
One-dimensional clustering with one cluster

Abstract

The simplest case of clustering is the one dimensional case: when we want
to find clusters of a given set of numbers. The simplest 1D clustering is when
we know that there is only a single cluster. This document is a comprehensive
study of this simplest case. Namely, given a finite set of real numbers that form
“one cluster”, we explain how to find it; that is how to determine its position
and its size. This problem has actually many solutions with very di�erent
properties, and we try to cover them all.

1 The Pythagorean means and the median

Our goal is to combine a set of N numbers x1, . . . , xN into a single one. The
simplest choice is the average, also called arithmetic mean:

avg(x1, . . . , xN ) :=
x1 + · · · + xN

N

We also have the harmonic mean:

har(x1, . . . , xN ) :=
N

1
x1
+ · · · + 1

xN

and the geometric mean:

geo(x1, . . . , xN ) := N
√
x1 · · · · · xN

The geometric mean is somewhat di�erent, because it is only well-defined (as a
function RN → R with arbitrary N ) when all the numbers are positive. As we will
see, the harmonic mean also really makes sense only when all the numbers are
strictly positive. However, the arithmetic mean has good properties for arbitrary
input numbers (positive, negative, or zero).

For positive numbers, we also have the quadratic mean, also called root mean square
error :

rms(x1, . . . , xN ) :=

√
x21 + · · · + x

2
N

N

These four functions are called Pythagorean means and they are all of fundamental
importance. They are related by the following inequalities:

min ≤ har ≤ geo ≤ avg ≤ rms ≤ max
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These inequalities are elementary to prove for N = 2, and the general case is a
standard exercise.

Finally, the last “traditional” aggregator is the median, which is computed by sort-
ing the numbers from low to high, and taking the middle one (if N is odd) or the
average of the two middle ones (if N is even).

med(x1, . . . , xN ) :=


x
(M ) if N = 2M + 1

x
(M ) + x(M+1)

2
if N = 2M

where x(1), . . . x(N ) indicates the sorted numbers x1, . . . , xN . There is no general
inequality relationship between med and avg, either one can be larger or smaller,
depending on the particular set of numbers.

2 Axiomatic characterization

A map f : RN → R with the following properties is called an aggregator function:

P0. (Identity) f (c, . . . , c ) = c

P1. (Symmetry) f (xσ1, . . . , xσN ) = f (x1, . . . , xN ) ∀σ ∈ SN
P2. (Monotony) (x1, . . . , xN ) ≤ (y1, . . . , yN ) =⇒ f (x1, . . . , xN ) ≤

f (y1, . . . , yN )

P3. (Bracketing) min(x1, . . . , xN ) ≤ f (x1, . . . , xN ) ≤ max(x1, . . . , xN )

P4. (Homogeneity) f (λx1, . . . , λxN ) = λ f (x1, . . . , xN ) ∀λ > 0

Notice that these properties may only be true on a subdomain of RN where f
is well-defined (typically, the positive numbers). Properties P 0 − −P 4 are very
natural, and a bit redundant; for example you can prove identity from monotony
and bracketing, etc.

The following properties P 5−−P 7 are more special and aggregator functions may
or may not have them:

P5. (Additivity) f (λ + x1, . . . , λ + xN ) = λ + f (x1, . . . , xN )

P6. (Composability) f
(
f (x1, . . . , xP ), . . . , f (xP (Q−1), . . . , xPQ )

)
= f (x1, . . . , xN ) ∀PQ =

N

P7. (Continuity) f : RN → R is continuous

3 List of examples

This list should contain all the aggregator functions that I know (whether they
are useful or useless). Many aggregator functions belong to families that depend

2



on a real-valued parameter, and for extremal values of the parameter they give
the min and the max. Thus, all these aggregators can be interpreted as di�erent,
data-guided interpolators between min and max.

3.1 Power means Mp

The power means Mp are defined only for strictly positive numbers:

Mp (x1, . . . , xN ) :=
p

√√√
1
N

N∑
i=1

xpi

Notice that Mp is well defined for p , 0. We extend the definition of Mp to p =
0,±∞ by taking limits. The resulting definition contains all the Pythagorean
means, the minimum and the maximum as particular cases:

power mean meaning
M−∞ minimum
M−1 harmonic mean
M0 geometric mean
M1 arithmetic mean
M2 quadratic mean
M3 cubic mean
M∞ maximum

Notice that as the parameter p goes from −∞ to∞, the power meanMp interpolates
from the minimum to the maximum sample, passing through the Pythagorean
means at the values points p = −1, 0, 1, 2.

Power means satisfy properties P 0−−P 4 over the positive numbers. AlthoughM−1
can be defined also for negative numbers, it fails to satisfy the bracketing property,
so it is not considered as such.

