
Algebraic graph calculus

We describe a graph-theoretic analogue of vector calculus. The linear operators
of vector calculus (gradient, divergence, laplacian) correspond to the matrices
naturally associated to graphs (incidence matrix, adjacency matrix). This analogy
is useful for formalizing the discretization of some problems in image and surface
processing that are often defined in a continuous setting.

1 Reminder of vector calculus

Vector calculus deals with functions and vector fields defined in R3.

1.1 Functions and vector �elds

A function (or scalar �eld) is a map u : R3 → R. A vector �eld is a map v : R3 →

R3. Vector fields are written in bold.

Let us fix some typical names for the coordinates. The coordinates of a point in
R3 are written as (x, y, z ). If v is a vector field, then v = (a, b, c ) where a, b and c are
three scalar fields called the components of v. We denote the partial derivatives
of a function using subindices, for example ay := ∂a∂y .

1.2 Di�erential operators

The gradient of a function u is a vector field ∇u defined by

∇u =
(
ux , uy , uz

)
The divergence of a vector field u = (a, b, c ) is a scalar field div(u) defined by

div(u) = ax + by + cz

The curl of a vector field u = (a, b, c ) is another vector field curl(u) defined by

curl(u) =
(
cy − bz , az − cx , bx − ay

)
Finally, the laplacian of a scalar field u is the scalar field ∆u defined by

∆u = uxx + uyy + uzz .
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Notice that, except for the curl, all these operations can be defined in RN . How-
ever, the curl is specific to three dimensions. There is a similar operator in two
dimensions, which we call also the curl and computes a scalar field curl(u) from
a vector field u = (a, b) : R2 → R2

curl(u) = bx − ay

Notice that it is the last component of the 3D curl.

The curl is also defined in dimension 7. Let u = (u1, . . . ,u7) be a vector field inR7,
then

curl(u) =

©«

u24 − u42 + u37 − u73 + u56 − u65
u35 − u53 + u41 − u14 + u67 − u76
u46 − u64 + u52 − u25 + u71 − u17
u57 − u75 + u63 − u36 + u12 − u21
u61 − u16 + u74 − u47 + u23 − u32
u72 − u27 + u15 − u51 + u34 − u43
u13 − u31 + u26 − u62 + u45 − u54

ª®®®®®®®®®¬
where a sub-index i denotes a partial derivative in the i -th dimension of R7. And
analogously we can define the 6-dimensional curl by taking the last component
(resulting in a scalar field).

1.3 Di�erential identities and properties

The most important identity is ∆u = div(grad(u)), that can be used also as the
definition of ∆.

Other identities involving the curl are curl(∇u) = 0 and div(curl(u)) = 0.

The functions u such that ∇u = 0 on R3 are the constants.

The vector fields v such that curl(v) = 0 are called conservative, irrotational or
integrable. They are of the form v = ∇u for some function u called the potential of
v.

The vector fields v such that div(v) = 0 are called divergence-free, volume-preserving,
solenoidal or incompressible. They are of the form v = curl(u) for some vector field
u called the vector potential of v.

The scalar fields u such that ∆u = 0 are called harmonic functions.

The following identities are immediate applications of the product rule for deriva-
tives:

∇(f g ) = f ∇g + g∇f

div(f g) = f div(g) + g · ∇f

1.4 Integral calculus

The divergence theorem: ∫
Ω

div(g) =
∫
∂Ω

g · ds
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Combining the divergence theorem with the product rule we obtain the integration
by parts formula. ∫

∂Ω
f g · ds =

∫
Ω

f div(g) +
∫
Ω

g · ∇f

Thus, if at least one of the two functions vanishes on the boundary of Ω

0 =
∫
Ω

f div(g) +
∫
Ω

g · ∇f

or, in another notation 〈
f ,div(g)

〉
=

〈
−∇f ,g

〉
thus that the operators div and −∇ are adjoint to each other. Integrating by parts
twice we obtain that the operator ∆ is self-adjoint.

2 Graphs and their matrices

A graph is G = (V,E) whereV is a set called the vertices of G , and E is a subset of
V ×V called the edges of G .

We assume always that the set V is finite, and its elements are numbered from 1
to n. Thus, the set E is also finite (the cardinal is at most n2) and we assume that
the elements of E are numbered from 1 to m.

