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MICHAEL C. SULLIVAN

Abstract. This is an expository account of a theorem of Louise
Moser that describes the types of manifolds that can be constructed
via Dehn surgery along a trefoil in the 3-sphere. These include
lens spaces, connected sums of two lens spaces, and certain Seifert
fibered spaces with three exceptional fibers. Various concepts from
the topological theory of three dimensional manifolds are developed
as needed.

1. Introduction

Imagine you live in some sort of three-dimensional universe. But now
suppose someone (or something - maybe some sort of space worm) has
carved out a tunnel in space that forms a loop. Annoyed at this you
grab a loop of “space tubing” to fill in the tunnel, gluing the outside of
the tube to the wall of the tunnel. Now you go back to whatever it was
you were doing before, but strange things start happening. Because
you weren’t careful in how you did the gluing it turns out the structure
of your three dimensional world has changed. Indeed, it might not even
be prime1!

This operation, called Dehn surgery, is a fundamental tool in the
study of three-dimensional manifolds (spaces). Our goal is to develop
this theory, somewhat informally, and then use it to prove a classical
theorem due to Louise Moser that describes the types of manifolds
that can be derived by performing Dehn surgery on a trefoil shaped
tunnel in a standard space called the three-dimensional sphere. The
background material needed would normally take a couple of years of
graduate level topology to master, yet the basic ideas are intuitive and
visual. This material was used in shorts courses taught at Toyko Tech in
January-Feburary, 2013, and Southern Illinois University July-August
2013 [12].

Date: November 1, 2013.
1Prime manifolds will be defined later
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2. Topological Manifolds

The material in this section can be found in the textbooks [5, 7]. We
assume a basic familiarity with topology: open and closed sets, com-
pactness, continuity and path connectedness. Two topological spaces
X and Y are homeomorphic or topologically equivalent if there is
a bicontinuous bijection h : X → Y ; this is denoted by X ∼= Y . Such a
function is called a homeomorphism. We say X can be embedded

into Y if there is a continuous map f : X → Y such that f : X → f(X)
is a homeomorphism.

An n-dimensional manifold without boundary M is a topolog-
ical space such that for each point x ∈ M there exists an open set
containing x that is homeomorphic to an open ball in R

n. If there are
points y in M for which this fails but where there is a subset H of M
containing y and a homeomorphism

h : H → {(x1, x2, . . . , xn) ∈ R
n | x2

1 + x2
2 + · · · + x2

n < 1 andx1 ≥ 0}

taking y to the origin, then M is a n-dimensional manifold with

boundary. Such points y form the boundary of M which is denoted
∂M . The interior of M is int(M) = M − ∂M . 2

Examples. An n-sphere, Sn, for n ≥ 0, is a any space homeomor-
phic to the unit sphere in R

n+1. We will be working with S1, S2 and
S3. These have empty boundary. A closed n-ball, Bn, for n ≥ 1, is any
space homeomorphic to the closed unit ball in R

n. Notice ∂Bn+1 ∼= Sn.
For n = 2 we call a 2-ball a disk and denote it by D2. Let I = [0, 1].
A space homeomorphic to I × S1 is called an annulus or a cylinder.
A space homeomorphic to S1 ×S1 is called a torus, denoted T 2, while
any space homeomorphic to D2 × S1 is called a solid torus. We will
use V to denote a solid torus although there is no standard convention.
A core of a solid torus is a circle that maps to (0, 0) × S1 by some
homeomorphism h : V → D2×S1. The spaces I×I×I and D2×I are
3-balls despite not being round. All of these manifolds are compact.

3. Gluing, Connected Sums and Compactification

We won’t be precise in our definitions here but will proceed by ex-
amples. If we “identify” the end points of the unit interval we get a
new manifold that is homeomorphic to the circle. If we take the square
I× I and identify each point on the bottom edge with the point on the
top edge that is above it we get a new manifold that is homeomorphic
to a cylinder. We say that we have glued the top and bottom edges. If
instead of gluing (x, 0) to (x, 1) we glued (x, 0) to (1 − x, 1) the result

2Manifolds are also assumed to be Hausdorff and second countable.



TREFOIL SURGERY 3

would be a Möbius band. If we glue (x, 0) to (x, 1) and (0, y) to
(1, y), for x, y ∈ I, the result is a torus.

Exercise 1. Explain why a Möbius band is not homeomorphic to an
annulus but a strip with a full (360o) twist is.

If we take two closed disks and identify their boundaries the result is
a 2-sphere. If we take two closed 3-dimensional balls, B1 and B2, and
identify points on their boundary 2-spheres the resulting 3-manifold
without boundary is a 3-sphere. See Figure 1. The identification is
achieved by choosing a homeomorphism h : ∂B1 → ∂B2 and identifying
x with h(x) for each x ∈ ∂B1. It can be proven that the topological
type of the result is independent of the choice of h [5].