Except for the values of p = 1,±∞, the power means do not satisfy the additivity
property P 5. Thus, they are essentially tied to the position of the zero in the real
line.

On the other hand, the power means are composable (P 6).

3.2 Order statistics Ok and Oα

The power means are not the only natural interpolation between min and max;
there is indeed a more natural one: the order statistics.

Given a set of N numbers x1, . . . , xN , they can always be re-indexed so that

x(1) ≤ x(2) ≤ · · · ≤ x(N )

Thus max(x1, . . . , xN ) = x(N ) and min(x1, . . . , xN ) = x(1). In functional notation,
we define

Ok (x1, . . . , xN ) := x(k )
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for k = 1, . . . ,N . This definition is extended to real-valued k ∈ [1,N ] by interpo-
lating linearly between the two closest integer values of k . In that case, we often
use the notation Oα for α ∈ [0, 1], where k = (N − 1)α + 1. This notation has
the advantage of being independent of N , so that O 1

2
is always the median. The

following table lists other particular cases

order statistic meaning
O0 minimum
O0.1 first decile
O0.25 first quartile
O0.5 median
O0.75 third quartile
O0.9 ninth decile
O1 maximum

Order statistics can be defined for arbitrary numbers (positive, negative and zero)
and they have the additivity property P5, thus they are position-invariant. How-
ever, except for the min and the max, they are not composable (P6).

3.3 Histogram modes Hϕ,ψ

A simple yet very robust way to locate a cluster, especially when there is a large
number of points, is to build and histogram of the data and find its mode (the posi-
tion of the bin with higher amount of samples). This method has two parameters,
the frequency of the bins, and the phase

Hϕ,ψ(x1, . . . , xN ) := ψ +
1
2
ϕ + ϕargmaxk ∈Z

N∑
i=1

∫ ψ+(k+1)ϕ

ψ+kϕ
δ(x − xi ) x.

Notice that the result depends on the two parameters (ϕ, ψ) in a very beautiful
and fractal way (see Figure ??). It is impossible to set reasonable values of these
parameters without knowing anything about the nature of the input data.

3.4 Fréchet p-centroids Fp

On a metric space (M,d ), the Fréchet centroid of a set of points pi ∈ M is the
point c ∈ M that minimizes the sum of squared di�erences to pi

c := argminm∈R

N∑
i=1

d 2(pi,m).

Based on this definition, and using the Lp norms on the real line, we define the p−
centroids of a set of numbers:

F̃p (x1, . . . , xN ) := argminm∈R

N∑
i=1

|xi −m |p
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This is well-defined for p > 0, even if the function to minimize is only convex
for p ≥ 1. Instead of F̃p , we use the following slightly di�erent normalization
(which gives the same result for p > 0).

Fp (x1, . . . , xN ) := argminm∈R
p

√√√
1
N

N∑
i=1

|xi −m |p

This normalization has the advantage that the numerical behavior is somehow
independent of N and p (the function to minimize has linear growth at inifinty
independently of p).

We find the following interesting particular cases

Fréchet centroid meaning
F2 average
F1 median
F→∞ midrange I0.5 = (min+max)/2
F→0 “mode”

Notice that the parameter p controls the robustness to outliers. For p = 2 we
have the average, which is not very robust to outliers. Decreasing p down to 1, we
reach the median that is rather robust to outliers. Decreasing p further to 0 we
reach the mode, that is extremely robust to outliers (it is independent of outliers,
unlike the median). On the other side, increasing p →∞ we approach the average
between the two extremal values, which is the least robust possible aggregator (it
depends only on the outliers).

The Fréchet centroids are position independent, but not composable (in fact the
“italian” theorem says that the only aggregator that has all the properties is the
arithmetic mean).

Notice that the e�ective computation of Fp requires solving an optimization prob-
lem. For p ∈ [1, 4) Weiszfeld algorithm is used. For p > 4 we need to use another
algorithm, for example Newton’s method. For p < 1 the function is not convex
and some sort of search must be performed (starting from seeds between each
pair of data points, for good measure).

Notice that the Fréchet p -centroids can be defined over arbitrary metric spaces.
In the case of a Riemannian manifold, the Fréchet ∞-centroid coincides with the
midpoint of the diameter.

