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BAYESIAN NETWORKS: A MODEL OF SELF-ACTIVATED
MEMORY FOR EVIDENTIAL REASONING

ABSTRACT

Bayesian networks are directed acyclic graphs in which the nodes represent propo-
sitions (or variables), the arcs signify the cxistence of direct causal dependencies between
the linked propositions, and the strengths of these dependencies are quantified by condi-
tional probabilities. A network of this sort can be used to represent the deep causal
knowledge of an agent or a domain expert and turns into a computational architecture if
the links are used not merely for storing factual knowledge but also for directing and ac-
tivating the data flow in the computations which manipulate this knowledge.

The first part of the paper defines the properties of Bayes networks which are
necessary to guarantee completeness and consistency, and shows how dependencies and
conditional-independence relationships can be tested using simple link-tracing operations.

The second part of the paper deals with the task of fusing and propagating the
impacts of new evidence and beliefs through Bayesian networks in such a way that,
when equilibrium is reached, each proposition will be assigned a belief measure con-
sistent with the observed data. We first argue that any viable model of human reason-
ing should be able to perform this task by a self-activated propagation mechanism, i.e.,
by an array of simple and autonomous processors, communicating locally via the links
provided by the Bayes network itself. We then quote results which show that these ob-
jectives can be fully realized only in singly-connected networks, where there exists only
one (undirected) path between any pair of nodes. Finally, the paper discusses several
approaches to achieving belief propagation in more general networks, and argues for the
feasibility of turning a Bayes network into a tree by introducing dummy variables, mim-
icking the way people develop causal models.



BAYESIAN NETWORKS: A MODEL OF SELF-ACTIVATED
MEMORY FOR EVIDENTIAL REASONING

Judea Pearl

1 INTRODUCTION

This study was motivated by attempts to devise a computational model for hu-
mans’ inferential reasoning, namely, the mechanism by whichgipeople integrate data from
multiple sources and generate a coherent interpretation of that data. Since the
knowledge from which inferences are drawn is mostly judgmental--namely, subjective,
uncertain, and incomplete--a natural place to start would be to cast the reasoning process
in the framework of probability theory. However, the mathematician who approaches

- this task from the vantage of probability theory may dismiss it as a rather prosaic exer-
cise. For if one assumes that human knowledge is represented by a joint probability dis-
tribution P(xy, . . . ,x,) on a set of propositional variables x,, . . . ,x,, the task of draw-
ing inferences from observations amounts to simply computing the marginal probabilities
of a small subset, Hy, . . . ,H;, of variables called hypotheses, conditioned upon a group
of instantiated variables e; - - - e, called evidence. Indeed computing
P(H,, . .. ,Hiley, - . . ,e,) from a given joint distribution on all propositions is merely

an arithmetic tediousness void of theoretical or conceptual interest.

It is not hard to see that this textbook view of probability theory presents a rather
distorted picture of human reasoning and misses its most interesting aspects. Consider,
for example, the problem of encoding an arbitrary joint distribution P(xy, . . ., x,) on a

computer. If we need to deal with n propositions, then to store P(x;, . . . , x,) explicitly



would require a table with 2" entries--an unthinkably large number by any standard.
Moreover, even if we find some economical way of storing P(x,, . . ., x,,) (or rules for
generating it), there still remains the problem of manipulating it to compute the proba-
bilities of propositions which pe;ople consider to be interesting. For example, to compute
the marginal probability P(x;) would require summing P(xy,..., x,) over all 2"~ combi-
nations of the remaining n—1 variables x;, j#i. Similarly, computing the conditional

P (I,- » xj)
P(x))

ing two marginal probabilities, each resulting from summation over an exponentially

probability P(x;}x;) from its textbook definition P(x;x;) = would involve divid-

large number of variable combinations. Human performance, by contrast, exhibits an
opposite complexity ordering; probabilistic judgments on a small number of propositions
(especially 2-place conditional statements such as the likelihood that a patient suffering
from a given disease will develop a certain type of complication) are issued swiftly and
reliably, while judging the likelihood of a oon]unctlon of many propositions is done with
great degree of difficulty and hesitancy. This suggests that the elementary building
blocks which make up human knowledge are not the entries of a joint-distribution table,
but rather the low-order marginal and conditional probabﬂiﬁcé defined over small clus-

ters of propositions.

