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Abstract—Thanks to the available large-scale scene datasets
such as Places and Places2, Convolutional Neural Networks
(CNNs) have made remarkable progress on the problem of
scene recognition. However, scene categories are often defined
according its functions and there exist large intra-class variations
in a single scene category. Meanwhile, as the number of scene
classes is increasing, some classes tend to overlap with others and
label ambiguity is becoming a problem. This paper focuses on
large-scale scene recognition and makes two major contributions
to tackle these issues. First, we propose a multi-resolution CNN
architecture to capture visual content and structure at different
scales. Our proposed multi-resolution CNNs are composed of
coarse resolution CNNs and fine resolution CNNs, whose per-
formance is complementary to each other. Second, we design
two knowledge guided disambiguation techniques to deal with
the problem of label ambiguity. In the first scenario, we exploit
the knowledge from confusion matrix at validation data to merge
similar classes into a super category, while in the second scenario,
we utilize the knowledge of extra networks to produce a soft
label for each image. Both the information of super category and
soft labels are exploited to train CNNs on the Places2 datasets.
We conduct experiments on three large-scale image classifica-
tion datasets (ImangeNet, Places, Places2) to demonstrate the
effectiveness of our proposed approach. In addition, our method
takes part in two major scene recognition challenges, and we
achieve the 2nd place at the Places2 challenge 2015 and 1st place
at the LSUN challenge 2016. Finally, we transfer the learned
representations to the datasets of MIT Indoor67 and SUN397,
which yields the state-of-the-art performance (86.7% and 72.0%)
on both datasets.

Index Terms—Scene recognition, Convolutional neural net-
works, multi-resolutions, disambiguation.

I. INTRODUCTION

SCENE recognition [1], [2] is a fundamental and important
problem in computer vision and has received a large

number of research attention in the past few years [3], [4], [5],
[6], [7], [8], [9]. Scene recognition not only provides semantic
information of global structure [10], but also yields context
to assist other vision tasks like object detection [11], [12],
event recognition [13], [14], and action recognition [15], [16].
In general, it is assumed that scene is composed of specific
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Fig. 1. Image examples from the Places2 dataset. In top row, we show images
from two separate scene classes (i.e. kitchen and campus). We notice that large
intra-class variations are contained in these images. In bottom row, we give
two pairs of scene categories (i.e. (cubicle office, office cubicles), (baseball
field, stadium baseball)). We see that images from these scene classes are
easily confused with those of the other class of the pair.

objects arranged in a certain layout. Cognitive evidence has
implied that human vision system is highly sensitive to the
global structure and special regions of an image, while puts
little attention to the local objects and features outside of
the attentional regions. Therefore, compared with object, the
concept of scene is more subjective, and there may not exist
consensus on how to determine an environment category,
which poses more challenges for developing effective and ro-
bust scene recognition algorithms in computer vision research.

Recently, large-scale scene datasets (e.g. Places [1]
and Places2 [17]) have been introduced to advance the research
of scene understanding which allows to train powerful convo-
lutional neural networks (CNNs) [18] for scene classification.
These large-scale datasets consist of a rich scene taxonomy,
which includes rich categories to cover the diverse visual
environments of our daily experience. After having these scene
categories, scene keywords are sent to image search engines
(e.g. Google Images, Bing Images and Flicker) and millions
of images are downloaded, which are further sent to Amazon
Mechanical Turk for manual annotation. However, as the
number of classes is rapidly growing, these visual categories
start to overlap with each other and there exists label ambiguity
among these scene classes. As shown in Figure 1, cubicle office
and office cubicles include confused images which may be
easily identified as the other category, so do baseball field and
stadium baseball. Partially due to this reason, the human top-
1 error rate is still relatively high on the SUN397 dataset [2]
(around 30%).
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Due to the inherent uncertainty of scene concepts and
the increasing overlap among different scene categories, it is
challenging to conduct scene recognition on the large-scale
datasets (with hundreds of classes and millions of images).
Specifically, the current large-scale scene datasets present
two major challenges for scene classification, namely visual
inconsistence and label ambiguity.

• For visual inconsistence, we refer to the fact that there
exist large variations among the images from the same
scene category. As there is no precise definition for
scene, people label natural images according to their
own experience which leads to large diversity on scene
datasets. As shown in Figure 1, for instance, the category
of kitchen contains very diverse images, ranging from the
whole room with many cooking wares to a single people
with food.

• For label ambiguity, we argue that some scene categories
share similar visual appearance and could be easily
confused with others. As the number of scene classes
increases, the inter-category overlaps can become large.
For example, as shown in Figure 1, the scene category
of baseball field are very similar to the class of stadium
baseball, and they both contain the representative objects
such as track and people.

These challenges motivate us to make two major contri-
butions for large-scale scene recognition: (1) we propose a
multi-resolution convolutional architecture to capture multi-
level visual cues of different scales; (2) We introduce knowl-
edge guided strategies to disambiguate similar scene cate-
gories. First, to deal with the problem of visual inconsistence
(i.e. large intra-class variations), we come up with a multi-
resolution CNN framework, where CNNs at coarse resolution
are able to capture the appearance of larger objects, while
CNNs at fine resolution are capable of describing detailed local
information of smaller objects. Intuitively, multi-resolution
CNNs combine complementary visual cues at different scales
and are good at tackling the issue of large intra-class varia-
tions. Second, for the challenge of label ambiguity (i.e. small
inter-class variations), we propose to reorganize the semantic
scene space to release the difficulty of training CNNs by ex-
ploiting extra knowledge. In particular, we design two methods
with the assistance from confusion matrix on the validation
dataset and publicly available CNN models, respectively. In
the first method, we investigate the correlation of different
classes and progressively merge similar categories into a super
category. In the second method, we use the outputs of extra
CNN models as new labels. These two methods essentially
utilize extra knowledge to produce new labels for training
images, and these new supervision signal is able to make the
training of CNN easier or act as the regularizers to guide the
CNN optimization.