V = {1, 2, 3, 4, 5, 6}
E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}, {5, 6}, {4, 6}}

2.1 The adjacency list

Given a graph of n vertices and m edges, the adjacency list is a matrix of m rows
and 2 columns that contains the pairs of vertices connected by each edge. The
entries of this matrix are integers on the set {1, . . . ,n}. Thus, if the k -th row is
(i, j ), this means that edge k connects vertices i to j .

adjacency list =

©«

1 2
1 3
2 4
3 4
4 5
5 6
4 6

ª®®®®®®®®®¬
The adjacency list is a very e�cient representation for sparse graphs (where the
number of edges is proportional to the number of vertices). However, it is not
very interesting from the algebraic point of view. We will see in the following
three other matrices that have a very rich algebraic interpretation.
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2.2 The adjacency matrix A

Given a graph of n vertices and m edges, the adjacency matrix is a square matrix
A = ai j of size n × n. The entries of A are zeros and ones, with ai j = 1 if there is
an edge from i to j and ai j = 0 otherwise.

A =

V \V 1 2 3 4 5 6
1 0 1 1 0 0 0
2 1 0 0 1 0 0
3 1 0 0 1 0 0
4 0 1 1 0 1 1
5 0 0 0 1 0 1
6 0 0 0 1 1 0

Notice that this matrix has somewhat less information than the adjacency list,
because the ordering of the edges is lost. Thus, there is a unique way to compute
the adjacency matrix from the list, but many m! di�erent ways to get the list
from the matrix. We can chose an arbitrary canonical ordering of the edges (for
example, in lexicographic order).

2.3 The Laplacian matrix L

LetA be the adjacency matrix of a graphG . If we sum the values of all the elements
of the i -th row, we obtain the number of edges going out of vertex i (called the
degree of the edge). Let us put the vector with all the degrees in the diagonal of
a matrix D ; in octave/matlab notation D = diag(sum(A)). The Laplacian matrix of
G is defined as

L = A − diag(sum(A))

In the typical case where A is symmetric with 0 on the diagonal, the matrix L is
the same as A with minus the degree of each vertex on the diagonal entries.

L =

V \V 1 2 3 4 5 6
1 −2 1 1 0 0 0
2 1 −2 0 1 0 0
3 1 0 −2 1 0 0
4 0 1 1 −4 1 1
5 0 0 0 1 −2 1
6 0 0 0 1 1 −2

2.4 The incidence matrix B

Given a graph of n vertices and m edges, the incidence matrix is a rectangular
matrix B = bi j of m rows and n columns. The entries of B are zeros, ones and
minus ones given by the edges of the graph: if the k -th edge goes from i to j , then,
on the k th row there are values −1 and 1 on positions i and j respectively; there
are zeros everywhere else.
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B =

E\V 1 2 3 4 5 6
1 −1 1 0 0 0 0
2 −1 0 1 0 0 0
3 0 −1 0 1 0 0
4 0 0 −1 1 0 0
5 0 0 0 −1 1 0
6 0 0 0 0 −1 1
7 0 0 0 −1 0 1

Notice that the incidence matrix contains the same information as the adjacency
list (including the order of the edges).

There is an interesting relationship between the incidence matrix and the Lapla-
cian matrix, that can be checked algebraically:

L = −BT B

This identity is the discrete analogue of ∆ = div grad, as we will explain below.

2.5 The unsigned incidence matrix C

The incidence matrix B defined above is signed, on each row there are two non-
zero entries whose values are −1 and 1. Thus the sum of any row is zero. We can
write the matrix B as B = B1 − B0, where the matrices B0 and B1 have only zeros
and ones, with a single non-zero entry per row.

It will be useful later to consider the unsigned incidence matrix C , defined as C =
1
2 (B0 + B1), or equivalently C = 1

2 |B |. The rows of the matrix C sum to one.

The following relations are immediate to verify

A = 2CTC − BT B/2

deg = 2CTC + BT B/2

where deg is an n×n diagonal matrix, whose values are the degrees of each vertex.

3 Vector calculus on graphs

Most of the constructions that we have described on the vector calculus reminder
above have a direct correspondence in the case of graphs.

