
The Cauchy basis

In this note we describe the construction of the Cauchy basis, whose functions
satisfy at the same time Dirichlet and Neumann boundary conditions. Besides
being beautiful, it is useful to solve fourth-order boundary problems.

1 Introduction: Fourier, cosine and sine basis

Everybody knows the Fourier basis of L2([0, 2π]), defined by sine and cosine func-
tions of integer frequencies.

1, cos(x), cos(2x), . . . , sin(x), sin(2x), . . .

This was the original basis used by Joseph Fourier to study the heat equation.
Notice that cosines are symmetric around the center of the interval, and sines are
anti-symmetric. Thus, all the functions of this basis are necessary to represent
arbitrary functions on the whole interval.

Less well-known are the cosine basis, defined by cosines of half-integer frequencies

1, cos
(
1
2
x
)
, cos(x), cos

(
3
2
x
)
, cos(2x), . . .
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and the sine basis, defined by sines of half-integer frequencies

sin
(
1
2
x
)
, sin(x), sin

(
3
2
x
)
, sin(2x), . . .

Each one of these three sequences of functions is a Hilbert basis of the
space L2([0, 2π]). In particular, you can express a sine as a linear combination of
cosines, and vice-versa. This is a favourite exam question of mine. Of course, the
convergence is not uniform on the boundaries of the interval.

The cosine and sine bases are very useful when you want to express solutions of
a di�erential equation (or a variational problem) satisfying particular boundary
conditions. Notice that if f (x) is a finite linear combination of the sine basis,
then f (0) = f (2π) = 0 and if it is a finite linear combination of the cosine basis,
then f ′(0) = f ′(2π) = 0. The same relationships hold for series as long as the co-
e�cients decrease fast enough. Thus, the sine basis is useful for Dirichlet boundary
conditions, and the cosine basis is useful for Neumann boundary conditions.
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2 The Cauchy basis

The functions of the Cauchy basis, defined below, satisfy simultaneously the four
conditions f (0) = f (1) = f ′(0) = f ′(1) = 0.

A simple construction of such a set of functions is obtained by considering eigen-
functions of the fourth derivative that satisfy the four boundary conditions.

Eigenfunctions of the fourth derivative are of the form exp(ρx) where ρ is a fourth-
root of 1, thus ρ ∈ {1,−1, i,−i }. Equivalently, they are linear combinations of sin,
cos, sinh and cosh

ϕ(x) = α cos(λx) + β sin(λx) + γ cosh(λx) + δ sinh(λx)

This is an eigenfunction of the fourth derivative with eigenvalue λ4, that we can
assume to be real positive.

By imposing the four boundary conditions, we obtain a linear system on the coe�-
cients (α, β, γ, δ), with a parameter λ . The matrix of this linear system is singular,
and its determinant vanishes when λ satisfies the equation

cos λ cosh λ = 1

The solutions of this equation (which are slight perturbations of even multiples
of pi/2) are the eigenvalues of our basis.

A good enough approximation is given by

λn =
2n + 1

2
π − (−1)n2 exp

(
−
(2n + 1)

2
π

)
and the eigenfunctions are thus

ϕn(x) = sin(λnx) − sinh(λnx) + βn(cos(λnx) − cosh(λnx))

where

βn =
sinh λn − sin λn
cos λn − cosh λn

.
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Notice that, although the functions ϕn are beautiful and symmetric inside the
interval [0, 1], they explode in wild ways outside this interval:

3 Properties and open problems

We have just defined a set of functions ϕn(x). By construction, they are C∞ func-
tions on the interval [0, 1] that satisfy 0 = ϕn(0) = ϕn(1) = ϕ′n(0) = ϕ′n(1). Since
these functions are eigenvectors of a linear operator with di�erent eigenvalues,
they must be orthogonal. The following remains to be done:

1. Prove that {ϕn(x)} is a Hilbert basis of L2([0, 1])

2. Prove that |ϕn(x)| ≤ 2 for x ∈ [0, 1]

3. Prove that ϕ2n(x) = −ϕ2n(1 − x) for x ∈ [0, 1] (so that ϕ2n(1/2) = 0).

4. Prove that ϕ2n+1(x) = ϕ2n+1(1 − x) for x ∈ [0, 1] (so that ϕ′2n+1(1/2) = 0).

5. Prove that ϕn has n − 1 zeros on (0, 1), and identify them.

6. Compute the exact normalization coe�cients required so that the basis is
orthonormal.

7. Obtain an e�ective algorithm/formula to evaluate ϕn(x) for large values
of n, avoiding the numerical cancellations that appear with the current ex-
pression. Notice that, thanks to the symmetry properties above, the formula
only needs to be stable for 0 ≤ x ≤ 1

2 (the di�cult case being near 1
2 ).

