118].

However, there are several experimental findings that cannot be satisfactory ex-
plained either by supersaturation, or by sol coagulation approaches. According to the
computer simulations of the above models, only one precipitate region develops at a
time. Experiments performed by H. Higuchi and R. Matura indicated the contrary [148].
In their experiments, NH4OH outer electrolyte was reacted with MnCl2 or Mg(SO)4

inner electrolytes homogenized in agar-agar gels. Several maxima of the metal ion con-
centrations were found ahead of the last precipitate band that appeared, in those places
where precipitate regions appeared later in the experiment (fig. 2.20). We emphasise
that here the overall ion concentration was measured, that is, the proportion of the ions
in precipitate and in solution is unknown.

Figure 2.20: Distribution of Mg2+ ions in the gel at 4h and 22h after the starting or the
experiment [148].

Thus, we can drive the conclusion that all the aspects of Liesegang band formation
are not clarified. It’s likely that most of the chemical systems have got particular
properties. At this time, experimental data necessary for the construction of more
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powerful theories is missing as well.

Phase Separation Theories

Recently a new scenario has been proposed by Z. Rácz and co-workers for modeling
the formation of Liesegang patterns [153]. In this approach, the formation of bands is
explained by a spinodal decomposition scenario.

The model assumes that, due to the reaction of the outer electrolyte A and the inner
electrolyte B, an intermediate compound M is formed. For a broad class of reactions
[143], this compound has a constant density m0 behind the diffusion front of the outer
electrolyte. Furthermore, it is assumed that that the compound M can undergo phase
separation [150, 151]. The pattern formation is described by the Cahn-Hilliard equations
plus a source term S representing the production rate of the compound M by chemical
reactions:

∂m(x, t)

∂t
= −λ

∂2

∂x2
[ǫ(m(x, t) − m∗) − γ(m(x, t) − m∗)

3 + σ
∂2

∂x2
(m(x, t) −m∗)] + S(x, t)

(2.56)
Note that the parameter m∗ can be included into ǫ. In numerical simulations, the
source term can be supplied by the simultaneous solving of the A + B → M reaction
with appropiate initial and boundary conditions.

If the concentration m0 is in the unstable regime (in between the ms “spinodal point”
and m∗), some time after the front has swept over a certain point, the separation of M
into high m+ and low m− density phases will take place. The high density regions appear
as precipitate bands, while the low density ones as empty spaces in between. The model
yields by simple semianalytic calculations to the time, spacing, Matalon-Packter and
width laws as well [153].

Figure 2.21: Liesegang banding produced by a phase separation model (computer sim-
ulation, adopted from [152]).
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Since three of the parameters (e.g. λ, γ and σ) can be used to set the time and
length scales, as well as the concentration scale, only one free parameter, ǫ remains in the
model, apart from m0, the initial concentrations a0, b0 and diffusion constants DA, DB.
Consequently, one has a theory with a small number of parameters 2 in comparison with
previous ones dedicated to model the Liesegang banding (fig. 2.21).

More advanced versions of the model include noise effects as well. Beside the main
laws of the Liesegang banding, these also show the presence of precitate grains in between
the bands [154].

2.2.2 Dendritic and Seaweed Solidification

Several forms of crystallization lead to nontrivial and beautiful shapes. Some of the
crystals are faceted resembling a polyhedral structure, but more complex dendritic and
seaweed structures can also emerge [4, 87–90]. Dendrites are anisotropic ramified struc-
tures with nearly paraboloidal growing tips, while seaweed-like morphologies are more
isotropic, composed (in 2D) of doublons that are double-finger like structures separated
by narrow channels [91]. A combination of dendritic and faceted growth are the snow
crystals [92, 93].

Solidification proceeds in the following sequences: (1.) Atoms to be crystallized are
transported to the crystal surface. This process is important when the crystal grows
from a solution [94], since in the case when the growth occurs in an undercooled melt, no
chemical transport processes are required. (2.) Atoms are incorporated in the crystal.
(3.) The released latent heat is transported away from the surface. The growth as a
whole is governed by the slowest process [4].

Faceted crystals are formed when the surface nucleation (i.e. formation of undis-
sociable atom clusters on the surface of the solid) occurs with a very low probability,
and therefore the surface of the crystal is smooth on molecular level. In this case the
kinetic process is the slowest, and the growth is limited by the kinetics of incorporating
new elements. The shape of a growing faceted crystal can be estimated by a modified
Wulff construction, where the orientation-dependent growth rate should be used instead
of the surface free energy of the respective planes [95, 96].

The situation changes if the surface becomes rough on the molecular level, that is
when the roughening transition occurs [4, 87, 97]. Two kinds of such transitions are
known. In the case of thermal (thermodynamical) roughening the surface undergoes a
phase transition at a roughening temperature Tr. The growth can be driven in the
”rough” region by increasing the temperature. Kinetic roughening occurs when the
driving force is very high (that is the undercooling is high when the crystals are grown
from melts, and the supersaturation is high when they are grown from a solution), even
if the temperature of the surface is below Tr [97–99]. In the following, we will regard
only the case when the crystals are grown from a melt.

2In the framework of this theory, we cannot assign the compound M with a diffusion coefficient in
the classical sense.
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After the roughening transition there is practically no nucleation barrier, there are
a lot of surface fluctuations and the interface is rough at the molecular level. It can be
shown that the kinetics are very fast, and that the growth is limited by the transport of
latent heat and also on chemical diffusion in the case of growth from solutions. There are
no facets, but dendritic and seaweed-like crystallization occurs, that will be our concern
in the following paragraphs.

The first analytical results in this field were obtained by Ivantsov in 1947, when it
was proved that in the case of zero surface tension, for any value of the undercooling, ∆,
a continuous family of steady state solutions exists, having parabolic shape [4, 100]. The
product of the tip radius R and the velocity v is constant, i.e. Rv = f(∆). However, in
real systems, more complex dendrites and seaweed structures are observed (fig. 2.22).

Figure 2.22: (a.) Multi-exposure photograph of a succinonitrile dendrite [1] (b.) Seaweed
pattern of CBr4 − 8%C2Cl6, in a nearly [1,1,1]-oriented crystal. (c.) Enlarged view of
a seaweed pattern [106].

The problem of dendritic growth has been solved after significant experimental and
theoretical research. Experimental investigations showed that for a given undercooling,
the same dendrite (i.e. same tip velocity and radius of curvature) is reproducibly ob-
served. This implied a “selection problem”: for a certain undercooling, the Ivantsov
solution allows a continuous family of parabolic solutions, but for specified conditions,
only one shape is observed.

In addition, the Ivantsov solution is linearly unstable, and it ceases to exist if surface
tension is switched on, even if this surface tension is very small [4, 100]. In the mid 80’s
experimental and theoretical procedures demonstrated that surface tension anisotropy
was the missing ingredient in the formulation. For a given anisotropy, instead of a
continuous family of parabolas, only a discrete set of solutions (with close to parabolic
shape) are selected, giving rise to a ”microscopic solvability” criterion. It turned out
that only the fastest needle of this discrete set is linearly stable, i.e. the one that is
observed in experiments and dynamical computer simulations [4, 91, 100, 101]. Later
it was demonstrated that the anisotropy of the so-called kinetic coefficient can also
determine the selection of dendrites [102].
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Small fluctuations, which are unavoidably present because of random molecular mo-
tion or small inhomogenities, cause small sidebumps to become selectively amplified by
a Mullins-Sekerka like mechanism (the Mullins-Sekerka instability will be discussed be-
low). Shortly after birth, daughter needles compete for nourishment and only a finite
fraction survive to grow into larger needles that can themselves generate other offsprings.
Thus, a highly hierarchical branched structure, a dendrite, will form.

In the mid 90’s it was demonstrated that there is a stable stationary solution even
at isotropic surface tension, being not a needle, but a double finger called a doublon
[103–106]. Doublons are the basic elements of the seaweed structures.

Here we mention that in some cases the formation of fractal structures is expected.
In order to anticipate these conditions, two characteristic lengths have to be introduced,
namely the capillary and the diffusion length. The capillary length is lc = σTM Cp

L2 (σ is
the surface tension, TM the melting temperature of a flat interface, Cp the heat capacity
of the liquid phase, and L the latent heat). The diffusion length is lD = 2Dl

v
where

Dl is the heat diffusion of the liquid, while v is the growing speed of the solidification
front. Large capillary length inhibits small protrusions from growing, whilest a small
diffusion length means that the growth is not diffusion-limited, and heat gradients (the
driving forces) are not much higher at the top of the protrusions. As a rough estimate
we can say that fractal structures form when the size of the growing object is between
the capillary and diffusion length, lc ≪ l ≪ ld, there is some noise in the system, and
the anisotropy of the surface tension is very small [105, 107]. The diffusion length has to
be much greater than the capillary length, since the scaling relation N(ǫ) ∼ ǫ−d, where
d is the fractal dimension and N(ǫ) the smallest number of balls with radius ǫ that is
necessary to cover the object, has to be valid over several orders of magnitude. Note
that sidebranches of dendrites may also have some scaling properties [108, 109].

In the following, the simplest approach is briefly introduced, which includes sur-
face tension, an effect having a strong influence on pattern formation (Mullins-Sekerka
Instability) [4, 91].

In this calculation the stability of a planar solidification interface is analyzed, trav-
eling with an arbitrary constant speed v0 into a undercooled melt, where the magnitude
of the dimensionless undercooling ∆ = T−TM

L/CP
= 1. Let us also assume that the surface

of the growing crystal is rough. The equations of this model are the following:

∂u(x, y, t)

∂t

∣

∣

∣

l
= Dl∆u(x, y, t)

∣

∣

l
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∂t
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∣

∣

s
= Ds∆u(x, y, t)

∣

∣

s

u(x, y, t)
∣

∣

front
= −lcκ

vn = Dl[β(∇u(x, y, t))s − (∇u(x, y, t))l] · ~n (2.57)

Here u(x, y, t) is the dimensionless temperature field, Dl and Ds the thermal diffusivities
in the liquid and the solid phases, and vn is the normal velocity of the interface that can
differ from the average front propagation velocity v0. The capillary length is denoted
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by lc, κ is the curvature of the interface and β is a constant related to heat capacities
and heat diffusion coefficients of the liquid and solid phases.

After carrying out a linear stability analysis of the above equations, the dispersion
relation of the instability has the form of

Ω(k) = v0k

(

1 − Dl

v
lck

2(1 + β)

)

(2.58)

i.e. the interface is unstable to sinusoidal perturbations at all length scales above a
critical wavelength [110].

It has to be mentioned that at high undercooling when ∆ > 1 the local equilibrium
is not valid, one has to add a kinetic term in the description restricting the speed [111].
At ∆ < 1 there is no stationary flat solution, the front slows down as the square root of
time, but the Mullins-Sekerka dispersion relation with the current front speed can still
be used.

Note that in the case of the quasi-steady growth of a sphere into an undercooled
liquid with an arbitrary undercooling ∆, a unique speed v = ∂R

∂t
is selected, which is a

function of the radius [4].

2.3 Other Growth Processes

Several other types of growth phenomena can also yield nontrivial patterns. Destabi-
lization of the growing surface, due to the Mullins-Sekerka mechanism in crystal growth,
can also be caused by several other effects that enhance the growth of small protrusions
of the surface. The most well-known examples are electrochemical deposition, and some
polymerization processes (fig. 2.23) [107, 112–114].

Figure 2.23: Polypyrrole aggregate grown through diffusion-limited polymerization [113].

Growth processes can be characterized by the mean of the number of collisions that
occur before a particle can be added to the cluster. When it is almost certain that a
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particle sticks to the cluster at the first collision, then the growth is limited only by
the amount of material that is carried by a transport process to the growing cluster.
This case will be referred to as transport-limited growth. If the situation is opposite,
i.e. that particles are free to to collide with so many sites that growth occurs at those
places which are most favored by a low free-energy for deposition, the accretion is called
reaction (kinetics) limited growth [107].

If the chemical diffusion is the relevant transport process of the system, the concen-
tration field can be described by

D∆c(x, t) =
∂c(x, t)

∂t
(2.59)

This kind of accretion is called Laplacian growth when it is very slow, and the time
derivative term can be neglected, and it is termed diffusion-limited growth when the
particle sticks to the cluster at the first hit.

A widely studied approach to the diffusion-limited growth processes represent the
diffusion-limited aggregation (DLA) models. Here the cluster grows by the discrete
aggregation of random walkers. In the so-called Witten-Sander DLA models only one
diffusing particle is present in the system, introduced far from the cluster. If the particle
collides with the cluster, it sticks and a new particle is introduced in the system [91]. In
Finite Gas Density models the aggregate grows from a mother phase having a nonzero
density n of particles, i.e not only one diffusing particle is present in the system [4].

Diffusion-limited growth phenomena have been widely studied in the last decades
because in some cases they yield fractal structures. The instability of the growth is
caused by the fact that the gradient of the concentration field, and thus the probability
of growth is enhanced at the tips, which screen the “fjords” of the cluster [113, 115].
Roughly speaking fractals grow when the surface tension is very small [112, 116], the
anisotropy in the system is small [107], and the concentration in the mother phase is
small [4]. All of these conditions hold for the Witten-Sander models. However, Finite
Gas Density models lead to fractal structures only below the diffusion length lD = 2D

v
,

where D is the diffusion coefficient and v is the speed of growth.

Finally, we mention that in several electrodepositional patterning phenomena the
electric field is relevant only very close to the cluster, and the problem can be considered
as being limited by chemical diffusion. Fractal crystallization processes can also be
regarded as diffusion-limited problems, where the temperature field obeys the Laplace
equation outside the crystal, and new particles are added with greatest flux where the
temperature is lowest.

2.4 Sea Shell Patterns

Pigmented mollusc shells show an enormous diversity of patterns (fig. 2.24). Since many
molluscs live buried in the ground, perhaps no selective pressure on pigmentation exists
and simply “Nature is allowed to play” [46].
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Figure 2.24: Shell patterns of Lioconcha lorenziana [46].

Shells consist of calcified material that is secreted by a specialized structure, the
mantle. Animals increase the size of their shells by accretion of new material at the
margin, the so-called growing edge of the shell [46].

Three types of models have been put forward to explain the formation of sea shell
pigmentation patterns. Cellular automata models reproduce several patterns, but they
make a minimal connection to the biological processes involved in pattern formation
[15, 22]. Neural models assume that the neural net of the mantle has a determining role
in the development of the pigmentation [15, 155]. Reaction-diffusion models suppose
that a reaction-diffusion system governs the formation of the patterns [46, 156]. In the
following paragraphs a short presentation of these latter models is given.

As mentioned above, the shell enlarges at the growing edge by the formation of a new
layer of calcified material. The decorations of the shells result from the incorporation of
pigments during the growth. Thus, the pattern is a time record of a process in the (more
or less linearly arranged) cells of the mantle edge. According to the reaction-diffusion
models the pattern-forming process in the pigmentation of the growing edge can be
described by an activator-inhibitor or activator-substrate reaction-diffusion system.

One of the activator-substrate systems, studied in detail in [46], is:

∂a(x, t)

∂t
= Da

∂2a(x, t)

∂x2
+ sba2 − raa

∂b(x, t)

∂t
= Db

∂2b(x, t)

∂x2
+ bb(x) − sba2 − rbb (2.60)

where a is the activator, b is the substrate, Da and Db are their diffusion coefficients, ra

and rb are the removal rates, s is the rate constant of the autocatalytic term and bb is
a production rate constant.

