
Translation File Formats
Translation file formats are different ways of encoding the data in a data
file. A data file contains the information to be programmed into a device.
The data file could contain the fuse pattern and test vectors for a logic
device or the data for a memory device.

Below you will find a list, in ascending numerical order, of translation
formats. Following the list is a description and, in most cases, an example
of each translation format, presented in order by format number.

* This alternate code is used to transfer data without the STX start code and the ETX end
code.

** This alternate code is used to transfer data using the SOH start code instead of the
usual STX.

Format Code Format Code
ASCII-BNPF 01 (05*) RCA Cosmac 70
ASCII-BHLF 02 (06*) Fairchild Fairbug 80
ASCII-B10F 03 (07*) MOS Technology 81
Texas Instruments

SDSMAC (320) 04
Motorola EXORcisor
Intel Intellec 8/MDS

82
83

5-level BNPF 08 (09*) Signetic Absolute Object 85
Formatted Binary 10 Tektronix Hexadecimal 86
DEC Binary 11 Motorola EXORmacs 87
Spectrum 12 (13*) Intel MCS-86 Hex Object 88
POF
Absolute Binary

14
16

Hewlett-Packard 64000
Absolute 89

LOF
ASCII-Octal Space

17
30 (35**)

Texas Instruments
SDSMAC 90

ASCII-Octal Percent 31 (36**) JEDEC format (full) 91
ASCII-Octal

Apostrophe
ASCII-Octal SMS

32
37

JEDEC format (Kernal
Tektronix Hexadecimal

Extended)

92

94
ASCII-Hex Space 50 (55**) Motorola 32 bit (S3 record) 95
ASCII-Hex Percent
ASCII-Hex Apostrophe

51 (56**)
52

Hewlett-Packard UNIX
Format 96

ASCII-Hex SMS 57 Intel OMF 386 97
ASCII-Hex Comma 53 (58**) Intel OMF 286 98

Intel Hex-32 99

ASCII Binary Format, Codes 01, 02, and 03(or 05, 06, and 07)
In these formats, bytes are recorded in ASCII codes with binary digits
represented by Ns and Ps, Ls and Hs, or 1s and 0s, respectively. See
Figure 1-1. The ASCII Binary formats do not have addresses.

Figure 1-1 shows sample data bytes coded in each of the three ASCII
Binary formats. Incoming bytes are stored in RAM sequentially starting
at the first RAM address. Bytes are sandwiched between B and F
characters and are separated by spaces.

Data can also be expressed in 4-bit words. The programmer generates the
4-bit format on upload if the data word width is 4 bits. Any other
characters, such as carriage returns or line feeds, may be inserted between
an F and the next B.

The start code is a nonprintable STX, which is a CTRL-B (the same as a
hex 02). The end code is a nonprintable ETX, which is a CTRL-C (the
same as a hex 03).

Figure 1-1
An Example of ASCII Binary Format

BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF
BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF
BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF
BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF
BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF
BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF
BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF
BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF BPPPPPPPPF

2
FORMAT 01 (OR 05)

BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF
BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF
BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF
BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF
BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF
BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF
BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF
BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF BHHHHHHHHF

2
FORMAT 02 (OR 06)

B11111111F B11111111F B11111111F B11111111F
B11111111F B11111111F B11111111F B11111111F
B11111111F B11111111F B11111111F B11111111F
B11111111F B11111111F B11111111F B11111111F
B11111111F B11111111F B11111111F B11111111F
B11111111F B11111111F B11111111F B11111111F
B11111111F B11111111F B11111111F B11111111F
B11111111F B11111111F B11111111F B11111111F

2

1

3

1

3

1

3

FORMAT 03 (OR 07)

LEGEND

Start Code - nonprintable STX - CTRL B is the optional Start Code

Characters such as spaces, carriage returns and line feeds may appear between bytes

End Code - nonprintable ETX - CTRL C

1

2

3 0074-2

Note: Data without a start or end code may be input to or output from the
programmer by use of alternate data translation format codes. These are
ASCII-BNPF, 05; ASCII-BHLF, 06; ASCII-B10F, 07.

A single data byte can be aborted if the programmer receives an E
character between B and F characters. Data will continue to be stored in
sequential RAM addresses. Data are output in 4-byte lines with a space
between bytes.

Texas Instruments SDSMAC Format (320), Code 04
Data files in the SDSMAC (320) format consist of a start-of-file record,
data records, and an end-of-file record. See Figure 1-2. The format is used
for Texas Instruments’ 320 line of processors. It is very similar to format
90; the only difference is that the address fields represent 16-bit data
words rather than bytes

Each record is composed of a series of small fields, each initiated by a tag
character. the programmer recognizes and acknowledges the following
tag characters:

0 or K—followed by a file header.

7—followed by a checksum which the programmer acknowledges.

8—followed by a checksum which the programmer ignores.

9—followed by a load address which represents a word location.

B—followed by 4 data characters (16-bit word).

F—denotes the end of a data record.

*—followed by 2 data characters.

The start-of-file record begins with a tag character and a 12-character file
header. The first four characters are the word count of the 16-bit data
words; the remaining file header characters are the name of the file and
may be any ASCII characters (in hex notation). Next come interspersed
address fields and data fields (each with tag characters). The address
fields represent 16-bit words. If any data fields appear before the first
address field in the file, the first of those data fields is assigned to address
0000. Address fields may be expressed for any data word, but none are
required.

Figure 1-2
An Example of TI SDSMAC Format

00028 7FDCFF
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F
90008BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F8F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF
90018BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3F7F
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF
:

Tag Character

Word Count Tag Character

Checksum

Tag Character

Filename

End-of-File Record
Load Address

Tag Characters

Data
Records

Checksum

0429-2

LEGEND

Nonprinting Carriage Return, with optional line feed and nulls
determined by null count.

The record ends with a checksum field initiated by the tag character 7 or
8, a 4-character checksum, and the tag character F. The checksum is the
two’s complement of the sum of the 8-bit ASCII values of the characters,
beginning with the first tag character and ending with the checksum tag
character (7 or 8).

Data records follow the same format as the start-of-file record but do not
contain a file header. The end-of-file record consists of a colon (:) only.
The output translator sends a CTRL-S after the colon.

During download or input from disk operations the destination address
for the data is calculated in the following manner:

Memory address =
(load address x 2) – I/O address offset + begin address

During upload or output to disk operations the load address sent with
each data record is calculated in the following manner:

Load address = I/O address offset / 2

The Memory begin address, I/O address offset, and User data size
parameters represent bytes and must be even values for this format. The
upload record size must also be even for this format (default is 16).

Note: If the data will be programmed into a 16-bit device to be used in a
TMS320 processor-based system, the odd/even byte swap switch must be
enabled.

The 5-Level BNPF Format, Codes 08 or 09
Except for the start and end codes, the same character set and
specifications are used for the ASCII-BNPF and 5-level BNPF formats.

Data for input to the programmer are punched on 5-hole Telex paper
tapes to be read by any paper tape reader that has an adjustable tape
guide. The reader reads the tape as it would an 8-level tape, recording the
5 holes that are on the tape as 5 bits of data. The 3 most significant bits are
recorded as if they were holes on an 8-level tape. Tape generated from a
telex machine using this format can be input directly to a serial paper
tape reader interfaced to the programmer. the programmer’s software
converts the resulting 8-bit codes into valid data for entry in RAM.

The start code for the format is a left parenthesis, (Figs K on a telex
machine), and the end code is a right parenthesis, (Figs L on a telex
machine). The 5-level BNPF format does not have addresses.

Note: Data without a start or end code may be input to or output from the
programmer by use of the alternate data translation format code, 09. This
format accepts an abort character (10 hex) to abort the transmission.

Formatted Binary Format, Code 10
Data transfer in the Formatted Binary format consists of a stream of 8-bit
data bytes preceded by a byte count and followed by a sumcheck, as
shown in Figure 1-3. The Formatted Binary format does not have
addresses.

The programmer stores incoming binary data upon receipt of the start
character. Data are stored in RAM starting at the first RAM address
specified by the Memory Begin Address parameter and ending at the last
incoming data byte.

Figure 1-3
An Example of Formatted Binary
Format

2 BYTE HEX SUMCHECK (02FB)

2 NULLS

BINARY DATA

BIT
8 BIT

1

RUBOUT (START CODE)

4 NIBBLE HEX BYTE COUNT

1 NULL

ARROW
HEAD

08
49
2A
1C
08

0
2
0
0

0020 HEX
(32 DECIMAL)

HIGH
ORDER

LOW
ORDER

0075-2

A paper tape generated by a programmer contains a 5-byte, arrow-
shaped header followed by a null and a 4-nibble byte count. The start
code, an 8-bit rubout, follows the byte count. The end of data is signaled
by two nulls and a 2-byte sumcheck of the data field. Refer to Figure 1-4.

If the data output has a byte count GREATER than or equal to 64K, an
alternate arrow-shaped header is used. This alternate header (shown
below) is followed by an 8-nibble byte count, sandwiched between a null
and a rubout. The byte count shown here is 40000H (256K decimal). If the
byte count is LESS than 64K, the regular arrowhead is used instead. Data
that are input using Formatted Binary format will accept either version of
this format.

In addition, a third variation of this binary format is accepted on
download. This variation does not have an arrowhead and is accepted
only on input. The rubout begins the format and is immediately followed
by the data. There is no byte count or sumcheck.

DEC Binary Format, Code 11
Data transmission in the DEC Binary format is a stream of 8-bit data
words with no control characters except the start code. The start code is
one null preceded by at least one rubout. The DEC Binary format does
not have addresses.