To verify the effectiveness of our proposed method, we
choose the successful BN-Inception architecture [19] as our
network structure, and demonstrate the effectiveness of multi-
resolution CNNs and knowledge guided disambiguation strate-
gies on a few benchmarks. More specifically, we first conduct
experiments on three large-scale image recognition datasets,

including ImageNet [20], Places [1], and Places2 [17], where
our method obtains highly competitive performance. Then,
we apply our proposed framework on two important scene
recognition challenges, namely the Places2 challenge 2015
(held with ImangeNet large scale visual recognition chal-
lenge [21]) and the large-scale scene understanding (LSUN)
challenge 2016. Our team secures the 2nd place at the Places2
challenge 2015 and 1st place at the LSUN challenge 2016.
Furthermore, we examine the generalization ability of our
learned models and test them on the datasets of MIT In-
door67 [22] and SUN397 [2]. We obtain the current state-of-
the-art performance on these two datasets. Finally, we show
some failure cases produced by our method to highlight the
existing challenges for scene recognition and possible research
directions in the future.

The rest of this paper is organized as follows. In Section
II, we review related works to our method from aspects of
scene recognition, deep networks for image recognition, and
knowledge transferring. Section III introduces the architecture
of multi-resolution convolutional neural networks. In Section
IV, we develop two types of knowledge guided disambiguation
strategies to improve the performance of scene recognition. We
report our experimental results and analyze different aspects
of our method in Section VI. Finally, we conclude our method
in Section VI.

II. RELATED WORKS

In this section, we briefly review the previous works that are
related to ours, and clarify the difference between our work
and the others. Specifically, we review previous works from
three aspects: (1) scene recognition, (2) deep networks for
image recognition, and (3) knowledge transferring.

Scene recognition. The problem of scene recognition has
been extensively studied by previous works from different
angles. For example, Lazebnik et al. [23] proposed spatial
pyramid matching (SPM) to incorporate spatial layout into
bag-of-word (BoW) representation for scene recognition. Par-
tizi et al. [24] designed a reconfigurable version of SPM,
which associated different BoW representations with different
image regions. The standard deformable part model (DPM)
[12] was extended to scene recognition by Pandey et al.
[25]. Quattoni et al. [22] studied the problem of indoor
scene recognition by modeling the spatial layout of scene
components. Mid-level discriminative patches or parts were
discovered and identified for scene recognition in [26], [27].
Recently, deep convolutional networks have been exploited for
scene classification by Zhou et al. [1], where they introduced
a large-scale places dataset and advanced the state of the art of
scene recognition by a large margin. After this, they introduced
another more challenging dataset [17] with more categories
and images, called as Places2.

Our work differs from these previous methods mainly from
two aspects: (1) We test our proposed method on a much larger
dataset and processing dataset of such scale is challenging;
(2) We design a multi-resolution architecture and propose
a knowledge guided disambiguation strategy to improve the
performance of scene recognition.
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Fig. 2. Multi-resolution CNN: we propose a multi-resolution architecture, which is composed of coarse resolution CNN (normal bn-inception) and fine
resolution CNN (deeper bn-inception). Coarse resolution CNNs capture visual structure at a large scale, while fine resolution CNNs describe visual pattern at a
relatively smaller scale. The receptive fields (red boxes) of two CNNs correspond to regions of different scales and so their prediction scores are complementary,
which are fused by taking arithmetic mean.

Deep networks for image recognition. Since the remark-
able progress made by AlexNet [28] on ILSVRC 2012, great
efforts have been devoted to the problem of image recognition
with deep learning techniques [29], [30], [31], [32], [19], [33],
[9], [34], [35]. A majority of these works focused on designing
deeper network architectures, such as VGGNet [31], Inception
Network [32], [34], and ResNet [35], finally containing hun-
dreds of layers. Meanwhile, several regularization techniques
and data augmentations have been designed to reduce the over-
fitting effective of network training, such as dropout [28],
smaller convolutional kernel size [29], [31], and multi-scale
cropping [31]. In addition, several optimization techniques
have been also proposed to reduce the difficulty of training
networks and improve recognition performance, such as Batch
Normalization (BN) [19] and Relay Back Propagation [9].

These works focused on the general aspect of applying
deep networks for image classification, in particular for ob-
ject recognition, without considering the specifics of scene
recognition problem. Complementary to these works, we con-
duct a dedicated study on the difficulty of scene recogni-
tion and accordingly come up with two new solutions to
address the issues existed in scene recognition. We propose
a multi-resolution architecture to capture visual information
from different scales and hopefully to deal with the visual
inconsistence problem. In addition, we design a knowledge
guided disambiguation mechanism to handle the issue of
label ambiguity, which is a another major challenge for scene
recognition.