The model can exhibit a great variety of dynamics even without the diffusion terms:
depending on the parameters, concentrations of the activator and substrate can period-
ically oscillate. Switching between two stable steady states due to a short temporary
concentration change (bistability) can also be achieved. At certain parameter values,
only a single stable steady-state exists.
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If the diffusion coefficients Da and Db are nonzero, and some random noise is included
in the initial conditions, then under certain parameters traveling waves (fig. 2.25), and
stripes parallel or perpendicular to the growing edge can also emerge.

Figure 2.25: Traveling waves generated by the activator - depleted substrate system
[46].



Chapter 3

Experimental Investigation of
Primary Patterns

3.1 Preparation of the Experiments

3.1.1 Sample Preparation

The experiments were performed either in poly(vinyl)alcohol (PVA) or in agarose hy-
drogels. These gels are neutral and easy to handle, and their cross-linking does not
require any chemicals that could disturb the precipitation reactions.

The PVA Gel

PVA solution of 8.6 w/w % was prepared by adding PVA powder (PVA 72000, Merck
Z.S.) to high-purity water (supplied by Labconco and Millipore filter series) under con-
tinuous stirring at 70−80oC for 4 h, and then it was allowed to cool to room temperature.

The inner electrolyte concentration was set by adding to 100 mL of the resulting
PVA solution an appropiate amount of concentrated inner electrolyte solution. The
acidity and degree of cross-linking of the gel were set by adding 2.00 mL acid and
1.00 mL of 1.0 M glutaraldehyde (Merck Z.S.) to the above mixtures. Gels containing
inner electrolyte CuCl2 were acidified with 18.50 w/w % HCl (Reanal A.R.), while gels
containing AgNO3 or Cu(NO3)2 with 16.25 w/w % HNO3, respectively. High-purity
water was used to top off the solution to 200.0 mL. After strong mixing, the air bubbles
were driven out by ultrasonication for 10 − 20 s. The solution had to be placed in the
experimental setup within 1 − 2 minutes, where the cross-linking took place (fig. 3.1).
Note that the mesh size of 4.3 m/m% PVA gel is about 150 Å.

The Agarose Gel

Agarose gel of 2 w/w % was prepared by adding agarose powder (SeaKen low EEO or
Sigma, low EEO) to high-purity water at room temperature (fig. 3.2). Solubilization
was achieved by stirring for 1-2 min at 70 − 80oC. The inner electrolyte concentration

37
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Figure 3.1: Cross-linking of the PVA gel.

was set by adding an appropiate amount of concentrated inner electrolyte solution of
30 − 40oC to 100 mL of agarose solution. The amount of mixture was increased to
200 mL using high-purity water at 50 − 60oC. Gelation took place when the mixtures
were placed in the experimental setup, where they cooled down to room temperature.
The mesh size of 2 m/m% agarose gel is about 500 Å. Note that in the case when the
inner electrolyte was AgNO3, the gelation process took longer, and at concentrations
above 1 M , did not take place at all [159].

Figure 3.2: Monomer of the Agarose gel.

3.1.2 The Experimental Setup

Pattern formation has been investigated in gel sheets and gel columns in four main
experimental arrangements. Two setups were found to be effective for doing experiments
in gel sheets, and another two for investigations in gel columns (fig. 3.3).

For the first setup with gel sheets, the poly(vinyl)alcohol or agarose hydrogel having
a thickness of 0.2−0.3 mm and containing the inner electrolyte was located horizontally,
between a microscope slide and a cover glass. Preparation of these samples was achieved
by putting 2 − 3 droplets of the “gel solution” on a microscope slide and covering with
a cover glass of about 22 × 32 mm. After 1 − 3 h while the gelation took place, the
reactions were started by placing 4 − 5 droplets of NaOH outer electrolyte solution
(Reanal A.R.) on one of the edges of the gel sheet, and then covered with a cover glass
to avoid evaporation.

In the second setup, the gel sheet was located vertically, between two glass plates
being part of a protein electrophoresis device. For these types of experiments, the “gel
solution” was poured between the plates to a height of 40 mm. The 83×102 mm plates
were previously purified with hot peroxy-sulphuric acid and fixed parallel to each other
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Figure 3.3: Experimental setups. The outer electrolyte is denoted by (1), while the
inner electrolyte by (2). The arrows mark the direction of propagation of the precipi-
tation fronts. (a.) The gel sheet containing the inner electrolyte is located between a
microscope slide and a cover glass. The outer electrolyte is dropped to an edge of the gel
sheet, and protected by another glass. (b.) The gel sheet is located between two glass
plates (that belong to a protein electrophoresis device). The outer electrolyte is layered
on the gel. (c.) The gel column is located in a test tube, and the outer electrolyte is
poured on the top. (d.) The gel is located in a Petri dish, and the outer electrolyte is
layered on the top. Note that in (c.) and (d.) (experiments in gel columns) the diffusion
front of the outer electrolyte has the form of a disk.

at a distance of 1.6 mm. After 10 − 20 h the reaction was started by pouring 3.00 mL
of NaOH outer electrolyte on the top of the gel.

In order to study the pattern formation when the outer electrolyte diffuses into a
column-like setup, two arrangements have been developed. The gel is either located in
test tubes having different inner diameters from d = 1 mm to d = 40 mm, or in Petri
dishes. Most of the experiments have been performed in test tubes of d = 14.2 mm
and in Petri dishes of d = 87 mm inner diameter. For the experiments in Petri dishes
a 5 − 7 mm-high column of “gel solution” was poured and let to gelate in the dish.
After 10 − 30 h the reactions were started by pouring a layer of about 5 mm of outer
electrolyte on the gel. Due to the small height of the gel column, the reactions terminate
in about 15 minutes. Samples in test tubes were prepared by pouring the “gel solution”
in glass test tubes previously purified with hot peroxy-sulphuric acid. The experiments
were started after 10 − 30 h by layering the outer electrolyte on the top of the gel. In
order to avoid the depletion of the outer electrolyte during the experiment, its amount
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(height) had to be at least 20 % of that of the gel column.

3.2 Formation of Primary Patterns in Gel Sheets

3.2.1 The Sequence of Pattern Formation

In this section the formation of the so-called primary patterns is investigated. Primary
patterns in gel sheets are built up of some basic elements. By understanding the devel-
opment of these constituents, we can also interpret the formation of the more complex
shapes which emerge in gel columns.

In the usual case, pattern formation in the NaOH + CuCl2 reaction in gel sheets
evolves in the following way (the concentration of the outer electrolyte will be denoted
by a0, while that of the inner electrolyte with b0):

The diffusion front of the NaOH outer electrolyte is followed by a sharp precipitation
front (fig. 3.4 (a).). The precipitate that forms at this front looks blue in reflected
and green in transmitted light, and shows no structure when investigated with optical
microscopy; it is assumed to be mainly Cu(OH)2 [163–165]. Although there can be a
large field behind the diffusion front of the NaOH , formation of the solid phase is taking
place only at the sharp precipitation front, that will be referred also to as the active
border of the precipitate area. Note that the active borders are permanently renewing
surfaces.

If some impurities or inhomogenities are present on the gel surface or inside the gel,
the precipitation may not start or may cease at these points. As the staggered precip-
itation front proceeds, these centers expand into wedge-like regions free of precipitate
(fig. 3.4 (b.)). The reaction does not proceed on the oblique borders that separate the
already formed precipitate from the wedge-like empty regions. These stationary surfaces
are referred to as the passive borders of the precipitate region.

As the precipitation front segments sweep through the gel sheet, their length dimin-
uates. Therefore, their margins are referred to as regressing edges (fig. 3.4 (b.)). At the
end of this process, when an active border vanishes, the trapezoid-shaped precipitate
region is completed into a triangle-like one, with a small cusp on the top in some cases
(fig. 3.4 (c.)). Due to the similarity of this cusp with some elements of sea shell patterns
presented in [46], this formation will be referred to as the Meinhardt peak.

The angle of the passive borders is determined by two perpendicular velocities: the
speed of the precipitation front (which is approximately equal to the speed of the diffu-
sion front), and that of the precipitation front’s regressing edges. The passive borders
-except the region of the Meinhardt peaks and some transients at the split of precipi-
tation fronts- are straight lines, especially in the “macroscopic” experiments, having a
longer duration (in the order of 24 h ). Thus, the ratio of the above mentioned speeds,
except for some transients, must be constant during the experiments. At the present
stage of research, the reason for this effect, as well as the factors which determine the
speed of the regressing edges, are unknown.
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Figure 3.4: Schematic diagram of the sequence of pattern formation in gel sheets: (1)
outer electrolyte having concentration a0, (2) gel sheet containing the inner electrolyte
with concentration b0, (3) diffusion front of the outer electrolyte (dashed line), (4)
shrinking precipitation fronts, (5) passive borders, (6) new precipitation front. The
primary precipitate formed in the reaction is drawn in dark gray, while the precipitate-
free gel with light gray. The passive borders are marked with black, while the active
ones with white curves. Note, that in [157] the gray color represented the colloidal CuO
precipitate, which is not marked here. (a.) Progressing of the precipitation front and
that of the diffusion front. The formation of the precipitate is halted in three points,
marked by arrows. (b.) Shrinking precipitation fronts leave behind trapezoid-shaped
precipitate regions. A regressing edge is marked by an arrow. (c.) The precipitation
fronts disappear, the triangle-like regions are completed. The Meinhardt peaks at the
top of the triangle-like regions are marked by arrows. (d.) A new precipitation front
emerges in the top of the wedge-like empty region. (e.) A precipitation front that
emerges in the top of a wedge-like empty region, has just split. The point where the
formation of the precipitate is halted, is marked by an arrow. (f.) Evolution of the
new precipitation fronts formed by “pair-production”. Their direction of propagation is
marked by arrows.

The velocity of the outer electrolyte’s diffusion front in agarose gel can be estimated
by Fick’s law. However, in the case of PVA it is strongly influenced by the syneresis of
the gel: about 2 mm behind the region where the precipitate has already formed, the
gel starts to shrink and does not adhere any more to the glass [157]. Thus, the outer
electrolyte is close to the active borders all the time, and is carried by diffusion only
in the last few millimeters. However, the syneresis does not play an essential role in
primary pattern formation. In agarose gel where no syneresis takes place, or in Petri
dishes where the consequences of this effect can be neglected, the same types of patterns
appear.

In case of the NaOH + CuCl2 system, the reactions do not stop at the stage when
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the lower limit of the precipitate became a passive border. However, reactions such as
NaOH + AgNO3 and CuCl2 + K3[Fe(CN)6], running in gel layers thicker than about
1 mm, stop after the development of the first complete layer of the passive border.
As shown in fig. 3.4 (d.), new precipitation fronts in the NaOH + CuCl2 system can
emerge somewhere along the passive borders (usually at the top of the wedge-like empty
regions). Later, the new fronts may also be split. Thus, besides a new empty region,
two precipitation fronts are also formed (figs. 3.4 (e.)-(f.) and 3.6 (a.)-(c.)). They
produce precipitate bands below the already completed passive borders. The chemical
constituent created by the new precipitation fronts is limited from above by the passive
borders of the preceding precipitate, and from below by the passive borders formed in
the wake of the new regressing edges. At a later stage, the new active borders are no
longer parallel with the diffusion front (figs. 3.6 (b.)-(d.)). When two approaching active
borders meet, they annihilate each other, and Meinhardt-peak forms at the annihilation
point (fig. 3.6 (e.)).

The blue-green precipitate is not the final reaction product. About seven minutes
after it has been formed, it starts to convert into a brown colloidal compound. Inves-
tigations with X-ray scattering [157] proved that this colloidal compound is CuO (fig.
3.5). Thermoanalytic measurements also support this result [13].

Figure 3.5: Powder spectrum of the brown precipitate.

The ripening process does not take place in a band of approximately 100 µm thickness
below the passive border of the preceding precipitate region. Thus, between the regions
filled with CuO, a thin band remains free of this precipitate any time (3.6 f.). These
blind bands are the black oblique lines that can be observed on the experiments. Note
that the primary precipitate formed in the CuCl2 + K3[Fe(CN)6] system seems to be
stable, and does not convert into another compound.

Although the thermochemistry of the process is not known, it is assumed that ther-
mal effects do not contribute significantly to the pattern formation. Precipitation after
the first 30 min is very slow, and therefore local temperature changes in the precipitation
front are probably insignificant. Note that the results are quite temperature-insensitive:
the primary patterns observed in gel columns at room temperature also form between
at 10oC and 55oC.

We finally mention an interesting effect that takes place when the outer electrolyte
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Figure 3.6: Patterns in gel sheets (a0 = 8 M NaOH, b0 = 0.732 M CuCl2). Figures

(a.), (c.), (d.) and (e.) represent experiments performed in gel sheets of 1.6 mm thickness,

located between two glass plates, and the pictures were taken using reflected light. Figure b.

represents a pattern formed in a gel sheet located between a microscope slide and a cover glass,

photographed in transmitted light. The sample shown in (f.) was prepared by sectioning a gel

column after the reactions finished and the picture was taken in transmitted light. (a.) New

front emerges at the top of an empty region (scale bar = 2.5 mm). (b.) Thin precipitate regions

produced by traveling precipitation fronts. They are limited from above by the passive border

of an elder precipitate and from below by the new passive border. (c.)-(e.) Three consecutive

stages of the pattern development. Elapsed time from the beginning of the experiment was

97 min, 131 min and 137 min, respectively (scale bar = 2.5 mm). (c.) The precipitation

front in the middle, limited by two regressing edges, shrinks. (d.) The regressing edges meet,

and therefore this active border vanishes. Two small precipitation fronts can also be seen just

before their annihilation. (e.) The pattern after the annihilation of the above small fronts.

(f.) The blind band free of colloidal CuO precipitate, between an older (right) and a younger

(left) precipitate.
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diffuses into a gel where the concentration of the inner electrolyte is not homogeneous.
If a gel located between two glass plates consists of two vertical domains having different
inner electrolyte concentrations, the angle of the regressing edges changes as they pass
through the border of the domains: they became more steep in the less concentrated
gel region. This effect has not been studied in detail [13].

3.2.2 A Qualitative Explanation

First, a qualitative explanation of the pattern forming process is outlined. The experi-
mental results that led to this picture, will be treated in detail later.

Let us assume first that we already have a progressing active border. Conditions of
its appearance will be reexamined later. Several experiments suggest that the reactions
first lead to the formation of a diffusive intermediary compound (DC), and a critical
concentration of this compound is required in order for the precipitation to proceed
[158, 161]. This concentration will be referred to as the growth threshold.

In a previous work, it was supposed that the reagents react and the DC forms
only on the active border with catalytic properties [158]. In the present model, this
supposition is not necessary. The experimental results showed that the passive border
of a precipitate region is an ion-selective (semipermeable) surface, that restrains the
passage of the reacting ions contained by the outer electrolyte [161]. DC forms in the
whole region where the reagents meet, that is, due to the restraining properties of the
passive borders, mainly the region ahead of the precipitation fronts.

Emergence of passive borders is explained as follows. If the growth threshold is not
reached in a certain time τ on a portion of the precipitation front, the front portion
is assumed to loose its permeability, and becomes passivized. Since the speed of the
precipitation front decreases in time, a constant value of τ would entail its stoppage
in a finite time. However, experimental results suggest that, having a constant outer
electrolyte concentration, arbitrarily long front propagation can take place [157]. This
can be reproduced by assuming that τ is a function of the front speed v, and τ = τ(v)
increases as v decreases.

The most important qualitative feature of the formation of primary patterns is the
shrinking of active border segments that leave behind a trapezoid-shaped precipitate
area, finally evolving to a triangle of precipitate [157, 158, 161]. In order to explain this
feature, we have to assume that the concentration of the DC does not reach the growth
threshold around the end point of the active border segment within time τ(v). Computer
simulations showed, that this situation is typical. If the critical concentration of the DC
is smaller than the value in the middle, but larger than the value near the end points
of the active border, the next layer of precipitate (the new precipitation front) will be
shorter than the actual front.