Figure 1. Gluing two disks gives a 2-sphere; gluing two
balls gives a 3-sphere.

The 3-sphere can be constructed by gluing two solid tori. Figure 2
shows how to see this starting from gluing two 3-balls. You decompose
one of the 3-balls into a solid torus and a solid cylinder (in the donut
hole). We do the gluing in two steps. First glue the top and bottom
disks on the cylinder to the other 3-ball. This forms a solid torus. Now
glue the two solid tori together and voila, we have realized S3 as the
union of two solid tori.

There is another way to construct spheres that is useful. Consider
the union of the real line R with a new point called ∞. We topologize
R∪{∞} by choosing as the open sets all the open subsets of R together
with sets of the form {∞} ∪ O where R − O is compact. With this
topology R ∪ {∞} is homeomorphic to S1. It is called the one point

compactification of R. The same process can be applied to make
R

2 ∪ {∞} homeomorphic to S2 and R
3 ∪ {∞} homeomorphic to S3.

For any two path connected 3-manifoldsMi, i = 1, 2, we can form the
connected sum as follows. Select a closed 3-ball in each that does
not meet the boundary (if there is one) and remove their interiors.
Now choose a homeomorphism from the new boundary 2-sphere of
M1 − int B1 to the new boundary 2-sphere of M2 − int B2. Glue the
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Figure 2. Realizing S3 as the union of two solid tori

two 2-spheres using this homeomorphism. The new manifold is denoted
M1#M2 and its topological type is independent of choices of the 3-balls
and the homeomorphism. If the only way a manifold M can be written
as a connected sum is M ∼= M#S3 then we say M is prime. Every
compact, path connected, 3-manifold without boundary can be written
uniquely as a connected sum of prime 3-manifolds! [4]

4. Knots

A knot is a circle embedded in the interior of a 3-manifold, that is
there is a homeomorphism h : S1 → K ⊂ Int M . A knot is said to
be an unknot if it forms the boundary of a disk in M . Thus the unit
circle U in the xy-plane in R

3 is unknotted.
Given two knots in a 3-manifold we describe three different ways

they may be regarded as equivalent. Two simple closed curves are
homotopic if one can be continuously deformed into the other. During
the deformation the curve is never cut but it can pass through itself.
Two simple closed curves are isotopic if they are homotopic but no
self crossings are permitted during the deformation. Two simple closed
curves are ambiently isotopic if they are isotopic and the deformation
can be extended to a deformation of the entire manifold. Two knots
K1 and K2 in M are said to have the same knot type if they are
ambiently isotopic.

Example 1. Figure 3(left) illustrates an isotopy taking a knotted curve
to and unknotted circle in R

3. However it can be show that there is no
way to extend the isotopy. Thus these two curves are isotopic but not
ambiently isotopic. Figure 3(right) shows two curves in a 3-manifold
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with boundary that is formed by gluing two solid tori along disks in
their respective boundaries. They are homotopic, but not isotopic.

Figure 3. Left, isotopic but not ambiently isotopic;
Right, homotopic but not isotopic

Given a knot K in a 3-manifold M a tubular neighborhood of
K is a solid torus that misses ∂M and has K as its core [9]. It is
denoted by N(K). A solid torus whose core is unknotted is said to
be standardly embedded; likewise for the boundary of such a solid
torus.

Let V be a standardly embedded solid torus in S3 and let T = ∂V .
A knot in T that does not bound a disk in V is called a torus knot.
The simplest torus knot, besides the unknot, is the trefoil; see Figure
4.

Although only unknots bound disks every knot in S3 is the boundary
of some orientable (two sided) surface. Such a surface is called a Seifert

surface. We won’t prove this fact here (see [2]) but Figure 4(upper
left) shows a Seifert surface for the trefoil.

Figure 4. Three views of the trefoil knot

Exercise 2. Convince yourself that the three curves in Figure 4 are
ambiently isotopic. Convince yourself that the Seifert surface shown is
homeomorphic to a torus with the interior of a disk removed.

5. torus maps

We will be studying self homeomorphisms of the torus. These will
arise as gluing maps involving a solid torus. We start setting coor-
dinates. Let V be a solid torus. A simple closed curve on ∂V that
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bounds a disk inside V but does not bound any disk in ∂V is called a
meridian. A disk inside V whose boundary is a meridian is called a
meridional disk. (The disk must meet ∂V only along its boundary.)
Any two meridians are isotopic within ∂V .

A simple closed curve in ∂V that meets a meridian in exactly one
point where it passes through (we say they meet transversely) is called
a longitude. While any two longitudes are isotopic within V there are
infinitely many longitudes that are not isotopic in ∂V . Figure 5 shows
two different longitudes on a solid torus.

