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Motivation: Fine-Grained Named Entity Recognition

Types: Location, City, Route, Street, Stop, Distance, Other (O)

Output

Die/O U1/Route in/O Berlin/City ist/O sehr/O laut/O ab/O
der/O Warschauer/Stop Str./Stop

Output

A1/Street ,/O Seevetal/Location Richtung/O Bremen/Location
,/O 5/Distance KM/Distance Stau/O ./O



Motivation: CRFs, Big Data and Scalability

I Fine-Grained NER improves performance on several tasks
[10, 7, 4] but amplifies data sparsity problem that

I can be tackled w/ distant supervision [14, 1] which,
however, introduces scalability issues with linear chain CRFs

I because training is time-consuming
I 1 million tokens, 45 labels, around 500k parameters, more

than 3 days of training (POS task) on 2.4 GHz Machine [15]



Approach: Distribution w/ MapReduce

I MapReduce [3] is an established programming model for
distributed computing, supported by several frameworks.

MapReduce Example: Maximum token length

myMapOp: token → len(token)
myReduceOp: (x,y) → max(x,y)

distributedDataSet.map(myMapOp)
.reduce(myReduceOp)
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Figure 1: MapReduce.



Approach: Notation

I O = o1 . . . oT : sequence of observations (i.e. tokens),

I L = l1 . . . lT : sequence of labels (i.e. NE tags),

I D = {O(i), L(i)}Ni=1: training data.

I fk denotes one of K binary feature functions weighted by
θk ∈ R in a linear chain CRF [8]

p(L|O) =
1

Z (O)

T∏
t=1

exp

(
K∑
k

θk fk(lt−1, lt , ot)

)
(1)

where Z (O) is a normalization term.

I Parameters θk are estimated s.t. conditional log-likelihood L
of the training labels is maximized.



Approach: Data-Parallel Gradient Computation

Partially deriving the cond. log-likelihood L by θk yields [15, 9]

∂L
∂θk

= E(fk)− Eθ(fk) (2)

with

E(fk) =
N∑
i=1

E(i)(fk) (3)

and

Eθ(fk) =
N∑
i=1

E(i)
θ (fk). (4)

Thus

∂L
∂θk

=
N∑
i=1

(E(i)(fk)− E(i)
θ (fk)). (5)



Approach: Gradient Computation w/ MapReduce

I Partition and distribute disjoint data chunks of size p and

I perform gradient computation within MapReduce:

∑p
i=1(E(i)(fk)− E(i)

θ (fk))
}

map∑2p
i=p+1(E(i)(fk)− E(i)

θ (fk))
}

map

 (+) reduce

...



Approach: Framework

I Li et al. (2015) [9] implemented distributed training w/
Hadoop but

I for each iteration a new Hadoop job is submitted, which is
costly due to

I JVM startup times and
I disk IO for re-reading the training data.

I Apache Flink [2] provides primitives for massively parallel
iterations and

I identifies iteration-invariant parts and caches them to prevent
unnecessary recomputations [5].



Approach: Implementation
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Figure 2: Distributed in-memory iteration step.

I Implemented
using
FACTORIE
[12],

I constant
step-size
optimizer.



Experiments: Outline

I Accuracy: Fine-Grained NER (parameter validation)

I Scalability



Accuracy Experiments: Sources and Datasets

Dataset Tokens Noise

RSS 20152 35.6%
Twitter 12606 45.3%

Table 1: Sources, size and noise where noise refers to the tokens the
Enchant Myspell dictionary did not recognize.

Experiment setup

I Seven fine-grained geospatial entities,

I over 100k parameters (task-specific and general features),

I distributed 10-fold experiments conducted w/ level of
parallelism fixed at four,

I sanity checks involving local sequential counter part (w/o
Flink directives) and

I 10-fold experiments also conducted with state-of-the-art
reference model: Stanford NER [6] in standard configuration.



Accuracy Experiments: Results

I Sanity checks passed: Very similar parameters in place after
distributed and local training.

System Dataset P R F1

Locator RSS 80.7 75.8 75.2
Stanford RSS 82.8 78.8 80.5
Locator Twitter 57.0 50.4 51.7
Stanford Twitter 79.0 35.9 47.2

Table 2: Results of 10-fold NER experiments (micro averages).



Scalability Experiments: Setup

I Distributed and local experiments (w/o Flink directives).
I Cluster consisting of four physical machines (+ master node)

I three 1.80GHz CPUs w/ 8 cores, 16 threads, 20 MB cache,
I two 2.40GHz CPUs w/ 8 cores, 16 threads, 20 MB cache.

I Local experiments ran on master node.
I Each YARN task manager was assigned 8 GB of memory

I 30% reserved for Flink,
I master node memory reduced to 8 GB.

I Data distribution and feature extraction considered part of the
training.



Scalability Experiments: Results
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Figure 3: Execution times for increasing numbers of mappers (tokens: ≈
100k, iterations: 25).



Scalability Experiments: Results
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Figure 4: Execution times for increasing numbers of parameters (tokens:
≈ 100k, iterations: 25, parallelism: 8).
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Figure 5: Scalability of the distributed model (parameters: ≈ 20k,
iterations: ten).



Conclusion

Contributions

I Proof-of-concept distributed, iteration-aware training of a
linear chain CRF.

I Experimental validation of the parameters learned during
distributed training in a fine-grained NER task.

I Experimental demonstration of the scalability of our approach
w/ an analysis of the communication overhead trade offs.

Future work

I Implementation of more sophisticated optimizers (Adagrad,
LBFGS).

I Work w/ sparse tensors.

I Distribution of general factor graph training.
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Thank you!



(Backup) Motivation: CRFs in the Neural Era

Conditional Neural Fields
Jian Peng and Liefeng Bo and Xu, Jinbo, Advances in Neural
Information Processing Systems 22 (2009) [13]

Recurrent Conditional Random Fields
Yao, Kaisheng, et al., IEEE International Conference on Acoustics,
Speech and Signal Processing (2014) [16]

Ensemble learning w/ Conditional Random Fields

Liu, Zengjian, et al., Journal of Biomedical Informatics (2017) [11]
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