Initiation of traveling active borders is attributed to DC concentrations above the
nucleation threshold, that is assumed to be higher than the growth threshold [162, 166].
In reactions like NaOH+AgNO3 and CuCl2+K3[Fe(CN)6] in gel columns or gel layers
thicker than about 1 mm, new active borders appear almost exclusively at the beginning
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of the experiment, when the outer electrolyte is layered on the gel. In the NaOH+CuCl2
system, front initiation can happen in the top of the wedge-like empty regions, some time
after the passive border formed and reagent concentrations are recovered by diffusion.
Since the reason of this latter effect is unknown, and simple assumptions did not lead
to the expected simulation results, it is not included in the present model.

The development of a small cusp that may appear at the top of the trianglelike
precipitate regions cannot be explained by qualitative arguments. This question will be
reexamined when the computer simulation results are presented.

3.2.3 Experimental Results Supporting the Qualitative Expla-

nation

The qualitative explanation presented above is supported by several experimental find-
ings that were obtained in various setups. The most important observations are enu-
merated below:

(i) Active and passive borders have different shades of colors in the NaOH + CuCl2
system (fig. 3.7 (a.)). The passive border has an opalescent shade, unlike the growing,
active one. This difference also suggests that active and passive borders have different
structures.

(ii) An interesting phenomenon occurs when a precipitation front moving along a
passive border reaches the top of a precipitate triangle. Figures 3.7 (b.) and (f.) repre-
sent the stage when one of the margins of the front moves along a precipitate area. The
passive border of a previously formed precipitate is assumed to act as an obstacle into
which the diffusive intermediary compound cannot penetrate. Therefore, the concen-
tration of the DC is not diminished at this front margin. As the front approaches the
top of the precipitate triangle, the DC around the end of the front starts to diffuse in a
much larger area than previously. As a consequence, its concentration will diminish. If
it drops below the critical concentration required for the progression of the active border
for longer than τ , the end point of the precipitation front may become ion-selective, and
an active-passive transition may take place (figs. 3.7 (c.) and (g.)). Later, the portion
of the border that is still active will shrink and evolve as described in the previous para-
graphs. The same scenario can take place when a precipitation front passes through an
obstacle with sharp edges.

(iii) When a segment of a precipitation front faces an obstacle such as an air bubble
or a splint of glass of about 0.1− 1 mm, the speed of that front portion increases before
it touches the barrier (fig. 3.7 (h.)). The speed-up begins when the front is about 60 µm
from the obstacle. If the DC cannot pass through the barrier, its concentration may
increase between the obstacle and the front. The higher concentration of the DC may
be the most probable reason for the higher velocity of the precipitation front.

As mentioned previously, active-passive transition may take place if the precipitation
front passes through an obstacle. As a result, the active border is splitting into two
segments. Note that such breaks in the fronts have some common aspects with those
reported in [167].
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Figure 3.7: Experiments supporting the phenomenological model. (a.) Active (1) and passive (2)

borders in the NaOH +CuCl2 system in PVA gel, from an oblique point of view. Note their difference

with respect to the shade of the colors. The 1.6 mm thick gel sheet is located between two glass plates.

a0 = 8 M NaOH, b0 = 0.732 M CuCl2. (b.)-(d.) Active-passive transition in the NaOH + CuCl2

system. The reaction is taking place in an agarose gel sheet of 1.6 mm thickness, located between two

glass plates. a0 = 4 M NaOH, b0 = 0.586 M CuCl2, scale bar = 2 mm. Panels (c.) and (d.) are

taken 871 s and 1398 s, respectively, after panel (b.). The active border (1) is bounded on one side by

the passive border of a previously formed precipitate (2), and on the other side by a regressing edge

(3), which is the meeting point of the active and passive borders of the novel precipitate [panel (b.)].

When the active border reaches the top of the precipitate triangle, a new passive border will appear

[panel (c.)]. The precipitation front becomes bordered by two regressing edges and will therefore shrink

[panel (d.)], later disappearing. Note the decay of the blue-green precipitate in the brown precipitate.

(e.)-(g.) Active-passive transition in the NaOH +AgNO3 system. The reaction takes place in PVA gel

located between a microscope slide and a cover glass. a0 = 8 M NaOH, b0 = 0.412 M AgNO3, scale

bar = 0.5 mm. Panels (f.) and (g.) are taken 552 s and 672 s, respectively, after panel (e.). Panel

(e.) shows a shrinking active border that leaves behind a trapezoid-shaped precipitate region. Panel

(f.) displays an active border (1) that approaches the top of the precipitate triangle formed in the

previous scenario. When it reaches the top, an active-passive transition takes place, and a new passive

border (2) appears [panel (g.)]. (h.) Speed-up of a precipitation front segment facing an obstacle. The

reaction takes place in PVA gel located between a microscope slide and a cover glass. The black lines

represent the precipitation front every 30 s, and the black region represents the obstacle itself. The

arrows indicate the direction of the precipitation front. a0 = 8 M NaOH, b0 = 0.732 M CuCl2, and

the scale bar = 150 µm. (i) Fusing of precipitation fronts in the NaOH +CuCl2 chemical system. The

reaction takes place in PVA gel located between a microscope slide and a cover glass. The black lines

represent the precipitation front(s) every 30 s, except for the two short curves in the middle. These

short curves indicate the position of the fused front 5 and 15 s after the last unconnected front segments

were plotted. a0 = 8 M NaOH, b0 = 0.732 M CuCl2, and the scale bar = 150 µm.
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(iv) When two precipitation fronts meet and fuse together, the front speed is highly
increased around the meeting point (fig. 3.7 (i.)). This speed-up is a result of both
active borders having regions of DC ahead of them. In the immediate neighborhood of
the meeting point these regions overlap, and thus the concentration of DC increases.
Fronts are assumed to have greater velocity while sweeping through this area. Note that
the concavity of the front causes an increase in velocity.

The survival of the short precipitation fronts traveling along a previously formed
passive precipitate (figs. 3.6 (b.)-(d.)), as well as their annihilation (fig. 3.6 (e.)), can
be explained by the above assumptions. Since the DC cannot penetrate into the already
formed precipitate having an oblique passive border, its concentration is not diminished
around the front margin that meets the passive precipitate. The other front margin is
a regressing one, but the amount of regression is usually the same as the amount of
front prolongation due to the obliqueness of the upper passive border. The quantitative
study of this feature is under progress. Annihilation at the meeting point of two such
traveling precipitation fronts takes place because a single active border forms after they
fuse together. This active border will be limited by two regressing edges and shrink
as described in section 2.2.2. However, in some exceptional cases the concentration of
the diffusive intermediary compound at the meeting point can become so high that an
“overflow” takes place leading to the rise of a growing, semicircular active border.

Ion-selectivity of the Passive Borders

A. Restraining properties

As mentioned previously, in the NaOH +AgNO3 reaction the precipitation does not
restart ahead of the passive borders, while in the NaOH +CuCl2 system, the restarting
of the precipitation is also delayed.

Because in the NaOH +AgNO3 and the NaOH +CuCl2 system the OH− radical is
the reacting ion of the outer electrolyte, it is plausible to assume that the precipitation
ceases because the passive border restrains the passage of the OH− ions. To confirm this
hypothesis, simultaneous measurements of pH on both sides of the passive border were
performed in the following experimental setup. The gel containing the inner electrolyte
was located between two 83x102 mm glass plates held 3 mm apart, the inner part of
the first plate being covered by a polyethylene film. The outer electrolyte was layered
on the gel (fig.3.8).

In a certain stage of the experiment, after removing the outer electrolyte, the first
plate could easily be taken away. By gentle stripping the plastic foil, the surface of the
gel could be revealed, and indicator paper was placed on the naked gel surface in such
a manner that it touched both sides of the passive border. Drying of the gel is not
significant in the time scale of the of the pH measurements (about 5 min).

In case of the NaOH +AgNO3 reaction precipitation ceases after the passive border
covers the entire lower surface of the precipitate. The pH measurement was performed
about 14 h after the reaction stopped (fig. 3.8 b). Since the pH did not equalize during
this time, it is reasonable to assume that the passive border slows significantly the
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Figure 3.8: Measuring the pH difference between different sides of passive borders. The outer
electrolyte is highly basic, while the inner electrolyte is slightly acidic. (a.) Experimental setup: (1)
polyethylene film, (2) outer electrolyte, (3) precipitate, (4) glass plates, and (5) gel containing the inner
electrolyte. The investigated reactions were 8 M NaOH + 0.647 M AgNO3 in agarose gel (b.), as
well as 4 M NaOH + 0.586 M CuCl2 in agarose gel (c). The indicator paper has an orange color at
slightly acidic, and a dark blue color at strongly basic pH . It is shown that the strongly basic NaOH

solution impregnates the precipitate, but cannot pass the passive border that ’protects’ the gel region
containing the inner electrolyte. Scale bars = 3 mm.

diffusion of the pH-determining ions. Note that in the course of revealing the passive
border it may have been damaged and the precipitation process can restart along it, but
this has a minor effect on the results of the, relatively quick, pH measurements.

The NaOH + CuCl2 reaction does not stop after the first complete layer of the
passive border is formed. The reason why new precipitation fronts can arise below the
passive borders is presently unknown, perhaps the passive borders are slightly leaky,
or become damaged at some points. In the first hour of the reaction, precipitation
restarts along the passive borders in ca. 10 mins. Approximately three hours later long
segments of passive borders were present in the gel, and these remain free of precipitate
for several hours. The pH measurements performed on this system showed as well that
a pH gradient between the two sides of the passive border lasted for at least 4 hours
(fig. 3.8 c).

B. Permeability of the Passive Borders
The above experiments indicated that the passive borders should restrain further

passage of at least the pH-determining ions in the case of the NaOH +AgNO3 system.
It is plausible to assume that, in the case of the CuCl2 +K3[Fe(CN)6] system, passage
of copper ions is prohibited by the passive border (visual observations also support
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this assumption). However, it is unclear at this point whether the passive borders are
completely insulating membranes or restrain the diffusion of some kinds of ions only.
Such questions can be answered by measuring the resistance (or conductance) of an
appropiate gel segment with a passive border occupying the whole cross section of it: a
high resistance indicates a completely insulating membrane; a low resistance indicates
that some ions can cross the passive border. For the electrochemical experiments those
chemical systems (NaOH+AgNO3 and CuCl2+K3[Fe(CN)6]) were selected where the
reactions stop as the passive border cover the entire bottom surface of the precipitate.

The experimental setup for the electrochemical measurements was built up as follows.
The gel column, having a height of about 2 cm, was located in a Petri dish of 5 cm
diameter, made of transparent plastic. Special care was taken in cleaning of the plastic
Petri dish. The bottom of the dish contained a hole with a diameter of 3 cm. When the
initial mixture was poured into the dish, the hole was closed with a polyethylene film.
After the cross-linking took place, the film was removed, and the dish containing the gel
was settled into a pot with larger diameter that contained an inner electrolyte solution
with the same concentration as in the gel. In fig. 3.9 a, a typical experimental setup used
for impedance measurements in the case of the CuCl2 +K3[Fe(CN)6] system is shown.
In most experiments an electrochemical cell consisting of a working electrode (W), a
counter electrode (C), and a reference electrode (R) connected to an Autolab PGSTAT
20 electrochemical system (potentiostat + FRA module) was used. However, in some
cases the reference electrode was directly connected to the counter electrode (in order
to check the results also in the “2 electrodes” mode). In the 3 electrode arrangement a
disk-shaped copper plate with a diameter of 3 cm was used for the working electrode, a
platinum disk for the counter electrode, and a saturated calomel electrode (SCE) served
as a reference.

It can be seen in fig. 3.9 a, that gel layers with and without the precipitate, the corre-
sponding active and passive borders, and solution layers are located between the working
electrode and the reference electrode. Using the above setup, the “total” impedance of
the system (the impedance of the working electrode + the impedance of the different lay-
ers, borders and conducting phases between the working and the reference electrode) can
be measured as a function of the frequency of a sinusoidal perturbing signal [170, 171].

The equivalent circuit representing the impedance of the above system is presented
in fig. 3.9 b. According to this model a charging current and a current corresponding
to the “faradaic” processes at the working electrode pass the metal/solution interface,
while the total current is conducted by the electrolyte in the adjoining phases. The
impedance elements corresponding to these processes are the double-layer capacitance
(Cdl), the charge transfer impedance (Zc), and the impedance of the conduction process
(Zs). In most simple cases Zs and Zc are pure ohmic resistances (Rs is the “solution
resistance” and Rc is the “charge transfer” or “polarisation” resistance). On the basis of
the above consideration one can realize immediately that the resistance of the precipitate
membranes are included in Rs in the equivalent circuit. In fig. 3.9 c, results of impedance
measurements carried out at the equilibrium potential of the Cu working electrode are
presented. By repeating the frequency scans continuously (and sufficiently fast), the
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time evolution of the impedance after contacting the reacting solutions could also be
followed. The frequency scans were started immediately after the outer electrolyte
was layered on top of the gel, and finished when the passive border covered the entire
lower surface of the precipitate. The impedance was measured during each scan at 6
discrete frequencies over a frequency range from f = 0.5 Hz to f = 20 kHz, applying a
sinusoidal perturbing signal (amplitude: 10 mV ). It can be seen, that the Z’ real parts of
impedances are always relatively small (< 7 Ω), and the values measured at f = 10 kHz
and f = 788.5 Hz, which can be identified unequivocally with the Rs resistance of the
solution and precipitation/gel phases between the working and the reference electrode,
are practically independent of time during the evolution of the precipitation patterns in
the gel.

Similar results were also obtained for the Na)H + AgNO3 system. Thus, we can
drive the conclusion that the passive borders are not completely insulating, but they
bear ion-selective properties.

Microspectrophotometric Measurements

In this section, results of microspectrophotometric measurements are presented demon-
strating the existence of a chemical ahead of the active borders, that is supposed to
be the diffusive intermediary compound. Spectral absorption measurements were made
from small areas at small spatial intervals across the active border. The measurements
were performed with the NaOH + CuCl2 reaction in PVA gel, since the hypothetical
diffusive intermediary compound in this reaction was assumed to have an absorbance in
the visible range [172].

First a gel layer of about 0.2 mm thickness was prepared between a microscope slide
and a cover glass. This was achieved by putting some droplets of the gel mixture on the
slide, covered by a cover glass and let to cross-link in this setup. In between the slide
and the cover glass two splinters of a cover glass were placed as spacers. The reaction
was started by putting some droplets of NaOH at the edge of the gel sheet. The droplet
was covered by another cover glass to avoid its evaporation.