Figure 5. Two meridian-longitude pairs

Given a meridian-longitude pair we can orient them and set up a
coordinate grid on ∂V . Usually the longitude is the first coordinate
and the meridian is taken as the second.

A preferred longitude of a solid torus V in S3 is a longitude that
is the intersection of a Seifert surface for the core of V with ∂V . It can
be shown that up to isotopy there is only one choice for the preferred
longitude [2, 9].

If the torus is standardly embedded in S3 then a preferred longitude
will bound a disk in S3 − Int V and is easy to visualize. Determining
a preferred longitude of knotted solid torus is not visually obvious.
Figure 6 shows the preferred longitude for a trefoil. We will use this
later. (A preferred longitude has linking number zero with the core [9].)

Figure 6. A preferred longitude of the trefoil knot
based on a figure from [9].

Think of the torus T 2 as given by I × I with the opposite edges
identified. A 2 × 2 integer matrix A induces a map from R

2 to itself
that preserves the integer lattice. If we use arithmetic modulo 1 then
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A determines a map from [0, 1) × [0, 1) to itself. From this we can get
a map from T 2 to T 2. The induced map is a one-to-one if and only if
detA = ±1. (Try to prove this!)

Of course there are many homeomorphisms from T 2 to T 2 that are
not linear. However, it is always possible to “straighten” one out to

get a linear map. We take

[
1
0

]
to represent L and

[
0
1

]
to represent M .

Exercise 3. Let A =

[
2 1
1 1

]
. In Figure 7 we show the image of I × I

under the action of A in R
2 and how it wraps around the torus when

using mod 1 arithmetic. Redo this for

[
2 1
3 2

]
. Try to draw each of

these on a donut!

1

2

3
4

1

2

3
4

Figure 7. A linear torus homeomorphism

6. Homology Groups

If two groups are isomorphic we write G1 ≈ G2. For every compact
manifold M there is an associated Abelian group called the first ho-

mology group, which is denoted by H1(M). If M is homeomorphic to
N then H1(M) ≈ H1(N). The formal definition is too technical for us.
We can think of it as a “hole counter”. A loop in M is the continuous
image of S1 in M . A loop can have self crossings or even be a point.
If every loop is M is homotopic to a point then H1(M) is the trivial
group. Thus, H1(S

2), H1(D
2) and H1(S

3) are trivial.
For an annulus A we have H1(A) ≈ Z. Consider a loop in A that

goes around, say counterclockwise, just once. This loop and all loops
homotopic to it are associated to 1. The class of loops that wrap
around twice are associated to 2. If we have a loop going around once
and another going around twice that start and stop at the same point,
we can “add” them to get a loop that goes around three times. This can
be done formally to give a group structure. Loops that bound a disk
in A correspond to 0 and loops that wrap around clockwise correspond
to negative integers.



8 MICHAEL C. SULLIVAN

Take a disk D and remove the interiors of two disjoint closed disks
in the interior of D. The result is a disk with two holes; call it D̈.
Then H(D̈) ≈ Z

2. If we removed three holes the homology group is
isomorphic to Z

3 and so on.
It may not be obvious, but for a torus we have H1(T

2) ≈ Z
2. Think

about it, the meridian and longitude wrap around different holes. For
a solid torus we have H1(S

1 ×D2) ≈ Z.
This next example will take us beyond the hole counting analogy. Let

M̃ be the Möbius band. It can be shown that H1(M̃) ≈ Z. But now we
are going to introduce a new space. The boundary of a Möbius band is

S1. Thus we can glue a disk D to M̃ . This gives a 2-manifold without
boundary. It is called the projective plane and is denoted P 2. You
cannot visualize it in R

3 but is exists as a mathematical object. What
is H1(P

2)? The boundary of the Möbius band now bounds a disk. So
it must die; that is, it is in the identity equivalence class. However, the
loop C that is the core of the Möbius band is still non trivial. Yet twice
C is trivial; that is a loop that travels around C twice is homotopic to

∂M̃ . Thus, in H1(P
2) we have 2C ∼ 0. This can be used to prove that

H1(P
2) ≈ {0, 1} under mod 2 addition.

Finally, if we have two finite disjoint collections of simple closed
curves in a manifold and together they form the boundary of an ori-
entable surface then they, with suitable orientations, add up to 0. The
reason for this is at the hart of the formal definition of homology groups
but is too technical to present here.