Further light on the structure of judgmental knowledge can be shed by observing
how people handle the notion of independence. Whereas a person may show reluctance
to giving a numerical estimate for the conditional probability P(x;[x;), no hesitation will
normally be encountered when that person is asked to state merely whether x; and x; are

dependent or independent, namely, whether knowing the truth of x; will or will not alter



the belief in x;. The 3-place relationships of conditional dependency (i.e. x; influences x;
given x;) are likewise judged by people with a great deal of clarity, conviction, and con-

sistency.

This suggests that the notions of dependence and conditional dependence are
more basic than the numerical v.ldues attached to probability judgments, contrary to the
picture painted in most textbooks on probability theory, where the latter is presumed to
provide the criterion for testing the former. Moreover, the nature of probabilistic
dependency between propositions is similar in many respects to that of connectivity in
graphs. For instance, we find it plausible to say that a proposition g affects proposition
r directly, while s influences r indirectly, via q. Similarly, we find it natural to identify
the set of propositions which directly affect the truth value of ¢, and to describe them as
the direct neighbors of ¢, which isolate g from all other influences. This suggests that
the fundamental structure of human judgmental knowledge can be represented by depen-
dency graphs and that mental tracing of links in these graphs are responsible for the

basic steps in querying and updating that knowledge.
2. BAYESIAN NETWORKS

Assume that we .decidc to represent our perception of a certain problem domain
by sketching a graph in which the nodes represent propositions and the links connect
those propositions that we judge to be directly related. We now wish to quantify the
links by weights that signify the strength and type of dependencies between the connect-

ed propositions. If these weights are to be interpreted later as conditional probabilities,



two probiems must first be attended to: consistency and completeness. Consistency

guarantees that we do not overload the graph with an excessive number of parameters;
overspecification may lead to contradictory conclusions, depending on which parameter
is oonsulfed first. Completeness protects us from underspecifying the graph dependen-

cies. i

dne of the attractive features of the joint-distribution representation of probabili-
ty is the transparency by which one can synthesize consistent probability models or
detect inconsistencies therein. In this representation, all we need to do is to assign non-
negative weights to the atomic compartments in the space (i.e., conjunctions of proposi-
tions), make sure the weights sum to one, and a complete model, free of inconsistencies
is created. By contrast, the synthesis process in the graph representation is much more
hazardous. For example, assume you have three propositional variables, x,, x,, x3, and
you want to express their dependencies by specifying the three pairwise probabilities
P(xy, x5), P(x,, x3), P(x3, x1). It turns out that this will normally lead to inconsisten-
cies; unless the parameters given satisfy some non-obvious relationship, there exists no

probability model that will support all three probabilities.

Fortunately, the consistency-completeness issue has a simple solution, stemming
from the chain-rule representation of joint-distributions. Choosing an arbitrary order on
the variables x;, - - - x, we can write:
P(xix3, ** %) = P(ltamy ** 0 2)P(poifte—a - - X)) - Plxsle,xy) P(xalxy)P(x))
In this formula, each factor contains only one variable on the left side of the condition-

ing bar, and in that way the formula can be used as a prescription for consistently quan-



tifying the dependencies among the nodes of an arbitrary graph. Given a graph G, as-
sign an arbitrary order to its nodes and impose directionality on the links pointing from
low-order to high-order nodes. To each node x; assign an arbitrary function Fi(x;,S;)
satisfying

S FES) =1

X

0= F(x,S) =<1
where S; is the set of x;’s parents and the summation ranges over all values of x;. This
assignment is complete and consistent; it defines a joint distribution function given by the

product:

P(xy - - xg) = [] Filx:S)
i
and the functions F,(x;,S;) are the marginal distributions P(x;[s;) dictated by
P(xy, *** x,). For example, the distribuﬁon‘ corresponding to the graph of Figure 1
can be written by inspection:
P (xy, X3, X3, X4, Xs, Xg) = P(xglxs) P(xslxs, x3) Plxgleixy) Pxalxy) P(xaley) Plxy).