The measurement system consisted of an Olympus BHB compound microscope fitted
with a camera port. The sample was mounted on the microscope stage and illuminated
using standard bright field illumination. The sample was viewed with a 10X NA 0.25
Olympus PL10 objective which enabled the advancing precipitation front to be imaged
via 10X eyepieces, one of which was fitted with a graticule. The ocular graticule al-
lowed the user to determine the position on the preparation of the projected image of a
500 µm diameter fibre optic which was mounted in the centre of the camera port. Light
from a 50 µm diameter area of the precipitation front was thus collected by the fibre
optic which terminated in an Ocean Optics USB2000 miniature spectrometer. Spectral
measurements were made in the range 400 nm to 800 nm, data being recorded with
Ocean Optics’ OOIBase32 software. Spectral measurements were made of the system
dark current by occluding the fibre optic (’dark’ measurements), a reagent-free area of
the preparation (the ’baseline’), as well as the sample itself. Absorbance data were cal-
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Figure 3.9: (a.) Schematic picture of the experimental setup used for impedance mea-
surements. W: working electrode; R: reference electrode; C: counter electrode; (1) solu-
tion of the outer electrolyte, (2) precipitate, (3) gel containing the inner electrolyte, (4)
solution of the inner electrolyte; (5) boundaries of the gel, (6) active border, (7) passive
border. (b.) Equivalent circuit representing the impedance of the system. Cdl: double-
layer capacitance; Zc: charge transfer impedance; Zs: the impedance corresponding to
the conduction process. Results of impedance measurements carried out at the equilib-
rium potential of the Cu working electrode on 2.93 M CuCl2 + 0.12 M K3[Fe(CN)6]
in agarose gel. Z ′: real part of the complex impedance at different frequencies:
� : 10.09 kHz; • : 788.5 Hz; � : 65.71 Hz; o: 5.97 Hz; � : 0.5 Hz. The du-
ration of a single frequency scan was 14.4 s, and each impedance value is assigned to
the time of the completion of the measurement at the corresponding frequency.

culated as the negative decadic logarithm of the spectral transmission, the latter being
calculated at each wavelength as (sample-dark)/(baseline-dark).

Spectral absorbance measurements were started when the precipitation front (the
active border of the precipitate region) was at about 200µm distance from the measuring
light beam. At this point only the spectra of the CuCl2 could be observed (fig. 3.10).
The front was approaching the measuring area at a speed of about 0.7 µ/s and thus,
its distance from the beam decreased with time. The spectrum changed significantly
when the distance decreased below about 80µ. Although the spectrum is too simple
for determining the character of the underlying chemical compound, it clearly indicates
the presence of a compound that is different from the reagents. Here we mention that
no precipitation (formation of secondary patterns [160]) took place ahead of the active
border.
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Figure 3.10: Microspectrophotometric measurements on 8 M NaOH + 0.586 M CuCl2
in PVA gel. Curve (a) represents the spectrum of regions far from the precipitation
front, where the limit of the measuring beam was at of 180 µ from the front itself. Here
only the inner electrolyte is present. Curves (b), (c) and (d) were measured closer of
the precipitation front (75, 45 and 24 µ respectively), where traces of a new chemical
compound can be observed. Curve (e) is the spectrum of the blue-green precipitate in
the wake of the precipitation front.

As the front overtook the measuring light beam, the spectrum of the precipitate,
having a blue-green color and assumed to be mainly Cu(OH)2, could be recorded.
This spectrum shows similarity with that one measured ahead of the front. Note that
7−8 min after it has been formed, the blue-green precipitate decays to brown CuO, but
this last step has no influence on the process of pattern formation [157]. This experiment
also confirmed the hypothesis that the bulk precipitate does not halt the diffusion of
the outer electrolyte’s reacting ion, and neither does the active border.

Other Experimental Findings

Two further experimental findings also support the tightly closed structure of the passive
borders. Dissolving by EDTA (ethylene-diamine-tetraacetate) the final CuO precipitate
formed in the NaOH + CuCl2 reaction in PVA gel, the trace of the passive borders
can be observed even by naked eye as opalescent surfaces. This indicates that the gel
structure is getting damaged when the passive borders build up. In addition, when the
reactions are over, the gel breaks more easily along the trace of the passive borders.
Consequences of damaging the passive edge while the reaction is running were also
examined. When the passive edge was mechanically cut, or destroyed by a strong laser
beam, new precipitation fronts started but were quickly passivized, probably because
the inhomogeneities generated during the damaging act as centers where new passive
borders can start. When a small gel segment, crossed by a passive border, was replaced
by a piece of gel containing only the inner electrolyte, a new precipitation front started
at that region.
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It should to be mentioned that our findings are supported by some classical results
of colloid science. It is well known that copper-ferrocyanide precipitate was used in
osmotic studies in the 19th century. According to the experiments of Traube [173], when
a drop of copper sulfate solution is brought into contact with a drop of potassium fer-
rocyanide solution, a thin layer of reddish-brown copper-ferrocyanide precipitate forms
at, and blankets, the entire boundary. After that, no further formation of precipitate
occurs. Thus the thin layer of precipitated material formed between the two drops of
solutions has halted further passage to the other side of the copper ion as well as the fer-
rocyanide ion. By allowing the copper ferrocyanide precipitate to form within the wall
of an unglazed porcelain cylinder, Pfeffer transformed Traube’s fragile layer of copper-
ferrocyanide precipitate into a membrane strong enough to withstand not only routine
handling but even unilateral application of mechanical pressure [174]. This membrane
was permeable to water, but not to sugar, therefore it was named a semipermeable
membrane. However, as it was already emphasized by Nernst, copper ferrocyanide
membranes are permeable for several chemical substances, e.g. nitrates, hydrochloric
acid, and many pigments [175]. Up to this time, only the semipermeable character of
the copper-ferrocyanide precipitate has been shown. Our experimental results suggest
that the bulk of a class of precipitates, among others the copper-ferricyanide, can have
two kinds of borders, one of them selectively halting the passage of some ions, while the
other border, as well as the bulk precipitate, does not prohibit diffusion. The micro-
scopic structure of these borders, as well as that of the bulk precipitate, is the subject
of intensive research.

3.3 Formation of Primary Patterns in Gel Columns

When the outer electrolyte is poured onto the top of a gel column, the diffusion front is
expected to have the form of a disk, in contrast with previous cases, when it had a shape
of a thin band. In this instance, the precipitation fronts involved in pattern formation
can perform more complicated motion, leading to more complex patterns than in the
previous case. A series of patterns were observed that depend on the outer and inner
electrolyte concentrations (fig. 3.11). The experiments were carried out in glass test
tubes of 14.2 mm inner diameter, and in plastic Petri dishes of 13 mm height and 87 mm
inner diameter.
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Figure 3.11: Concentration “phase”-space of the reagents for the patterns formed in
test tubes. (a.) irregular Liesegang banding; (b.) homogeneous brown precipitate; (c.)
helicoidal patterns having a decreasing pitch; (d.) helicoidal patterns; (e.) region where
cardioid patterns may appear; (f.) randomized helicoidal patterns; (g.) cabbage-like
patterns; (h.) homogeneous green or purple precipitate; (i.) the precipitation stops
close to the top of the gel column because of the depletion of the outer electrolyte; (j.)
crescent-like rhythmic patterns.

3.3.1 Rhythmic Banding

When the outer and inner electrolyte concentrations are in region “a” in fig. 3.11,
a green-colored substance is formed behind the diffusion front that was found to be
optically more dense in separate, but randomly spaced regions along the gel column (fig.
3.12 (a.)). This can be considered as an example of the irregular Liesegang banding. In
this case, syneresis of the gel has not been observed, and the ripening process leading
to the colloidal brown precipitate did not take place at all.

Figure 3.12: (a.) Irregular Liesegang banding in a test tube. a0 = 0.5 M , b0 = 0.0293 M ,
scale bar = 1 cm. (b.) Crescent-like rhythmic pattern in a test tube. a0 = 1 M ,
b0 = 0.146 M , scale bar = 0.5 cm.
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With electrolyte concentrations as in region “j” in fig. 3.11, an opaque green precip-
itate is formed that is periodically jagged by crescent-like dark regions, that might be
a variant of the ’blind bands’ (fig. 3.12 (b.)). These patterns have not been studied in
detail [13].

3.3.2 Homogeneous Precipitation

At higher outer and inner electrolyte concentrations (regions ”b”-”f” in fig. 3.11) the
blue-green precipitate (that later decays into the brown, colloidal CuO) will appear in
the wake of the precipitation fronts. At the concentration values of region ”b”, regressing
edges cannot survive, even with special initial conditions that will be discussed below.
A system lacking the possibility of forming regressing edges will be referred to as not
stimulable. Note that this concept is different from “excitability”, where the medium is
able to regenerate.

In order to establish the inner electrolyte value for which the system is no longer
stimulable, special initial conditions have been created. The stimulability of a narrow top
region of the gel column was raised by increasing the inner electrolyte concentration of
that region. This was achieved by pouring 2.96 M CuCl2 solution on the gel for 10 min.
Having removed the CuCl2 solution, the 8 M NaOH outer electrolyte was poured on
the top. The precipitation front split while passing through the gel region with increased
stimulability, and the resulting passive borders either survived or died out (i.e. the uncut
front was reestablished) as the front left the top of the gel column. The lowest inner
electrolyte values for which the passive borders survived, were about 0.58 M CuCl2.
Below this concentration, regressing edges ceased to exist in the system. Note that
the spontaneous splitting of precipitation fronts requires a higher concentration of inner
electrolyte than that for maintaining the already formed passive borders. Depending
on the smoothness of the gel surface, for an outer electrolyte of 8 M NaOH , this
concentration varies between 0.62 − 0.72 M CuCl2.

3.3.3 Helicoids, Spirals

Rotating spiral-shaped precipitation fronts can form in the region “d” on the phase-space
figure 3.11. At the higher inner electrolyte concentration limit of this region cardioid
patterns may also form. At the lower limit the splitting of the precipitation front occurs
only when the stimulability of the top of the gel column is enhanced, as described above.
As the front leaves the top region, and enters a region where the concentration of the
inner electrolyte is homogeneous, the passive borders survive.

After a short transient, the active borders took the form of spiral arms. As the
diffusion front advanced, they swept through the gel while rotating around the axis
of the gel column (figs. 3.13 (b.), (e.) and (f.)). Note that at first, the blue-green
precipitate forms in the wake of the active borders, and this precipitate decays in about
7 − 8 min to the colloidal brown CuO. However, the CuO did not form in thin, blind
regions below the passive borders of domains already filled with precipitate. These blind
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Figure 3.13: Patterns formed in a test tube by precipitation fronts shaped like spiral
arms. a0 = 7.5 M, b0 = 0.644 M . (a.),(c.) The gel column and its longitudinal section
after the reactions finished. The “plastic” form is caused by the syneresis of the gel.
Scale bar = 10 mm. (b.) The structure of the precipitation fronts: (1) the active border
(the precipitation front), (2) arrows that mark the growing direction of the precipitation
fronts, (3) core, (4) arrow that marks the advancing direction of the diffusion front. (d.)
computer graphics of helicoids similar to the blind regions. (e.) “In vivo” figure of the
front structure. The active borders have a dark shade, while the passive borders have
an open shade. The diameter of the pattern is 14 mm. (f.) Cross-section of the gel
column after the termination of the reactions. The black curves are the traces of the
blind areas free of CuO. In the central region (core) no front splitting took place. Scale
bar = 2.5 mm.

bands are the dark curves on figs. 3.13 (c.) and (f.).

In a central region called the core, the precipitation front did not split. The diameter
of the core was approximately 4 mm, this value being larger for the experiments in which
the inner electrolyte concentration was lower. Note that the spiral-shaped trigger waves
in the Belousov-Zhabotinsky reaction also have a well-defined core [168, 169].

The oblique motion of the spiral-arm-shaped precipitation fronts leads to telescoped
helicoid-like regions filled with colloidal CuO, separated by the thin, dark blind areas
(fig. 3.13 (d.)). The handedness of the helicoids was determined by random splitting and
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annihilation of the precipitation fronts at the upper end of the gel column. The pitch
of the helicoids was constant during the experiments when 6 mL of 8 M NaOH was
layered on the gel column having an initial volume of about 18− 20 mL and a diameter
of 14, 7 mm. Observing that the angle of the passive borders and thus the pitch is
determined by the ratio of the precipitation front’s vertical and the regressing edge’s
horizontal velocities, this ratio had to be unchanged during the experiment. The reason
why the velocity of the regressing edges is correlated with that of the precipitation fronts,
is presently unknown. Note that the vertical speed of the active borders is determined
by the diffusion front, and decreases with time.

However, when the concentration of the outer electrolyte having a volume of 6 mL
was only of 3 M , the pitch of the helicoids was not constant any more. As the reaction
proceeded, the outer electrolyte depleted, and the speed of the diffusion front decreased
markedly before the front finally came to a halt. The speed of the regressing edges did
not decrease in the same manner, and this led to the gradual decrease of the pitch (fig.
3.14). At the present stage of research the reason for this effect is unknown [13].

Figure 3.14: Spiral with decreasing pitch. a0 = 3 M, b0 = 0.586 M . Scale bar = 5 mm.

3.3.4 Cardioid-like Patterns

In region “e” of fig. 3.11 the types of patterns that formed were unpredictable: in 70 %
of the experiments rotating spiral-like precipitation fronts were formed similar to those
presented above, and in 30 % of the cases, cardioid-shaped patterns emerged. The deve-
lopment of the latter passed through various stages as the diffusion front swept through
the gel column (fig. 3.15). At a certain point in the central part of the precipitation
front, a small, arch-shaped split occurred, in which precipitation did not take place (fig.
3.15 (b.)). The external border of the arch was a regressing edge, leaving behind an
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empty area subsequently filled with precipitate. In the next stage the arch grew, and its
ends turned against each other. When they met, the pattern took the form of a closed
cardioid (fig. 3.15 (c.)). At that moment, the precipitation front (formerly a connected
region) was split into two parts. In between, an empty, “blind” region is present, having
cardioid cross-section. As the diffusion front advanced, the outer precipitation front,
which had a cardioid-shaped regressing edge, became smaller, while the inner front was
getting larger. When the diameter of the inner front reached about 6 mm, a new split
occurred (fig. 3.15 (d.)).

Figure 3.15: Cardioid-like patterns in test tubes. a0 = 8 M, b0 = 0.732 M . (a.) Close-
up of the gel column, scale bar = 10 mm. (b.)-(d.) Cross sections of the gel column
after the reaction took place, located one below the other, representing consecutive
stages of the pattern development. (b.) A new split emerges while an old, cardioid-
shaped regressing edge reaches the border of the gel. (c.) A closed cardioid forms (d.)
The cardioid is getting larger, and another split emerges (e.) Computer graphics of a
cardioid-based cone resembling the structure of the black blind regions.

A few minutes after the active borders produced the blue-green precipitate, the
ripening process began to generate the colloidal brown precipitate. Only the thin, blind
bands below the passive borders of the regions precipitated by different fronts remained
empty of the brown precipitate.

3.3.5 Target-like Patterns

In order to test whether the formation of spiral and cardioid-shaped fronts is an inherent
property of the chemical system, or is due to the geometry of the test tubes or the



3.3. FORMATION OF PRIMARY PATTERNS IN GEL COLUMNS 59

syneresis of the gel, experiments have been performed in Petri dishes also. The inner
diameter of the Petri dish (87 mm) is much larger than the characteristic size of the
patterns, and thus, they cannot “feel” the border of the dish. The effects of the syneresis
are negligible except at the margins of the gel. Observing that spirals and cardioids
appeared in these experiments also, they could not be generated by border effects (fig.
3.16 (a.)).

Figure 3.16: (a.) Target patterns, spirals and cardioids in a Petri dish of 87 mm inner
diameter. a0 = 8 M, b0 = 0.732 M . The dish was put on a scanner while the reactions
take place, and the picture was taken from below. The light curves are the passive
borders of the precipitate, while dark surfaces are the active borders. (b.) Sketch on
the formation of the target patterns.

Beside the above mentioned formations, target-like patterns often emerged in Petri
dishes. These patterns have almost never been observed in test tubes. The development
of a target-like pattern proceeds as follows.