7. Finitely Generated Abelian Groups

The first homology group of a compact manifold is a finitely gener-
ated Abelian group. We take a brief algebraic detour to review these.
The set Z

n is an Abelian group under vector addition. Let A be an
n×n matrix on integers. It induces a homomorphism from Z

n into Z
n

via matrix multiplication. We denote the image by AZ
n. The quotient

group Z
n/AZ

n is then a finitely generated Abelian group and all such
groups have a presentation of this form. While it can happen that
different matrices yield isomorphic groups there is a simple algorithm
involving row and column operations that determines this [3].

For example, Z/2Z has two elements, the even integers and the odd
integers. The induced addition operation is that even plus even is even,
odd plus odd is even and even plus odd is odd. We often write Z/2Z

as {0, 1}, taking addition to be addition mod 2.
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Let G = Z/nZ. If n = ±1 then nZ = Z and G is the trivial group,
which has one element. In general the number of elements in G is |n|,
unless n = 0. In this case 0Z = {0}, hence G ≈ Z, which is infinite.

Let A =

[
2 0
0 3

]
and G = Z

2/AZ
2. The reader should work out that

G ≈ Z/2Z ⊕ Z/3Z which has six elements. If instead A =

[
2 0
0 0

]
the

reader should check that G ≈ Z/2Z ⊕ Z, which has infinitely many
elements. The following theorem is proved in [3].

Theorem 7.1. Let A be an n × n integer matrix. Then the order of

Z
n/AZ

n is | detA| if detA is not zero and is infinite if detA = 0.

8. Dehn surgery

Let M be a 3-manifold and K a knot in M with tubular neighbor-
hood N(K). Now remove the interior of N(K) from M; let M′ =
M− int N(K). Let V be a solid torus disjoint from M. Let h : ∂V →
∂N(K) ⊂ M ′ be a homeomorphism. Now glue V to M′ by using h
to identify ∂V with ∂N(K). Let MK,h = M′ ∪h V denote the new
manifold. Its topological type depends on both K and h but not on
the choice of the tubular neighborhood. It has been proven that ev-
ery compact, connected, orientable 3-manifold without boundary can
be constructed via Dehn surgeries on S3; this result is known as the
Lickorish-Wallace theorem. [9]

The topology of MK,h is determined by the knot type of K and a
(p, q) curve on the ∂N(K) in M′ which is the image of a median of V .
The proof goes roughly like this: A meridian of V bounds a disk in V
which we can thicken up to a thin ball, B. Let M′′ = M′∪B. Clearly
M ′′ depends only on (p, q). The closure of the complement of B in V
is another ball, B′. Then MK,h = M′′ ∪ B′ where the gluing maps
all of ∂B′ to ∂M′′. We know that the topological type of the result is
independent of how this gluing is done.

If the homeomorphism is linearized then the first column of its matrix
determines the image of M and hence the topological type of a Dehn
surgery gluing (along with the knot used).

The simplest Dehn surgeries are those done on the unknot in S3.
Since removing an unknotted solid torus from S3 results in a second
unknotted solid torus, these Dehn surgeries are equivalent to gluing
two solid tori together. We might just recover S3, but this need not be
the case. It depends on the homeomorphism. Manifolds formed in this
manner are lens spaces [8, 9].
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Let h : ∂V1 → ∂V2 be a homeomorphism from the boundary of solid
torus V1 to the boundary of solid torus V2. Let L = V1 ∪h V2. Select
a meridian-longitude pair for each and call them (Li,Mi), for i = 1, 2
Suppose h(M1) is a (p, q)-curve on V2. Then the result of the gluing is
called the (p, q)-lens space and is denoted by L(p, q).

We have that L(1, 0) ∼= S3 and L(0, 1) ∼= S2 × S1. Note that for
n > 1, L(n, 0) and L(0, n) are not defined. Neither is L(0, 0).

Exercise 4. a. Convince yourself that L(1, q) ∼= S3 for all q.
b. Convince yourself that H1(L(p, q)) ≈ Z/pZ. It follows that if
L(p1, q1) is homeomorphic to L(p2, q2) we must have p1 = p2.

Now, while (p, q) determines L(p, q) the relationship is not unique.
It can be shown that changing the signs of p or q does not affect the
topology. It is also known that L(p, q) ∼= L(p, q + np) for all integers
n. Thus we may assume 0 < q < p except for the cases L(0, 1) and
L(1, 0). There is an additional symmetry and it turns out for 0 < q1 < p
and 0 < q2 < p, with p relatively prime to each qi, is it known that
L(p, q1) ∼= L(p, q2) if and only if ±q1q

±1
2 = 1 mod p.

9. Seifert fibered Manifolds

We define a class of manifolds as follows. Take S2 and remove the
interiors of k + 1 disjoint disks. Denote its boundary curves by Si,
for = 0, 1, . . . , k. Then let M0 be this surface cross S1. Its boundary
is the disjoint union of k + 1 tori which we denote T0, T1, . . . Tk. Let
V0, V1, . . . Vk be solid tori and for i = 0, . . . , k let hi : ∂Vi → Ti be
homomorphisms. Attach the Vi’s to M0 using the hi’s. Denote this
manifold M. It is called a Seifert manifold.