Knowledge transferring. Knowledge distillation or knowl-
edge transferring from CNN models is becoming an important
topic recently [36], [37], [38], [39], [40]. The basic idea of
using network outputs as supervision signal to train other
models was invented by Bucila et al. [41]. Recently, Hinton et
al. [36] adopted this technique to compress model ensembles
into a smaller model for fast deployment. Romero et al. [37]
utilized this technique to help train deeper network in multiple
stage. Tzeng et al. [39] explored this method in the problem
of domain adaption for object recognition. Gupta et al. [38]

proposed to distill knowledge across different modalities and
used RGB CNN models to guide the training of CNNs for
depth maps or optical flow field. Zhang et al. [40] developed
a knowledge transfer technique to exploit soft codes of flow
CNNs to assist the training of motion vector CNNs, with a
goal of real-time action recognition from videos.

Our utilization of soft codes as supervision signal differs
from these methods mainly from two points: (1) We conduct
knowledge transfer crossing different visual tasks (e.g. object
recognition vs. scene recognition), while previous methods all
focus on the same task; (2) We exploit these soft codes to help
circumvent the label ambiguity problem existed in large-scale
scene recognition.

III. MULTI-RESOLUTION CONVOLUTIONAL NEURAL
NETWORKS

Generally, a visual scene can be defined as a view that ob-
jects and other semantic surfaces are arranged in a meaningful
way [42]. Scenes contain semantic components arranged in a
spatial layout which can be observed at a variety of spatial
scales (e.g., the up-close view of an office desk or the view
of the entire office). Therefore, when building computational
models to perform scene recognition, we need to consider
the multi-scale property of scene images. Specifically, in this
section, we first describe the basic network structure used
in our exploration and then present the framework of multi-
resolution CNNs.

A. Basic network structures

Deep convolutional networks have witnessed great suc-
cesses in image classification and many effective network
architectures have been developed, such as AlexNet [28],
GoogLeNet [32], VGGNet [31], and ResNet [35]. As the
dataset size of Places2 is much larger than that of ImageNet,
we need to keep a good balance between recognition perfor-
mance and computational cost when choosing network struc-
ture. In our experiment, we choose the inception architecture
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with batch normalization [19] (bn-inception) as our network
structure. In addition to its good balance between accuracy
and efficiency, inception architecture also leverages the idea
of multi-scale processing when constructing inception module.
Therefore, the inception architecture is a reasonable choice for
constructing scene recognition networks.

As shown in Figure 2, the original bn-inception architecture
starts with two convolutional layers and max pooling layers to
transform 224× 224 input images into 28× 28 feature maps,
whose sizes are relative small for the fast processing in the
subsequent layers. Then, it contains ten inception layers, where
two of them have stride of 2 and the rest have stride of 1. The
size of feature map after these inception layers is changed to
7× 7, and a global average pooling is used to aggregate these
activations across spatial dimensions. Batch Normalization
(BN) is applied to the activations of convolutional layers
before they are fed into Rectified Linear Unit (ReLU) for non-
linearity.

B. Two-resolution architectures
The proposed Multi-Resolution CNNs are decomposed into

fine resolution and coarse resolution components in the current
implementation. The coarse resolution CNN is the same with
the normal bn-inception as specified in previous subsection,
while fine resolution CNN shares a similar but deeper archi-
tecture.

Coarse resolution CNNs operate on image regions of size
224 × 224 and contain totally 13 layers with weights. The
network structure of coarse resolution CNN is called as normal
bn-inception since has the same structure as the original one in
[19]. It captures visual appearance and structure at a relatively
coarse resolution, focusing on describing objects at large scale.
Therefore, some fine details may not be described well in
such a coarse resolution. However, in natural images, there
are many local objects, which play important roles for scene
understanding. Hence, it requires to capture visual content in
a finer resolution with focus on more details.

Fine resolution CNNs are developed for images of resolu-
tion 384×384 and operate on image regions of 336×336. As
fine resolution CNN takes larger images as input, its depth can
be increased. In the current implementation, to keep balance
between speed and network capacity, we add three extra
convolutional layers on top of inception layers, as illustrated in
Figure 2. For these newly-added convolutional layers, the pad
sizes are set as zeros and so the feature map size also becomes
7 × 7 before global average pooling. We call this network
structure of fine resolution CNN as deeper bn-inception. Fine
resolution CNNs aim to describe the image information and
structure at finer scale, which allows to capture details.

These two-resolution CNNs take different resolution im-
ages as input and their receptive fields of the corresponding
layers describe different regions of original images. They
are designed to describe objects at different scales for scene
understanding. Therefore, the prediction scores of CNNs from
different resolutions are complementary to each other and we
combine them by taking an arithmetic average.

Discussion. Although sharing similar ideas with com-
mon multi-scale training strategy [31], the proposed multi-

resolution CNNs differ from it mainly on two aspects: (1)
the input image sizes are different in our two-resolution
architectures (224 × 224 and 336 × 336), but the input size
is all the same in multi-scale training (only 224 × 224).
(2) we design two distinct network structures in our MR
architecture (normal bn-inception and deeper bn-inception) to
handle different input sizes, while conventional multi scale
training simply applies to a single network structure. Thanks
to these differences, the proposed multi-resolution architecture
is more suitable to capturing different level visual information
for scene understanding. Moreover, the multi-resolution archi-
tecture is complementary to multi-scale training and can be
easily combined with it as stated in next paragraph.