Figure 1-4
An Example of Formatted Binary
Format RUBOUT (FF)

8 NIBBLE BYTE COUNT

NULL (00)

ARROW
HEAD

08
6B
3E
1C
08

0483-2

DATA

00
00
00
00
04
00
00
00

Spectrum Format, Codes 12 or 13
In this format, bytes are recorded in ASCII codes with binary digits
represented by 1s and 0s. During output, each byte is preceded by a
decimal address.

Figure 1-5 shows sample data bytes coded in the Spectrum format. Bytes
are sandwiched between the space and carriage return characters and are
normally separated by line feeds. The start code is a nonprintable STX,
CTRL-B (or hex 02), and the end code is a nonprintable ETX, CTRL-C (or
hex 03).

Note: Data without a start or end code may be input to or output from the
programmer by use of the alternate data translation format code, 13

Figure 1-5
An Example of Spectrum Format

0000 11111111
0001 11111111
0002 11111111
0003 11111111
0004 11111111
0005 11111111
0006 11111111
0007 11111111
0008 11111111
0009 11111111
0010 11111111
0011 11111111
0012 11111111
0013 11111111
0014 11111111
0015 11111111 End code is a

nonprintable EXT

4 or 8 data bits appear between the
space and the carriage return

Address Code is 4
decimal digits

Optional Start Code
is a nonprintable STX

0077-2

POF (Programmer Object File) Format, Code 14
The POF (Programmer Object File) format provides a highly compact
data format to enable translation of high bit count logic devices
efficiently. This format currently applies to MAX™ devices, such as the
Altera 5032.

The information contained in the file is grouped into “packets.” Each
packet contains a “tag,” identifying what sort of data the package
contains plus the data itself. This system of packeting information allows
for future definitions as required.

The POF is composed of a header and a list of packets. The packets have
variable lengths and structures, but the first six bytes of every packet
always adhere to the following structure.

struct PACKET_HEAD
{
short tag; /*tag number - type of packet */
long length; /*number of bytes in rest of packet */
}

A POF is read by the program examining each packet and if the tag value
is recognized, then the packet is used. If a tag value is not recognized, the
packet is ignored.

Any packet except the terminator packet may appear multiple times
within a POF. Packets do not need to occur in numerical tag sequence.
The POF reader software is responsible for the interpretation and action
taken as a result of any redundant data in the file, including the detection
of error conditions.

The POF format currently uses the following packet types.

Note: In the following packet type descriptions, one of the terms—Used,
Skipped, or Read—will appear after the tag and name.

Used: The information in this packet is used by the programmer.
Skipped: This information is not used by the programmer.
Read: This information is read by the programmer but has no direct
application.

Creator_ID tag=1 Used

This packet contains a version ID string from the program which created
the POF.

Device_Name tag=2 Used

This packet contains the ASCII name of the target device to be
programmed, for example, PM9129.

Comment_Text tag=3 Read

This packet contains a text string which may consist of comments related
to the POF. This text may be displayed to the operator when the file is
read. The string may include multiple lines of text, separated by
appropriate new line characters.

Tag_Reserved tag=4 Skipped

Security_Bit tag=5 Used

This packet declares whether security mode should be enabled on the
target device.

Logical_Address_
and_Data_16

tag=6 Read

This packet defines a group of logical addresses in the target device and
associates logical data with these addresses. The addresses comprise a
linear region in the logical address space, bounded on the low end by the
starting address and extending upward by the address count specified in
the packet.

Electrical_Address
_and_Data

tag=7 Used

This packet defines a group of electrical addresses in the target device
and associates data values with those addresses. The data field is
ordered in column-row order, beginning with the data for the least
column-row address, continuing with increasing row addresses until the
first column is filled, then incrementing the column address, etc.

Terminator tag=8 Used

This packet signals the end of the packet list in the POF. This packet must
be the Nth packet, where N is the packet count declared in the POF
header. The CRC field is a 16-bit Cyclic Redundancy Check computed on
all bytes in the file up to, but not including, the CRC value itself. If this
CRC value is zero, the CRC check should be ignored.

Symbol table tag=9 Skipped

Test Vectors tag=10 Used

This packet allows the POF to contain test vectors for post programming
testing purposes. Each vector is a character string and uses the 20
character codes for vector bits defined in JEDEC standard 3A, section 7.0.

Electrical_Address_and_
Constant_data

tag=12 Skipped

Number of programmable
elements

tag=14 Read

This packet defines the number of programmable elements in the target
device.

Logical_Address_and_
Data_32

tag=17 Read

This packet defines a group of logical addresses in the target device and
associates logical data with these addresses. The addresses comprise a
linear region in the logical address space, bounded on the low end by the
starting address and extending upward by the address count specified in
the packet.
The starting address and address count are each specified by 4-byte
fields (32 bits).

Absolute Binary Format, Code 16
Absolute Binary format is a literal representation of the data to be
transferred and no translation of the data takes place during the transfer.
There are no overhead characters added to the data (i.e. no address
record, start code, end code, nulls, or checksum). Every byte transferred
represents the user’s data. This format can be used to download
unformatted data such as an “.exe” file to the programmer.

Since this format does not have an end of file character, download
transfers will terminate after no more data are received and an I/O
timeout occurs. This is true for all data formats which don’t have an end
of file indicator. For this reason do not use a value of 0 for the I/O
timeout parameter on the communication parameters screen, since this
will disable the timeout from occurring. A value between 1 and 99
(inclusive) should be used for the I/O timeout parameter when using
formats which require the timeout to occur.

LOF Format, Code 17
The Link Object Format (LOF) is an extension of the standard JEDEC data
translation format and is used to transfer fuse and test vector data between
the programmer and a host computer. LOF is designed to support the
Quicklogic QL8x12A family of FPGAs. An LOF data file is stored as an
imploded ZIP file, which yields data compression approaching 95%.

Note: You must have PKZIP version 1.0 to use this format.

Note: The specification for the ZIP data compression algorithm allows for
multiple data files to be compressed into one ZIP file. In addition, the ZIP
data compression algorithm allows for multiple types of data compression.

The programmer’s implementation of UNZIP supports only imploded
data files and will extract only the first file in a ZIP file. All remaining
files in the ZIP file will be ignored, as will all files not stored in the
imploded format.

The LOF format contains both a subset and a superset of the JEDEC
format described in this chapter. This section describes only the fields
that are extensions of the JEDEC standard or that are unique to the LOF
format. See the section explaining the JEDEC format for information on
the standard JEDEC fields. See page 2-32 for information on obtaining a
copy of the JEDEC Standard 3A.

LOF Field Syntax The LOF character set consists of all the characters that are permitted with
the JEDEC format: all printable ASCII characters and four control
characters. The four allowable control characters are STX, ETX, CR
(Return), and LF (line feed). Other control characters, such as Esc or Break,
should not be used.

Note: This is Data I/O Corporation’s implementation of Quicklogic’s Link
Object Format. Contact Quicklogic for a more in-depth explanation of the
format and its syntax.

LOF Fields The following fields are included in Data I/O’s implementation of the
LOF format:

* These fields are already defined as part of the JEDEC standard and will not be defined in
this section.

<STX> * Start of Data (ASCII Ctrl-B, 0x02 hex)

C * Fuse Checksum

K Fuse data, followed by control words and pulse
link cycles

N * Notes Field

QB Number of bits per word

QC Number of control words at the end of each K
field

QF Number of Fuses in Device (# of K fields)

QM Number of macro cells in the data file

QP * Number of Device Package Pins

QS Number of Hex-ASCII words in each K field
and each control word

QV * Maximum Number of Test Vectors

R Signature Analysis (reserved for future use)

S SpDE Checksum

T Signature Analysis (reserved for future use)

V * Test Vectors (reserved for future use)

X * Default Test Conditions (reserved for future
use)

<ETX> * End of Data (ASCII Ctrl-C, 0x03 hex)

ASCII Octal and Hex Formats, Codes 30-37 and 50-58
Each of these formats has a start and end code, and similar address and
checksum specifications. Figure 1-6 illustrates 4 data bytes coded in each
of the 9 ASCII Octal and Hexadecimal formats. Data in these formats are
organized into sequential bytes separated by the execute character (space,
percent, apostrophe, or comma). Characters immediately preceding the
execute character are interpreted as data. ASCII Octal and Hex formats
can express 8-bit data, by 3 octal or 2 hexadecimal characters. Line feeds,
carriage returns, and other characters may be included in the data stream
as long as a data byte directly precedes each execute character.