For each i = 0, . . . , k select a meridian Mi of Vi and on each Ti
construct a coordinate system as follows. Select a point Oi on Si. Let
Fi = {Oi} × S1. This will be the axis of slope infinity. Select a simple
closed curve Qi ⊂ Ti that goes through Oi and intersects, exactly once
transversely, each curve {z} × S1, where z ∈ Si. This will be the axis
of slope zero.

Now for each i the image hi(Mi) is isotopic to a curve of slope αi/βi.
We require this to be finite. Then it can be shown that the topo-
logical type of M is determined by these slopes. It is denoted by

S2
(
α0

β0
, . . . , αk

βk

)
. Notice that if k = 0 or 1 we just get the lens spaces.

Each Seifert manifold can be given a fibration, that is it can be de-
composed as disjoint union of circles. We first look at fibrations of the
solid torus.



TREFOIL SURGERY 11

Consider the solid cylinder C = D2 × I. Let Fc = {{(r, θ)} × I :
(r, θ) ∈ D2}. This gives a fibration of C by closed intervals. Let
Di = D2×{i} for i = 0, 1 be the bottom and top disks of C respectively.
For any real number ψ let Rψ : D0 → D1 be given by Rψ(r, θ, 0) =
(r, θ + ψ, 1). Identify D0 and D1 using Rψ as the homeomorphism to
form a solid torus V . If ψ is a rational multiple of π the fibers on C
become joined at their end points to form circles. The core circle will
contain just one copy of I. If ψ = 2πα/β for coprime integers α and
β then the other circles will be formed from β copies of I. Such an
object is called a (α, β) fibration of the solid torus. The core is
called the exceptional fiber unless α = 0 or β = 1, in which case we
say the fibration is trivial. Non-exceptional fibers are called ordinary

fibers. If V is standardly embedded in R
3 then it is fibered by (β, α)

torus knots and its core.
Now to get a fibration for S2

(
α0

β0
, . . . , αk

βk

)
we start with the natural

fibration of M0 × S1 where the fibers are of the form {∗} × S1. Next
we place a fibration on each Vi so that hi will take fibers to fibers.

Two fibrations of a Seifert manifold M are fiber equivalent if there
is a homeomorphism h : M → M that takes fibers to fibers. Seifert
fibered manifolds have been completely classified up to fiber equivalence
by Seifert [11]. We will not need the full classification theorem, but we
do need to understand the classification of fibrations of the solid torus.

We only need to know α modulo β and we assume they are coprime.
Changing the sign of either is equivalent to changing the choice of
orientations for the coordinates systems. A homeomorphism is not
required to preserve orientation so sign changes won’t affect the fiber
equivalence class. Notice that α/β ∼ −α/β + 1 = (β −α)/β. Thus we
can assume 0 < α ≤ β/2, where equality can only occur when β = 2.
It can be shown that subject to these restrictions α and β determine a
unique fiber equivalence class of the solid torus.

Fibrations of S3. Recall our construction of S3 as the union of two
solid tori glued along their boundaries. The gluing we used identified
a meridian of each torus with a longitude of the other. If we place a
(α, β) fibration on one solid torus and a (β, α) fibration on the other it
is easy to arrange that the gluing homeomorphism take fibers to fibers.
This gives a fibration of S3 with up to two exceptional fibers, one with
index α the other with index β. Seifert showed that the only fibrations
of S3 [11]. We remark that the fibrations of S3 have been used as a
tool to study the twisting of molecular structures in “softly condensed
matter” [10].
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For Seifert fibered manifolds with several exceptional fibers the fol-
lowing equivalence is known.

S2

(
α0

β0
, . . . ,

αi
βi
, . . . ,

αj
βj
, . . . ,

αk
βk

)
∼=

S2

(
α0

β0
, . . . ,

(
αi
βi

)
+ 1, . . . ,

(
αj
βj

)
− 1, . . . ,

αk
βk

)
.

And it is obvious that

S2

(
α0

β0

, . . . ,
αk
βk

)
∼= S2

(
0,
α0

β0

, . . . ,
αk
βk

)
.

Using these we can make a normal form where the α0/β0 is an integer,
dropped if it is zero, and 0 < αi < βi for i = 1, . . . , k. We may also
reverse all the signs by switching orientation.

10. Homology Calculations

We give some homology calculations that will be used later.
It should be no surprise to learn that H1(S

3) = 0. Let K be a knot in
S3 with tubular neighborhood N(K). Now let MK = S3− int(N(K)).
Then MK is the knot complement space of K. Then H1(MK) ≈ Z.