At a certain point of the active border the formation of the precipitate stops. As the
active border progresses, these points expand into a cone-like region free of precipitate,
while the front, having a circle-shaped regressing edge, decreases in surface. The wall of
the cone is a passive border. Because the passive borders are more pale than the active
ones, a disk-shaped light spot (the projection of the cone) in a dark background (the
precipitation front, i.e. the border that is still active) will be observed if the Petri dish
is looked at from below.
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However, the precipitation in the empty region restarts very soon, usually in the top
of the empty cone. Since the new active border has the same dark shade as the older
active borders, and the new precipitate covers the central region of the cone, a light
ring (the uncovered part of the passive border) in a dark background (the inner new,
and outer old active borders), as sketched in fig. 3.16 (b.), will be observed if the Petri
dish is looked at from below. Some time later another passive cone arises in the newly
formed precipitate, and the process repeats itself. Target patterns having 6− 8 “rings”
have also been observed (fig. 3.16 (a.)).

3.3.6 Cabbage-like Patterns

At very high outer and inner concentration values, regular, ordered patterns no longer
form. The traveling precipitation fronts frequently emerge and annihilate. The precipi-
tation fronts frequently split at the same time. All of these phenomena resulted in the
“cabbage-like” pattern shown in fig. 2.15.

Figure 3.17: Cabbage-like disordered pat-
terns formed in gel columns. The elec-
trolyte concentrations were very high (a0 =
15 M, b0 = 0.879 M .) Scale bar = 1 cm.
(a.) The gel column after the reaction takes
place. (b.) Longitudinal section of the gel
column. Frequent birth and annihilation of
precipitation fronts can be observed.
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3.4 Voronoi Diagrams

Patterns in NaOH + AgNO3 and CuCl2 + K3[Fe(CN)6] -like chemical systems are
not so various: the reactions stop after the formation of a complete layer of passive
border [159]1. However, when the reactions are running in Petri dishes, the dynamics of
regressing edges can lead to the formation of an interesting type of patterns, resembling
Voronoi diagrams.

3.4.1 Concept and Generation of Voronoi Diagrams

Problems related to spatial tessellations arise in almost all fields of science, where a space
should be partitioned into ”spheres of influence”. Finding the best facility location [176,
178, 179], description of aggregation territories of slime mold cultures [180], investigating
the geometry and growth of cells [181] and modeling some animal coat patterns [182, 183]
requires tasks of tessellations to be solved. These can usually be achieved by constructing
the Voronoi diagram of the problem [176, 178]. The Voronoi diagram (in plane) is the
nearest-neighbor map for a set of initially given points. Each region contains those points
that are nearer to one input point than any other input point, while edges of regions
are equidistant to them. A Voronoi diagram is sometimes also known as a Dirichlet
tessellation. The cells are called Dirichlet regions, Thiessen polytopes, or Voronoi cells
and the boundaries of the cells are termed the medial axes.

Several kinds of simple reaction-diffusion systems in gels are found to be able to
generate Voronoi diagrams [159, 177, 184]. In the reaction-diffusion system presented in
[159] some droplets of an appropriate outer electrolyte ( e.g. ferric (III) chloride and
potassium iodide were put at distinct points on the surface of a thin gel sheet contain-
ing the inner electrolyte (e.g. potassium ferrocyanide or palladium chloride). Thus a
precipitation reaction is initiated around the droplets. Because the process is diffusion
limited, ahead of the reaction fronts there is a thin region, where the inner electrolyte
is depleted. Just before the reaction fronts started from different droplets meet, the
depleted regions overlap, and the precipitation ceases or is significantly reduced. Since
the speed of the fronts started from different points varies (decreases) with time in an
identical manner, then the resulting pattern, consisting of precipitate regions and empty
bands, represents the Voronoi diagram of the droplets. Chemical reactions of this type
have been used as experimental chemical processors for solving shortest path problems
[185], and in the construction of experimental XOR logic gates [186].

1Note that the NaOH +AgNO3 reaction, running in a thin gel sheet located between a microscope
slide and a cover glass, does not cease after the formation of the first layer of passive border, and thus
it can yield a great variety of patterns [158].
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3.4.2 Voronoi Diagrams Generated by Regressing Edges of
Precipitation Fronts

Ability of building Voronoi diagrams of the NaOH +AgNO3 or CuCl2 +K3[Fe(CN)6]
processes in a ”Liesegang setup” has been investigated. The inner electrolyte was ho-
mogenized in agarose gel. The gel layer, having a height of about 6 mm, was located
into Petri dishes of 87 mm internal diameter and 13 mm height.

The reactions were started by pouring a layer of about 5 mm of outer electrolyte onto
the gel. Having a concentrated outer electrolyte (8 M NaOH or 2.93 M CuCl2, respec-
tively), three types of behavior have been observed as the inner electrolyte concentration
was varied.

At low inner electrolyte concentrations (below 0.3 M AgNO3 or 0.03 M
K3[Fe(CN)6]) a homogeneous precipitate forms in the regions reached by the outer
electrolyte, irrespectively of the condition of the gel surface.

When the concentrations were approximately 0.64 M AgNO3 or
0.09 M K3[Fe(CN)6], Voronoi diagrams could be formed in a controlled way: in this
case the centers of the induced Voronoi cells were the points at which the gel surface had
been deliberately marked e.g. by gently touching the gel surface with a pipette tip or
thin glass stick. At these concentrations no natural Voronoi cells would be formed, and
if the gel had not been marked, then a homogeneous precipitate would have resulted
from the addition of the outer electrolyte.

At even higher inner electrolyte concentrations, (e.g. 0.88 M AgNO3 or 0.15 M
K3[Fe(CN)6]) minor defects of the gel surface become the natural centers of the Voronoi
cells. Thus, the pattern becomes uncontrollable.

The precipitate patterns resembling Voronoi diagrams are built up via the following
sequence of events. The precipitation does not begin on the whole surface of the gel: in
some points, where the surface is damaged, the reaction does not start at all (fig. 3.18
a). As time evolves, and the diffusion front followed by the precipitation front sweeps
through the gel, these points expand into empty cones, free of precipitate (fig. 3.18 b).
The precipitation continues only on the leaky-disk-like active border. Since the base
of the empty cones grows as the front progresses, the disk-shaped holes in the front
will also grow in size. The circular margins of the holes are the regressing edges of the
active border. The reaction does not proceed on the mantle of the cones that separate
the already formed precipitate from the empty regions, being the passive borders of the
precipitate region.

At the points where the regressing edges of the fronts meet, the precipitation stops
(fig. 3.18 c). Seeing that the horizontal speed of the regressing edges changes in time
in the same way, the locus of their meeting will draw the Voronoi diagram of the points
where the precipitation did not start. The Voronoi polygon appears as a local minimum
of the precipitate region’s lower surface (the passive border). All of these stages can
be observed on the figures 3.19 and 3.20 representing the formation of controlled and
spontaneous patterns in the CuCl2 +K3[Fe(CN)6] and NaOH +AgNO3 experimental
systems, respectively. Note that in rare cases the precipitation may restart and a small
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Figure 3.18: Schematic representation of Voronoi diagram formation through “regressing
edge mechanism”. (1) outer electrolyte, (2) agarose gel containing the inner electrolyte,
(3) precipitate, (4) precipitation front (active border, represented by a dotted surface),
(5) passive border, (6) regressing edge. The contours of the patterns are drawn on the
bottom of the vessel. (a.) The precipitation does not start at some points of the gel
surface. (b.) These points expand into precipitate-free cones as the front progresses.
(c.) The regressing edges meet on the line that is an equal distance from the tip of the
empty cones.

amount of precipitate can form even after a connected layer of passive border is formed.

It should be noted that the precipitation may stop not only at the gel surface just
after the reactions have been started, but at a later stage of the progression of the leaky-
disk-like precipitation front. If some of the cones start to develop at this later stage,
the resulting polygon will not be a Voronoi-like one, since the “belated” cones will be
able to expand only in a smaller area. The tessellation generated in this way can be
regarded as a generalization of a Voronoi diagram, and it may also be related to some
practical problems.
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Figure 3.19: Consecutive stages of development of a controlled Voronoi diagram, rep-
resenting triangular, rectangular and hexagonal arrangements. The centers of the cells
were put by hand, therefore the pattern is not “true to type”. The outer electrolyte was
of 2.93 M CuCl2, while the inner electrolyte of 0.09 M K3[Fe(CN)6]. Time elapsed
from the start of the experiment was 43 s, 198 s and 878 s at panels (a.), (b.) and (c.),
respectively. The diameter of the Petri dishes is 87 mm.

Figure 3.20: Consecutive stages of development of a spontaneous Voronoi diagram. The
outer electrolyte was of 8 M NaOH , while the inner electrolyte 0.882 M AgNO3. Time
elapsed from the start of the experiment was 35 s and 138 s at panels (a.) and (b.).
The figure represented at panel (c.) was taken after the termination of the reactions.
The diameter of the Petri dishes is 87 mm.



Chapter 4

Primary Patterns: Theory and
Computer Simulations

4.1 The Mathematical Model

The mathematical model is based on the most relevant experimental results presented in
[157, 158, 161]. It consists of coupled reaction-diffusion equations and a cellular automata
[187, 188, 190]. The latter were included in the model in order to handle the precipitate
regions, which have sharp bordering surfaces.

First version of the model has been published in [158]. Similar cellular automata–
reaction-diffusion approach has recently been used to model chemical systems involving
a long (macroscopic) and a short (atomic) length scale [189].

Most elements of the model are straightforwardly derived from the experiments (ex-
istence of the DC, as well as that of active(permeable) and passive (restraining) stages
of the precipitate), some others represent classical results of colloid science (nucleation
and growth thresholds). The assumed mechanisms of passivization are deduced from
indirect observations. However, they represent the simplest assumptions that led to the
patterns observed in the experiments.

Equations and cellular automata rules of the dimensionless model are the following:

∂a(x, y, t)

∂t
= Da(x, y) · ∆a(x, y, t) − r · a(x, y, t) · b(x, y, t) (4.1)

∂b(x, y, t)

∂t
= Db(x, y) · ∆b(x, y, t) − r · a(x, y, t) · b(x, y, t) (4.2)

∂c(x, y, t)

∂t
= Dc(x, y) · ∆c(x, y, t) + r · a(x, y, t) · b(x, y, t) − [R] (4.3)
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R0:
[

c(x, y, t) > c∗∗
]

∧
[

d(x, y, t) = empty
]

→ d(x, y, t + ∆t) = active border

R1:
[

c(x, y, t) > c∗
]

∧
[

d(x, y, t) = active border
]

∧
[

d(xnn, ynn, t) = empty
]

→
→

[

d(xnn, ynn, t + ∆t) = active border
]

∧
[

d(x, y, t + ∆t) = bulk precipitate
]

∧
[

c(x, y, t + ∆t) = 0
]

R2:
[

c(x, y, t) < c∗
]

∧
[

d(x, y, t) = active border
]

∧
[

T (x, y, t) ≤ τ(v)
]

→
→ T (x, y, t + ∆t) = T (x, y, t) + ∆t

R3:
[

c(x, y, t) < c∗
]

∧
[

d(x, y, t) = active border
]

∧
[

T (x, y, t) > τ(v)
]

→
→ d(x, y, t + ∆t) = passive border

R4:
[

d(x, y, t) = active border
]

∧
[

d(xnn, ynn, t) = non empty ∀ (xnn, ynn)
]

→
→ d(x, y, t + ∆t) = bulk precipitate

Da(x, y) =

{

0, if d(x, y) = passive border or obstacle
Da otherwise

Db,c(x, y) =

{

0, if d(x, y) = non empty
Db,c otherwise

Coordinates of the reaction field, that correspond to a gel sheet, are denoted by x
and y, while t denotes time and ∆t the time step. Terms a(x, y, t) and b(x, y, t) represent
the reacting ions of the outer and inner electrolytes, c(x, y, t) the diffusive intermediary
compound DC, c∗∗ the nucleation threshold and c∗ the growth threshold. [R] symbolises
the coupling with the cellular automata rules.

The term d(x, y, t), denoting the precipitate, is not related to concentrations. It can
take just a few (arbitrary) values, denoting the bulk precipitate, the active borders, the
passive borders, as well as the “empty” regions free of precipitate. The obstacles are
inert cells, where none of the compounds can penetrate by diffusion.

T (x, y, t) represents the age, while τ(v) the maximal lifetime of the cells, where v
denotes the speed of the precipitation front. In general, the maximal lifetime is assumed
to depend on the front speed v. Nearest neighbors of the cell at the lattice point (x, y)
are denoted by (xnn, ynn). The symbol ‘∧’ represents the logical ‘and’.

Initially, the reaction field contains only the compound b having a uniform con-
centration b0, as well as some inert and impermeable obstacles. Reagent a has the
concentration a0 along the x = 0 edge, and zero-flux boundary conditions on the other
edges of the reaction field. All the other compounds have zero-flux boundary conditions
on the entire edge of the reaction field.

The Laplace operator in the diffusion term is denoted by ∆. Diffusion coefficients of
the reagents in the regions free of precipitate are Da and Db, that of the DC is Dc. In
our model, the diffusion coefficient of the outer electrolyte is zero on the passive borders,
that is, it cannot cross these surfaces. The inner electrolyte is unable to diffuse in the
precipitate. However, alterations of Db on the passive borders as well as in the bulk
precipitate do not change the character of the simulation results. The precipitate cannot
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diffuse at all. The reaction, having rate constant r, is supposed to be proportional to
the reagent concentrations.

The meaning of the cellular automata rules are as follows:

The appearance of new precipitation fronts is encoded by Rule 0. If in a point of
the reaction field there is no precipitate or obstacle (“empty” point), and concentration
of c exceeds the nucleation threshold c∗∗, new front segments (active cells) appear.

Rule 1 describes the progress of an active border. If the concentration of the DC
exceeds the growth threshold c∗ at a cell of the active border, all the nearest neighbors
of the cell which are “empty”, become active. On a square lattice these are the first
Neumann-type neighbors. The DC is assumed to be consumed during the activation
process, and therefore it is eliminated from a cell that activated its surrounding.

The model assumes that only the surface of the precipitate can act as a region where
precipitation can happen. Therefore, the cell that has activated its surrounding has to
become passive. This consequence is also included in rule 1.

Rules 2 and 3 implement the assumption that the concentration of the DC has to
reach the growth threshold c∗ within time τ(v) measured from the emergence of the
active cell, otherwise the element will be passivized. Aging of the cell is described by
rule 2, and passivization at the end of its lifetime is governed by rule 3. Investigated
forms of the function τ(v) are discussed in the Simulations section.

Rule 4 describes the second way of passivization, which is an extension of the pas-
sivization algorithm of rule 1. Cells of the active border are passivized in any configura-
tion, when they become surrounded by either active or passive cells. Note that an active
cell surrounded by precipitated cells and portions of the obstacle also gets passivized.

In the computational implementation of the model, the differential equations are
applied first, the cellular automata rules afterwards. The rules act in the order R0-R1-
R2-R3-R4.

Progression of the active borders proceeds in the following way: The reaction pro-
duces the DC, while reagents a and b are depleted in the surrounding. Since the outer
electrolyte cannot cross the passive borders, the reaction is taking place mainly ahead of
the active borders. Due to the reaction, the concentration of DC will rise at the active
border, while the age T of the cells at the front is also increasing. Let us assume that
the growth threshold c∗ is reached before the age of the cells exceeds the lifetime τ(v).
Usually this happens at the same time in a larger front segment. At this moment, the
first neighbors of the active cells (which in this configuration are the next row of cells)
become active, while the “mother-cells” get passivized. At the same time the DC gets
depleted in the passivized cells, but while its diffusion rate for the passivized cells is
zero, the magnitude of the DC in these cells has no influence on the simulation results.