This also leads to a simple method of constructing a dependency-graph represen-
tation to any given joint distribution P(x; - - - x,). We start by imposing an arbitrary
order d on the set of variables, x; - - - x,, then choose x; as a root of the graph, and
assign to it the marginal probability P(x,) dictated by P(xy, - - - x,,). Next, we form a
node to represent x,; if x, is dependent on x; a link from x; to x; is established and
quantified by P(x,lx;). Otherwise, we leave x; and x, unconnected and assign the prior
P(x,) to node x,. At the i** stage, we form the node x; and establish a group of directed

links to x; from the smallest subset of nodes S; C {x; - - * x;-} satisfying the condition:



P(xS) = P(xilxi-q, -, %1)
It is easy to show that the minimal subset §; is unique. Thus, the distribution

P(x;, - - x,), together with the order 4 uniquely prescribe a set of parent nodes for
each variable x;, and that constitutes a full specification of a directed acyclic graph which
represents the dependencies imbedded in P(x;, * - - x,). We shall call this graph
"Bayes Network” or "Influence Network™, interchangeably; the former to emphasize the
judgmental origin of the quantifiers, the latter to vindicate the directionality of the links.
When the nature of the interactions is perceived to be causal, then the term "Causal Net-
work” may also be appropriate. In general, however, an influence network may also
represent associative or inferential dependencies, in which case the directionality of the

arrows is used mainly for computational convenience [Howard and Matheson, 1984].



In the strictest sense, these networks are not graphs but bypergraphs, because the
dependency of a given node on its k parents requires a function of k+1 arguments
which, in general, could not be specified by k two-place functions on the individual links.
This, however, does not diminish the advantages of the network representation in
‘highlighting the essential interactions between the variables, and in modelling the com-

putational promsm involved in inferential reasoning. :

Note that the topology of a Bayes network may be extremely sensitive to the node
ordering d; a network which has an inverted-tree structure in one ordering may turn into
a complete graph if that ordering is reversed. For example, if xy, ..., 1, stands for the
outcomes of n independent coins and x,,; represents the output of a detector triggered if
any of the coins comes up HEAD, then the influence network will be an inverted tree of
n arrows pointing from each of the variables xi, ..., x, toward x,,;. On the other hand,
if the detector’s outcome is chosen to be the first variable, say x,, then the underlying

influence network would be a complete graph.

This sensitivity may at first seem paradoxical; d can be chosen arbitrarily,
whereas people have fairly uniform conceptual structures, ¢.g., they agree on whether a
pair of propositions are directly or indirectly related. The answer to this apparent para-
dox lies in the fact that the agreement regarding the structure of influence networks
stem from the dominant role causality plays in the formation of these networks. Thus,
the standard ordering imposed by the direction of causation also induces identical topolo-
gies on the networks that people adopt for encoding experiential knowledge. It is easy

to speculate that if it were not for the social convention to adopt a standard ordering of



events, conforming to the flow of time and causation, human communication would be-

come an impossible task.
3. CONDITIONAL INDEPENDENCE AND GRAPH SEPARABILITY

To facilitate the verification of dependencies between ﬁc variables in a Bayes net- i
work, we need to establish a clear correspondence between the topology of the network .
and various types of independence. Ideally, we would have liked to associate indepen-
dence between variables with the lack of connectivity between their corresponding nodes.
Likewise, we would have liked to require that if the removal of some subset S of nodes
from the network renders nodes x; and x; disconnected, then this separation should indi-
cate conditional independence between x; and x; given §, namely,

P(x}x;, S) = P(xS).

This would provide a clear graphical representation to the notion that x; does not affect

x; directly but, rather, its influence is mediated by the variables in §.

Unfortunately, Bayes networks do not provide this simple representation of in-
dependence; a modified criterion of separability is required that takes into account the
directionality of the arrows in the graph. Consider a triplet of variables x;,x;,x3, where
x, is connected to x5 via x,. The two links, connecting the pairs (xy, x;) and (x,, x3},
can join at the midpoint x, in one of three possible ways:

(1) tail-to-tail, x; « x3 =+ x4
(2) bead-to-tail, x; *x; > x3 Or x;+xy*+x;