Figure 1-6
An Example of ASCII Octal and Hex Formats

$A000000,
377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
$S007760,

$A000000,
377%377%377%377%377%377%377%377%377%377%377%377%377%377%377%377%
$S007760,

$A000000,
377'377'377'377'377'377'377'377'377'377'377'377'377'377'377'377'
$S007760,

$A000000,
377'377'377'377'377'377'377'377'377'377'377'377'377'377'377'377'
$S007760,

$A0000,
FF%FF%FF%FF%FF%FF%FF%FF%FF%FF%FF%FF%FF%FF%FF%FF%
$S0FF0,

$A0000,
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
$S0FF0,

$A0000,
FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'
$S0FF0,

$A0000,
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,
$S0FF0,

$A0000,
FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'FF'
$S0FF0,

1

1

1

2

1

1

1

1

2

4

4

4

3

4

4

4

3

4

FORMAT 30 (OR 35)

FORMAT 31 (OR 36)

FORMAT 32

FORMAT 37

FORMAT 50 (OR 55)

FORMAT 51 (OR 56)

FORMAT 52

FORMAT 53 (OR 58)

FORMAT 57

Optional Octal Address Field (Typical)

Optional Octal Sumcheck Field (Typical)

Octal Data Byte (Typical)

Execute Character

Optional Hex Address Field

Optional Hex Sumcheck Field

LEGEND
Start Code is nonprintable STX - CTRL B (optionally SOH - CTRL A)
Start Code is nonprintable SOM - CTRL R
End Code is nonprintable EOM - CTRL T
End Code is nonprintable ETX - CTRL C

1

2

3

4 0078-2

Although each data byte has an address, most are implied. Data bytes are
addressed sequentially unless an explicit address is included in the data
stream. This address is preceded by a $ and an A, must contain 2 to 8 hex
or 3 to 11 octal characters, and must be followed by a comma, except for
the ASCII-Hex (Comma) format, which uses a period. The programmer
skips to the new address to store the next data byte; succeeding bytes are
again stored sequentially.

Each format has an end code, which terminates input operations.
However, if a new start code follows within 16 characters of an end code,
input will continue uninterrupted. If no characters come within 2
seconds, input operation is terminated.

After receiving the final end code following an input operation, the
programmer calculates a sumcheck of all incoming data. Optionally, a
sumcheck can also be entered in the input data stream. The programmer
compares this sumcheck with its own calculated sumcheck. If they
match, the programmer will display the sumcheck; if not, a sumcheck
error will be displayed.

Note: The sumcheck field consists of either 2-4 hex or 3-6 octal characters,
sandwiched between the $ and comma characters. The sumcheck
immediately follows an end code. The sumcheck is optional in the input
mode but is always included in the output mode. The most significant
digit of the sumcheck may be 0 or 1 when expressing 16 bits as 6 octal
characters.

The programmer divides the output data into 8-line blocks. Data
transmission is begun with the start code, a nonprintable STX character,
or optionally, SOH.* Data blocks follow, each one prefaced by an address
for the first data byte in the block. The end of transmission is signaled by
the end code, a nonprintable ETX character. Directly following the end
code is a sumcheck of the transferred data.

* ASCII-Octal SMS and ASCII-Hex SMS use SOM (CTRL-R) as a start code and EOM
(CTRL-T) as an end code.

RCA Cosmac Format, Code 70
Data in this format begin with a start record consisting of the start
character (!M or ?M), an address field, and a space. See Figure 1-7.

The start character ?M is sent to the programmer by a development
system, followed by the starting address and a data stream which
conforms to the data input format described in the ASCII-Hex and Octal
figure. Transmission stops when the specified number of bytes has been
transmitted.

Address specification is required for only the first data byte in the
transfer. An address must have 1 to 4 hex characters and must be
followed by a space. The programmer records the next hexadecimal
character after the space as the start of the first data byte. (A carriage
return must follow the space if the start code ?M is used.) Succeeding
bytes are recorded sequentially.

Each data record is followed by a comma if the next record is not
preceded by an address, or by a semicolon if it starts with an address.
Records consist of data bytes expressed as 2 hexadecimal characters and
followed by either a comma or semicolon, and a carriage return. The
programmer ignores any characters received between a comma or
semicolon and a carriage return.

The carriage return character is significant to this format because it can
signal either the continuation or the end of data flow; if the carriage
return is preceded by a comma or semicolon, more data must follow; the
absence of a comma or semicolon before the carriage return indicates the
end of transmission.

Output data records are followed by either a comma or a semicolon and a
carriage return. The start-of-file records are expressed exactly as for
input.

Figure 1-7
An Example of RCA Cosmac
Format

!M0000 ,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Start Record !M or ?M = Start Characters
0000 = Address

End-of-File Record

1

2

Data Records

FF =

, =
; =

2 Hex Characters = (1 Byte)
Bytes per record is variable
End of Record Character
End of Record Character
if followed by expressed
address

LEGEND

Nonprinting line feed, carriage return, and nulls

Nonprinting carriage return

1

2
0079-2

Fairchild Fairbug, Code 80
In the Fairbug format, input and output requirements are identical; both
have 8-byte records and identical control characters. Figure 1-8 shows a
Fairbug data file. A file begins with a 5-character prefix and ends with a
1-character suffix. The start-of-file character is an S, followed by the
address of the first data byte. Each data byte is represented by 2
hexadecimal characters. The programmer will ignore all characters
received prior to the first S.

Note: Address specification is optional in this format; a record with no address
directly follows the previous record.

Each data record begins with an X and always contains 8 data bytes. A
1-digit hexadecimal checksum follows the data in each data record. The
checksum represents, in hexadecimal notation, the sum of the binary
equivalents of the 16 digits in the record; the half carry from the fourth bit
is ignored.

The programmer ignores any character (except for address characters and
the asterisk character, which terminates the data transfer) between a
checksum and the start character of the next data record. This space can
be used for comments.

The last record consists of an asterisk only, which indicates the end
of file.

Figure 1-8
An Example of Fairchild Fairbug

S0000
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
XFFFFFFFFFFFFFFFFC
*

Start Record
S = Start Character

0000 = Address Field

End-of-File Record

Data Records

X =

FF =

C =

Data Record Start Character

2 Hex Characters (1 Byte)

Checksum. 1-digit summation

of data in record

0080-2

MOS Technology Format, Code 81
The data in each record are sandwiched between a 7-character prefix and
a 4-character suffix. The number of data bytes in each record must be
indicated by the byte count in the prefix. The input file can be divided
into records of various lengths.

Figure 1-9 shows a series of valid data records. Each data record begins
with a semicolon. The programmer will ignore all characters received
prior to the first semicolon. All other characters in a valid record must be
valid hexadecimal digits (0-9 and A-F). A 2-digit byte count follows the
start character. The byte count, expressed in hexadecimal digits, must
equal the number of data bytes in the record. The byte count is greater
than zero in the data records, and equals zero (00) in the end-of-file
record. The next 4 digits make up the address of the first data byte in the
record. Data bytes follow, each represented by 2 hexadecimal digits. The
end-of-file record consists of the semicolon start character, followed by a
00 byte count, the record count, and a checksum.

The checksum, which follows each data record, is a 2-byte binary
summation of the preceding bytes in the record (including the address
and byte count), in hexadecimal notation.

Figure 1-9
An Example of MOS Technology Format

;100000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1000
;100010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1010
;100020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1020
;100030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1030
;100040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1040
;0000050005

Sumcheck of record including
data, address and byte count

Data Records

End-of-File Record

Record Count Sumcheck

Start Character

Byte Count

Address Field

LEGEND

Nonprinting Carriage Return, line feed,
and nulls determined by null count 0081-2

Motorola EXORciser Format, Code 82
Motorola EXORciser data files may begin with an optional sign-on
record, which is initiated by the start characters S0. Valid data records
start with an 8-character prefix and end with a 2-character suffix.
Figure 1-10 shows a series of valid Motorola data records.

Each data record begins with the start characters S1. The third and fourth
characters represent the byte count, which expresses the number of data,
address, and checksum bytes in the record. The address of the first data
byte in the record is expressed by the last 4 characters of the prefix. Data
bytes follow, each represented by 2 hexadecimal characters. The number
of data bytes occurring must be three less than the byte count. The suffix
is a 2-character checksum, which equals the one’s complement of the
binary summation of the byte count, address, and data bytes.

The end-of-file record consists of the start characters S9, the byte count,
the address (in hex), and a checksum. The maximum record length is 250
data bytes.

Figure 1-10
An Example of Motorola EXORciser Format

S1130000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC

S00B00004441544120492F4FF3

S1130010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC
S1130020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDC
S1130030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S1130040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBC
S9030000FC

End-of-File Record
Start Character

Byte Count

Sumcheck

Address

End-of-File Record

Optional Sign-On Record
(S0 = Sign-On Characters)

Byte Count + 3

Start Character

Data
Records

Sumcheck
of record

LEGEND
Nonprinting Carriage Return, line feed,
and nulls determined by null count 0082-2

Intel Intellec 8/MDS Format, Code 83
Intel data records begin with a 9-character prefix and end with a
2-character suffix. The byte count must equal the number of data bytes in
the record.

Figure 1-11 simulates a series of valid data records. Each record begins
with a colon, which is followed by a 2-character byte count. The 4 digits
following the byte count give the address of the first data byte. Each data
byte is represented by 2 hexadecimal digits; the number of data bytes in
each record must equal the byte count. Following the data bytes of each
record is the checksum, the two’s complement (in binary) of the
preceding bytes (including the byte count, address, record type, and data
bytes), expressed in hex.

The end-of-file record consists of the colon start character, the byte count
(equal to 00), the address, the record type (equal to 01), and the checksum
of the record.

Figure 1-11
An Example of Intel Intellec 8/MDS Format

:10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0
:10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
:10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD0
:10004000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0
:00000001FF

Checksum
of record

Data
Records

Byte Count Transmission Sumcheck
Record Type

End-of-File Record

2 Hex Characters (1 Byte)

Address

Start Character

0083-3

LEGEND
Nonprinting Carriage Return, line feed, and nulls determined by null count

Signetics Absolute Object Format, Code 85
Figure 1-12 shows the specifications of Signetics format files. The data in
each record are sandwiched between a 9-character prefix and a
2-character suffix.

The start character is a colon. This is followed by the address, the byte
count, and a 2-digit address check. The address check is calculated by
exclusive ORing every byte with the previous one, then rotating left one
bit. Data is represented by pairs of hexadecimal characters. The byte
count must equal the number of data bytes in the record. The suffix is a
2-character data check, calculated using the same operations described
for the address check.

