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FF
ifty years ago Stanko Bilinski showed that Fedorov’s
enumeration of convex polyhedra having congruent
rhombi as faces is incomplete, although it had been

acceptedasvalid for theprevious 75 years. Thedodecahedron
he discoveredwill be used here to document errors by several
mathematical luminaries. It also prompted an examination of
the largely unexplored topic of analogous nonconvex poly-
hedra, which led to unexpected connections and problems.

Background
In 1885 Evgraf Stepanovich Fedorov published the results of sev-
eral years of research under the title ‘‘Introduction to the Study of
Figures’’ [9], in which he defined and studied a variety of concepts
thatare relevant toour story.Thisbook-longwork is consideredby
many tobeoneof themilestones ofmathematical crystallography.
For a long time this was, essentially, inaccessible and unknown to
Western researchers except for a summary [10] in German.1

1The only somewhat detailed description of Fedorov’s work available in English (and in French) is in [31]. Fedorov’s book [9] was never translated to any Western

language, and its results have been rather inadequately described in the Western literature. The lack of a translation is probably at least in part to blame for ignorance of

its results, and an additional reason may be the fact that it is very difficult to read [31, p. 6].
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Several mathematically interesting concepts were intro-
duced in [9]. We shall formulate them in terms that are
customarily used today, even though Fedorov’s original
definitions were not exactly the same. First, a parallelohe-
dron is a polyhedron in 3-space that admits a tiling of the
space by translated copies of itself. Obvious examples of
parallelohedra are the cube and the Archimedean six-sided
prism. The analogous 2-dimensional objects are called
parallelogons; it is not hard to show that the only polygons
that are parallelogons are the centrally symmetric quad-
rangles and hexagons. It is clear that any prism with a
parallelogonal basis is a parallelohedron, but we shall
encounter many parallelohedra that are more complicated.
It is clear that any nonsingular affine image of a parallelo-
hedron is itself a parallelohedron.

Another new concept in [9] is that of zonohedra. A
zonohedron is a polyhedron such that all its faces are
centrally symmetric; there are several equivalent defini-
tions. All Archimedean prisms over even-sided bases are

zonohedra, but again there are more interesting examples.
A basic result about zonohedra is:

Each convex zonohedron has a center.
This result is often attributed to Aleksandrov [1] (see [5]),

but in fact is contained in a more general theorem2 of
Minkowski [27, p. 118, Lehrsatz IV]. Even earlier, this was
Theorem 23 of Fedorov ([9, p. 271], [10, p. 689]), although
Fedorov’s proof is rather convoluted and difficult to follow.

We say that a polyhedron is monohedral (or is a
monohedron) provided its faces are all mutually congruent.
The term ‘‘isohedral’’—used by Fedorov [9] and Bilinski
[3]—nowadays indicates the more restricted class of poly-
hedra with the property that their symmetries act
transitively on their faces.3 The polyhedra of Fedorov and
Bilinski are not (in general) ‘‘isohedra’’ by definitions that
are customary today. We call a polyhedron rhombic if all its
faces are rhombi. It is an immediate consequence of Euler’s
theorem on polyhedra that the only monohedral zonohe-
dra are the rhombic ones.

One of the results of Fedorov ([9, p. 267], [10, p. 689]) is
contained in the claim:

There are precisely four distinct types of monohedral
convex zonohedra: the rhombic triacontahedron T, the
rhombic icosahedron F, the rhombic dodecahedron K,
and the infinite family of rhombohedra (rhombic hexa-
hedra) H.
‘‘Type’’ here is to be understood as indicating classes of

polyhedra equivalent under similarities. The family of
rhombohedra contains all polyhedra obtained from the
cube by dilatation in any positive ratio in the direction of a
body-diagonal.

These polyhedra are illustrated in Figure 1; they are
sometimes called isozonohedra. The polyhedra T and K go
back at least to Kepler [23], whereas F was first described by
Fedorov [9]. I do not know when the family H was first
found — it probably was known in antiquity.

An additional important result from Fedorov [9] is the
following; notice the change to ‘‘combinatorial type’’ from
the ‘‘affine type’’ that is inherent in the definition.

Every convex parallelohedron is a zonohedron of one of
the five combinatorial types shown in Figure 2. Con-
versely, every convex zonohedron of one of the five
combinatorial types in Figure 2 is a parallelohedron.4

.........................................................................
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2Minkowski’s theorem establishes that a convex polyhedron with pairwise parallel faces of the same area has a center; the congruence of the faces in each pair follows,

regardless of the existence of centers of faces (which is assumed for zonohedra).
3The term ‘‘gleichflächig’’ (= with equal surfaces) was quite established at the time of Fedorov’s writing, but what it meant seems to have been more than the word

implies. As explained in Edmund Hess’s second note [21] excoriating Fedorov [10] and [11], the interpretation as ‘‘congruent faces’’ (that is, monohedral) is mistaken.