Training of multi-resolution CNNs. The training of multi-
resolution CNNs are performed for each resolution indepen-
dently. We train each CNN according to the common setup of
[28], [31]. We use the mini-batch stochastic gradient descent
algorithm to learn the network weights, where the batch size
is set as 256 and momentum set to 0.9. The learning rate is
initialized as 0.1 and decreases according to a fixed schedule
determined by the dataset size and specified in Section V.
Concerning data augmentation, the training images are resized
as N ×N , where N is set as 256 for normal bn-inception and
384 for deeper bn-inception. Then, we randomly crop a w×h
region at a set of fixed positions, where cropped width w and
height h are picked from {N, 0.825N, 0.75N, 0.625N, 0.5N}.
Then these cropped regions are resized as M×M for network
training, where M is set as 224 for normal bn-inception and
336 for deeper bn-inception. Meanwhile, these crops undergo a
horizontal flipping randomly. Our proposed cropping strategy
is an efficient way to implement the scale jittering [31].

IV. KNOWLEDGE GUIDED DISAMBIGUATION

As analyzed above, several scene categories start to over-
lap with others in the large-scale datasets, such as Places2
[17]. The increasing number of scene categories causes the
problem of label ambiguity, which makes the training of multi-
resolution CNNs more challenging. In this section we propose
two simple yet effective methods to handle the issue of label
ambiguity by exploiting extra knowledge. Specifically, we first
introduce the method of utilizing knowledge from confusion
matrix and we then propose the second method which resorts
to knowledge from extra networks.

A. Knowledge from confusion matrix

As the number of scene classes increases, the difference
between scene categories becomes smaller and some scene
classes are easily confused with others from visual appearance.
A natural way to relieve this problem is to re-organize the
scene class hierarchy and merge very similar classes into a
super category. In order to merge similar classes, we need to
come up with a solution to define the similarity between scene
categories. Although it is possible to ask human annotator
to determine which classes can be merged, it is a time-
consuming work. Here we propose a simple yet effective way
to automatically merge visually ambiguous scene categories.
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Fig. 3. Knowledge guided disambiguation: we propose two knowledge guided disambiguation methods to deal with the problem of overlapping labels. In
the left, we utilize the knowledge of confusion matrix to merge similar scene classes into a super category and re-train CNNs on these relabeled datasets. In
the right, we exploit the knowledge of extra networks trained on the other datasets to transform each image to a soft code, which can be used to guide the
CNN training.

Algorithm 1: Merge similar classes into super category
Data: Similarity matrix S, threshold: τ .
Result: Merged classes: S.
- Initialization: S =← {S1, S2, · · · , SN}.
while max(S) < τ do

1. Pick the maximum of similarity:
(i, j)∗ ← argmaxi,j Sij

2. Merge the i∗th and j∗th classes into a single class
: S = S − {Si∗} − {Sj∗}+ {(Si∗ , Sj∗)}
3. Update the similarity matrix by deleting i∗ and j∗

rows and columns and adding a new row and column
defined as 1

2 (Si + Sj)
end
- Return merged classes: S.

Specifically, we first train a deep model on the training
dataset of Places2 with 401 classes. Then, we test the learned
model on the validation dataset of Places2. The confusion
matrix on the validation dataset reveals the fact that which
scene pairs are easily confused with each other. Meanwhile,
this confusion matrix also contains information on the similar-
ity between each pair of scene category. Hence, we choose the
confusion matrix to calculate the pairwise similarity of scene
classes as follows:

S =
1

2
(C+C>), (1)

where C ∈ RN×N is the confusion matrix, Cij represents
the probability of classifying ith class as jth class, N is the
number of scene classes. This equation ensures the similarity
measure is a symmetric metric.

After having similarity measure, we propose a bottom-up
clustering algorithm to merge similar categories iteratively, as
shown in Algorithm 1. At each iteration, we pick a pair of
categories with the largest similarity and merge them into
a super category. Then we update the similarity matrix S
accordingly, by deleting i∗th and j∗th rows and columns and
adding a new row and column defined as 1

2 (Si∗ +Sj∗), where
Si∗ denotes the i∗th row vector of S. This iteration repeats
until there is no similarity value larger than τ . After this
merging process, very similar scene categories are merged

into a similar super category and all these images from these
categories are supposed to have the same label, from which we
will re-train a CNN for with smaller scene classes. In current
implementation, the 401 scene classes from the Places2 dataset
are re-organized as 372 super-categories. For testing these re-
trained CNNs, in current implementation, we equally divide
the probability of each super category into its sub categories.
This simple strategy turns out to be effective in practice.

B. Knowledge from extra networks

In previous knowledge disambiguation method, we simply
consider the similarity between scene classes and merge sim-
ilar categories into a super category. However, this relabeling
(merging) strategy treats all the images from the same class
equally and ignores the difference contained in each single
image. Intuitively, only part of images from these visually
ambiguous classes are easily confused with each other and
the other part may not. Hence, in this subsection, we propose
to exploit knowledge from extra networks to incorporate the
visual information of each single image into the relabeling
procedure.

In order to consider the visual information of each single
image in the relabeling procedure, a natural solution is to
directly ask human with experience to relabel each image
again. However, this solution is faced with two difficulties: (1)
It will be time costly and require huge labor force, (2) It is hard
to define the relabeling criteria to guide the human annotation.
At the same time, publicly available CNNs trained on a
relatively smaller and well-labeled dataset (e.g. ImageNet [20]
or Places [17]) encode rich knowledge and can extract high-
level semantics from raw images. Therefore, we may utilize
these public models as a knowledge network to automatically
relabel each image and treat their outputs as the soft labels of
images.