The end-of-file record consists of the colon start character, the address,
and the byte count (equal to 00).

Figure 1-12
An Example of Signetics Absolute Object Format

:00001020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:00101060FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:002010A0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:003010E0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:00401021FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:000000

Data
Records

Data Check
Start Character

Address Check
2 Hex Characters (1 Byte)

Byte Count (00 in End-of-File Record)Transfer Address

Nonprinting Carriage Return, line feeds, and nulls determined by null count
LEGEND

0084-2

Tektronix Hexadecimal Format, Code 86
Figure 1-13 illustrates a valid Tektronix data file. The data in each record
are sandwiched between the start character (a slash) and a 2-character
checksum. Following the start character, the next 4 characters of the
prefix express the address of the first data byte. The address is followed
by a byte count, which represents the number of data bytes in the record,
and by a checksum of the address and byte count. Data bytes follow,
represented by pairs of hexadecimal characters. Succeeding the data
bytes is their checksum, an 8-bit sum, modulo 256, of the 4-bit
hexadecimal values of the digits making up the data bytes. All records
are followed by a carriage return.

Data are output from the programmer starting at the first RAM address
and continuing until the number of bytes in the specified block has been
transmitted. The programmer divides output data into records prefaced
by a start character and an address field for the first byte in the record.

The end-of-file record consists of a start character (slash), followed by the
transfer address, the byte count (equal to 00), and the checksum of the
transfer address and byte count.

An optional abort record contains 2 start characters (slashes), followed by
an arbitrary string of ASCII characters. Any characters between a carriage
return and a / are ignored.

Figure 1-13
An Example of Tektronix Hex Format

/00001001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
/00101002FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
/00201003FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
/00301004FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
/00401005FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
/00000000

Data
Records

Start Character Address Field

Byte Count
(00 in End-of-File Record)

Transfer Address

Nonprinting Carriage Return, line feeds,
and nulls determined by null count

LEGEND

0085-3

Checksum of Address
and Byte Count

Checksum of
Data Bytes

End-of-File Record

Motorola EXORmacs Format, Code 87
Motorola data files may begin with an optional sign-on record, initiated
by the start characters S0. Data records start with an 8- or 10-character
prefix and end with a 2-character suffix. Figure 1-14 shows a series of
Motorola EXORmacs data records.

Each data record begins with the start characters S1 or S2: S1 if the
following address field has 4 characters, S2 if it has 6 characters. The third
and fourth characters represent the byte count, which expresses the
number of data, address, and checksum bytes in the record. The address
of the first data byte in the record is expressed by the last 4 characters of
the prefix (6 characters for addresses above hexadecimal FFFF). Data
bytes follow, each represented by 2 hexadecimal characters. The number
of data bytes occurring must be 3 or 4 less than the byte count. The suffix
is a 2-character checksum, the one’s complement (in binary) of the
preceding bytes in the record, including the byte count, address, and data
bytes.

The end-of-file record begins with an S9 start character. Following the
start characters are the byte count, the address, and a checksum. The
maximum record length is 250 data bytes.

Figure 1-14
An Example of Motorola EXORmacs Format

S214FF0000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC

S00B00004441544120492F4FF3

S1130010FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEC
S1130020FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDC
S1130030FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCC
S1130040FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBC
S9030000FC

Start
Character

Byte Count

Checksum

Address

End-of-File Record

Optional Sign-On Record

Data
Records

LEGEND
Nonprinting Carriage Return, line feed, and nulls determined by null count 0086-3

Checksum

Checksum

Intel MCS-86 Hexadecimal Object, Code 88
The Intel 16-bit Hexadecimal Object file record format has a 9-character
(4-field) prefix that defines the start of record, byte count, load address,
and record type and a 2-character checksum suffix. Figure 1-15 shows a
sample record of this format.

The four record types are described below.

Figure 1-15
An Example of Intel MCS-86 Hex Object

00-Data Record This begins with the colon start character, which is followed by the byte
count (in hex notation), the address of the first data byte, and the record
type (equal to 00). Following these are the data bytes. The checksum
follows the data bytes and is the two’s complement (in binary) of the
preceding bytes in the record, including the byte count, address, record
type, and data bytes.

01-End Record This end-of-file record also begins with the colon start character. This is
followed by the byte count (equal to 00), the address (equal to 0000), the
record type (equal to 01), and the checksum, FF.

02-Extended Segment
Address Record

This is added to the offset to determine the absolute destination address.
The address field for this record must contain ASCII zeros (Hex 30s).
This record type defines bits 4 to 19 of the segment base address. It can
appear randomly anywhere within the object file and affects the
absolute memory address of subsequent data records in the file. The
following example illustrates how the extended segment address is used
to determine a byte address.

:10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0
:10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
:10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD0
:10004000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0
:00000001FF

Data
Records

Byte Count Checksum
Record Type

End-of-File Record

Address
Start Character

0087-4

LEGEND
Nonprinting Carriage Return, line feed, and nulls determined by null count

:020000020000FC Extended Record

Offset Address

ChecksumChecksum

Problem:

Find the address for the first data byte for the following file.

:02 0000 02 1230 BA
:10 0045 00 55AA FF.....BC

Solution:

Step 1. Find the record address for the byte. The first data byte is 55.
Its record address is 0045 from above.

Step 2. Find the offset address. The offset address is 1230 from
above.

Step 3. Shift the offset address one place left, then add it to the
record address, like this:

1230 Offset address (upper 16 bits)
+ 0045 Record address (lower 16 bits)

12345 20-bit address

The address for the first data byte is 12345.

Note: Always specify the address offset when using this format, even when the
offset is zero.

During output translation, the firmware will force the record size to 16
(decimal) if the record size is specified greater than 16. There is no such
limitation for record sizes specified less than 16.

03-Start Record This record type is not sent during output by Data I/O translator
firmware.

Hewlett-Packard 64000 Absolute Format, Code 89
Hewlett-Packard Absolute is a binary format with control and
data-checking characters. See Figure 1-16.

Data files begin with a Start-of-file record, which includes the Data Bus
Width, Data Width Base, Transfer Address, and a checksum of the bytes
in the record.

Figure 1-16
An Example of HP 64000 Absolute Format

End-of-File record consists only of a word count of 0.

Checksum

Data bytes

Address where following data byte is to be stored.

BYTE COUNT — number of 8-bit data bytes.
WORD COUNT — number of 16-bit words in record except checksum and itself.
CHECKSUM — modulo 256 sum of all bytes in the record except the first byte.

TRANSFER ADDRESS — for microprocessor program counter.

DATA WIDTH BASE — see text.

DATA BUS WIDTH — see text.
WORD COUNT — number of 16-bit words in the record; always 04 in
Start-of-File record.

Note:

START-OF-FILE
RECORD

ONE DATA
RECORD

END-OF-FILE
RECORD

0088-2

HIGH
ORDER

LOW
ORDER

Third Byte
MSB
LSB
Second Byte

32-bit address
is sent in this
manner, in 4
groups of 8-bit
bytes.

This format is binary. Therefore, no ASCII control characters
or carriage returns and line feeds are allowed.

The Data Bus Width represents the width of the target system’s bus (in
bits). The Data Width Base represents the smallest addressable entity
used by the target microprocessor.

The Data Bus Width and Data Width Base are not used by the
programmer during download. During upload, the Data Bus Width will
be set to the current Data Word Width, and the Data Width Base will be
set to 8. The Transfer Address is not used by the programmer.

Data records follow the Start-of-file record. Each begins with 2 byte
counts: the first expresses the number of 16-bit bytes in the record, not
including the checksum and itself; the second expresses the number of
8-bit data bytes in the record. Next comes a 32-bit address, which
specifies the storage location of the following data byte. Data bytes
follow; after the last data byte is a checksum of every byte in the record
except the first byte, which is the word count.

The End-of-file record consists of a one byte word count, which is always
zero. Leader and trailer nulls, normally 50 each, are suppressed in this
translation format.

Texas Instruments SDSMAC Format, Code 90
Data files in the SDSMAC format consist of a start-of-file record, data
records, and an end-of-file record. See Figure 1-17.

Each record is composed of a series of small fields, each initiated by a tag
character. The programmer recognizes and acknowledges the following
tag characters:

0 or K—followed by a file header.

7—followed by a checksum which the programmer acknowledges.

8—followed by a checksum which the programmer ignores.

9—followed by a load address.

B—followed by 4 data characters.

F—denotes the end of a data record.

*—followed by 2 data characters.

The start-of-file record begins with a tag character and a 12-character file
header. The first four characters are the byte count of the data bytes; the
remaining file header characters are the name of the file and may be any
ASCII characters (in hex notation). Next come interspersed address fields
and data fields (each with tag characters). If any data fields appear before
the first address field in the file, the first of those data fields is assigned to
address 0000. Address fields may be expressed for any data byte, but
none are required.

The record ends with a checksum field initiated by the tag character 7 or
8, a 4-character checksum, and the tag character F. The checksum is the
two’s complement of the sum of the 8-bit ASCII values of the characters,
beginning with the first tag character and ending with the checksum tag
character (7 or 8).

Figure 1-17
An Example of TI SDSMAC Format

00050 7FDD4F
90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F400F
90010BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FFF
90020BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FEF
90030BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FDF
90040BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7F3FCF
:

Checksum
Tag Character

Tag Character
Tag Character

Byte Count
Filename

Load Address
End-of-File Record

Tag Characters

Data
Records

Checksum

LEGEND

Nonprinting Carriage Return, with optional
line feed and nulls determined by null count. 0089-4

Data records follow the same format as the start-of-file record but do not
contain a file header. The end-of-file record consists of a colon (:) only.
The output translator sends a CTRL-S after the colon.