(3) head-to—hcad, X "Xy T X3

10



From the method of constructing the network, it is clear that (assuming x;, x5, x; are
the only variables involved) in cases (1) and (2) x; and x; are conditionally independent
given x,, while in case (3) x; and x; are marginally independent (i.e., P(xslx)) = P(x3))
but may become dependent given the value of x,. Moreover, if x; in case (3) has des-
cendants x4, xs - - * , then x; and x5 may also become dependent if any one of those
descendant variables is instantiated. These considerations motivate the definition of a
qualified version of path connectivity, applicable to paths with directed links, and sensi-
tive to all the variables whose values are known at a given time.
DEFINITION: (a) A path P is connected with respect to a subset S, of evidence vari-
ables if all successive links along P are joined w.r.t. §,.
(b) Two links, meeting head-to-tail or tail-to-tail at node X,
are joined w.r.t. S, if X is not in §,.
(c) Two links meeting head-to-head at node X, are joined w.r.t. .S’,_, if
X or any of its descendants is in §,.
This definition permits us to define separability with respect to a subsct of observations

which, in turn, provides a graphical criterion for testing conditional independence.

DEFINITION: A subset of variables S, is said to separate x; from x; if there is no

path between x; and x; which is connected w.r.t. S,.

It is not hard to see that if S, separates x; from x;, then x; is conditionally in-
dependent of x; given §,. Moreover, the procedure involved in testing separation w.r.t.
a given subset S, is only slightly more complicated than that of testing whether S, is a

separating cut set, and can be handled by visual inspection. In Figure 1, for example,
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one can casily verify that variables x, and x5 are separated w.r.t. S, = {x;} or
S, = {xy, x4} but not w.r.t. S, = {x;, xg}, because x4, being a descendant of xs, "joins”
the head-to-head links at x5, which amounts to forming a connected path between x, and

X3.
4. AUTONOMOUS PROPAGATION AS A COMPUTATIONAL PARADIGM

Once an influence network is constructed, it can be used to represent the generic
causal knowledge of a given domain, and can be consulted to reason about the interpre-
tation of specific input data. The interpretation process involves instantiating a set of
variables corresponding to the input data and calculating its impact on the probabilities
of a set of variables designated as hypotheses. In general, this process can be executed
by an external interpreter who may have access to all parts of the network, may use its
own computational facilities, and may schedule its computational steps so as to take full
advantage of the network topology with respect to the incoming data. However, the use
of such an interpreter seems foreign to the reasoning process normally exhibited by hu-
mans [Shastri and Feldman, 1984]. Our limited short-term memory and narrow focus of
attention, combined with our inflexibility of shifting rapidly between alternative lines of
reasoning seem to suggest that our reasoning process is fairly local, progressing incre-
mentally along prescribed pathways. Moreover, the speed and ease with which we per-
form some of the low level interpretive functions, such as recognizing scenes,
comprehending text, and even understanding stories, strongly suggest that these
processes involve a significant amount of parallelism, and that most of the processing is

done at the knowledge level itself, not external to it.
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A paradigm for modelling such phenomena would be to view an influence net-
work not merely as a passive parsimonious code for storing factual knowledge but also
as a computational architecture for reasoning about that knowledge. That means that
the links in the network should be treated as the only pathways and activation centers
that direct and propel the flow of data in the process of querying and updating beliefs.
Accordingly, we assume that each node in the network is designated a separate proces-
sor which both maintains the parameters of belief for the host variable and manages the
communication links to and from the set of neighboring, logically related, variabies.
The communication lines are assumed to be open at all times, i.c., each processor may
at any time interrogate the belief parameters associated with its neighbors and update its
own. In this fashion the impact of new evidence may propagate up and down the net-

work until equilibrium is reached.

The ability to update beliefs by an autonomous propagation mechanism also has a
profound effect on sequential implementations of cvidential reasoning. Of course, when
this architecture is simulated on sequential machines, the notion of autonomous proces-
sors working simultaneously in time is only a metaphor; however, it signifies the com-
plete separation of the stored knowledge and the individual computations from the con-
trol mechanism which schedules these computations to achieve some control strategy
goal. This guarantees an ultimate flexibility for a sequential controller; the computations
can be performed in any order, without the need to remember which parts of the net-
work have or have not been updated already. Thus, for example, belief updating may
be activated by changes occurring in logically related propositions, by requests for evi-

dence arriving from a central supervisor, by a predetermined schedule, or entirely at

13



random. The communication and interaction between individual processes can be simu-
lated using a blackboard architecture [Lesser and Erman, 1977] where each proposition
is designated specific areas of memory to access and modify. Additionally, the uniformi-
ty of this propagation scheme renders it natural for formulation in object-oriented
languages: each node is an object of the same generic type and the belief parameters are

the messages by which interacting ob]ects communicate.