Essentially, this soft label is a kind of distributed represen-
tation, which describes the scene content of each image with
a distribution over common object classes or smaller subsets
of scene categories. As shown in Figure 4, for instance, the
content of dinning room could be described by distribution
of common objects, where objects such as dinning table and
door may dominate this distribution. For other scene category
such as office, the objects of screen and desktop computer
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Fig. 4. Hard and soft labels: Several image examples with ground truth from the Places2 dataset. First, in the left histogram, we show the original hard
labels provided by the dataset. Second, in the middle histogram, the hard labels are shown after merging visually ambiguous classes (our first disambiguation
approach). In these examples, we see that classes of baseball field and stadium baseball, cubicle office and office cubicles, are merged into super category
1 and super category2. Finally, in the right histogram, we provide the soft labels produced by extra networks (our second disambiguation approach), where
scene content is described by the distribution of common objects.

may have high probability mass. Utilizing this soft label to
represent image content exhibit two main advantages: (1)
For visually ambiguous classes, they typically share similar
visual elements such as objects and background. So the soft
labels of these classes will look similar and can encode the
correlation of scene categories implicitly. (2) Compared with
above label merging method, this soft label depends on the
image content and may vary for different images. Normally,
images from easily ambiguous classes may share similar but
not identical soft labels. Hence, soft labels can still capture the
subtle difference contained in each single image and is more
informative than hard labels.

In current implementation, we consider the complementarity
between groundtruth hard labels and soft labels from knowl-
edge networks, and design a multi-task learning framework to
utilize both labels to guide CNN training as shown in Figure 3.
Specifically, during the training procedure, our CNNs predict
both the original hard labels and the soft labels simultaneously,
by minimizing the following objective function:

`(D) = −(
∑
Ii∈D

K1∑
k=1

I(yi = k) log pi,k+λ
∑
Ii∈D

K2∑
k=1

qi,k log fi,k),

(2)
where D denotes the training dataset, Ii is the ith image, yi
is its scene label (hard label), fi is its soft code (soft label)
produced by extra knowledge network, pi is the output for
hard code of image Ii, qi is the output for soft code of image
Ii, λ is a parameter balancing these two terms (set as 0.5 in
experiment), and K1 and K2 are the dimension of hard label
and soft label, respectively.

This multi-task objective function forces the training pro-
cedure to optimize the classification performance of original
scene classification and imitate the knowledge network at
the same time. This multi-task learning framework is able
to improve generalization ability by exploiting the knowledge
contained in extra networks as an inductive bias, and reduce

the effect of over-fitting on the training dataset of Places2.
As we shall see in Section V, this framework is able to im-
prove the recognition performance of original multi-resolution
CNNs.

V. EXPERIMENTS

In this section, we describe the experimental settings and
report the performance of our proposed method on the datasets
of ImageNet [20], Places [1], Places2 [17], LSUN [43], MIT
Indoor67 [22], and SUN397 [2]. We first describe our evalua-
tion datasets and the implementation details. Then, we perform
experiments to verify the effectiveness of multi-resolution
CNNs on three datasets. After this, we conduct experiments
to explore the effect of knowledge guided disambiguation on
the dataset of Places2. We also report the performance of
our method on two large-scale scene recognition challenges,
namely Places2 challenge 2015 and LSUN challenge 2016.
Meanwhile, we test the generalization ability of our learned
models on the datasets of MIT Indoor67 [22] and SUN397
[2]. Finally, we give several examples that our methods fail to
predict the correct label.

A. Large-scale datasets and implementation details

We first perform experiments on three large-scale im-
age classification datasets to evaluate our proposed method,
namely ImageNet [20], Places [1], and Places2 [17]. Due to
the fact that the labels of testing data of these datasets are not
available, we mainly evaluate our methods on their validation
data.

ImageNet [20] is an object-centric dataset and the largest
benchmark for object recognition and classification 1. The
dataset for ILSVRC 2012 contains 1,000 object categories.
The training data contains around 1,300,000 images from
these object categories. There are 50,000 images for validation

1http://image-net.org/
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TABLE I
PERFORMANCE OF NORMAL BN-INCEPTION, DEEPER BN-INCEPTION, AND MULTI-RESOLUTION CNNS ON THE VALIDATION DATA FROM THE DATASETS

OF IMAGENET, PLACES, AND PLACES2.

Method ImageNet (top1/top5) Places (top1/top5) Places2 (top1/top5)
AlexNet [28] 40.7%/18.2% 50.0%/- 57.0%/-
VGGNet-16 [31] 27.0%/8.8% 39.4%/11.5% 52.4%/-
Normal BN-Inception 24.7%/7.2% 38.1%/11.3% 48.8%/17.4%
Deeper BN-Inception 23.7%/6.6% 37.8%/10.7% 48.0%/16.7%
Multi-resolution CNN 21.8%/6.0% 36.4%/10.4% 47.4%/16.3%

dataset and 100,000 images for testing. The evaluation mea-
sure is based on top-5 error, where algorithms will produce a
list of at most 5 object categories to match the ground truth.

Places [1] is a large-scale scene-centric dataset 2. Places
dataset selects 205 common scene categories (referred to as
Places205). The training dataset contains around 2,500,000
images from these categories. For the training set, each scene
category has the minimum 5,000 and maximum 15,000 im-
ages. The validation set contains 100 images per category (a
total of 20,500 images) and the testing set contains 200 images
per category (a total of 41,000 images). The evaluation criteria
of Places is also based on top-5 error.