JEDEC Format, Codes 91 and 92

Introduction The JEDEC (Joint Electron Device Engineering Council) format is used to
transfer fuse and test vector data between the programmer and a host
computer. Code 91 is full format and includes all the data fields (such as
note and test fields) described on the following pages. Code 92 is the
Kernel, or shorter, format. The JEDEC Kernel format includes only the
minimum information needed for the programming; it does not, for
example, include information fields or test vector fields. Prior to
transferring a JEDEC file, the appropriate Logic device must be selected.

JEDEC’s legal character set consists of all the printable ASCII characters
and four control characters. The four allowable control characters are
STX, ETX, CR (RETURN), and LF (line feed). Other control characters,
such as ESC or BREAK, should not be used.

Note: This is Data I/O Corporation’s implementation of JEDEC Standard 3A.
For a copy of the strict standard, write to:

Electronic Industries Association
Engineering Department
2001 Eye Street NW
Washington, D.C. 20006

BNF Rules and
Standard Definitions The Backus-Naur Form (BNF) is used in the description here to define the

syntax of the JEDEC format. BNF is a shorthand notation that follows
these rules:

:: = denotes “is defined as.”

Characters enclosed by single quotes are literals (required).

Angle brackets enclose identifiers.

Square brackets enclose optional items.

Braces {} enclose a repeated item. The item may appear zero or more
times.

Vertical bars indicate a choice between items.

Repeat counts are given by a :n suffix. For example, a 6-digit number
would be defined as:

<number> :: = <digit>:6

For example, in words the definition of a person’s name reads:

The full name consists of an optional title followed by a first name, a
middle name, and a last name. The person may not have a middle name,
or may have several middle names. The titles consist of: Mr., Mrs., Ms.,
Miss, and Dr.

The BNF definition for a person’s name is:

<full name> :: = [<title>] <f. name> {<m.name>} <l. name>

<title> :: = ‘Mr.’ | ‘Mrs.’ | ‘Ms.’ | ‘Miss’ | ‘Dr.’

The following standard definitions are used throughout the rest of this
document:

<digit> :: = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

<hex-digit> :: = <digit> | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’

<binary-digit> :: = ‘0’ | ‘1’

<number> :: = <digit> {<digit>}

 :: = <space> | <carriage return>

<delimiter> :: = {}

<printable character> :: = <ASCII 20 hex... 7E hex>

<control character> :: = <ASCII 00 hex... 1F hex> | <ASCII 7F hex>

<STX> :: = <ASCII 02 hex>

<ETX> :: = <ASCII 03 hex>

<carriage return> :: = <ASCII 0D hex>

<line feed> :: = <ASCII 0A hex>

<space> :: = <ASCII 20 hex> | “

<valid character> :: = <printable character> | <carriage return> |
<line feed>

<field character> :: = <ASCII 20 hex... 29 hex> | <ASCII 2B hex... 7E
hex> | <carriage return> | <line feed>

The Design Specification
Field <design spec> ::= {<field character>}’*’

The first field sent in a JEDEC transmission is the design specification.
Both the full and kernel JEDEC formats accept the design specification
field. This field is mandatory and does not have an identifier (such as an
asterisk) signaling its beginning. The design specification field consists of
general device information. It could, for example, consist of the following
information: your name, your company’s name, the date, the device
name and manufacturer, design revision level, etc. This field is
terminated by an asterisk character. Examine the sample transmission
shown on the next page of this description—the first three lines of the file
comprise the design specification field. The programmer ignores the
contents of this field for downloads and places “Data I/O” in this field for
upload operations.

Note: You do not need to send any information in this field if you do not wish to;
a blank field, consisting of the terminating asterisk, is a valid design
specification field.

The Transmission
Checksum Field <xmit checksum> ::= <hex digit>:4

The transmission checksum is the last value sent in a JEDEC
transmission. The full JEDEC format requires the transmission checksum.
The checksum is a 16-bit value, sent as a 4-digit hex number, and is the
sum of all the ASCII characters transmitted between (and including) the
STX and ETX. The parity bit is excluded in the calculation of the
transmission checksum.

Some computer systems do not allow you to control what characters are
sent, especially at the end of a line. You should set up the equipment so
that it will accept a dummy value of 0000 as a valid checksum. This zero
checksum is a way of disabling the transmission checksum while still
keeping within the JEDEC format rules.

JEDEC Full Format, Code 91
The full JEDEC format consists of a start-of-text character (STX), various
fields, an end-of-text character (ETX), and a transmission checksum. A
sample JEDEC transmission sent in the full format is shown in
Figure 1-18. Each of the fields is described on the following pages.

Figure 1-18
An Example of JEDEC Full Format

ABEL(tm) Version 2.00b JEDEC file for:P20R8
Large Memory Version

Created on: 09-Mar-87 04:45 PM
8-bit barrel shifter
EngineerI Data I/O Corp Redmond WA 10 Jan 1986*
QP24* QF2560*
L0000
1101111111111111111111111111101110111010
1101111111111111111111111011111110111001
1101111111111111111110111111111110110110
1101111111111111101111111111111110110101
1101111111111011111111111111111101111010
1101111110111111111111111111111101111001
1001101111111111111111111111111101110110
1001111111111111111111111111111101110101
1001111111111111111111111111101101110101
1101111111111111111111111111101110111010
1101111111111111111111111011111110111001
1101111111111111111110111111111110110110
1101111111111111101111111111111110110101
1101111111111011111111111111111101111010
1101111110111111111111111111111101111001
1001101111111111111111111111111101110110
1001111111111111111111111111111101110101
1001111111111111111111111111101101110101*
V0001 C1000000000N00HLLLLLLL1N*
V0002 C1000000000N01LHLLLLLL1N*
V0003 C1000000001N00LLHLLLLL1N*
V0004 C1000000001N01LLLHLLLL1N*
V0005 C1000000010N00LLLLHLLL1N*
V0006 C1000000010N01LLLLLHLL1N*
V0007 C1000000011N00LLLLLLHL1N*
V0008 C1000000011N01LLLLLLLH1N*
V0009 C0111111100N00LHHHHHHH1N*
V0010 C0111111100N01HLHHHHHH1N*
V0011 C0111111101N00HHLHHHHH1N*
V0012 C0111111101N01HHHLHHHH1N*
V0013 C0111111110N00HHHHLHHH1N*
V0014 C0111111110N01HHHHHLHH1N*
V0015 C0111111111N00HHHHHHLH1N*
V0016 C0111111111N01HHHHHHHL1N*
V0017 C0000000100N01HLLLLLLL1N*
V0018 C1111111000N01LHHHHHHH1N*
V0019 C0000000000N00HHHHHHHH0N*
V0020 C0000000000N10ZZZZZZZZ1N*
C1B20*
B8C0

Header
(comment area -
everything
preceeding
first * is
ignored)

Number of Pins (24)
and Number of Fuses (2560)

Fuse Address (0000)

Fuse States:
0 = intact
1 = blown

Test Vectors

Fuse Map Checksum
Transmission Checksum 0090-3

Vector
Number

JEDEC Field Syntax <field> ::= [<delimiter>]<field identifier>{<field character>}’*’

<field identifier>::= ‘A’ | ‘C’ | ‘D’ | ‘F’ | ‘G’ | ‘K’ | ‘L’ | ‘N’ | ‘P’ |
‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘V’ | ‘X’

<reserved identifier>::= ‘B’ | ‘E’ | ‘H’ | ‘I’ | ‘J’ | ‘M’ | ‘O’ | ‘U’ | ‘W’
| ‘Y’ | ‘Z’

Following the design specification field in a JEDEC transmission can be
any number of information fields. Each of the JEDEC fields begins with a
character that identifies what type of field it is. Fields are terminated with
an asterisk character. Multiple character identifiers can be used to create
sub-fields (i.e., A1, A$, or AB3). Although they are not required, you may
use carriage returns (CR) and line feeds (LF) to improve readability of the
data.

Field Identifiers Field identifiers which are currently used in JEDEC transmissions are
shown above on the “field identifiers” line. The “reserved identifier” line
indicates characters not currently used (reserved for future use as field
identifiers). JEDEC field identifiers are defined as follows:

* Reserved for future use

Device Field (D) Device selection by this field is not supported by the programmer. It has
been replaced by the QF and QP fields and manual selection of devices.

A Access time N Note field

B * O *

C Checksum field P Pin sequence

D Device type Q Value field

E * R Resulting vector field

F Default fuse state field S Starting vector

G Security fuse field T Test cycles

H * U *

I * V Test vector field

J * W *

K Fuse list field (hex format) X Default test condition

L Fuse list field Y *

M * Z *

Fuse Information Fields
(L, K, F, C) <fuse information> :: = [<default state>] <fuse list> {<fuse list>} [<fuse

checksum>]

<fuse list> : = ‘L’ <number> <delimiter> {<binary-digit> [<delimiter>]}
' * '

<fuse list> :: = ‘K’ <number> <delimiter> {<hex-digit> [<delimiter>]} ‘*’

<default state> :: = ‘F’ <binary-digit> ‘* ‘

<fuse checksum> :: = ‘C’ <hex-digit>:4 ‘* ‘

Each fuse of a device is assigned a decimal number and has two possible
states: zero, specifying a low-resistance link, or one, specifying a high
resistance link. The state of each fuse in the device is given by three fields:
the fuse list (L field or K field), the default state (F field), and the fuse
checksum (C field).

