
Zero boilerplate

As a young man, I used to curate a collection of “template files”, for all the formats
and programming languages that I was using. I had a template for LaTeX files, a
template for C programs, a template html page, etc. The basic idea was that you
never start writing a text �le from scratch, you just copy an existing �le and change some
things.

Now I realize that this is a bad idea. You must start all your projects with an empty �le.
This is the zero boilerplate idea. It is a liberating experience; you feel intimately
connected to the underlying structure of the system that you rest upon. You grow
roots, in a way.

Here I collect examples of complete files in various languages. Of course, you
should never copy these files and edit them. Instead, you should memorize them
an re-write the text each time than you need it.

1 HTML

In the old days, HTML was a very verbose language. With the advent of XHTML,
the situation worsened so much that the default language of the web was impos-
sible to write by humans. Fortunately, HTML5 corrects the errors of his prede-
cessors and, thanks to default tagging, it is possible to create web documents by
hand again.

This is a minimal HTML file

<!doctype html>

<title>Coco notes: zero boilerplate</title>

<h1>Zero boilerplate</h1>

<p>

Here begins the text of this page.

As advised by many people (e.g. the authors of HTML5, the google html coding
guidelines), it is best to omit all implicit tags (such as <html> and <head> and <body>),
and all automatically closed tags (such as <p>, and many others).

If you want to use a tiny bit of css or mathjax (probably the only acceptable use
of javascript), you can do this

<!doctype html>

1

<title>Coco pages: zero boilerplate</title>

<style type="text/css">

body { max-width: 90ex; }

pre { background:lightgray; width:80ch; }

</style>

<script src="//path.to/MathJax.js?config=TeX-AMS_CHTML-full" type="text/javascript"></script>

<h1>Zero boilerplate</h1>

<p>

Here begins the text of this page.

And, if you are a decent person, you should rarely need anything other than that.

2 TeX and LaTex

Plain TeX is notoriously boilerplate-free. You just write your paragraphs, sepa-
rated by blank lines, and end your document with \bye. This is the best option to
write a book, unless you rely on direct entry of UTF-8 characters (in which case
you can use LuaTeX or XeTeX), fancier math (in which case you’ll want AMS-
TeX), or advanced sectioning and indexing capabilities (in which case you’ll want
LaTeX).

A minimal LaTeX file is thus

\documentclass{article}

\begin{document}

Hello, world!

\end{document}

and a LaTeX file in french and with some fancy math,

\documentclass{article}

\documentclass[a4paper,11pt]{article} % classe article standard

\usepackage[utf8]{inputenc} % pour écrire les accents directement

\usepackage[T1]{fontenc} % pour faire des vrais guillemets

\usepackage[frenchb]{babel} % conventions typographiques françaises

\usepackage{amsmath} % mathématiques avancées

\begin{document}

Voici le théorème de Stokes:

$$\int_{\partial\Omega}\omega=\int_\Omega\mathrm{d}\omega$$

\end{document}

you should strive to keep your list of packages minimal. The preamble to the
document should never take more than half a screen.

3 C

The C compiler is always a good unix citizen. You can compile an empty file

2

http://motherfuckingwebsite.com/

cat /dev/null > x.c

cc -c x.c

and it will produce a valid empty object x.o that does not have any symbols (as
you can verify, because nm x.o gives an empty output).

Thus, no boilerplate is needed for writing a C library.

If you want to write a command line program in C, it will look something like
this:

#include <stdio.h> // stderr, fprintf, printf

#include <stdlib.h> // atof, free

#include "image.h" // image_read, image_write

// regamma, a program to change the gamma of an image

int main(int c, char *v[])

{

// extract input arguments

if (c != 3)

return fprintf(stderr, "usage:\n%s gamma in out\n", *v);

double g = atof(v[1]);

char *filename_in = v[2];

char *filename_out = v[3];

// read input images

int w, h;

float *x = image_read(filename_in, &w, &h);

// change gamma in-place

for (int i = 0; i < w*h; i++)

x[i] = 255 * pow(x[i]/255 , g);

// write output

image_write(filename_out, x, w, h);

// cleanup and exit

free(x);

return 0;

}

Notice that all the headers are explicitly justified to be necessary, by saying which
functions are required from each header.

4 Python

Like C, the Python interpreter is also a good unix citizen. You can run the empty
program, that does nothing and gives an empty output. Thus, there is no boil-
erplate required for python. If you want to use imports, this is easier than in C

because the language can help you to specify which functions you need from each
import.

from imageio import imread, imwrite

from scipy.sparse import eye, diags, kronsum

3

from scipy.sparse.linalg import spsolve

from numpy import clip, around, uint8

f = imread("lena.png") # read interior image

g = imread("landscape.png") # read background image

h,w = g.shape # extract image dimensions

f = f.flatten() # flatten image into a vector

g = g.flatten() # flatten image into a vector

M = diags((g==0).astype(float)) # mask operator (zero pixels of g)

x = eye(w, w, 1) # path graph of length W

y = eye(h, h, 1) # path graph of length H

G = kronsum(x,y) + kronsum(x,y).T # kronecker sum (grid of size WxH)

L = G - diags(G.dot([1]*(w*h))) # laplacian operator

I = eye(w*h) # identity operator

A = I - M - M*L # state the problem (operator)

b = (I - M)*g - M*L*f # state the problem (data)

x = spsolve(A, b) # solve the problem

imwrite("out.png", clip(around(x),0,255).astype(uint8).reshape(h,w)) # save x

Notice that you only import the strict minimum that you need.

4