Splitting of an active border in segments may happen when it overtakes an obstacle.
During this event, the front can behave in two different ways: Either an active-passive
transition occurs, and the front, having just overtaken the obstacle, splits and the re-
sulting front segments shrink, or passivization does not occur, and the front reconnects
behind the obstacle. In order for the splitting to occur, the concentration of DC around
the endpoints of the active border segments has to be lower than the constant value
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in the middle of them. In this case, the active cells around the endpoints will not be
able to activate their surrounding when the central segment of the front does. However,
these cells remain permeable for the outer electrolyte, but at appropiate parameter val-
ues the growth threshold c∗ will not be reached along them in their lifetime τ(v). As a
consequence, they will be passivized when their age T reaches τ(v).

In order for the shrinking of active border segments to occur, the concentration of
DC around their end points has to be permanently lower than the constant value in the
middle. Computer simulations showed that this situation is typical for a wide range of
parameters. Due to the mechanism presented above, the cells around the end points
are getting passivized, the active border segments are shortened and finally disappear,
leaving behind precipitate triangles.

In order to increase numerical precision, decreasing the mesh size of the space dis-
cretization may appear desirable. However, if physical parameters have to be kept
constant, rules 1 and 4 need to be changed. Several rows of active cells have to emerge
at the same time, and not only the border cells can be active. Such extensions of the
model have not been investigated. Decreasing of the time step does not cause similar
problems.

4.2 Simulation Results

Computer simulations were performed on a rectangular grid using the finite volume
method [162]. The boundary conditions are described in the previous section. The
size of the time step was 0.05 while that of the mesh size of 1.0. Since the detailed
chemical mechanism of the reactions is unknown at the moment, the parameters are not
experimentally measured values.

Two versions of the model were investigated, namely when τ(v) is constant or has
a simple dependence on the front speed v. In both cases, the active border arised at
the x = 0 edge just after the simulations were started. In order to initiate front split-
ting, two obstacles were placed at equal distances from the x = 0 edge. When the
precipitation front overtakes the obstacles, an active-passive transition can occur: the
active border splits and begins to shrink, leaving behind a trapezoid-shaped precipitate
region, that finally evolves into a triangle. Although the version when τ(v) is constant
is able to reproduce formation of precipitate triangles (Fig. 4.1), it has a major disad-
vantage. Except some transients, position x of the precipitation front increases with
time as x ∝

√
t, and the speed v of the front is proportional to 1/

√
t. The age T at

which the active cells are passivized is inversely proportional to v, consequently T ∝ x.
Therefore at some distance x the age T reaches τ , a passive border forms and the front
stops. Thus, when τ is constant, the front is unable to travel to an arbitrary distance,
while experimental findings indicate the contrary. Moreover, the parameter range where
formation of triangle-like patterns occurs, is thin.

This problem can be avoided in the simplest way by setting the lifetime τ(v) of
an active cell to Tprevious + τ0, where Tprevious is the age of the “mother cell” cell that
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Figure 4.1: Precipitate triangle formed when τ(v) is constant. The simulation was
performed on a rectangular grid of 120 × 100 units. Dark gray represents the bulk
precipitate, and light gray the regions free of precipitate. Passive borders and obstacles
are drawn in black, while the active borders in white. The parameters are the following:
Da = 3.0, Db = 1.0, Dc = 0.3, r = 0.1, c∗∗ = 11.0, c∗ = 10.0, τ = 8.0, a0 = 40.0,
b0 = 10.0. The obstacles are rectangles of 4 × 2 units, placed at x = 30, y = 22 and
y = 98, respectively. Note that a small cusp, referred to as the “Meinhardt-peak” is
formed at the top of the precipitate triangle. The mechanism of cusp formation has not
been investigated in detail.

activated it, and τ0 is a positive constant. The addition of τ0 is necessary because the
newly activated cells need more time to reach c∗ than their “mother cells” did. This
kind of τ(v) is capable of producing triangles of an arbitrary size, in a wide range of
parameters (Fig. 4.2). Note that bending of precipitation front when facing a small
obstacle has also been observed. The results do not change significantly if diffusion of
the inner electrolyte is allowed in the precipitate with a reduced, but nonzero rate.

Finally we mention that similar patterns can be obtained using an alternative model
in which the outer and inner electrolytes react to form a precipitate. In this model,
the precipitate can have different concentrations, and at appropiate parameter values,
it will have an increased value around the end points of the active border. By assuming
that above a concentration threshold the precipitate is impermeable, formation of the
triangular patterns has also been achieved.

4.2.1 Digression: The Chemical Needle Effect

In a previous version of the mathematical model it was assumed that the sweeping active
border acts as a catalytic surface where the DC is formed, while both kinds of bordering
surfaces of the precipitate are permeable for all of the reagents [158]. At the beginning
of the research a simplified system had been studied, where the reactions are catalysed
by a stationary segment, having a constant length. The investigations performed on this
system led to a surprising result: under ideal, diffusion-limited conditions, the amount
of the product formed in unit time tends to infinity as we approach the end points
of the catalytic segment. This scenario shows a similarity with the needle effect in
electrostatics, and thus, it was referred to as the “chemical needle effect”.

Computer simulations were performed on a rectangular grid, using the finite differ-
ence, as well as the finite volume scheme. Reagents a and b, having initially constant



70 CHAPTER 4. PRIMARY PATTERNS: THEORY AND COMPUTER SIMULATIONS

Figure 4.2: Precipitate triangle formed when τ(v) = Tprevious + τ0. The simulation was
performed on a rectangular grid of 1500×500 units. Meaning of the colors is the same as
in Fig. 4.1. The obstacles are semicircles with radii of 10 units, placed at x = 60, y = 60
and y = 1440, respectively. The parameters are the following: Da = 3.0, Db = 1.0,
Dc = 0.8, r = 0.1, c∗∗ = 9.0, c∗ = 7.0, τ0 = 2.0, a0 = 40.0, b0 = 10.0. The thickness of
active and passive borders has been enhanced on this figure. (a.) Traveling precipitation
front shortly after it appeared. The time elapsed from the beginning of the simulation
is t = 90. (b.) A trapezoid-shaped precipitate region is growing in the central area,
having a shrinking active border. Note the short transient (the passive border is slightly
bent) in the vicinity of the obstacles that caused the active-passive transition. The
time elapsed is t = 1480. (c.) The reactions are over, the precipitate triangle has been
completed.

concentrations a0 and b0, were allowed to react and form the compound c only on a
stationary, straight segment s located in the middle of the grid. The reagents could
reach the catalytic segment by diffusion. Equations of the simplified system presented
above are the following:

∂a(x, y, t)

∂t
= Da · ∆a(x, y, t) − ra(x, y, t)b(x, y, t) · δ(s) (4.4)

∂b(x, y, t)

∂t
= Db · ∆b(x, y, t) − ra(x, y, t)b(x, y, t) · δ(s) (4.5)

∂c(x, y, t)

∂t
= Dc · ∆c(x, y, t) + ra(x, y, t)b(x, y, t) · δ(s) (4.6)

Here Da,b,c denoted the diffusion coefficients, r the reaction rate, and δ(s) = 1 only on
the catalytic segment, being zero elsewhere.
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The distribution of the compound c that appears in march time step ∆t = 0.01 is
represented in fig. 4.3 (a.). This shows a singularity at the end points of the reactive
segment. This can be explained as follows. The local production rate of c at a certain
point of the reactive segment is proportional to the influx of the reagents to that point,
while the influx rates depend on the local concentration gradients of the reagents. The
latter are found to be maximal at the end points of the segment.

Figure 4.3: Computer simulation of concentration profiles of the compound c around
a stationary reactive segment. All units are dimensionless. The simulations were per-
formed with the finite difference scheme, on a rectangular grid of 300 × 200 units. The
reaction a + b → c runs on a band of unit width and 100 units of length, located
in the middle of the grid (x = 100..199, y = 100). t = 5 time units elapsed from
the start of the reaction. (a.) Chemical needle effect: the reaction product formed in
∆t = 0.01 drastically increases by approaching the end points of the reactive segment.
r = 1, Da = 23, Db = 20, Dc = 10, a0 = 30, b0 = 15. (b.) Bumps are not present at
the ends of the reactive segment. r = 1, Da = 23, Db = 20, Dc = 18, a0 = 3, b0 = 1.5.
(c.) Bumps are formed near the end points of the reactive segment. Note that before
the end points the concentration of c falls below the constant value that was reached in
the middle of the segment. The parameters are the same as in (a.).

Depending on the parameters, distributions of the total amount of compound c
can be classified into two important categories. The concentration either decreases
monotonically as we approach the end points of the reactive segment (fig. 4.3 (b.)),
or it will have two “bumps” before the end points (fig. 4.3 (c.)). According to the
simulation results, bumps appear when the diffusion coefficient of c is smaller than the
diffusion coefficient of each of the reagents. This condition is not a sufficient, but only
a necessary requirement. An analytical explanation of the overall distribution of c is
under investigation.
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The previous version of the mathematical model designed to reproduce the formation
of the triangular precipitate patterns, was able to show, due to the chemical needle effect,
formation of Meinhardt peaks at the top of the triangles. A necessary requirement for the
Meinhardt peaks to form is the presence of significantly high bumps on the concentration
profile of the diffusive intermediary compound. When the precipitation front becomes
so short that the two bumps of the DC touch each other, the time necessary for the
production of the critical concentration of the DC is shortened, and the front propagation
speed increases. As a result, at the top of the precipitate triangle the Meinhardt peak
appears.

4.3 Discussion and Open Questions

Computer implementations of the mathematical models presented above are able to re-
produce the main features of the formation of primary patterns: front initiation at the
beginning of the experiments, front splitting, as well as the development of trapezoid-
shaped regions that finally evolve to triangles of precipitate. Thus, it is shown that the
existence of the passive (impermeable) borders can naturally lead to a special distri-
bution of the DC, its concentration being smaller around the end points of the active
borders, and, as a consequence, to the formation of the triangular precipitate patterns
observed in the experiments.

A previous model was also able to reproduce the formation of precipitate triangles,
but only in special circumstances, namely in the case when both reagents are present in
the reaction field [158]. Moreover, it was assumed that the reaction is taking place only
on the active border, having catalytic properties. The present models have more simple
assumptions. However, the formation of Meinhardt peaks has been understood only in
the previous model.

The experiments performed up to this time could not explore the whole reaction
mechanism. Beside others, the nature of passive border formation is unclear. Regard-
ing the hypothesis of ’aging’, its microscopic explanation is unknown, as well as the
dependence of the lifetime τ(v) on the front speed. The molecular mechanism of the
ion-selectivity of the passive borders has not been revealed. The passive borders may
only restrain the diffusion of the outer electrolyte’s reacting ion, or may prohibit the
crossing of some other species of ions as well. The dependence of the diffusion coeffi-
cients on the concentrations [191] is also not included in the model. The parameters of
the model are estimates, and not experimentally measured values.

As mentioned earlier, slightly different versions of the model led to the same ability
of reproducing the front initiation and pattern formation. This shows that the model
has a remarkable robustness.



Chapter 5

Secondary Patterns: Experiments
and a Hypothesis

A large number of chemical systems have been tested to find out whether they can
yield fine patterns, which can be useful in several technological processes. Up to now,
the characteristic size of the finest regular structures produced by chemical reaction-
diffusion systems was of the order of millimeters [119]. These patterns were produced
by the Liesegang phenomenon. However, diffusion-controlled reactions in solids can lead
to periodic banding having a wavelength of the order of 10µm. These bands of particles
are located in a continuous intermetallic matrix phase [6, 192].

The reactions NaOH + CuCl2 and NaOH + AgNO3 are also capable of produc-
ing regular microscopic structures: a more careful look at the precipitate formed in
these processes reveals that under certain circumstances it may be composed of parallel
sheets of colloidal precipitate. These microscopic structures are referred to as secondary
patterns [160].

5.1 The Scenario of the Formation of Secondary

Patterns

In order to study the details of the formation of secondary patterns, the reaction was
started in thin gel sheets and followed with an optical microscope. PVA gel containing
0.732 M CuCl2 was located between a slide and a cover glass, and 8.0 M NaOH
solution was allowed to diffuse into the gel from the edge of the gel sheet. In this way
a reaction-diffusion front forms, that sweeps through the gel.

The reaction-diffusion front of the NaOH is assumed be the source of a compound
that phase separates into high-density (CuO precipitate) and low-density (free of pre-
cipitate) stripes. Although the source front is not visible, it is followed by a sharp
precipitation front, where a blue-green compound is formed that shows no structure
when investigated with an optical microscope [160]. This is referred to as the ’active
border’ of the blue-green precipitate, it can easily be observed even by the naked eye,
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and is likely to follow the shape and the speed of the source front.

The velocity of the precipitation front is mainly determined by the speed of the
diffusion front and the shape of the precipitation front itself. The velocity of the dif-
fusion front decreases in time, roughly by a square-root law. As mentioned earlier, the
syneresis of the PVA gel influences the progression of the outer electrolyte’s diffusion
front. However, this effect is not so significant for thin gel sheets between a slide and a
cover glass. When a new precipitation front emerges, after a transient period of greater
velocity, its speed becomes diffusion-limited. The shape of the front is also important.
A convex segment of a precipitation front is slower than a straight segment, which is
in turn slower than a concave segment. This behavior is in agreement with the predic-
tions of the kinematical theory of chemical waves. However, quantitative measurements
establishing a connection with the eikonal equation have not been performed yet.

Velocity plays an essential role in determining which kinds of secondary, microscopic
patterns are formed as the front advances. The main characteristics of the precipitation
that emerge at various front speeds are as follows [160]:

(a) If the velocity of the front is higher than 2.1 (±0.6) µm/s, colloidal precipitate
does not appear, either ahead the active border, or behind it. The density of the blue-
green precipitate that forms behind the active border is also much reduced.

This happens, for example, at the meeting point of two precipitation fronts (figs.
5.1 (a.)-(b.)). If two precipitation fronts moving towards each other meet, they form a
single, fused front. In the proximity of the meeting point the front speed is significantly
higher, and a region free of brown precipitate remains after the reaction is complete (fig.
5.1 (b.)). The highest front velocity measured was 12.5 µm/s. Note that the blue-green
precipitate shows no structure when investigated with optical microscopy.

(b) At slower velocities of the active border, in general between 0.9 and 1.8 µm/s,
a brown colloidal precipitate emerges in the blue-green precipitate, 7 − 8 min after the
front has swept through a gel region (fig. 5.1 (a.)). The uniformly distributed brown
colloid, that turned out to be CuO, fills the space where the blue-green precipitate was
present, except for the blind regions near the previous passive borders (fig. 5.1 (b.)).
Note that in this case no grainy colloidal precipitate forms in the immediate proximity
of the active border.

(c) If the velocity decreases further, a remarkable new phenomenon takes place.
A homogeneously distributed colloidal precipitate, referred to as the A-type colloidal
precipitate, emerges just ahead of the active border (fig. 5.1 (c.)). The site where the
A-type colloids form will be referred to as the colloidal front. Thus, the colloidal front
precedes the active border (precipitation front).