Fuse states are explicitly defined by either the L field or the K field. The
character L begins the L field and is followed by the decimal number of
the first fuse for which this field defines a state. The first fuse number is
followed by a list of binary values indicating the fuse states.

The information in the K field is the same as that of the L field except that
the information is represented by hex characters instead of binary values.
This allows more compact representation of the fusemap data. The
character K begins the K field and is followed by the decimal number of
the first fuse. The fuse data follow the fuse number and are represented
by hex characters. Each bit of each hex character represents the state of
one fuse, so each hex character represents four fuses. The most significant
bit of the first hex character following the fuse number corresponds to the
state of that fuse number. The next most significant bit corresponds to the
state of the next fuse number, etc. The least significant bit of the first hex
character corresponds to the state of the fuse at the location specified by
the fuse number plus three.

The K field supports download operations only. The K field is not part of
the JEDEC standard, but is supported by Data I/O for fast data transfer.
The L and K fields can be any length desired, and any number of L or K
fields can be specified. If the state of a fuse is specified more than once,
the last state specified replaces all previous ones for that fuse. The F field
defines the states of fuses that are not explicitly defined in the L or K
fields. If no F field is specified, all fuse states must be defined by L or K
fields.

The C field, the fuse information checksum field, is used to detect
transmitting and receiving errors. The field contains a 16-bit sum
(modulus 65535) computed by adding 8-bit words containing the fuse
states for the entire device. The 8-bit words are formed as shown in the
following figure. Unused bits in the final 8-bit word are set to zero before
the checksum is calculated.

Following is an example of full specification of the L, C, and F fields:

F0*L0 01010101* L0008 01010111* L1000 0101*C019E*

Following is an alternate way of defining the same fuse states using the K
field:

F0*K0 55* K0008 57* K1000 5* C019E*

Another example, where F and C are not specified:

L0200 01101010101010101011

010111010110100010010010010*

The Security Fuse Field (G) <security fuse>::=’G’<binary-digit>’*’

The JEDEC G field is used to enable the security fuse of some logic
devices. To enable the fuse, send a 1 in the G field:

G1*

The Note Field (N) <note>::=’N’<field characters>’*’

The note field is used in JEDEC transmission to insert notes or comments.
The programmer will ignore this field; it will not be interpreted as data.
An example of a note field would be:

N Test Preload*

The Value Fields (QF, QP,
and QV) JEDEC value fields define values or limits for the data file, such as

number of fuses. The QF subfield defines the number of fuses in the
device. All of the value fields must occur before any device programming
or testing fields appear in the data file. Files with ONLY testing fields do
not require the QF field, and fields with ONLY programming data do not
require the QP and QV fields.

The QF subfield tells the programmer how much memory to reserve for
fuse data, the number of fuses to set to the default condition, and the
number of fuses to include in the fuse checksum. The QP subfield defines
the number of pins or test conditions in the test vector, and the QV
subfield defines the maximum number of test vectors.

Word 00
Fuse No.

msb
7 6 5 4 3 2 1

lsb
0

Word 01
Fuse No.

msb
15 14 13 12 11 10 9

lsb
8

Word 62
Fuse No.

msb
503 - - - 499 498 497

lsb
496

The P Field The P field remaps the device pinout and is used with the V (test vector)
field. An asterisk terminates the field. The syntax of the field is as
follows:

<pin list>::=’P’<pin number>:N’*’

<pin number>::=<delimiter><number>

The following example shows a P field, V field, and the resulting
application:

P 1 2 3 4 5 6 14 15 16 17 7 8 9 10 11 12 13 18 19 20 *

V0001 111000HLHHNNNNNNNNNN*

V0002 100000HHHLNNNNNNNNNN*

The result of applying the above P and V fields is that vector 1 will apply
111000 to pins 1 through 6, and HLHH to pins 14 through 17. Pins 7
through 13 and 18 through 20 will not be tested.

JEDEC U and E
Fields As of Version 2.5, the programmer supports the optional JEDEC U (user

data) and E (electrical data) fields. The U and E fields are described
below.

Note: Implementation of the JEDEC U and E fields is not part of the JEDEC-3C
(JESD3-C) standard.

User Data (U Field) The U field allows user data fuses that do not affect the logical or
electrical functionality of the device to be specified in JEDEC files. For
instance, the U field can be used to specify the User Data Signature fuse
available in some types of PLD devices because this fuse contains
information only (it has no logical or electrical functionality).

Note: To have the JEDEC U field processed correctly, you must select the device
before downloading the JEDEC file.

The following guidelines apply to the U field:

• The U field must be included for devices with U fuses.

• Each U-field cell must be explicitly provided if the U field is present.

• The F (default fuse state) field does not affect U fuses.

• There can only be one U field in a JEDEC file.

• The U field fuses must be listed in the order they appear in the
device.

• The U field must be listed after the L field and E field (if used), and
before the V (test vector) field (if used).

• The U field is specified using binary numbers, since the full number
of U-field cells is otherwise unknown.

• The number of cells specified in the U field is not included in the QF
(number of fuses) field.

• The U-field cells are not included in the C (fuse checksum) field.

• The U field reads left to right to be consistent with the L (fuse list) and
E fields.

The syntax for the U field is as follows:

<User Data Fuse List>::’U’<binary-digit(s)>’*’

The character U begins the U field and is followed by one binary digit for
each U fuse. Each binary digit indicates one of two possible states (zero,
specifying a low-resistance link, or one, specifying a high-resistance link)
for each fuse.

For example,

QF24*
L0000
101011000000000000000000*
E10100111*
C011A*
U10110110*

Electrical Data (E field) The E field allows special feature fuses that do not affect the logic
function of the device to be specified in JEDEC files.

The following guidelines apply to the E field:

• The E-field cell must be explicitly provided if the E field is present.

• The F (default fuse state) field does not affect E fuses.

• There can only be one E field in a JEDEC file.

• The E field fuses must be listed in the order they appear in the device.

• The E field must be listed before the C (checksum) field. If the U field
is used, the E field must come before the U (user data) field.

• The E field is specified using binary numbers, since the full number
of E-field cells is otherwise unknown.

• The number of cells specified in the E field is not included in the QF
(number of fuses) field.

• The E-field cells are included in the C (fuse checksum) field.

• The E field reads left to right for the purpose of checksum calculation.

The syntax for the E field is as follows:

<Electrical Data Fuse List>::’E’<binary digit(s)>’*’

The character E begins the E field and is followed by one binary digit for
each E fuse. Each binary digit indicates one of two possible states (zero,
specifying a low-resistance link, or one, specifying a high-resistance link)
for each fuse. For example,

QF24*
L0000
101011000000000000000000*
E10100111*
C011A*
U10110110*

Test Field (V field) <function test> :: = [<pin list>] <test vector> {<test vector>}

<pin number> :: = <delimiter> <number>

N :: = number of pins on device

<test vector> :: = ‘V’ <number> <delimiter> < test condition> :N ‘* ‘

<test condition> :: = <digit> ‘B’ | ‘C’ | ‘D’ | ‘F’ | ‘H’ | ‘K’ | ‘L’ | ‘N’ | ‘P’
| ‘U’ | ‘X’ | ‘Z’

<reserved condition> :: = ‘A’ | ‘E’ | ‘G’ | ‘I’ | ‘J’ | ‘M’ | ‘O’ | ‘Q’ | ‘R’ |
‘S’ | ‘T’ | ‘V’ | ‘W’ | ‘Y’ | ‘Z’

Functional test information is specified by test vectors containing test
conditions for each device pin. Each test vector contains n test conditions,
where n is the number of pins on the device. The following table lists the
conditions that can be specified for device pins.

When using structured test vectors to check your logic design, do NOT
use 101 or 010 transitions as tests for clock pins: use C, K, U, or D instead.

Test Conditions

Note: C, K, U, and D are clocking functions that allow for setup time.

The C, K, U, and D driving signals are presented after the other inputs are
stable. The L, H, and Z tests are performed after all inputs have
stabilized, including C, K, U, and D.

Test vectors are numbered by following the V character with a number.
The vectors are applied in numerical order. If the same numbered vector
is specified more than one time, the data in the last vector replace any
data contained in previous vectors with that number.

0 Drive input low

1 Drive input high

2-9 Drive input to supervoltage #2-9

B Buried register preload (not supported)

C Drive input low, high, low

D Drive input low, fast slew

F Float input or output

H Test output high

K Drive input high, low, high

L Verifies that the specified output pin is low

N Power pins and outputs not tested

P Preload registers

U Drive input high, fast slew

X Output not tested, input default level

Z Test input or output for high impedance

The following example uses the V field to specify functional test
information for a device:

V0001C01010101NHLLLHHLHLN*

V0002C01011111NHLLHLLLHLN*

V0003C10010111NZZZZZZZZZN*

V0004C01010100NFLHHLFFLLN*

JEDEC Kernel Mode, Code 92
<kernel>::=<STX><design spec><min. fuse information><ETX><xmit
checksum>

<design spec>::={<field character>}’*’

<min. fuse information>::=<fuse list>{<fuse list>}

You may use the JEDEC kernel format if you wish to send only the
minimum data necessary to program the logic device; for example, if you
do not want to send any test vectors. If you specify format code 92, the
programmer will ignore everything except the design specification field
and the fuse information field. The following fields will be ignored if
format 92 is specified: C, F, G, Q, V, and X. Also, the security fuse will be
set to zero and the transmission checksum will be ignored.

