
The standard PDE on a manifold

We state and solve the standard second-order linear PDE on a compact Rieman-
nian manifold: the potential, di�usion, di�raction and wave equations.

1 The Laplace-Beltrami spectrum

Let M be a compact Riemannian manifold (with or without boundary), and let ∆
be its Laplace-Beltrami operator, defined as ∆ = ∗d ∗ d , where d is the exterior
derivative (which is independent of the metric) and ∗ is the Hodge duality be-
tween p -forms and d − p -forms (which is defined using the metric).

The following are standard results in di�erential geometry (see e.g. Warner’s
book chapter 6 https://link.springer.com/content/pdf/10.1007%

2F978-1-4757-1799-0_6.pdf)

(1) There is a sequence of C∞(M ) functions ϕn and positive numbers λn → ∞
such that

∆ϕn = −λnϕn

(2) The functions ϕn , suitably normalized, are an orthonormal basis of L2(M ).

These results generalize Fourier series to an arbitrary smooth manifold M . Any
square-integrable function f : M → R is written uniquely as

f (x) =
∑
n

fnϕn(x)

and the coe�cients fn are computed by

fn =
∫
M
f ϕn .

Some particular cases are the habitual Fourier and sine bases (but not the cosine
basis), bessel functions for the disk, and spherical harmonics for the surface of a
sphere.
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The eigenfunctions ϕn are called the vibration modes ofM , and the eigenvalues λn
are called the (squared) fundamental frequencies of M .

Several geometric properties of M can be interpreted in terms of the Laplace-
Beltrami spectrum. For example, if M has k connected components, the first k
eigenfuntions will be supported successively on each connected component. On a
connected manifoldM , the first vibration mode can be taken to be positive ϕ1 ≥ 0,
thus all the other modes have non-constant signs (because they are orthogonal
to ϕ1). In particular, the sign of ϕ2 cuts M in two parts in an optimal way, it is
the Cheeger cut of M , maximizing the perimeter/area ratio of the cut.

The zeros of ϕn are called the nodal curves (or nodal sets) of M , or also the
Chladni patterns. If M is a subdomain of the plane, these patterns can be found
by cutting an object in the shape of M , pouring a layer of sand over it, and
letting it vibrate by high-volume sound waves at di�erent frequencies. For most
frequencies, the sand will not form any particular pattern, but when the frequency
coincides with a

√
λn , the sand will accumulate over the set [ϕn = 0], which is

the set of points of the surface that do not move when the surface vibrates at this
frequency. In the typical case, the number of connected components of [ϕn > 0]
grows linearly with n, thus the functions ϕn become more oscillating (less regular)
as n grows.

Generally, symmetries of M arise as multiplicities of eigenvalues. The Laplace-
Beltrami spectrum λ1, λ2, λ3, . . . is closely related, but not identical, to the geodesic
length spectrum, that measures the sequence of lengths of all closed geodesics
of M . The grand old man of this theory is Yves Colin de Verdière, student of
Marcel Berger.

Geometry is not in general a spectral invariant, but non-isometric manifolds with
the same spectrum are di�cult to come by. The first pair of distinct but isospec-
tral manifolds was wound in 1964 by John Milnor, in dimension 16. The first
example in dimension 2 was found in 1992 by Gordon, Webb and Wolperd, and
it answered negatively the famous question of Marc Kac “Can you hear the shape
of a drum?’. In 2018, we have many ways to construct discrete and continuous
families of isospectral manifolds in dimensions two and above.

2 The standard equations and their explicit solu-
tions

The classical linear second order equations (potential, heat, wave and
Schrödinger) are all defined in terms of the Laplacian operator in space.
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Thus, they can be defined readily on an arbitrary Riemannian manifold M . If M
is compact, the solution can be found explicitly in terms of the Laplace-Beltrami
eigenfunctions. Henceforth we will call the expression of a function f : M → R
as f =

∑
n fnϕn the Fourier series of f , the numbers fn the Fourier coe�cients

of f and so on.

The simplest case is Poisson equation

∆u = f

The solution is found by expressing u and f as Fourier series and identifying the
coe�cients:

u(x) =
∑
n

−fn
λn

ϕn(x)

Notice that since λn → ∞, the Fourier coe�cients of u tend to zero faster than
those of f , thus u is more regular than f (this is obvious from the equation,
since ∆u is less regular than u).

Another simple case is the screened Poisson equation

∆u = αu + f

and the solution is found by the same technique:

u(x) =
∑
n

−fn
α + λn

ϕn(x)

This is like the regular Poisson equation, but the regularity is enhanced by α.

The next case is the heat equation, also called di�usion or smoothing equation:{
ut = ∆u (x, t ) ∈ M × [0,T ]
u(x, 0) = g (x) x ∈ M

This equation requires an initial condition g . The solution is found by separation
of variables, which leads to a trivial ODE, resulting in

u(x, t ) =
∑
n

gne−λntϕn(x)

It is immediate to check that this expression is a solution of the heat equation with
initial condition g . Several properties of the solution are visible from this form,
most notably that u(x,∞) = u1 if λ1 = 0, or 1 otherwise. A pure vibration mode ϕn
decays exponentially to zero, and the speed of the exponential decay is λn .