3.1 Analogies

The correspondence between vector calculus and graph theory is laid out in the
following table. The main idea is that scalar fields correspond to functions defined
on vertices, and vector fields correspond to functions defined on edges.
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Vector calculus Graph theory
Base space Graph vertices V
Tangent space Graph edges E
u : Ω→ R u :V → R
v : Ω→ R3 v : E → R
Laplacian operator ∆ Laplacian matrix L ∈Mn,n(R)
gradient operator ∇ incidence matrix B ∈Mm,n(R)
divergence operator div matrix −BT ∈Mn,m(R)
∆ = div grad L = −BT B
scalar field u u ∈ Rn

vector field v v ∈ Rm

vector field ∇u Bu ∈ Rm

scalar field ∆u Lu ∈ Rn

scalar field div(v) −BT v ∈ Rn

directional derivative ∇u(a) · (b − a) ∇u(a, b)
Ω ⊆ R3 Ω ⊆ V
∂Ω ⊆ R3 ∂Ω ⊆ E , defined as ∂Ω = E ∩ (Ω ×Ωc )∫
Ω

div(v) =
∫
∂Ω

v · ds
∑
a∈Ω

div(v)(a) =
∑
e ∈∂Ω

v(e )

Elliptic PDE ∆u = f Linear system Lu = f
Parabolic PDE ut = ∆u First-order Linear ODE System ut = Lu
div(D∇u), D : Ω→M3,3(R) −BTDBu, D ∈Mm,m

g∆u, g : Ω→ R GLu, G ∈Mn,n

pointwise product uv Hadamard product f � g
pointwise product uv Hadamard product C f � g
∇f g = f ∇g + g∇f B(f ◦ g ) = C f � Bg +C g � B f
(nothing) unsigned incidence matrix C ∈Mm,n(R)

The curl operator cannot be defined on general graphs, but it can be defined on
planar graphs, and it satisfies similar identities.

3.2 The graph Laplacian

The simplest operator of vector calculus is the Laplacian, transforming scalar
fields into scalar fields. It is the simplest because no vector fields are involved,
only scalar fields.

Correspondingly, the simplest operator for graphs is also the Laplacian, trans-
forming functions defined on vertices into functions defined on vertices. It is the
simplest because no functions defined on edges are involved. Once we have cho-
sen an ordering of the vertices, a scalar field is simply a vector u ∈ Rn , and the
Laplacian operator is defined by a square matrix of size n × n.

Let G = (V,E) be a graph and u : V → R be a scalar field. The Laplacian of u
is denoted by ∆u and is defined as the scalar field ∆u :V → R

∆u(a) :=
∑
(a,b)∈E

u(b) − u(a)

Notice that the sum is performed for a fixed vertex a, and b varies through all the
neighbors of a in the graph.
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The scalar field u The scalar field ∆u

Just from the definition, we can deduce several properties of the laplacian

1. The sum of all the values of ∆u is always zero

2. If u(a) is a local maximum, then ∆u(a) < 0

3. If u(a) is a local minimum, then ∆u(a) > 0

4. If u is constant, then ∆u is zero

If we fix an ordering of the vertices, then the scalar fields u and ∆u are two vectors
inRn , and the linear operator u 7→ ∆u is given by the matrix L = A−diag(sum(A)).
This follows directly by decomposing the definition of ∆ into two sums:

∆u(a) =
∑
(a,b)∈E

u(b) −
∑
(a,b)∈E

u(a) = −u(a)degree(a) +
∑
(a,b)∈E

u(b)

Notice that the Laplacian has a nice interpretation. If we regard the values of u
as a quantity distributed on the vertices of the graph, the condition ∆u = 0 says
that the quantity is distributed evenly, or in equilibrium: the amount of quantity
at each vertex equals the average amount over its neighbours. In particular, if u
is constant then ∆u = 0.

Notice that the matrix L is always singular: a constant vector is an eigenvector of
eigenvalue 0. If the graph has k connected components, then we have null vectors
that are constant on each connected component, thus the matrix L has rank n−k .