8. Rewrite the definition so that the interval is centered around 0, and the
symmetries are more visible.

9. Study how the regularity of a function can be measured from the rate of
decrease of its "Cauchy coe�cients"

10. Develop a theory of sampling using "Cauchy polynomials" as an interpola-
tion model
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11. Develop a "Fast Cauchy Transform", to obtain the coe�cients of these poly-
nomials from their samples.

12. Extend this basis to the case of a square.

13. Extend this basis to the case of a disk.

Some of these propositions are easy, others may not actually be possible (especially
the last one).

4 Detailed calculation

In this section we detail the construction leading to the Cauchy basis. The com-
putation has two parts. First, we explain how the equation cos λ cosh λ = 1 is
obtained, and then we propose a numerical approximation of the solutions of this
equation.

4.1 The eigenvalue equation

We start with the basic form

ϕ(x) = α cos λx + β sin λx + γ cosh λx + δ sinh λx

and we want to determine values of the five parameters α, β, γ, δ, λ so that ϕ sat-
isfies the four boundary conditions 0 = ϕ(0) = ϕ(1) = ϕ′(0) = ϕ′(1). We have

ϕ′(x) = λ [−α sin λx + β cos λx + γ sinh λx + δ cosh λx]

And setting 0 = ϕ(0) and 0 = ϕ′(0) gives respectively γ = −α and δ = −β , thus

ϕ(x) = α (cos λx − cosh λx) + β (sin λx − sinh λx)

and
ϕ′(x) = λ [α (− sin λx − sinh λx) + β (cos λx − cosh λx)]

To simplify the notation, we write

c = cos λ

s = sin λ

k = cosh λ

z = sinh λ

thus the conditions 0 = ϕ(1) and 0 = ϕ′(1) read

0 = α(c − k ) + β (s − z )

0 = α(−s − z ) + β (c − k )
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or, in matrix form (
c − k s − z
−s − z c − k

) (
α
β

)
=

(
0
0

)
If (α, β ) is not the zero vector, then the matrix must be singular, thus

(c − k )2 + (s + z )(s − z ) = 0

this condition can be simplified using the trigonometric identities c2 + s 2 = 1
and k2 − z 2 = 1 to obtain the equivalent equation ck = 1 :

cos λ cosh λ = 1

Besides the non-interesting case λ = 0, this equation has an infinite sequence of so-
lutions ±λn that determine the spectrum of our problem. Given such a solution λn ,
the corresponding values of αn, βn are determined from the condition 0 = ϕ(1):

0 = αn(cos λn − cosh λn) + βn(sin λn − sinh λn)

we normalize the solution with αn = 1 (this is an arbitrary choice, maybe not the
best one, but it produces nicely bounded functions on [0, 1]). Now

βn =
cos λn − cosh λn
sinh λn − sin λn

and the functions of the basis are

ϕn(x) = sin(λnx) − sinh(λnx) + βn(cos(λnx) − cosh(λnx))

Or, by rearranging the terms,

ϕn(x) =
(βn − 1)e λnx + (βn + 1)e−λnx + (βn − i )e iλnx + (βn + i )e−iλnx

2

or even

ϕn(x) =
1
2

∑
ρ4=1

(βn − ρ)e ρλnx

and this last expression is more amenable to computations (derivatives, integrals,
scalar products).

4.2 Numerical solution of the eigenvalue equation

By plotting the function x → cos x cosh x , it is clear that it crosses the value 1
infinitely many times, very near to the zeros of cos x , except for x = π/2:
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Thus, the zeros of the function λ → cos λ cosh λ − 1 have the form

λn =
2n + 1

2
π + εn

where εn are numbers that tend very fast to zero and alternate sign. We can
estimate the number εn by computing the tangent to the graph of cos x cosh x
at x = 2n+1

2 π, and finding its intersection with the horizontal line y = 1:

1 = cos xn cosh xn + (cos xn sinh xn − sin xn cosh xn) εn

for xn = 2n+1
2 π. Since cos xn = 0 and sin xn = −(−1)n , this simplifies to

εn =
−(−1)n

cosh xn
≈ −2e−xn

resulting in the approximation proposed above

λn ≈
2n + 1

2
π − 2(−1)n exp

(
−
2n + 1

2
π

)
.

This approximation is useful, at least for plotting purposes. Notice that the qual-
ity of the approximation improves as n grows, so a satisfactory solution can be
attained by tabulating the exact values of λn for small values of n, and using the
approximation for the others.

5 Computer code

This is the complete gnuplot code to produce plots of the Cauchy basis:

X(n) = (2*n+1)*pi/2 # approximate eigenvalues (to 0th order)

L(n) = X(n) - (-1)**n/cosh(X(n)) # refined eigenvalues (to 1st order)

s(x) = sin(x) - sinh(x) # notation

c(x) = cos(x) - cosh(x) # notation

u(l,x) = s(l*x) - c(l*x) * s(l)/c(l) # generic eigenfunction

v(n,x) = u(L(n),x) # n-th eigenfunction

plot [-0:1] [-2:3] v(1,x),v(2,x),v(3,x),v(4,x),v(5,x)
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