The asynchronous nature of this model also requires a solution to an instability
problem. If a stronger belief in a given hypothesis means a greater expectation for the
occurrence of a certain manifestation and if, in turn, a greater certainty in the oc-
currence of that manifestation adds further credence to the hypothesis, how can one
avoid an infinite updating loop when the two processors begin to communicate with one

another?
5. PROPAGATION IN SINGLY-CONNECTED NETWORKS

It turns out that this, as well as other problems associated with asynchronous pro-
pagation of beliefs, can be solved completely if the network is singly connected, namely,
if there is one underlying path between any pair of nodes. These include trees, where
each node has a single parent, as well as graphs with multi-parent nodes, representing
events with several causal factors. The analysis of trees is carried out in Pearl [1982],
and the extension to general singly connected graphs is reported in Kim an'd Pearl

[1983]. In both cases, the belief-updating scheme possesses the following properties:
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1. New information diffuses through the network in a single pass, i.c., the time
required for completing the diffusion (in parallel) is equal to the diameter of the net-

work.

2. Instabilities (or infinite relaxation) due to cyclic inferences are climinated by
using multiple belief paramcters in every node, each representing the dégree of belief

oontributed by a different source of information.

3. The primitive processors are simple, repetitive, and save for performing ma-
trix multiplications, they require no working memory. For an m-ary tree with n values
per node, each processor should store n?+mn+2n real numbers, and perform

212+ mn+2n multiplications per update.

4. The local computations and the final belief distribution are entircly indepen-
dent of the control mechanism that activates the individual operations. They can be ac-
tivated by either data-driven or goal-driven (e.g., requests for evidence) control stra-
tegies, by a clock, or at random. Thus, this architecture lends itself naturally to
hardware implementation, capable of real-time interpretation of rapidly changing data.
It also provides a reasonable model of neural nets involved in cognitive tasks such as
visual recognition, reading comprehension [Rumethart, 1976], ;md associative retrieval

[Anderson, 1983], where unsupervised parallelism is an uncontested mechanism.

It is also interesting to note that the marginal conditional probabilities on the links
of the network retain their viability throughout the updating process. This is remarkable
because P(A|B) only defines the belief of A under very special sets of circumstances,

15



namely, when the value of B is known with absolute certainty, and when no other evi-
dential data is available. In normal circumstances, though, all internal nodes in the net-
work are subject to some uncertainty and, more seriously, after observing evidence e,
the relation between BEL{A) and BEL(B) is no longer governed by P(A|B), but by
P(A|B, e), chﬂl;may be vastly different. The ability to maintain a constant set of
weights on the links is essential, since having to adjust the weights with the arrival of
each new data would be computationally prohibitive. One is tempted to speculate,
therefore, that this may be the reason that people choose the marginal conditional proba-
bilities as standard primitives for organizing stable conceptual information which, in
turn, also explains why people are more proficient in assessing the magnitude of these
relationships rather than of any other probabilistic quantity.

6. MANAGING LOOPS AND THE DEVELOPMENT OF CAUSAL MODELS

The efficacy of singly-connected networks in supporting autonomous propagation
raises the question of whether similar propagation mechanisms exist in less restrictive
networks (e.g., the one in Figure 1), in which multiple parents possess common ances-
tors, thus forming (undirected) loops. So far, our investigation has failed to find a pro-
pagation method for loops that retains all the advantages cited above. For example, a -
straightforward way of handling the network of Figure 1 would be to appoint a local in-
terpreter for the loop xy, x;, x4, x¢ that will pass messages directly between x; and xs,
accounting for the interactions between x, and x;. This amounts basically to collapsing
nodes x, and x5 into a single node, representing the compound variable (x;, x;). The

method works well on small loops, but as soon as the number of variables exceeds 3 or
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4, collapsing requires handling huge matrices and washes away the natural conceptual

structure imbedded in the original network.

An alternative method would be for cach node to continue communicating with its
neighbors as 1f the network was singly-connected, ignoring the possibility of loops This
will sct up mcssagm cu'culatmg indefinitely around the loop, until equilibrium is ap-
proached. The convergence and coherence properties of such a process are yet uncer-

tain, but all indications point to difficulties in achieving stability.