We will only sketch the proof. The homology group of the boundary
of N(K) has two generators. We take these to be a meridian M of
N(K) and the preferred longitude L. Now L bounds a Seifert surface
and hence is null homotopic L ∼ 0. That leaves only M and it can be
shown no power of M is homologous to 0. Thus H(MK) ≈ Z.

Take a knot complement manifold and glue in a solid torus using
(p, q) surgery. Call the new manifold MK(p,q). Now |q| times the merid-
ian of the knot is homologous to 0. The solid torus core is homologous
to a preferred longitude which in turn is homologous to 0. These two
facts can be used to show that H1(MK(p,q)) ≈ Z/|q|Z.

The next result is based on a result from Seifert’s paper [11].

Theorem 10.1. Let M be a Seifert fibered of the type described above

with k exceptional fibers with crossing slopes αi/βi for i = 1, . . . , k and

α0 an integer. Then H1(M) is the Abelian group with k+1 generators,

which we denote F,Q1, · · · , Qk, and k + 1 relations,

α0F −Q1 − · · · −Qk = 0 and βiF + αiQi = 0

for i = 1, ..., k. The F generator can be represented by any ordinary

fiber and the Qi’s can be represented by the crossing curves described

above.
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We shall give only a rough justification. The homology of the disk
with k holes is isomorphic to Z

k. Taking the cross product with S1

creates a new generator which we shall call F . Thus, H1(M0) ≈ Z
k+1.

However, we can, along with F , use as generators the Qi’s instead of
the boundaries of the holes since this is just a change of basis.

Each time we glue a solid torus to a boundary component of M0 we
get a new relation since some nontrivial curve is identified to a meridian
which of course bounds a disk. Let Vi be the solid torus whose core will

be the ith exceptional fiber. The ordinary fiber F can be isotoped to a
fiber near ∂Vi. Then the gluing prescription means that βiF+αiQi now
bounds a disk inside Vi and hence we have the relations βiF+αiQi = 0,
for i = 1, . . . , k. The sum Q1 + · · · + Qk is homologous to the outer
boundary curve of the initial disk. Let E = Q1 + · · · + Qk. Then the
crossing curve that is glued to a meridian of V0 is β0F −E which gives
the other relation.

We will make use of the following corollary.

Corollary 10.2. For n = 3 the order of H1(M) is

|α0β1β2β3 + α1β2β3 + β1α2β3 + β1β2α3 |

Proof. The relations can presented in matrix from as



α0 −1 −1 −1
α1 β1 0 0
α2 0 β2 0
α3 0 0 β3


 .

By Theorem 7.1 we just have to compute its determinant. �

11. Surgery along a Torus Knot

We now have the tools in place to prove a classical theorem due
to Louise Moser that tells us which three manifolds may result from
surgery along a torus knot.

Theorem 11.1. [6] Let K be an (r, s) torus knot in S3 and let M be

the manifold the results from preforming a (p, q) Dehn surgery along

K. Set σ = rsp− q.

(1) If |σ| > 1 then M is a Seifert manifold over S2 with three

exceptional fibers of multiplicities α1 = s, α2 = r and α3 = |σ|.
The proof will show how to compute the obstruction term and

the three βi terms.

(2) If σ = ±1 then M is the lens space L(|q|, ps2).
(3) If σ = 0 then M is L(r, s)#L(s, r).
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Proof. The Set Up. We will use the R
3 ∪∞ model for S3. Let U be

the unit circle in the xy-plane and let Z be the z-axis union {∞}. We
first partition S3 into two solid tori, V ′

1 and V ′
2 , with common boundary,

where the core of V ′
1 is U and the core of V ′

2 is Z. Let M ′
i and L′

i be
preferred meridian-longitude pairs for V ′

i , i = 1, 2, where M ′
1 = L′

2 and
L′

1 = M ′
2.

Now let K be an (r, s) torus knot on ∂V ′
1 = ∂V ′

2 . Let N(K) be a
tubular neighborhood ofK that is small enough that Vi = V ′

i −intN(K)
are still solid tori, i = 1, 2. Thus V1 ∪ V2 is the knot complement space
of K. The Vi look like the V ′

i but with a trough dug out along K.
The intersection ∂V ′

i ∩ ∂N(K) consists of two curves parallel to K.
Call them Ki, i = 1, 2. They partition the boundary of each Vi into
two annuli. Let A be the annulus between the Ki that the Vi have
in common, that is A = V1 ∩ V2. Let A1 be ∂V1 − intA and A2 be
∂V2 − intA, that is A1 and A2 are the “bottoms” of the troughs.