3.3 Graph gradient and graph divergence

Recall that scalar fields are functions defined on vertices and vector fields are
functions defined on edges. Thus, the gradient transforms a function defined on
vertices into a function defined on edges. There is a very natural way of doing
that: the value at each edge is obtained as the di�erence between the values at
each side of the edge.
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The scalar field u The vector field ∇u

More formally, let G = (V,E) be a graph and u : V → R be a scalar field. The
gradient of u is the vector field ∇u : E → R defined by

∇u(a, b) := u(b) − u(a) for (a, b) ∈ E

The matrix of this linear map is the incidence matrix B of the graph. Think of
the gradient ∇u(a, b) as the directional derivative of u at point a in the direction
of the vector from a to b .

Now let v : E → R be a vector field. The divergence of v is the scalar field
div(v) :V → R defined by:

div(v)(a) :=
∑
(a,b)∈E

v(a, b) −
∑
(b,a)∈E

v(b, a) for a ∈ V

The matrix of this linear map is minus the transposed incidence matrix of the
graph −BT .

Notice that the identity ∆ = div grad is trivial from the definitions above, since
both sides are exactly

∑
(a,b)∈E u(b) − u(a). Thus, L = −B

T B .

3.4 Graph curl

We do not need curls for our application, but let us say some words about them.

These graph-theoretic analogues are easier to understand when we use di�erential
geometry instead of plain vector calculus. In that case, the discrete analogue of
k -forms are functions defined over the k -cliques of the graph. Then the exterior
derivative is readily built for all values of k , and it contains the gradient, curl
and divergence as particular cases. The particularity of 3-dimensional manifolds
comes from the fact that in that in that case 1-forms and 2-forms have the same
dimension and can both be interpreted as “vector fields”, thus the curl operator is
defined from the exterior derivative d : Ω1 → Ω2. In the case of graphs, we cannot
in general identify functions defined on edges to functions defined on triangles,
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except in one particular case: when the graph is a triangulation. In that case, there
is a construction that allows to define the curl of a vector field as a vector field, by
traversing the two triangles at each side of an edge. The identity curl grad = 0 is
then the sum of 6 values that cancel pairwise, and so on. See the beautiful papers
of Oliver Knill for a comprehensive coverage of this.

3.5 Graph subsets and their boundaries

It is often necessary to deal with subset of graphs (for example, when we want
to interpolate a function which is known only over some vertices). In order to
do algebra with them, we model subsets as diagonal operators that contain the
indicator function of the subset as the diagonal entries. This model is used for
subsets of vertices and subsets of edges.

Notations: Let X = {1, . . . ,n} (or any finite ordered set) and Y ⊆ X . Let a be a
vector of length n and A a matrix of size n × n . We use the following, somewhat
ambiguous, abuses of notation:

diag(A) ∈ Rn : the vector with the elements on the diagonal of A
diag(a) ∈ Rn×n : the diagonal matrix whose diagonal is a. 1Y ∈ Rn : the
indicator vector of the subset Y Y = diag(1Y ) ∈ Rn×n : the diagonal
operator ofY

This last notation is very convenient in image processing, because it represents
point-wise multiplication by a binary image as a linear operator (with the same
name as the binary image). The diag operator has the same semantics as that of
octave/matlab.

Let G = (V,E) be a graph with n vertices and m edges, and let Ω ⊆ V . To avoid
introducing new letters, we denote also by Ω = ωi j the n × n matrix that contains
the indicator function of this set in its diagonal: wii = 1 if i ∈ V and w j j = 0
otherwise. Notice that the matrix I −Ω corresponds to the complementary set Ωc .

We define the boundary of a subset of vertices Ω ⊆ V as the subset of edges
∂Ω ⊆ E that go from Ω to Ωc . Notice that ∂Ω = E ∩ (Ω×Ω) in set notation. Since
∂Ω is a subset of edges, it corresponds to a diagonal matrix, also named ∂Ω, of
size m ×m. In matrix notation we have

∂Ω = diag(Bdiag(Ω))

where B is the incidence matrix of the graph. We can also write 1∂Ω = B1Ω.