By combining the heat and Poisson equations, we get the heat equation with
source: {

ut = ∆u + f (x, t ) ∈ M × [0,T ]
u(x, 0) = g (x) x ∈ M

whose solution is

u(x, t ) =
∑
n

(
fn
λn
+ gne−λnt

)
ϕn(x)
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The solution of the reverse heat equation{
ut = −∆u (x, t ) ∈ M × [0,T ]
u(x, 0) = g (x) x ∈ M

is formally similar
u(x, t ) =

∑
n

gne λntϕn(x)

but notice that it blows up, often in a finite time.

Both direct and reverse heat equations are of the form ut = c∆u, whose solution
is u(x, t ) =

∑
n gne

−cλntϕn(x). The constant c is the speed of transmission of heat.
An intermediate behaviour between c > 0 and c < 0 happens when c = i .

The linear Schrödinger equation, also called di�raction equation{
wt = i∆w (x, t ) ∈ M × [0,T ]
w(x, 0) = g (x) x ∈ M

describes the evolution of a complex-valued function w . It can be interpreted as
a system of two coupled real equations by writing w = u + iv (here, assuming a
real-valued initial condition g ):

ut = −∆v (x, t ) ∈ M × [0,T ]
vt = ∆u (x, t ) ∈ M × [0,T ]
u(x, 0) = g (x) x ∈ M

v (x, 0) = 0 x ∈ M

The solution is then
w(x, t ) =

∑
n

gne−iλntϕn(x)

or, in terms of u and v : {
u(x, t ) =

∑
n gn cos (λnt ) ϕn(x)

v (x, t ) =
∑
n −gn sin (λnt ) ϕn(x)

thus, a pure vibration mode ϕn oscillates periodically, at a frequency λn . In terms
of |w |, this phenomenon is called di�raction.

The wave equation is 
utt = ∆u (x, t ) ∈ M × [0,T ]
u(x, 0) = g (x) x ∈ M

ut (x, 0) = h(x) x ∈ M

notice that it requires an initial condition and an initial speed. By linearity, we
can deal with these separately, and then sum the results. The solution is then

u(x, t ) =
∑
n

(
gn cos

(√
λnt

)
+
hn
√
λn

sin
(√
λnt

))
ϕn(x)
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Thus, a pure vibration mode ϕn oscillates with frequency
√
λn .

Finally the wave equation with a force is the most complex case we treat here:
utt = ∆u + f (x, t ) ∈ M × [0,T ]
u(x, 0) = g (x) x ∈ M

ut (x, 0) = h(x) x ∈ M

The solution

u(x, t ) =
∑
n

(
fn
λn
+ gn cos

(√
λnt

)
+
hn
√
λn

sin
(√
λnt

))
ϕn(x)

is found by the same methods as above.

3 Discretization and implementation in Octave

Except in emblematic cases (rectangle, torus, sphere) the eigenfunctions of an
arbitrary manifold M do not have a closed-form expression.

For practical computations, we are thus restricted to numerical methods in the
discrete case. The most convenient form for this discretization is to representd M
as a graph with weights in their edges. In this context, we have the following
objects

• The weighted graph G = (V,E) where V is a set of n vertices.

• The Laplacian matrix L of this graph, which is of size n × n

• The space Rn is identified with functions V → R. Thus Rn is the discrete
version of C∞(M ).

typically L will be a matrix of rank n −1 with a constant eigenvector of eigenvalue
0.

We can find the eigensystem of L by calling eigs(L) in octave, and transfer the so-
lutions obtained above using the obtained eigenvectors and eigenvalues. However,
in most cases the solution is more easily obtained by solving a linear problem.

To fix the ideas we start with a concrete example: a square domain with flat metric.
The following is a complete program that computes the chladni figures of a square
domain.

w = 128; # width and height of the domain

p = sparse(1:w-1, 2:w, 1, w, w); # path graph of length p

A = kron(p, speye(w)) + kron(speye(w), p); # kronecker sum

L = A+A' - diag(sum(A+A')); # graph laplacian

[f,l] = eigs(L, 64, "sm"); # eigs of smallest magnitude

After running this code, the ith eigenfunction is f(:,i) and the eigenvalues are
on diag(l).
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And now, with Dirichlet boundary conditions (slightly di�erent code)

w = 128; # width and height of the domain

p = sparse(1:w-1, 2:w, 1, w, w) - speye(w); # path graph of length p

A = kron(p, speye(w)) + kron(speye(w), p); # kronecker sum

L = A + A'; # graph laplacian

[f,l] = eigs(L, 64, "sm"); # eigs of smallest magnitude
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For completenes, this is the octave code that saves the figures above

for i=1:64

n = sprintf("o/chladni_%03d.png", i);

x = reshape(200*double(0<f(:,i)),w,w);

iio_write(n, x);

endfor
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