The uniformly distributed A-type colloidal precipitate forms in the majority of cases
at front velocities between 0.6 and 0.9 µm/s. A few minutes later it converts to the
brown CuO colloid (fig. 5.1 (d.)). Note that in dark-field microscopic investigations
the A-type colloids shine in white, while the CuO precipitate appears brown (fig. 5.1
(e.)). A detailed investigation of the process of the formation of the A-type colloids
showed that this occurs in two steps. First, very small colloidal particles, referred to
as A-type dust, are formed, and these then undergo a ripening process giving rise to
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Figure 5.1: (a.) Two approaching active borders (1) before they meet. The green
precipitate (2) can be observed behind the active borders. Note that the picture was
taken in transmitted light, which is the reason for the green color of the “blue-green”
precipitate. No A-type colloids are present ahead of the active borders. The brown
CuO colloid (3) emerged in the regions where the active border swept through 7−8 min
earlier. Thicker layers of the brown precipitate absorb the light, and look black. Scale
bar = 800 µm. (b.) The same scenario after the termination of the reactions. The place
where an active border swept through is thickly filled with the brown precipitate (3),
except in region (4) next to the meeting point, where the front velocity was higher by
about 2.1 µ/s. Scale bar = 800 µm. (c.) Homogeneously distributed A-type colloids
(5) emerged just before the active border. Scale bar = 50 µm. (d.) Decay of the A-type
(6) and emergence of the brown (7) colloidal precipitate. Scale bar = 200µm. (e.) The
same patterns in dark-field investigation. The A-type colloids shine in white (5), while
the brown precipitate appears brown (3). Scale bar = 200 µm. The outer electrolyte
was a0 = 8.0 M NaOH , while that of the inner electrolyte was b0 = 0.732 M CuCl2.

particles having a greater diameter, referred to as A-type grains.

(d) When the front velocity slows further, usually to 10 − 40 % below the value
where the uniformly distributed A-type colloids first appear, the precipitate starts to
show pattern (fig. 5.2 (a.)): a regular structure of parallel stripes of A-type colloidal
precipitate appears approximately one wavelength distance ahead of the active border.
At this stage, the dark-field investigations show clearly the A-type dust that is under-
going a ripening process (fig. 5.2 (d.)). Later the particles making up these stripes are
converted into brown CuO (figs. 5.2 (b.) and (c.)). Note that this kind of patterning is
strikingly different from the mechanism of the Liesegang phenomena.

The wavelength of the secondary patterns is correlated with the velocity of the active
border. Larger front velocity leads to smaller wavelength. The smallest wavelength
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Figure 5.2: (a.) Dark-field investigation just when the A-type colloidal precipitate starts
to show patterns. Scale bar = 200 µm. (b.) Two main stages of the formation of the
stripes of precipitate. The A-type colloidal precipitate (5) forms ahead of the active
border and transforms into a brown (3) precipitate. Scale bar = 100 µm. (c.) Similar
patterns in dark-field investigation. Scale bar = 200 µm. (d.) Dark-field investigation
of the formation of a stripe. First the small sized A-type dust is formed at the colloidal
front (8), which then ripens to form larger A-type grains (5). Scale bar = 100 µm.
a0 = 8.0 M NaOH , b0 = 0.732 M CuCl2.

observed in the NaOH + CuCl2 system was 15 µm, while the largest was 150 µm.
The CuO precipitate stripes are mostly parallel to the reaction-diffusion front (lamellar
morphology, LM), but in some cases they form an angle with the front. This latter kind
of pattern is referred to as an oblique morphology (OM).

All the above effects can be seen in (fig. 5.3 (a.)): from the upper to the lower part
of the figure, the speed of the diffusion front decreases. The regions are initially free
of colloidal precipitate, then have homogeneous brown colloidal precipitate, and finally
precipitate stripes with slightly growing wavelength appear. Note that at the present
time the functional form of the connection between the front velocity and the wavelength
of the patterns is unknown.

Regular secondary patterns are not specific to a single chemical system. Their for-
mation has also been observed in PVA gels without cross-linking. Emergence of similar
regular grids has been observed in the NaOH + AgNO3 reaction-diffusion system in
PVA gel also. Note that in this reaction the minimal wavelength of the pattern was
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Figure 5.3: (a.) Development of secondary patterns where several defects are also
present. Scale bar = 800 µm. (b.) Fork-like defect in a gel sheet. Scale bar = 50 µm.
(c.) Interactions of elongated defects: two defects forming successively closer to each
other are annihilated, or only one of them survives. The arrow indicates the direction
of propagation of the active border which yields this pattern. Scale bar = 200 µm.
a0 = 8.0 M NaOH , b0 = 0.732 M CuCl2.

only 4 µm (fig. 5.4).

Figure 5.4: Secondary patterns formed in the NaOH+AgNO3 reaction in PVA gel. The
reaction takes place between a microscope slide and a cover glass. a0 = 8 M NaOH, b0 =
0.56 M AgNO3, scale bar = 25µm. (a.) Precipitate grid that is part of a primary pattern
as well. The reactions have finished. (b.) A new stripe of colloidal precipitate is just
forming.
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5.2 Defects in the Secondary Patterns

The secondary patterns, that are stripes consisting of colloidal particles, are not free of
defects (fig. 5.3 (a.)). An interesting dynamical feature of the reaction is the emergence
and interaction of defects. They usually appear when there are slight differences in
the velocity between some parts of the active border. In most cases, the differences
are not high enough to cause significant changes in the wavelength of the grid, but the
front segment, having greater velocity, yields more precipitate stripes than segments
with a smaller velocity. If the wavelength is approximately constant, all the stripes
cannot be continuous along the active border. At the part of the front with higher
speed, new stripes are inserted, and interstitional fork-like defects are formed (fig. 5.3
(b.)). Although several types of defects have been observed in chemical and physical
systems, the fork-like errors show most of the common features of defects present on the
patterns of some sea shells, like those of Nautilus pompilius [46]. This animal bears a
spiral-shaped shell, that results from much faster growth on the periphery of the growing
edge. The number of pigmented lines on the peripheral region is higher than along the
inner side, and the interconnections of the pigmentation lines are similar to the fork-like
errors presented above.

Another common type of error is the so-called elongated defect (fig. 5.3 (c.)). If the
distance between two elongated defects growing towards each other decreases by about
2-3 wavelength, an effective attractive interaction appears between them. After they
meet, one or both of them will disappear. A possible explanation of this behavior is
given in section 4.4.

5.3 Oblique Striping

In the case of the lamellar morphology, the stripes appear one by one along the source
front, that is, their growth does not proceed via the elongation of their end points. In
contrast, in the case of the oblique morphology, the stripes have growing endpoints in
the wake of the source front, and they form an angle with the envelope of their terminal
points 1.

The first emerging stripes will be parallel to the active border. When the source front
does not change its shape and orientation, the subsequent stripes will form parallel to the
previous stripes and the front as well, giving rise to a lamellar morphology. According
to video microscope observations, a possible scenario for the formation of the oblique
stripes is the following [202]: When the source front suddenly changes its shape or
orientation, e.g. as a result of an influx of the outer electrolyte from a new direction,
the newly formed stripes cannot follow the front’s altered orientation, but form more
or less parallel to the previous ones. The newly formed stripes elongate only up to the
limit of the region already visited by the source front, with the envelope of their growing

1The spiral patterns in the classical two-dimensional Liesegang experiments [119] can also be con-
sidered as a special case of the oblique morphology.
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Figure 5.5: Stripes of colloidal CuO grains of oblique morphology. The precipitate
structures form as a result of 8 M NaOH + 0.586 M CuCl2 reaction in a thin PVA gel
sheet of about 0.2 mm thickness, located between a microscope slide and a cover glass.
The width of the figure is 0.58 mm. The sharp straight line shortly below the endpoints
of the stripes represents the active border of the system.

endpoints being parallel to the actual position of the front (fig. 5.5).

5.4 Experiments in Gel Columns

The formation of regular sheets of colloidal precipitate instead of stripes can also be
achieved by having the reactions run in gel columns instead of gel sheets. In order
to obtain several hundred consecutive thin layers consisting of colloidal particles, it
is necessary to avoid the formation of the primary patterns that split and distort the
secondary patterns. The main advantage of doing the experiments in gel columns is that
the formation of primary patterns can be easily repressed. Moreover, the most regular
grids consisting of colloidal precipitate can be obtained by sectioning a gel column
containing only secondary patterns.

The formation of secondary patterns depend on the speed of the precipitation front.
However, the latter depends on the experimental setup as well as on the reactant con-
centrations. Using 6.00 mL of 8 M NaOH solution as the outer electrolyte and gel
columns of 14.2 mm inner diameter and 100 − 120 mm height, the secondary patterns
(layers consisting of colloidal precipitate) appear only if the concentration of the CuCl2
inner electrolyte is higher than about 0.7 M , because it has to be high enough to slow
the active border to the speed where the formation of the secondary patterns can occur.
Unfortunately at these concentrations primary patterns are also present, so the sheets
of the secondary, microscopic patterns are split by the primary ones.

A method of generating primary patterns at concentrations at which, under normal
initial conditions, they do not normally appear has been discussed in section 2.3.3: When
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the CuCl2 concentration is in a range underneath a certain threshold, the formation of
primary patterns could be achieved only by increasing the CuCl2 concentration at the
top of the gel. If the reverse phenomenon would work, it would be possible to inhibit
the formation of primary patterns at concentration ranges where secondary patterns
are forming. Detailed experimental investigations show that this is possible 2: if the
concentration of the CuCl2 is lower than 1.11 (±0.05) M , the formation of primary
patterns can be suppressed. The suppression of the primary patterns can be achieved
by decreasing the inner electrolyte concentration at the top region of the gel column by
pouring an aqueous solution of HCl with pH = 1.2 onto the gel, and keeping it there
for 24 h before the reaction is started.

Thus, when NaOH solution is poured on the top of the gel column, the precipitation
front penetrates first into the gel region that is not stimulable, i.e. where the CuCl2
concentration is not high enough for the regressing edges to appear, and primary patterns
will not form. After the front reaches 3 − 4 cm below the top of the gel column,
where the concentration of CuCl2 is unchanged and high enough to generate primary
patterns, primary patterns will in fact not appear. This method of suppressing primary
patterns does not work if the original inner electrolyte concentration is higher than
1.11 (±0.05) M . Above this value, primary patterns emerge when the front passes
through the gel region with decreased CuCl2 concentration.

When the formation of primary patterns is suppressed, in the above experimental
setup the secondary patterns appear when the concentration of the inner electrolyte is
greater than about 0.8 M . The most regular sheets of colloidal precipitate are obtained
with CuCl2 concentrations between 0.87 M and 0.96 M (figs. 5.6 (a.) and (b.)).

Figure 5.6: Cross-sections of systems of equidistant precipitate sheets at different mag-
nifications. The difference in the shade of colors is due to the different thickness of the
samples. (a.) a0 = 8 M NaOH, b0 = 0.966 M CuCl2. Scale bar= 200 µm. (b.)
a0 = 8 M NaOH, b0 = 0.879 M CuCl2. Scale bar= 50 µm.

Although the wavelength of the patterns increases slightly as the velocity of the active
border decreases, in this experimental setup this effect can be neglected for lengths of
1−2 cm, containing several hundred sheets of precipitate. Note that due to the syneresis,
the gel column does not adhere to the wall of the test tube approximately 2 mm behind
the active border. As a consequence, the outer electrolyte is carried by diffusion only in

2Thus, a hysteresis-like behavior is present in the system.
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the last few millimeters, and the speed of the active border, and thus the wavelength,
can be kept constant if the outer electrolyte is continuously refreshed.

The secondary patterns have got large regions free of defects only inside a cylinder of
3− 4 mm diameter in the center of the gel column. Outside this region the wavelength
decreases slightly as the radius increases, and therefore fork-like errors, sometimes in an
ordered hexagonal or cubic lattice, appear. This is probably caused by the syneresis of
the gel. Syneresis is also responsible for the nonplanar shape of the active border, that
is slightly concave, causing a slight distortion of the precipitate sheets. These errors can
be reduced by using larger test tubes.

5.5 Hypothesis and Computer Simulations

At the present stage of research the mechanism of secondary pattern formation is un-
known, and thus, possible mathematical models can be deduced only by phenomenolog-
ical assumptions. A promising way to model the formation of the secondary patterns
is phase separation, shown by various chemical and physical processes [193–198]. Most
of the studies on phase separation are concerned with initially homogeneous systems,
where pattern formation starts after a temperature quench shifts the system into an
unstable state. However, a new stream of research is being defined by studies where this
process takes place in the wake of moving fronts.

Two mechanisms are known to yield spinodal phase separation behind traveling
fronts. In the first, the concentration of the phase-separating compound is initially in
the stable regime, and a source front shifting it in between the spinodal points can
switch the system into the unstable, pattern-forming range. Alternatively, when the
concentration lies between the spinodal points, the temperature should only drop below
the critical value, required for the instability to occur, behind a quenching front. Some
important aspects on these mechanisms are listed below.

Computational studies on phase separation under directional quenching are pre-
sented in [199] and [200]. The phase separation was studied is the framework of the
Cahn-Hilliard equation. At high velocities of the cooling front, irregular morphology
(IM) emerged. At decreasing front velocities, stripes parallel to the quenching front, that
is, lamellar morphology (LM), and stripes perpendicular to the front, termed columnar
morphology (CM) were found. Although little attention has been paid to the systematic
investigation of the textures when the stripes were oblique to the front (OM), we will
put a special emphasise on these kinds of patterns.

The examination of phase separation in the wake of source fronts has been motivated
by the desire to set up a minimal model of the Liesegang phenomenon. Modeling the
formation of the one-dimensional Liesegang patterns has been achieved by assuming that
the reaction of the electrolytes yields an intermediary compound first, that separates
into high and low density regions according to the Cahn-Hilliard equation [152, 154].

As follows, we investigate the formation of the microscopic, striped (“secondary”)
patterns emerging in the NaOH +CuCl2 reaction running in PVA hydrogel sheets. The
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main characteristics of the parallel and oblique morphologies observed in the experiments
have been reproduced by computer simulations based on phase separation described by
the Cahn-Hilliard equation [202].

5.5.1 Modeling the pattern formation in the wake of source
fronts

The process of phase separation, occurring in the wake of the NaOH +CuCl2 reaction-
diffusion front, has been modeled by the Cahn-Hilliard equation with a Ginzburg-Landau
free energy [198]. Although one of the equilibrium densities of this free energy is negative,
and therefore, in our case unphysical, the equation can easily be rescaled to a form where
both equilibrium densities are positive. However, for the sake of simplicity and without
offending the physical content, we have used the free energy with minima at −1 and +1.

In order to focus our attention to the pattern formation, the reaction-diffusion system
that produces the phase separating chemical has not been included in our model. In
order to describe the source front, a Gaussian-type source term S(x, t; v) has been added
to the Cahn-Hilliard Equation. The model represents the conserved order parameter
dynamics (often referred as Model B dynamics) with an extra source term:

∂c(x, y, t)

∂t
= −∆[c(x, y, t) − c(x, y, t)3 + ǫ∆c(x, y, t)] + S(x, y, t; v) (5.1)

where

S(x, y, t; v) = A · exp
[

−α(x + β − vt)2
]

; (5.2)

Initially, the concentration of the compound c is set to the stable magnitude
c0(x, y, 0) = −1 + η in the whole rectangular simulation area, where η is a random
uniform deviate distributed between ±0.001 [200]. This deviate has been added to the
model in order to make it more realistic.

The value c0 is increased by the source, moving with constant speed v, to the constant
value cf [142]. The speed v of the source, as well as the concentration cf next to the
source front, are considered as independent simulation parameters. Having the speed v
fixed, the value of cf is determined by the amplitude A and the width α of the Gaussian
source. If cf lies in between the spinodal points, that is, −1/

√
3 < cf < 1/

√
3, the

system will be unstable against linear perturbations, and phase separation will take
place in the wake of the front. As time goes on, the concentration profile c(x, y, t)
tends to reach the equilibrium values, and a “ripening” of the regions with the stable
concentrations will take place as well. However, the initial conditions, as well as the
movement of the Gaussian-type source front will strongly affect the emerging patterns.
These features will be our primary concern.