3.6 Equations on graphs

Now that we have described the di�erential and boundary operators operator in
matrix form, it is immediate to write the discrete analogues of several linear PDE.
This is very beautiful because the analytic properties of the corresponding PDE
are recovered by elementary linear algebra.
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3.6.1. Laplace equation on the whole graph:

Lu = 0

If the graph is connected, the matrix L has rank n − 1 thus its kernel is one-
dimensional, corresponding to the constant solutions u = c .

3.6.2. Poisson equation on the whole graph, with data f :V → R:

Lu = f

has a unique solution unless f is constant.

3.6.3. Laplace equation on a subset Ω ⊆ V , withDirichlet boundary conditions
f : Ωc → R:

ΩLu + (I −Ω)(u − f ) = 0

Notice that this is written as an n × n linear system, but it has a diagonal part
corresponding to the values of u outside of Ω. Notice also that the values of f at
the vertices that have no neighbors in Ω only appear in the diagonal part. The
values of f inside Ω do not appear at all (are cancelled out).

3.6.4. Laplace equation on a subset Ω ⊆ V , with Neumann boundary condi-
tions g : ∂Ω→ R:

ΩLu + (∂Ω)(∇u − g ) = 0

Or equivalently, by developing the boundary and gradient operators,[
ΩL + diag(Bdiag(Ω))B

]
u = diag(Bdiag(Ω))g

or, in an alternative notation

(diag(1Ω)L + diag(B1Ω))B)u = diag(B1Ω)g

3.6.5. Heat equation on the whole graph with initial condition u0 :V → R:{
ut = Lu

u(0) = u0

This is a system of n first-order linear di�erential equations with constant coe�-
cients. It has a closed-form solution using the matrix exponential u = e tLu0.

3.6.6. Heat equation with source term f :V → R and initial condition u0 :V →
R {

ut = Lu + f

u(0) = u0

It has likewise a closed-form solution u = e tL(u0 −L−1 f ) −L−1 f . Notice that L−1 f
only makes sense when f is not a constant vector.

3.6.7. Other combinations are possible, and easy to deduce from the simpler
cases: Poisson and Heat equation on subsets with various boundary conditions,
etc.
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3.7 Riemannian graph geometry

The isotropic case of “anisotropic” di�usion in image processing is modelled by
terms of the form g∆u, where g is a positive-real valued function on Ω. In the
case of graphs, the function g corresponds to a scalar field g : V → R, which
we associate to a diagonal n × n matrix g̃ with the values of g . Then these terms
become g̃ Lu in the corresponding discrete model.

Truly anisotropic di�usion comes from terms of the form div(D∇u), where the
di�usivity D is a field of positive-definite symmetric matrices defined over Ω. In
the case of graphs, we have a matrix D̃ , which is also diagonal, but now of size
m × m. Then these terms become div(D∇u) in the discrete model. Or, in matrix
form, BTDBu .

3.8 Algebraic graph integral calculus

Integral calculus can be generalized readily to graphs. Integrals are replaced by
sums over a finite domain, and the various identities of integral calculus (e.g., the
divergence theorem) become immediate matrix identities.

Let G = (V,E) be a graph with V = {1, . . . ,n} and E = {1, . . . ,m}

Let Ω ⊆ V and let f : V → R be a scalar field. The integral of f over Ω is
defined as ∫

Ω

f =
∑
p∈Ω

f (p)

in matrix notation we have
∫
Ω
f := sum(Ωf ). Notice that here f is a vector of

length n, Ω is an n × n matrix, and we are computing the sum of all the compo-
nents of the vector Ωf to obtain a single number. Notice that f must be defined
everywhere, but only the values inside Ω are used; thus, we could have defined f
only inside Ω.

An interface inside a graph is defined as a set of edges S ⊆ E . Given a vector
field v : E → R we define the �ow of v through S∫

S
v · ds :=

∑
e ∈S

v(e )

or, in matrix notation,
∫
S v · ds = sum(S̃v) where S̃ is the diagonal matrix con-

taining the indicator function of S . An interesting particular case happens when
S is the boundary of some region Ω. We have seen above that the matrix S̃ is
then equal to diag(Bdiag(Ω)). This observation leads to the graph divergence
theorem that says that ∫

∂Ω
v · ds =

∫
Ω

div(v)

or, in matrix notation,
1Ω · (BT v) = (B1Ω) · v

which is exactly the same thing, written di�erently.
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