Let (Mi, Li) be meridian-longitude pairs for Vi, i = 1, 2 chosen by
retracting M ′

i and and L′
i through N(K) as shown in Figure 8.

V1

A

AA

A1

A1

A1
K1

K2

M1

L1

Figure 8. The Set Up: ∂V1 = A ∪ A1; ∂A = ∂A1 = K1 ∪K2

Let (M3, L3) be a preferred meridian-longitude pair forN(K). Recall
this means L3 ∼ 0 in V1 ∪ V2. (See the end of Section 6.)

Next let V4 be a new solid torus with meridian-longitude pair (M4, L4).
This is the solid torus we shall glue to V1 ∪ V2 via a homeomorphism

h : ∂V4 → ∂(V1 ∪ V2) = ∂N(K).

Let

[
a p
b q

]
be the matrix representing h. Thus h(M4) = pL3 + qM3.
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The following homology calculation, done with respect to V1 ∪ V2,
will be used repeatedly. K1 ∼ rZ and Z ∼ sM3 so K1 ∼ rsM3. Thus
K1 − rsM3 ∼ 0 ∼ L3.

h(M4) = pL3 + qM3

∼ p(K1 − rsM3) + qM3

= pK1 − (rsp− q)M3

= pK1 − σM3. (∗)

Case 1. Suppose |σ| ≥ 2. We augment our set up by using an
(r, s) fibration of S3 such that the knot K is a fiber and N(K) is a
fiber solid torus. In this fibration U and Z have multiplicities s and r
respectively. We will need to figure out the fibration of V4 such that h
preserves fibers.

Now M3 is a crossing curve on ∂N(K). Therefore, the fibration of
V4 will have a fiber of multiplicity |σ| as its core. So we have a Seifert

fibered space of the form S2
(
α0,

α1

s
, α2

r
, α3

|σ|

)
.

Example 2. Suppose K is a (3, 2) torus knot and that the Dehn
surgery is of type (6, 31) Thus r = 3, s = 2, p = 6, q = 31 and
|σ| = 5.

By Corollary 10.2 the order of H1(M) is 30α0 + 15α1 + 10α2 + 6α3.
From Section 10 the order of H1(M) is |q|. Thus we want to find
solutions to

30α0 + 15α1 + 10α2 + 6α3 = ±31.

First we use +31. Since s = 2 we know that β1 = 1. Thus,

15α0 + 5α2 + 3α3 = 8.

Since r = 3 and |σ| = 5 we know α2 ∈ {1, 2} and α3 ∈ {1, 2, 3, 4}.
Clearly then α0 ≤ 0. Suppose α0 = 0. Then α2 = 1 and α3 = 1 are
the only solutions. If α0 < 0 you can check that there are no other
solutions. For −31 the result is α0 = −3, α1 = 1, α2 = 2 and α3 = 4,
which is equivalent.

Equations of this type are called linear Diophantine equations. There
is a general procedure for solving in most number theory textbooks.Try
some other choices for r, s, p and q.

Case 2. Suppose σ = ±1. Recall h =

[
a p
b q

]
. The topological type

of the Dehn surgery is determined solely by q and p. We are free to
choose a and b so long as det h = ±1. If we choose b = rs and a = 1
we get det h = pb− aq = q − rsp = σ = ±1.
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From equation (∗) we have h(M4) ∼ pK1 ∓M3. We didn’t need to
study h(L4) in Case 1, but here we do.

h(L4) = rsM3 + L3 ∼ rsM3 +K1 − rsM3 ∼ K1.

In other words the longitude on V4 is going to a curve parallel to the
knot K.

Now we glue V4 to V1. We claim that the result must be a solid
torus. Both V4 and V1 can be written as S1 × D2. For specificity we
write

V1 = S1 ×D1 and V4 = S4 ×D4.

Let α be an arc in ∂D4 and let A4 = S4 × α be the annulus in ∂V4

that has core L4 and will be identified to A1 in ∂V1. Each copy of the
disk D1 in V1 meets A1 in r arcs. We can choose the homeomorphism
to take each ∗ × α arc to a component of A1 ∩ (∗′ × D1). Then the
union V1 ∪ V4 can be realized as a product S1 × DD where DD is a
disk formed by gluing r copies of D4 to 0 ×D1 along copies of α. See
Figure 9.

Since V1 ∪ V4 is a solid torus we have that V1 ∪ V4 ∪ V2 is the glu-
ing of two solid tori and hence a lens space. We do some homology
calculations to determine which lens space it is.

Remember we have four sets of meridional-longitudinal pairs. Now
we need a fifth since V1 ∪ V4 is a new solid torus. Call these (M5, L5).
We will compute M5 in terms of M2 and L2, that is we shall solve

M5 = xM2 + yL2;

we won’t need to find L5. Then we will have the L(x, y) lens space.