The equation (5.1) was solved on a rectangular grid using the finite difference
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method3. Periodic boundary conditions have been used in both directions.
The time evolution of the system was computed by explicit simple time marching

on a rectangular grid. The mesh size was ∆x = ∆y = 1, while the time step was
∆t = 0.01. A negligible change in some selected simulation results was only observed
when the mesh size was halved and the time step was diminished 10 times. It is also
important to mention that the effect of the grid anisotropy on the simulation results
was also of minor importance. This has been checked by comparing pattern formation
in the wake of source fronts with different orientations.

5.5.2 Simulation results: source fronts traveling with constant
speed

The speed of the source front, as well as the initial conditions, play a decisive role in
determining the character of the pattern formation. Similar effects have been observed
in other chemical systems as well [201]. In this section, our concern will be to investigate
their influence.

Initially, the concentration was set to c0(x, y, 0) = −1 + η in the simulation area.
This was increased by the front to cf , a value being in between the spinodal points. In
the following, the results for the case cf = 0 will be presented, and major differences for
cf 6= 0 will be mentioned.

In our investigations, the source fronts were traveling with different constant speed
values. Although in the experiments the front speed varies in time, this change is usually
not significant for 5−10 stripe wavelength, and the front speed can be considered locally
constant.

Different pre-patterns with c(x, y, 0) = 0 introduced in the x ∈ (5, 30) space units
region of the simulation area highly affected the character of the patterns emerging even
after the front sweeps through this region. Note that the source was started at x = 10
space units from the Y −axis of the simulation area.

In the following, patterning at three different initial conditions are presented. The
effects of the front speeds are also discussed within these cases (fig. 5.7).

a.) In the simplest scenario, the front is started parallel to the Y −axis of the
rectangular grid, and sweeps with constant speed and orientation toward the opposite
edge. The concentration is c0(x, y, 0) = −1 + η all over the simulation area, that is,
no initial patterning is introduced in the system. Depending on the front speed, two
characteristic morphologies were observed.

If the front speed is higher than v ≈ 5, an irregular morphology builds up in the
wake of the front. The explanation is straightforward: the relatively slow phase sep-
aration drops behind the rapidly progressing front. As a consequence, there will be a

3We used the nine-point Laplacian ∆c(xi, yj) = 1

6
[4c(xi−1, yj) + 4c(xi+1, yj) + 4c(xi, yj+1) +

4c(xi, yj−1)+c(xi−1, yi−1)+c(xi−1, yj+1)+c(xi+1, yj−1)+c(xi+1, yj+1)−20c(xi, yj)] and the fourth or-
der term was approximated by ∆2 = c(xi−2, yj)+c(xi+2, yj)+c(xi, yj+2)+c(xi, yj−2)+2[c(xi−1, yj−1)+
c(xi−1, yj+1) + c(xi+1, yj−1) + c(xi+1, yj+1)] − 8[c(xi−1, yj) + c(xi+1, yj) + c(xi, yj+1) + c(xi, yj−1)] +
20c(xi, yj)
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Figure 5.7: Pattern formation in the wake of source fronts traveling with constant speed.
The dimensions of the simulation area are 250x620 space units. ǫ = 0.5, α = 0.1, β = 10
in all the sub-figures. A gray scale has been used, with white as c = −1 and black as
c = +1. (a.) Random patterns formed far behind the front. Note the parallel striping
that turns out in the wake of the random morphology. v = 10, A = 1.78 (cf = 0),
t = 50. (b.) Regular lamellar patterns. v = 1, A = 0.178 (cf = 0), t = 500. (c.) Slightly
disturbed lamellar morphology and oblique morphology with a small tilting angle formed
when the first stripes were destroyed by random spots located in the x ∈ (5, 30) space
units region. v = 1, A = 0.178 (cf = 0), t = 500. (c.) Oblique morphology formed
when the x ∈ (5, 30) space units region was “pre-patterned” with tilted stripes forming
an angle of about 30 degrees with the Y -axis and having a wavelength of about 8 space
units. Note the parallel striping that turns out in the wake of the oblique morphology.
v = 1, A = 0.178 (cf = 0), t = 500.
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large unstable domain between the front and the region where phase separation occurs,
and the scenario will essentially be the same as the phase separation in a field with a
homogeneous concentration in the unstable regime.

At front speeds below v ≈ 2, stripes parallel to the front are formed. This pattern
is referred to as a lamellar morphology. In the vicinity of the limit velocity, the stripes
are staggered and coarse, but below v ≈ 1, they become smooth and straight. Regular
lamellar morphology appears at much lower front speeds as well, but the wavelength of
the stripes is increased. This effect is reminescent of the results encountered in modeling
the Liesegang phenomenon by the terms of a spinodal phase separation, namely the
growing wavelength of the stripes in the wake of a source front with decreasing speed
[152]. Note that the character of the patterns does not change when cf = ±0.12.

b.) In order to examine the stability of the lamellar morphology, the simulations have
been performed such that randomly distributed spots with c(x, y, 0) = 0 were introduced
in the x ∈ (5, 30) space units region of the simulation area. Despite the above random
initial conditions, which disturb the first stripes that build up in the wake of the front,
lamellar morphology, or oblique morphology, with a small angle, appears at v ∈ (0.5, 2).
At v > 5 irregular morphology, and at v ≈ 0.1 spotty irregular morphology appears
in a 250x620 simulation area. The tendency to form the lamellar morphology slightly
diminishes when cf = −0.12.

c.) In certain parameter regions, the form and orientation of the preceding stripes
will strongly influence the location of the subsequent stripes. Since the growth of a
stripe depletes its surrounding, the source front will recover in concentration necessary
for the emergence of a new stripe only above a certain distance from the old one. In
order to simulate this scenario, in the x ∈ (5, 30) space units region of the simulation
area a regular structure of tilted stripes with c(x, y, 0) = 0 were introduced. The angle
between the edge of the simulation area (the Y -axis) and the stripes was about 30
degrees, and the wavelength of the structure was about 8 space units. When the front
sweeps through this “pre-patterned” region, its contribution will accumulate on the
stripes with the unstable concentration c = 0, leading to a fast phase separation. In this
way, a stable striped structure, oblique to the front, will develop. However, an oblique
striped structure survives only around v ≈ 1. At v ≈ 2, slightly disturbed lamellar
morphology formed. When v > 5 and v < 0.1, irregular morphology and spotty irregular
morphology emerged in a 250x620 simulation area. No significant change was observed
when cf = ±0.12.

5.5.3 Rotating source fronts

The oblique morphology in the NaOH +CuCl2 reactions in PVA gel sheets usually ap-
pears when the traveling reaction-diffusion front changes its direction, while the newly
forming stripes keep the orientation of previous stripes. This process was computation-
ally modeled by a rotating source front segment in a simulation area of 1200x600 space
units, having a length of 570 space units. The initial concentration in the whole simu-
lation area was set to c0(x, y, 0) = −1 + η. The source term added to the Cahn-Hilliard
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equation takes the form

S(x, y, t; ω) = A
√

(x − x0)2 + (y − y0)2·
exp

{

−α [(x − x0)sin(ωt + θ0) + (y − y0)cos(ωt + θ0)]
2} (5.3)

The character of the pattern formation is a function of the front speed, that depends
on the angular velocity, as well as the position along the radius. In our simulations,
having a front length of 570 space units, striped patterns just behind the front appeared
around the angular velocity interval ω ∈ (0.002 − 0.02). The dynamics of the pattern
formation was as follows: The first stripe forms roughly along the initial position of the
front. Although the orientation of the front is continuously altered, the newly formed
stripes will “try” to form along the old ones, parallel with them. Since the front changes
its orientation in the meanwhile, the above scenario will lead to an oblique morphology.

However, the simulations showed that the stripes cannot grow perpendicular to the
front (fig. 5.8). Their elongation becomes unstable when the angle of the stripes formed
to the front supplying the phase separating material reaches about 70 − 90 degrees.
At this stage, in some domains just behind the front oblique stripes with a small angle
appear. In some other domains irregular morphology appears. Later, the above scenario
may repeat itself.

Note that in the vicinity of the outer endpoint of the rotating front, where the speed
is relatively high, the source front may not immediately be followed by the phase sepa-
ration. The outer core of the circular region may be patterned by a different mechanism,
namely the striping initiated by the arc-like edge where the concentration changes from
c = 0 to c = −1. This striping will start along the edge, and will spread inside the
unstable region, until it meets the straight striping initiated by the front itself.

Finally we review the pattern formation at much higher and lower angular velocities.
When the angular velocity is higher than ω = 0.05, the overwhelming majority of the
phase separation takes place far behind the front. Two mechanisms play an important
role in the pattern formation. As mentioned previously, a striping will be initiated by
the arc-like edge, where the concentration changes from c = 0 to c = −1. However,
in the inner regions, mostly irregular patterns will form. In the case of low angular
velocities, when ω < 0.001, spotty irregular morphology appears in the wake of the
front with a length of 570 space units.

5.5.4 Studies on Quenching Fronts

An alternative way to start the spinodal decomposition in the wake of a traveling front
is to set the concentration of the phase separating compound c in between the spinodal
points, while the temperature is dropped below the critical value only behind the front.
The quenching in our simulations has been realized by changing the sign of the second-
order term in the Cahn-Hilliard equation.

Pattern formation in the wake of quenching fronts has been studied by computational
analyzes similar to those performed in the case of source fronts. The main difference
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Figure 5.8: Pattern formation in the wake of rotating source fronts. The angular velocity
is ω = 0.005, the dimensions of the simulation area are 1200x600 space units. The
parameter θ0 = 0.3 was introduced to prevent the first stripes being parallel to one of
the grid lines. ǫ = 0.5, x0 = 600, y0 = 5, A = 0.00089, α = 0.1 (cf = 1), c0 = −1 + η.
Attention should be paid to the regions just behind the wake of the fronts; after this,
coarsening will restructure the patterns. (a.) Oblique striping at t = 100. (b.) The
critical angle is reached, the growth of the stripes becomes unstable. t = 250. (c.)
Oblique morphology with a new angle builds up in the wake of the front. t = 500.

with respect to the pattern formation in the wake of the source fronts is the appearance
of the columnar morphology at low front speeds, in agreement with Furukawa’s results
[199]. With the concentration of the phase separating compound set to c0(x, y, 0) = 0,
the columnar morphology appears below v ≈ 0.85. At v ≈ 0.9 − 2, more or less
coarse lamellar morphology forms. Above v ≈ 10 irregular morphology appears. When
c0(x, y, 0) = ±0.1, this limit where the columnar morphology appears, shifts toward
lower velocities.
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Figure 5.9: Pattern formation in the wake of a rotating quenching front. The dimensions
of the simulation area are 600x1200 space units. The parameter θ0 = 0.3 was introduced
to prevent the stripes being parallel to the grid lines. ω = 0.005, ǫ = 0.5, x0 = 600,
y0 = 5, c0 = 0; t = 100 (a.) and t = 500 (b.). Note the continuous arc-shaped
stripes in the vicinity of the rotation center, where the local velocity is small. The
growing endpoints of these stripes are always perpendicular to the radial quenching front.
Attention should be paid to the regions just behind the front; after this, coarsening will
restructure the patterns, except for the arcs “pulled” by the front.

The formation of oblique morphologies has also been observed. The most extensive
OM-s appeared around the velocity v ≈ 1, when oblique stripes with c(x, y, 0) = 0.2 and
geometric parameters as above were initially introduced in the x ∈ (5, 30) space units
region of the simulation area.

The most interesting characteristics of the pattern formation in a growing quenched
area was found in the computational investigation of rotating fronts. Moving outwards
along the radius, that is, reaching front segments with higher velocities, bent columnar
structures, oblique patterns forming different angles to the front, and, near the border
of the quenched region, lamellar morphologies have been observed.

It is remarkable that the growing ends of the bent stripes always remain perpen-
dicular to the rotating radial front (fig. 5.9). As a consequence, in the case of a front
rotating with an appropriate speed, bent columnar structures build up, which develop
into regular arcs. This result can be of major importance in various nanotechnological
processes, since it makes possible the “wiring” of a surface upon a previously given
curve. By moving a quenching front, having an appropriate speed, along an arbitrary
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non-intersecting path, a columnar structure of high and low density regions builds up
behind it.

5.6 Conclusions

The most important new property of the experimental systems presented here is their
ability to yield regular patterns, even under 20 µm, despite the simplicity of the reagents.
A promising application of the gels containing periodic sheets of precipitate would be in
the manufacture of optical gratings [203, 204]. Gratings prepared by the sectioning of
gel columns that contain equidistant sheets of precipitate have been tested experimen-
tally. Another possibility is an alternative method of production for layered materials
or composite structures [205].

The scenario of the pattern formation was modeled by the terms of phase separation
described by the Cahn-Hilliard Equation. The formation of the stripes, being parallel
or oblique to the reaction-diffusion front, has been reproduced by computer simulations.
Other classes of models, based on reaction-diffusion equations, also reproducing the
main features of the formation of stripes of precipitates, have been studied by computer
simulations [160]. Thus, further experiments are required in order to find out the real
pattern forming mechanism. Note, that the substrate which is assumed in the model
presented above is probably not the DC proposed in the explanation of the primary
patterns, since the formation of stripes of colloidal precipitate does not seem to affect
the dynamics and shape of the active border.

The results have been compared to the pattern formation in the case of directional
quenching. At low front velocities, the formation of striped patterns perpendicular to
the quenching front have been observed, these patterns being absent in the case of the
source fronts. In the wake of a slowly progressing front that simultaneously changes its
direction, the growing endpoints of the stripes will always be perpendicular to the front.
This effect enables one to “draw” on a surface regular stripes following an arbitrary
curve. Such a patterning could be of major importance in nanotechnology.
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Chapter 6

Afterword

6.1 Publications

The following papers have been published in internationally refereed scientific journals:

1. Péter Hantz, Pattern Formation in the NaOH +CuCl2 Reaction J. Phys. Chem.
B 104, 4266 (2000)

2. Péter Hantz, Regular Microscopic Patterns produced by simple reaction-diffusion
systems Phys. Chem. Chem. Phys. 4, 1262 (2002)

3. Péter Hantz, Germing Surfaces in Reaction-Diffusion systems? Experiments and
a hypothesis J. Chem. Phys. 117, 6646 (2002)

4. Benjamin de Lacy Costello, Péter Hantz and Norman Ratcliffe, Voronoi Diagrams
Generated by Regressing Edges of Precipitation Fronts J. Chem. Phys. 120, 2413-2416
(2004)

5. Péter Hantz, Julian Partridge, Győző Láng, Szabolcs Horvát and Mária Ujvári,
Ion-Selective Membranes Involved in Pattern-Forming Processes, J. Phys. Chem. B.
108, 18135-18139 (2004)

6. Szabolcs Horvát and Péter Hantz, Pattern Formation Induced by Ion-selective
Surfaces: Models and Simulations, J. Chem. Phys. 121, 034707 (2005)

7. Péter Hantz and István Biró, Phase Separation in the Wake of Moving Fronts:
Experiments and Simulations, Phys. Rev. Letters 96, 088305 (2006)

6.2 Perspectives for Further Research

The elucidation of the reaction mechanism makes necessary further experimental and
theoretical investigations. Of central importance seems to be the study of the passive
border and the origin of its ion-selective properties. Performing some detailed chem-
ical analyses should also be relevant. In possession of new experimental data, better
mathematical models and computer simulations should be performed.

Regarding the secondary patterns, exploring the mechanism of the formation of the
colloidal precipitate would be the most important. If the wavelength of the secondary
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patterns could be decreased, several technological applications may follow.
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J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S.G. Fries, B. Legendre
and S. Rex, Multiphase solidification in multicomponent alloys, Mater. Sci. Eng.
Rev. 46, 1-49 (2004)
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