Places2 [17] is extended from the Places dataset and the
largest scene recognition dataset currently 3. In total, Places2
contains more than 10 million images comprising more than
400 unique scene categories. The dataset includes 5000 to
30,000 training images per class, consistent with real-world
frequencies of occurrence. In the Places2 challenge 2015 (held
in conjunction with ImageNet large-scale visual recognition
challenge), it contains 401 scene categories. The training
dataset of Places2 has around 8,100,000 images. The valida-
tion set contains 50 images per category and the testing set
contains 950 images per category. Due to the much larger size,
scene recognition on Places2 is more challenging than other
datasets.

The training details of our proposed method on these
three datasets are similar, as specified in Section III. The
only difference is the iteration number due to the different
sizes of training data for these datasets. Specifically, on the
ImageNet and Places datasets, we decrease learning rate every
200,000 iterations and the whole training procedure stops at
750,000 iterations, while on the Places2 dataset, learning rate
is decreased every 350,000 iterations and the whole training
process ends at 1,300,000 iterations. We use the multi-GPU
extension [44] of Caffe [45] toolbox for our CNN training 4.
For testing our learned models, we use the common 5 crops
(4 corners and 1 center) and their horizontal flipping for each
image at a single scale. Totally, there are 10 crops for each
image.

B. Evaluation on multi-resolution CNNs

We begin our experiment study with exploring the effec-
tiveness of multi-resolution CNNs on the validation set of
ImageNet, Places, and Places2. Specifically, we study three

2http://places.csail.mit.edu/
3http://places2.csail.mit.edu/
4https://github.com/yjxiong/caffe

TABLE II
PERFORMANCE OF DIFFERENT KNOWLEDGE GUIDED DISAMBIGUATION

TECHNIQUES ON THE DATASET OF PLACES2.

Method Places2 Val
(A0) Normal BN-Inception (256× 256) 17.4%
(A1) Normal BN-Inception + object networks 17.4%
(A2) Normal BN-Inception + scene networks 16.7%
(A3) Normal BN-Inception + confusion matrix 17.3%
Fusion of (A0) and (A1) 16.7%
Fusion of (A0) and (A2) 16.3%
Fusion of (A0) and (A3) 16.6%
(B0) Deeper BN-Inception (384× 384) 16.7%
(B1) Deeper BN-Inception + object networks 16.3%
(B2) Deeper BN-Inception + scene networks 16.1%
Fusion of (B0) and (B1) 15.9%
Fusion of (B0) and (B2) 15.8%

architectures: (1) normal BN-Inception, which is trained from
256 × 256 images, (2) deeper BN-Inception, which has a
deeper structure and is trained from 384 × 384 images, (3)
multi-resolution CNN, which is combination of normal BN-
Inception and deeper BN-Inception and the fusion weights are
set to be equal to each other.

The results are summarized in Table I. First, from com-
parison of normal BN-Inception and deeper BN-Inception,
we conclude that CNNs trained from fine resolution images
(384 × 384) are able to yield better performance than those
trained from coarse resolution images (256 × 256) on all
these datasets. This superior performance may be ascribed
to the fact that fine resolution images contain more rich
information of visual content and local details. In addition,
the deeper BN-Inception is able to exhibit higher modeling
capacity and capture scene content more effectively. Second,
we take an arithmetic average over the scores of normal BN-
Inception and deeper BN-Inception as the results of multi-
resolution CNNs. This simple fusion can further boost the
recognition performance on three datasets. This improvement
indicates that the information captured by CNNs from different
resolution images are complementary to each other. Finally,
we compare our mulit-resolution CNNs with other baselines
(AlexNet and VGGNet-16) on three datasets and our approach
outperforms these baselines by a large margin. It is worth
noting that our multi-resolution CNN is a general learning
framework that can be applied to existing network structures
to enhance their modeling capacity.
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TABLE III
PERFORMANCE OF DIFFERENT TEAMS AT PLACES2 CHALLENGE 2015.

Rank Team Places2 Test Places2 Val
1 WM [9] 16.9% 15.7%
2 SIAT MMLAB (A2+B0) 17.6% 16.2%
2 SIAT MMLAB (A0+A1+A2+A3+B0) 17.4% 15.8%
- Post submission (B0+B1+B2) - 15.5%
3 Qualcomm 17.6% -
4 Trimps-Soushen 18.0% -
5 NTU-Rose 19.3% -

C. Evaluation on knowledge guided disambiguation

After the investigation of the effectiveness of multi-
resolution CNNs, we now turn to study the effect of our
proposed knowledge guided disambiguation techniques in Sec-
tion IV. To handle the issue of label ambiguity existed scene
recognition, we proposed two disambiguation techniques, one
based on the knowledge of confusion matrix on the validation
dataset, and the other based on the knowledge from extra net-
works. As the label ambiguity is an important issue for large-
scale scene recognition, we perform experimental exploration
on the Places2 dataset in this subsection.

In the first knowledge guided disambiguation technique,
according to the confusion matrix, we merge 401 scene
categories into 372 super categories. The results are shown
in Table II. We see that for normal BN-Inception network,
the performance of utilizing knowledge from confusion matrix
is slightly better than the normal BN-Inception. This result
is a little bit surprising, as we use less category information
but obtain better performance. This result indicates that label
ambiguity may leads to the problem of over-fitting with more
subtle information to distinguish easily confused categories
(e.g. baseball field vs. stadium baseball). But these subtle
difference may not generalize well on testing data and so
decrease the recognition performance.