Figure 1-19 shows an example of a kernel JEDEC transmission.

Figure 1-19
An Example of JEDEC Kernel
Mode Format

<STX>
Acme Logic Design Jane Engineer Feb. 29 1983
Widget Decode 756-AB-3456 Rev C Device Mullard 12AX7*

L0000 1111111011 1111111111 1111000000 0000000000
0000000000 0000000000 0000000000 0000000000
0000000000 0000000101 1111111111 1111111111
0000000000 0000000000 0000111101 1111111111
1111111111 1111110111 1111111111 1111111111*

L0200 1110101111 1111110000 0000000000 0000000000
1111111111 1111011011 1111111111 1111111110
0111111111 1111111111 1111111110 1111111111
1111111111 1111101111 1111111111 1111101111
0000000000 0000000000 0000*

<EXT>0000
0091-2

Extended Tektronix Hexadecimal Format, Code 94
The Extended Tektronix Hexadecimal format has three types of records:
data, symbol, and termination records. The data record contains the
object code. Information about a program section is contained in the
symbol record (the programmer ignores symbol records), and the
termination record signifies the end of a module. The data record (see
sample below) contains a header field, a load address, and the object
code. Figure 1-20 lists the information contained in the header field.

Character Values for
Checksum Computation The number of fields in the file will vary, depending on whether a data or

a termination block is sent. Both data and termination blocks have a
6-character header and a 2-to-17 character address.

Figure 1-20
An Example of Tektronix Extended
Format

Item
No. of ASCII

Characters Description

% 1 Signifies that the record is the Extended
Tek Hex format.

Block length 2 Number of characters in the record,
minus the %.

Block type 1 6 = data record
3 = symbol record (ignored by the
programmer)
8 = termination record

Checksum 2 A 2-digit hex sum, modulo 256, of all the
values in the record except the % and
the checksum.

Character(s)
Value (decimal)

Character(s)
Value
(decimal)

0 . . 9 0 . . 9 . (period) 38

A . . Z 10 . . 35 _(underline) 39

$ 36 a . . z 40 . . 65

% 37

%1561C310020202020202

SUMCHECK: 1CH = 1+5+6+3+1+0+0+0+2+0+2+...

OBJECT CODE: 6 BYTES

LOAD ADDRESS: 100 H

BLOCK TYPE: 6 (DATA)

HEADER CHARACTER

BLOCK LENGTH: 15H = 21

0092-2

The load address determines where the object code will be located. This
is a variable length number that may contain up to 17 characters. The first
number determines the address length, with a zero signifying a length of
16. The remaining characters of the data record contain the object code, 2
characters per byte.

When you copy data to the port or to RAM, set the high-order address if
the low-order is not at the default value.

Motorola 32-Bit Format, Code 95
The Motorola 32-bit format closely resembles the Motorola EXORmacs
format, the main difference being the addition of the S3 and S7 start
characters. The S3 character is used to begin a record containing a 4-byte
address. The S7 character is a termination record for a block of S3 records.
The address field for an S7 record may optionally contain the 4-byte
instruction address that identifies where control is to be passed and is
ignored by the programmer. Figure 1-21 shows a sample of the Motorola
32-bit format.

Motorola data files may begin with an optional sign-on record, initiated
by the start characters S0 or S5. Data records start with an 8- or
10-character prefix and end with a 2-character suffix.

Each data record begins with the start characters S1, S2, or S3: S1 if the
following address field has 4 characters, S2 if it has 6 characters, S3 if it
has 8 characters. The third and fourth characters represent the byte count,
which expresses the number of data, address, and checksum bytes in the
record. The address of the first data byte in the record is expressed by the
last 4 characters of the prefix (6 characters for addresses above
hexadecimal FFFF, and 8 characters for addresses above hexadecimal
FFFFFF). Data bytes follow, each represented by 2 hexadecimal
characters. The number of data bytes occurring must be 3, 4, or 5 less than
the byte count. The suffix is a 2-character checksum, the one’s
complement (in binary) of the preceding bytes in the record, including
the byte count, address, and data bytes.

The end-of-file record begins with an S8 or S9 start character. Following
the start characters are the byte count, the address, and a checksum. The
maximum record length is 250 data bytes.

Figure 1-21
An Example of Motorola S3 Format

S00B00004441544120492F4FF3
S31500000000AA55AA55AA55AA55AA55AA55AA55AA55F2
S30D00000010AA55AA55AA55AA55E6
S70500000000FA

Start
Character

Byte Count
Address

Checksum

Optional Sign-On Record

Data
Records

0093-3

Hewlett-Packard UNIX Format, Code 96
This format divides the data file into data records, each with a maximum
size of 250 bytes not including header information. An ID header is
added to the beginning of the first record. Each subsequent record has its
own header section. The section at the beginning of the file contains the
following elements: the header 8004, filename, byte count for the
processor information record, and the processor information record.

The header 8004 identifies the type of file being transferred. The first byte
of this header (80) indicates that this file is binary, and the 04 indicates the
type of file (absolute).

The ID header is followed by a 16-byte filename (not used by the
programmer).

Next is the byte count, which indicates the size (minus one) of the
Processor Information Record that follows. The Processor Information
Record is divided into the following data words: Data Bus Width, Data
Width Base, Transfer Address LS (least significant), and Transfer Address
MS (most significant).

The Data Bus Width represents the width of the target system’s bus (in
bits). The Data Width Base represents the smallest addressable entity
used by the target microprocessor.

The Data Bus Width and Data Width Base are not used by the
programmer during download. During upload, the Data Bus Width will
be set to the current Data Word Width, and the Data Width Base will be
set to 8. The Transfer Address LS and Transfer Address MS are not used
by the programmer.

The data records consist of a header (8 bytes) and the data bytes. The first
2 bytes of the header indicate the size of the data record including the
header (minus one). If the number of data bytes in the data record (not
including the header) is odd, one extra byte will be added to the data
record to ensure that an even number of data bytes exist in the data
record. The maximum value for this field is 00FF hex. The next two bytes
indicate the number of actual data bytes in the record, not including the
header bytes and the extra byte (if present). The maximum value for this
field is 00FA hex. The 4 bytes that follow represent the destination
address for the data in this record. The rest of the bytes in the record are
the data bytes.

This format has no end of file identifier.

The record length during upload is not affected by the upload record size
parameter in the Configure/Edit/Communication screen. It is
automatically set to transfer records using the maximum size (250 bytes)
except for the last record. The size of the last record will be set according
to the remaining number of data bytes.

Figure 1-22
Hewlett-Packard 64000 Unix Format

80 04 20 20 20 20 20 20-20 20 20 20 20 20 20 20
20 20 00 07 00 08 00 08-00 00 00 00 00 FF 00 FA
00 00 00 00 02 00 26 02-03 38 FF FF FF FF FF 02
30 38 FF FF FF FF FF 02-03 38 FF FF FF FF FF 02
03 38 FF FF FF FF FF 02-03 16 75 A8 00 75 82 10
75 D0 00 75 B8 10 75 89-20 75 88 40 75 98 50 75
97 00 E5 99 75 80 00 75-90 E0 75 A0 40 75 B0 FF
74 58 F5 70 F5 71 75 75-00 75 76 FF 51 FD E5 90
54 60 B4 00 05 75 8D A0-80 13 B4 20 05 75 BD F4
80 0B B4 40 05 75 8D E8-80 03 75 8D FD 75 A8 90
75 99 52 90 00 AD 7A 00-11 D5 31 02 51 79 90 00
B7 7A 10 11 D5 31 02 51-79 90 00 C1 7A 20 11 D5
31 02 51 79 90 00 CB 7A-30 11 D5 31 02 51 79 80
D2 03 07 0B 13 11 17 1F-1D 23 00 02 06 0A 12 10
16 1E 1C 22 00 01 05 09-0D 0F 15 19 1B 21 25 00
04 08 0C 0E 14 18 1A 20-14 78 00 EA 44 40 FA 75
A0 4F E8 93 24 30 F9 87-80 EA 54 4F F5 A0 0A 08
75 A0 4F B8 0A EC EA 54-3F F5 A0 78 28 00 00 FF
00 FA 00 FA 00 00 00 00-00 D8 FA 8A A0 22 A8 71
F8 B5 70 01 22 E6 08 B8-70 02 78 58 88 71 F9 B4
 E7 08 B8-72 90 01 22 93 73 06 30
 00 26 B4 5A 07 51 FD
 B4 00 80 BF B4

Number of bytes in
the following record

not including header
(or extra byte if present)

Data Record

Load Address
MS Word

Load Address
LS Word

Header

8 words for
file name

Byte Count = 7

Data Bus
Width

Transfer
Address LS

Data Width
Base

Transfer
Address MS

Processor Information Record

Number of bytes in
the following record
including header

Number of bytes in
the following record
not including header

End of first 124
record words

Number of bytes in
the following record

Data RecordLoad Address
MS Word

Load Address
LS Word

This data translation format was generated by a "dump utility" for illustrative purposes. Actual data
files are in binary code and are typically generated by the appropriate development software. 0474-2

Intel OMF386 Format, Code 97
This data translation format is considered by Intel to be proprietary
information. Contact your local Intel representative or call (408) 987-8080
for information about the structure of this format.

Intel OMF286 Format, Code 98
The Intel OMF286 format is a dynamically allocatable file format.

This format has three basic parts: the file header, data file module, and a
1-byte checksum. The file header is hexadecimal number (A2) that
identifies this file as an Intel OMF 286 format file. See Figure 1-23.