0×D1

0×D4

2π

3
×D4

4π

3
×D4

Figure 9. Cross section of V1 ∪ V4

Looking at Figure 10 we see that

L1 ∼M2 + rM3 and M1 ∼ L2 − sM3.

These homology calculations are still in V1 ∪ V2, the knot complement
space. (Figure 10 attempts to show V1 with a small tubular neighbor-
hood of the core drilled out, thus creating a thick torus (T 2 × I) with
a trough dug out along K, which is presented as a cube with the top



TREFOIL SURGERY 17

& bottom sides and the left & right sides respectively identified. Not
shown is V2 which would look like its mirror image. Recall V1 and V2

are glued along the annulus A. To the sides of V1 are diagrams show-
ing how the various meridians and longitudes are related if r = 3 and
s = 2. It will likely take a good while for the reader to see this.)

Now we glue in V4. Recall that K1 is an (r, s) curve. Thus,

M4 ∼ pK1 − σM3 ∼ p(rM1 + sL1) − σM3 = prM1 + psL1 − σM3.

And finally,

M5 ∼ M1 − σsM4

∼ M1 − σs(prM1 + psL1 − σM3)

∼ (1 − σrsp)M1 − σps2L1 + sM3

∼ (1 − σ)(L2 − sM3) − σps2(M2 + rM3) + sM3

= (1 − σrsp)L2 − s(1 − σrsp)M3 − σps2M2 − σprs2M3 + sM3

= (1 − σrsp)L2 − σps2M2 + (−s+ σprs2 − σprs2 + s)M3

= (1 − σrsp)L2 − σps2M2,

where these homology calculations are in the new manifold M . If
σ = 1 then M5 ∼ −qL2 − ps2M2; if σ = −1 then M5 ∼ +qL2 + ps2M2.
Therefore M ∼= L(|q|, ps2) as claimed.

Case 3. Suppose σ = 0. Then q = rsp. Since q and p can only
have 1 as a common divisor, and p > 0 by convention, it must be that
p = 1. Thus by equation (∗) h(M4) ∼ K1. That is the meridian M4

of V4 is identified with K1. Another meridian, M ′
4, of V4 will then be

identified with K2.
We construct the union V1 ∪ V4 ∪ V2 in stages. Partition V4 into two

solid cylinders C and C ′ by choosing two disjoint meridional disks D
and D′ in V4 with ∂D = M4 and ∂D′ = M ′

4. The boundary of C minus
the interiors of the two disks is an annulus, call it A3. See Figure 11.

We glue C to V1 by attaching A3 to A1. This space has boundary
D ∪A ∪D′, which must be a 2-sphere, call it S. Likewise V2 ∪ C

′ is a
manifold whose boundary is a 2-sphere, call it S ′. Then M is formed
from V1 ∪ C and V2 ∪ C

′ by identifying their boundary spheres. Thus
M is the connected some of two manifolds. We will show that V1 ∪ C
and V2 ∪ C

′ are lens spaces with an open 3-ball removed.
In fact we claim V1 ∪ C is homeomorphic to the lens space L(r, s)

minus an open 3-ball. To see this we glue a 3-ball B to V1∪C and show
that this space is L(r, s). We do this in two steps. Partition B into a
solid torus VB and a solid cylinder CB as shown in Figure 12. Let DB

andD′
B be the disks composing ∂B∩CB. Let AB = ∂B−int(DB∪D

′
B).

Attach C to CB by identifying DB to D1 and D′
B to D2. Then C ∪CB
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L1

L1

L2

M1

M1

M2

M3

M3

A V1

Figure 10. V1 for r = 3, s = 2

V1

A1

A1

A1

C

D

D′

A3

Figure 11. V1 and C

is a solid torus. Now attach V1 to VB by identifying the annulus A1

with AB. As before this forms a solid torus. Thus,

V1 ∪ C ∪ B = (V1 ∪ VB) ∪ (C ∪ CB)

is the union of two solid tori and is a lens space. Since a meridian ∂D1

of C ∪ CB is identified to an (r, s) curve on ∂(V1 ∪ VB) the lens space
is L(r, s).
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DB

D′

B

AB

Figure 12. The 3-ball B partitioned

If we attach C ′ to V2 we can show that this is homeomorphic to
the lens space L(s, r) minus an open ball. Thus M is formed by tak-
ing the connected sum of L(r, s) and L(s, r). Note: It is known that
L(r, s)#L(s, r) cannot be given a Seifert fibration. �

This concludes the proof. The figure-8 knot has just four crossings
and is not a torus knot. Surgery along the figure-8 knot is the next
logical topic to pursue. This turns out to be much more involved than
surgery along torus knots. See [13] as a place to start. There is a large
and growing literature on this topic.
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