In the second knowledge guided disambiguation technique,
we utilize two extra networks: one trained on the ImageNet
dataset (object network) and one trained on the Places (scene
network). We use the outputs of these networks as soft labels
to guide the training of CNNs. The results are reported in
Table II. For normal BN-Inception architecture, the object
network guided CNN achieves the same performance with
the original one. The scene network guided CNN obtains
much better performance (16.7% vs. 17.4%). For deeper BN-
Inception architecture, the performance can be improved for
both object and scene network guided CNNs. These results
imply that exploitation of knowledge from extra networks is an
effective way to regularize the training of the original networks
and improve the generalization ability. Meanwhile, we notice
that the soft labels from scene networks outperform those from
object networks, which may be ascribed to the fact that the
scene classes from Places are more correlated with Places2
classes than those object classes from ImageNet.

Finally, we perform model fusion with normally trained
CNNS and knowledge guided CNNs. From these results, we
see that those knowledge guided CNNs are complementary
to those normally trained CNNs. For normal BN-Inception

TABLE IV
PERFORMANCE OF DIFFERENT PRE-TRAINED MODELS ON THE

VALIDATION SET OF LSUN CLASSIFICATION DATASET.

Pre-trained Model Top1 Accuracy
(A0) Normal BN-Inception (256× 256) 89.9%
(A1) Normal BN-Inception + object networks 90.1%
(A2) Normal BN-Inception + scene networks 90.4%
(B0) Deeper BN-Inception (384× 384) 90.5%
(B1) Deeper BN-Inception + object networks 90.7%
(B2) Deeper BN-Inception + scene networks 90.9%
(A0+B0) 91.0%
Fusion all 91.8%

architecture, the best combination of (A0) and (A2) is able
to reduce the top-5 error to 16.3% from 17.4%. With deeper
BN-Inception network, the best combination of (B0) and (B2)
achieves the top-5 error of 15.8% compared with original top-
5 error of 16.7%. These better fusion results indicate that our
proposed knowledge guided disambiguation techniques can
not only improve the performance the original models, but
also provide complementary models to build a strong model
ensemble.

D. Results at Places2 challenge 2015

After the separate study of multi-resolution CNNs and
knowledge guided disambiguation, we are ready verify its
effectiveness on large-scale scene recognition challenge. In
this subsection we present the results of our method on
the Places2 challenge 2015. Places2 challenge is the largest
scene recognition challenge and held in conjuction with the
ImageNet large-scale visual recognition challenge (ILSVRC)
[21].

The challenge results are summarized in Table III and our
team secures the 2nd place. Compared the winner method [9],
our performance is lower by 0.5% in top-5 error. During test
phase, there is a big difference between our approach and
winner method, where they exploited the multi-scale cropping
strategy while we simply choose the single-scale cropping
method. In addition, it is worth noting that our submission did
not contain the best model architecture B2 due to the challenge
deadline. After the challenge, we finish the training of B2
network and it achieves better performance on the validation
dataset. Finally, we achieve the performance of 15.5% top-5
error on the validation set, which is a little bit better than that
of the winner method (15.7%).

E. Results at LSUN challenge 2016

In this subsection, we report the performance of our method
on another important scene recognition challenge, namely
LSUN. Large-Scale Scene Understanding (LSUN) challenge
aims to provide another benchmark for scene classification
and understanding 5. The LSUN classification dataset [43]
contains 10 scene categories, such as dining room, bedroom,
chicken, outdoor church, and so on. For training data, each
category contains a huge number of images, ranging from

5http://lsun.cs.princeton.edu
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TABLE V
PERFORMANCE OF DIFFERENT TEAMS AT LSUN CHALLENGE 2016.

Rank Team Year Top1 Accuracy
1 SIAT MMLAB 2016 91.6%
2 SJTU-ReadSense 2016 90.4%
3 TEG Rangers 2016 88.7%
4 ds-cube 2016 83.0%
1 Google 2015 91.2%

around 120,000 to 3,000,000. The validation data includes 300
images and the test data has 1000 images for each category.
The evaluation of LSUN classification challenge is based on
the top-1 accuracy.

In order to verify the effectiveness of our proposed multi-
resolution CNN and knowledge guided disambiguation strat-
egy, we choose to transfer these learned representations on
Places2 dataset to the classification task of LSUN challenge.
Specifically, to reduce the computational cost and keep a bal-
ance between different classes, we randomly sample 100,000
images for each scene category as our training data. Then, we
use these learned CNNs on the Places2 dataset as pre-training
models and fine tune network parameters on the LSUN dataset.
The learning rate is initialized as 0.1 and it is decreased to
its 1

10 every 60,000 iterations, where batch size is set as 256.
The whole training process stops at 180,000 iterations. During
the test phase, following the common techniques, we crop 5
regions and their horizontal flipping, and use 3 different scales
for each image. We take an average over the prediction scores
of these different crops as the final recognition result of this
image.

We first report the performance of different pre-trained
models on the validation set of LSUN dataset and the results
are reported in Table IV. First, comparing the performance
of CNNs at different resolutions, we find that the deeper
BN-Inception networks learned on finer resolution images
can yield better performance than the normal BN-Inception
networks (89.9% vs. 90.5%). Second, considering the strategy
of knowledge guided disambiguation, both object and scene
guided CNNs are capable of bringing improvement (around
0.5%) over non-guided CNNs. Finally, we fuse the predictions
of multiple networks and obtain the final performance of
91.8% on the validation set of LSUN dataset.

We also provide the results of our method (fusion all)
on the test set of LSUN dataset in Table V and compare
with other teams at this challenge. Our SIAT MMLAB team
obtains the performance of 91.6% and secures the 1st place
at this challenge, which demonstrates the effectiveness of our
proposed solution for scene recognition. Importantly, our per-
formance is better than the winner of LSUN 20015 (Google)
by 0.4%, which also used a similar Inception architecture, but
lacked considering the multi-resolution structure and knowl-
edge guided disambiguation strategy.