The first 75 bytes of the data file module is the data file header. The
header information is generated and used by the development system
and is not used by the programmer, although some characters must fill
those bytes. The rest of the data file module consists of one partition.

The partition begins with a 20 byte table of contents. The table of contents
specifies the locations of ABSTXT (absolute text), DEBTXT (debug text),
the last location of this partition, and the location of the next partition.
The OMF286 format consists of only one partition so this field will be
zeros. The rest of the partition consists of sections. The actual data are
located in the sections. The first 3 bytes in each section specify the real
address of the text. The next 2 bytes state the length of the text, and the
remainder of the section is the text (or data). Following the final section of
the final partition is a 1-byte checksum representing the complement of
the sum of all the bytes in the file, including the header. The sum of the
checksum byte and the calculated checksum for the file should equal
zero. The programmer ignores this checksum.

Figure 1-23
A Sample of the Intel OMF286 Format

A2 F3 FF FF 00 30 38 2F-30 34 2F 38 37 30 38 3A
34 33 3A 30 31 1C 69 41-50 58 32 38 36 20 53 59
53 54 45 4D 20 42 55 49-4C 44 45 52 2C 20 56 33
2E 32 20 20 20 20 20 20-20 20 20 20 20 20 3F 01
00 80 FF 00 FF 00 40 81-FF 00 18 00
 50 00 00 00
5B 66 00 00 6B EF 00 00-00 00 00 00 00 00 00 00

40 01 00 2C 00 00 00 00-04 28 00 00 00 00 00 00
00 00 00 6E 4F 00 02 00-00 00 00 00 00 00 00 00
04 00 04 00 00 00 00 28-00 20 00 28 00 28 00 00
00
 70 01 00 2C 00 00 00-00 04 28 00 00 00 00 00
00 00 00 00 F5 38 00 02-00 00 00 00 00 00 00 00
00 00
 A0 01 00 2C 00 00-00 00 04 28 00 00 00 00
00 00 00 00 00 33 39 00-02 00 00 00 00 00 00 00
00 00 04 00 04 00 00 00-00 28 00 20 00 28 00 28

 00-00 00 00 04 28 00 00 00
 -00 00 00 00 00 00 00 00

0431-2

Last Location

File Header

DEBTXT Location

ASBTXT Location

Length of ASBTXT

Section

Section

Section

Next Partition

Reserved

Table of Contents

ASBTXT Location

Data File Header

Figure 1-24
A Close-up of the Intel OMF286 Format

Total Space Date Time Module Creator GDT Limit GDT Base IDT Limit IDT Base TSS Selector

Data File Header

4 bytes 8 bytes 8 bytes 41 bytes 2 bytes 4 bytes 4 bytes 4 bytes 2 bytes

ABSTXT
Location

DEBTXT
Location

Last
Location

Next
Partition Reserved

4 bytes4 bytes4 bytes4 bytes4 bytes

Real Address Length Text

3 bytes 2 bytes

Table of Contents

Section

File Header (A2 or 06 and 02)

Checksum 1 byte

Data File Module

Table of Contents

Partition

Partition

Section

Section

Section

20 bytes

75 bytesData File Header

Bold boxes indicate that the
information inside is not used

by the programmer, however, some
characters must occupy those spaces. 0432-2

INTEL OMF286 FORMAT, CODE 98

X

Intel Hex-32, Code 99
The Intel 32-bit Hexadecimal Object file record format has a 9-character
(4-field) prefix that defines the start of record, byte count, load address,
and record type, and a 2-character checksum suffix. Figure 1-25
illustrates the sample records of this format.

The six record types are described below.

Figure 1-25
An Example of the Intel Hex-32
Format

00-Data Record This record begins with the colon start character, which is followed by
the byte count (in hex notation), the address of the first data byte, and the
record type (equal to 00). Following these are the data bytes. The
checksum follows the data bytes and is the two’s complement (in binary)
of the preceding bytes in the record, including the byte count, address,
record type, and data bytes.

01-End Record This end-of-file record also begins with the colon start character and is
followed by the byte count (equal to 00), the address (equal to 0000), the
record type (equal to 01), and the checksum, FF.

02-Extended Segment
Address Record

This is added to the offset to determine the absolute destination address.
The address field for this record must contain ASCII zeros (Hex 30s).
This record type defines bits 4 to 19 of the segment base address. It can
appear randomly anywhere within the object file and affects the absolute
memory address of subsequent data records in the file. The following
example illustrates how the extended segment address is used to
determine a byte address.

:020000020000FC
:020000040010EA
:10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00
:10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0
:10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
:10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD0
:10004000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0
:00000001FF

Offset Address
Address

Start Character

Extended Segment Address Record
Extended Linear Address Record

Data
Records

End-of-File Record

Checksum
Record TypeByte

Count

Nonprinting Carriage Return, with optional
line feed and nulls determined by null count

LEGEND

0433-3

Checksum

Problem

Find the address for the first data byte for the following file.

:02 0000 04 0010 EA
:02 0000 02 1230 BA
:10 0045 00 55AA FF BC

Solution:

Step 1. Find the extended linear address offset for the data record
(0010 in the example).

Step 2. Find the extended segment address offset for the data record
(1230 in the example).

Step 3. Find the address offset for the data from the data record (0045 in
the example).

Step 4. Calculate the absolute address for the first byte of the data record
as follows:

00100000 Linear address offset, shifted left 16 bits
+ 12300 Segment address offset, shifted left 4 bits
+ 0045 Address offset from data record
00112345 32-bit address for first data byte

The address for the first data byte is 112345.

Note: Always specify the address offset when using this format, even when the
offset is zero.

During output translation, the firmware will force the record size to 16
(decimal) if the record size is specified greater than 16. There is no such
limitation for record sizes specified less than 16.

03-Start Segment Address
Record

This record, which specifies bits 4-19 of the execution start address for
the object file, is not used by the programmer.

04-Extended Linear
Address Record

This record specifies bits 16-31 of the destination address for the data
records that follow. It is added to the offset to determine the absolute
destination address and can appear randomly anywhere within the
object file. The address field for this record must contain ASCII zeros
(Hex 30s).

05-Start Linear Address
Record

This record, which specifies bits 16-31 of the execution start address for
the object file, is not used by the programmer.

Highest I/O Addresses
The following table shows the highest I/O addresses accepted for each
Data Translation Format.

Format
Number Format Name

Highest
Address (hex
bytes)

01-03 ASCII (BNPF, BHLF, and B10F) N/A

04 Texas Instruments SDSMAC (320) 1FFFF
(FFFF words)

05-07 ASCII (BNPF, BHLF, and B10F) N/A

11 DEC Binary N/A

12-13 Spectrum 270F

16 Absolute Binary N/A

17 LOF N/A

30-32 ASCII-Octal
(Space, Percent, and Apostrophe)

3FFFF
(777777 octal)

35-37 ASCII-Octal
(Space, Percent, and SMS)

3FFFF
(777777 octal)

50-52 ASCII-Hex
(Space, Percent, and Apostrophe)

FFFF

55-58 ASCII-Hex
(Space, Percent, SMS, and Comma)

FFFF

70 RCA Cosmac FFFF

80 Fairchild Fairbug FFFF

81 MOS Technology FFFF

82 Motorola EXORciser FFFF

83 Intel Intellec 8/MDS FFFF

85 Signetics Absolute Object FFFF

86 Tektronix Hexadecimal FFFF

87 Motorola EXORmacs FFFFFF

88 Intel MCS-86 Hex Object FFFFF

89 Hewlett-Packard 64000 Absolute FFFFFFFF

90 Texas Instruments SDSMAC FFFF

91, 92 JEDEC (Full and Kernel) N/A

94 Tektronix Hexadecimal Extended FFFFFFFF

95 Motorola 32 bit (S3 record) FFFFFFFF

96 Hewlett-Packard UNIX Format FFFFFFFF

97 Intel OMF 386 FFFFFFFF

98 Intel OMF 286 FFFFFF

99 Intel Hex-32 FFFFFFFF

	ASCII Binary Format, Codes 01, 02, and 03�(or 05, 06, and 07)
	Texas Instruments SDSMAC Format (320), Code 04
	The 5-Level BNPF Format, Codes 08 or 09
	Formatted Binary Format, Code 10
	DEC Binary Format, Code 11
	Spectrum Format, Codes 12 or 13
	POF (Programmer Object File) Format, Code 14
	Absolute Binary Format, Code 16
	LOF Format, Code 17
	ASCII Octal and Hex Formats, Codes 30-37 and 50-58
	RCA Cosmac Format, Code 70
	Fairchild Fairbug, Code 80
	MOS Technology Format, Code 81
	Motorola EXORciser Format, Code 82
	Intel Intellec 8/MDS Format, Code 83
	Signetics Absolute Object Format, Code 85
	Tektronix Hexadecimal Format, Code 86
	Motorola EXORmacs Format, Code 87
	Intel MCS-86 Hexadecimal Object, Code 88
	Hewlett-Packard 64000 Absolute Format, Code 89
	Texas Instruments SDSMAC Format, Code 90
	JEDEC Format, Codes 91 and 92
	JEDEC Full Format, Code 91
	JEDEC Kernel Mode, Code 92
	Extended Tektronix Hexadecimal Format, Code 94
	Motorola 32-Bit Format, Code 95
	Hewlett-Packard UNIX Format, Code 96
	Intel OMF386 Format, Code 97
	Intel OMF286 Format, Code 98
	Intel Hex-32, Code 99
	Highest I/O Addresses