3.5 L-estimators and Iα

For α ∈ [0, 1] we define
Iα := αO1 + (1 − α)O0

Thus,
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Iα meaning
I0 min
I0.5 midrange
I1 max

This is just the trivial linear interpolation between min and max. It is an example
of L-estimator. In general, an L estimator is a function of the form

L :=

∑N
k=1 αkOk∑N
k=1 αk

Some famous L estimators are the midrange, the midhinge (average of first and
third quartiles), the trimean, truncated means, and other curiosities

L-estimator name
O0 min
I1 max
(O0 +O1)/2 midrange
(O0.25 +O0.75)/2 midhinge (average of quartiles)
(O0.25 + 2O0.5 +O0.75)/4 trimean (average of median and midhinge)
2
N

∑3N /4
k>N /4Ok midmean (average of central half)

1
N

∑N
k=1Ok mean (average of everything)

An advantage of the trimean as a measure of the center (of a distribu-
tion) is that it combines the median’s emphasis on center values with
the midhinge’s attention to the extremes. —Herbert F. Weisberg,
Central Tendency and Variability

3.6 Lehmer Lp , Gini Gp,q and Stolarsky Sp means

The following aggregators are defined for strictly positive numbers

Lp (x1, . . . , xN ) :=

N∑
i=1

xpi

N∑
i=1

xp−1i

This is an increasing family between min and max, di�erent to the power means,
but passing through several common points:

Lehmer mean name
L−∞ min
L0 harmonic mean
L0.5 geometric mean (only for N = 2 ?)
L1 arithmetic mean
L2 contraharmonic mean (x21 + · · · + x

2
N )/(x1 + · · · + xN )

L∞ max
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Interestingly, the contraharmonic mean can be defined also for nonzero numbers
(not necessarily positive). It is the sum of the average and the variance divided
by the average. The contraharmonic mean of positive numbers is always larger or
equal than the quadratic mean, but it is otherwise unrelated to the other power
means for p > 2.

The Gini means form a very general family of aggregators that contains the power
means and the Lehmer means as particular cases

Gp,q (x1, . . . , xN ) :=


p−q

√∑
xp∑
xq

if p > q

∑
xp
√∏

xxp if p = q

where the sums and products above are performed over x ∈ {x1, . . . xN }

3.7 Particular aggregators

Some aggregator functions do not belong to any parametric family, but are par-
ticular cases on their own right (for example, the “MEDIAL”!) Others lie at the
intersection of di�erent parametric families:

the arithmetic mean is at the same time a power meanM1 and a Fréchet centroid F2

the median is at the same time an order statistic U 1
2
and a Fréchet centroid F1

3.8 Quasi-arithmetic means

A di�erent, non parametric, generalisation of means that contains the power
means and many others as particular cases is the following. It consists in per-
forming the arithmetic mean behind a “contrast change f ”.

Let f : R→ R be a continuous, strictly monotonic function, then we define

M f (x1, . . . , xN ) := f
−1

(
f (x1) + · · · + f (xN )

N

)
The power means for p , 0 appear as particular cases when f (x) = xp . The
geometric mean appears for f (x) = log(x), and for f (x) = exp(x) we obtain the
“soft maximum” LSE (log sum exp).
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4 Size parameters

On the previous section we have described methods to define the position of a
cluster, namely to find where a cluster of numbers is located. A di�erent problem
is the computation of the size of a cluster.

Many criteria for defining the size—but not all—depend on finding first the posi-
tion.

Besides axioms P1–P4 above, size measures satisfy the following two axioms:

P8. (Identity) f (c, . . . , c ) = 0

P9. (Position invariance) f (λ + x1, . . . , λ + xN ) = f (x1, . . . , xN )

(please, contrast position invariance with additivity, or position covariance above)

Some famous size measures

• The standard deviation M2(xi −M1(x1, . . . , xN ))

• The absolute average error M1(|xi −M1(x1, . . . , xN )|)

• The median absolute deviation F1(|xi − F1(x1, . . . , xN )|)

• Non-positive L-statistics: range, inderquartile range, interdecile range, H-
spread, etc.

• The full-width at half maximum (perhaps associated to the MEDIAL?)

• The distance correlation

• The Rousseeuw and Croux statistic Sn := 1.1926F1(F1(|xi − x j |))
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5 More than one cluster

So far I have talked about the common case when there is a single cluster of
numbers; or, in statistical parlance, that the data is unimodal. Yet, it is important
to be able to identify whether this is this the case, and when the data is not
unimodal, how to (god forbid!) find several clusters in it.

5.1 How to decide whether there is a single cluster

A simple criterion for deciding whether a set of numbers forms a single cluster is
to compare the geometric and arithmetic means: if they are very di�erent, we say
that the data is not unimodal:

M1(x1, . . . , xN )
M0(x1, . . . , xN )

≥ τ

for some threshold τ > 1, for example τ = 2. Notice that this criterion is not
shift-invariant.

This ratio is a standard measure for homogeneity detection in radar images.

5.2 How to �nd K clusters, with known K (K-means)

5.3 How to �nd X clusters, with unknown X (X-means)
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