F. Generalization analysis

The previous experiments have demonstrated the effective-
ness of our proposed method on the large-scale datasets in
both settings of training from scratch (Places2) and adaption

TABLE VI
PERFORMANCE COMPARISON OF TRANSFERRED REPRESENTATIONS OF

OUR MODEL WITH OTHER METHODS ON THE MIT67 AND SUN397
DATASETS.

Model MIT Indoor67 SUN397
ImageNet-VGGNet-16 [31] 67.7% 51.7%
Places205-AlexNet [1] 68.2% 54.3%
Places205-GoogLeNet [46] 74.0% 58.8%
DAG-VggNet19 [8] 77.5% 56.2%
Places205-CNDS-8 [47] 76.1% 60.7%
Ms-DSP [48] 78.3% 59.8%
Places205-VGGNet-16 [49] 81.2% 66.9%
LS-DHM [46] 83.8% 67.6%
Multiple Models [50] 86.0% 70.7%
Three [51] 86.0% 70.2%
Places2-Deeper-BN-Inception 86.7% 72.0%

with fine tuning (LSUN). In this subsection, we aim to test the
generalization ability of our learned models on other relatively
small scene recognition datasets. It should be noted that
although the sizes of these datasets are relatively small, they
have been uesed as standard scene recognition benchmarks
for a few years and many competitive methods have reported
performance on these datasets. Specifically, we choose two
scene recognition datasets: MIT Indoor67 [22] and SUN397
[2].

The MIT Indoor67 [22] contains 67 indoor-scene categories
and has a total of 15,620 images, with at least 100 images per
category. Following the original evaluation protocol, we use 80
images from each category for training, and another 20 images
for testing. The SUN397 [2] has a large number of scene
categories by including 397 categories and totally 108,754
images. Each category has at least 100 images. We follow the
standard evaluation protocol provided in the original paper. We
test the our method with each category having 50 training and
50 test images. The partitions are fixed and publicly available
from [2]. Finally the average classification accuracy of ten
different tests is reported.

In this experiment, we treat the learned models (B2) as
generic feature extractors without fine tuning on the tar-
get dataset. Specifically, the test images are first resized as
384 × 384. We then crop image regions of different scales
(384×384, 346×346, and 336×336) from the input images.
After this, these image regions are resized as 336 × 336
and fed into CNNs for feature extraction. We utilize the
activation of global pooling as the global representation. These
global representations of different regions are averaged and
normalized with `2-norm. For classifier, we use the linear
SVM with LIBSVM implementation [52].

The experimental results are summarized in Table VI. We
compare the transfered representations of our model trained
on the Places2 dataset with other deep models (e.g. VGGNet
[31] and GoogLeNet [32]) trained on different datasets (e.g.
Places and ImageNet). From these results, we see that our
learned representations are more generic and achieve better
performance. To the best of our knowledge, the performance
of 86.7% on the MIT Indoor67 and 72.0% on the SUN397
are the best ones for both datasets, which advance the state
of the art substantially. We believe such good performance is
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valuable to the scene recognition community and the future
recognition algorithm can be built on our pre-trained models.

G. Failure case analysis

Finally, we visualize some examples that our method fails
to predict the correct labels on the datasets of Places2 and
LSUN. These examples are illustrated in Figure 5. From
these examples, we notice that some scene classes are easily
confused with others. For the Places2 dataset, the categories
of supermarket, pet-store, toyshop look very similar from the
outdoor appearance. The classes of downtown, building, and
skyscraper may co-occur in many images. Thus, sometimes
scene recognition is a kind of multi-label classification prob-
lem and single label is not enough to describe the scene
content. For the dataset of LSUN, the classes of bridge and
tower are easily confused with each other, as they look quite
similar in some cases. Also, the category of conference room
is sometimes confused with the classroom category due to
similar spatial layout and common objects. Overall, from these
failure cases, we can see that scene recognition is still an
challenging problem and label ambiguity is a important issue
in the large-scale scene recognition, which still needs to to be
further explored in the future.

VI. CONCLUSIONS

In this paper, we have studied the problem of scene recog-
nition on the large-scale datasets such as Places, Places2,
and LSUN. Large-scale scene recognition is faced with two
major issues: visual inconsistence (large intra-class variation)
and label ambiguity (small inter-class variation). We designed
two techniques to address these problems accordingly: multi-
resolution CNNs are able to capture visual information from
different scales and knowledge guided disambiguation tech-
niques exploit extra knowledge to relabel images and improve
the generalization ability of learned models.

We conducted experiments on three large-scale image clas-
sification datasets to demonstrate the effectiveness of our
proposed approach. In addition, our method took part in two
major scene recognition challenges, and we achieved the 2nd

place at the Places2 challenge 2015 and 1st place at the
LSUN challenge 2016. The top performance further verify
the superior performance of our method over previous works.
Finally, we also tested the generalization ability our learned
models on other relatively small but competitive datasets,
where our learned representations obtained the current state-
of-the-art performance on the datasets of MIT Indoor67 and
SUN397.

Scene recognition is essentially a multi-label classification
problem. We will consider annotation with multi-labels in
the future. We need to better take into account of the label
correlations and may exploit other semantic concepts like
objects for scene understanding in still images. Meanwhile, we
could also come up with the scene-centric CNN architectures
to capture both the global layout and local details for scene
recognition.
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