A third method of propagation is based on "stochastic relaxation” [Geman and
Geman, 1984]. Each processor interrogates the states of the variables within its Markov
neighborhood (see Section 3), computes a belief distribution for the values of its host
variable, then selects one of these values with probability that equals the computed be-
lief. The value chosen will subsequently be interrogated by the neighbors upon comput-
ing their beliefs, and so on. This scheme is guaranteed convergence, but usually re-

quires very long relaxation times to reach a steady state.

Finally, an approach is described in Pearl [1984], which introduces auxiliary vari-
ables that turn the network into a tree. Consider an arbitrary tree-structured network.
The leaves in this network are tightly coupled in the sense that no two of them can
separate the other two. Therefore, if we were to construct an influence network based
on these variables alone, a complete graph would ensue. Yet, the inclusion of the inter-
mediate variables manages to turn that graph into a tree. The question is now: Which

networks can be broken up into trees by introducing dummy variables?
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In some respect, this method is similar to that of appointing external interpreters
to handle non-separable components of the graph, because the dummy variables are as-
signed processors that mediate between the original variables. However, the dummy-
variables scheme enjoys the added advantage of uniformity: the processors representing
the dummy variables can be identical to those representing the real variables, in full
compliance with our architectural objectives. Moreover, there are strong reasons to be-
lieve that the process of reorganizing data structures by adding fictitious variables mim-
ics an important component of conceptual development in human beings, the evolution

of causal models.

To take advantage of this centrally-organized architecture, people often invent hy-
pothetical unobservable entities such as "ego”, "elementary particles”, and "supreme be-
ings” to make theories fit the mold of causal schema. When we try to explain the ac-
tions of another person, for example, we invariably invoke abstract notions of mental
states, social attitudes, beliefs, goals, plans, and intentions. Medical knowledge, like-
wise, is organized into causal hierarchies of invading organisms, physical disorders, com-

plications, clinical states, and only finally, the visible symptoms.

Computationally speaking, causes are names given to auxiliary variables which
encode a summary of the interaction between the visible variables and, 6noe calculated,
pérmit us to treat the visible variables as if they were mutually _indepcndcnt. Thus, the
restructuring of Bayes networks into trees by introducing auxiliary variables shares many
computational features with the development of causal models in people. It is very sug-

gestive, therefore, to conjecture that the auxiliary variables correspond to the mental

18



constructs known as "hidden causes”, and that humans’ relentless search for causal
models is motivated by their desire to achieve computational features similar to those of-

fered by tree-structured Bayes networks.

19



REFERENCES

Anderson, John R., (1983), "The Architecture of Cognition”, Harvard University Press,
Cambridge, MA.

Geman, S. and Geman, D., (1984), Stochastic Relaxations, Gibbs Distributions, and the
Bayesian Restoration of Images, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, PAMI-6, No. 6, 721-742, November.

Hinton, G.E., Sejnowski, T.J., and Ackley, D.H., (1984), Boltzman Machines: Con-
straint Satisfaction Networks that Learn, Technical Report CMU-CS-84-119, Depart-
ment of Computer Science, Carnegie-Mellon University.

Kim, J. and Pearl, J., (1983), A Computational Mode! for Combined Causal and Diag-
nostic Reasoning in Inference Systems, Proceedings of IJCAI-83, 190-193.

Lesser, V.R. and Erman, L.D., (1977), A Retrospective View of HEARSAY II Archi-
tecture, Proc. 5th Int. Joint Conf. AlI, Cambridge, MA, 790-800.

Pearl, J., (1982), "Reverend Bayes on Inference Engines: A Distributed Hierarchical
Approach”, Proc. AAAI Nat'l. Conf. on Al, Pittsburgh, PA, pp. 133-136, August.

Pearl, 1., (1984), "Learning Hidden Causes from Empirical Data”, Technical Report R-
38, UCLA Computer Science Dept. To be published in the Proceedings of IJCAI-85.

Rumelhart, D.E., (1976), Toward an Interactive Model of Reading, Center for Human
Info. Proc. CHIP-56, UC San Diego, La Jolla, CA.

Shastri, L. and Feldman, J.A., (1984), Semantic Networks and Neural Nets, TR-131,
Computer Science Dept., The University of Rochester, Rochester, NY, June.