Indeed, by ‘‘gleichflächig’’ Hess means something much more restrictive. Hess formulates it in [21] very clumsily, but it amounts to symmetries acting transitively on the

faces, that is, to isohedral. It is remarkable that even the definition given by Brückner (in his well-known book [4, p. 121], repeating the definition by Hess in [19] and

several other places) states that ‘‘gleichflächig’’ is the same as ‘‘monohedral’’ but Brückner (like Hess) takes it to mean ‘‘isohedral.’’ Fedorov was aware of the various

papers that use ‘‘gleichflächig,’’ and it is not clear why he used ‘‘isohedral’’ for ‘‘monohedral’’ polyhedra. In any case, this led Fedorov to claim that his results disprove

the assertion of Hess [19] that every ‘‘gleichflächig’’ polyhedron admits an insphere. Fedorov’s claim is unjustified, but with the rather natural misunderstanding of

‘‘gleichflächig’’ he was justified to think that his rhombic icosahedron is a counterexample. This, and disputed priority claims, led to protests by Hess (in [20] and [21]),

repeated by Brückner [4, p. 162], and a rejoinder by Fedorov [11]. Neither side pointed out that the misunderstanding arises from inadequately explained terminology;

from a perspective of well over a century later, it seems that both Fedorov and Hess were very thin-skinned, inflexible, and stubborn.
4In different publications Fedorov uses different notions of ‘‘type.’’ In several (e.g., [10, 12]) he has only four ‘‘types’’ of parallelohedra, since the rhombic dodecahedron

and the elongated dodecahedron ((c) and (b) in Figure 2) are of the same type in these classifications. Since we are interested in combinatorial types, we accept

Fedorov’s original enumeration illustrated in Figure 2.
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Fedorov’s proof is not easy to follow; a more accessible
proof of Fedorov’s result can be found in [2, Ch. 8].

Bilinski’s Rhombic Dodecahedron
Fedorov’s enumeration of monohedral rhombic isohedra
(called isozonohedra by Fedorov and Bilinski, and by Cox-
eter [7]) mentioned previously claimed that there are
precisely four distinct types (counting all rhombohedra as
one type). Considering the elementary character of such an
enumeration, it is rather surprising that it took three-quarters
of a century to find this to be mistaken.5 Bilinski [3] found
that there is an additional isozonohedron and proved:

Up to similarity, there are precisely five distinct convex
isozonohedra.
The rhombic monohedral dodecahedron found by

Bilinski shall be denoted B; it is not affinely equivalent to
Kepler’s dodecahedron (denoted K) although it is of the
same combinatorial type. Bilinski also proved that there are
no other isozonohedra. To ease the comparison of B and K,
both are shown in Figure 3.

Bilinski’s proof of the existence of the dodecahedron B
is essentially trivial, and this makes it even more mysterious

how Fedorov could have missed it.6 The proof is based on
two observations:

(i) All faces of every convex zonohedron are arranged in
zones, that is, families of faces in which all members
share parallel edges of the same length; and

(ii) All edges of such a zone may be lengthened or
shortened by the same factor while keeping the
polyhedron zonohedral.

(a) (b)

(c) (d) (e)

Figure 2. Representatives of the five combinatorial types of

convex parallelohedra, as determined by Fedorov [9]. (a) is

the truncated octahedron (an Archimedean polyhedron); (b)

is an elongated dodecahedron (with regular faces, but not

Archimedean); (c) is Kepler’s rhombic dodecahedron K (a

Catalan polyhedron); (d) is the Archimedean 6-sided prism;

and (e) is the cube.

BK

Figure 3. The two convex rhombic monohedra (isozonohe-

dra): Kepler’s K and Bilinski’s B.

FT

HK

Figure 1. The four isozonohedra (convex rhombic monohe-

dra) enumerated by Fedorov. Kepler found the triacon-

tahedron T and the dodecahedron K, whereas Fedorov

discovered the icosahedron F. The infinite class H of rhombic

hexahedra seems to have been known much earlier.

5This is a nice illustration of the claim that errors in mathematics do get discovered and corrected in due course. I can only hope that if there are any errors in the present

work they will be discovered in my lifetime.
6A possible explanation is in a tendency that can be observed in other enumerations as well: After some necessary criteria for enumeration of objects of a certain kind

have been established, the enumeration is deemed complete by providing an example for each of the sets of criteria––without investigating whether there are more than

one object per set of criteria. This failure of observing the possibility of a second rhombic dodecahedron (besides Kepler’s) is akin to the failure of so many people that

were enumerating the Archimedean solids (polyhedra with regular faces and congruent vertices, i.e., congruent vertex stars) but missed the pseudorhombicu-

boctahedron (sometimes called ‘‘Miller’s mistake’’); see the detailed account of this ‘‘enduring error’’ in [13].
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In particular, all such edges on one zone can be deleted
(shrunk to 0). Performing such a zone deletion—a process
mentioned by Fedorov—starting with Kepler’s rhombic
triacontahedron T yields (successively) Fedorov’s icosahe-
dronF,Bilinski’s dodecahedronB, and two rhombohedra, the
obtuse Ho and the acute Ha. This family of isozonohedra that
are descendants of the triacontahedron is shown in Figure 4.
The proof that there are no other isozonohedra is slightly
more complicated and is not of particular interest here.

The family of ‘‘direct’’ descendants of Kepler’s rhombic
dodecahedron K is smaller; it contains only one rhombo-
hedron H*o (Fig. 5). However, one may wish to include in
the family a ‘‘cousin’’ H*a—consisting of the same rhombi
as H*o, but in an acute conformation.

One of the errors in the literature dealing with Bilinski’s
dodecahedron is the assertion by Coxeter [7, p. 148] that the
two rhombic dodecahedra—Kepler’s and Bilinski’s—are
affinely equivalent. To see the affine nonequivalence of the
two dodecahedra (easily deduced even from the drawings
in Fig. 3), consider the long (vertical) body-diagonal of
Bilinski’s dodecahedron (Fig. 3b). It is parallel to four of
the faces and in each face to one of the diagonals. In two
faces this is the short diagonal, in the other two the long
one. But in the Kepler dodecahedron the corresponding
diagonals are all of the same length. Since ratios of lengths

of parallel segments are preserved under affinities, this
establishes the nonequivalence.

If one has a model of Bilinski’s dodecahedron in hand,
one can look at one of the other diagonals connecting
opposite 4-valent vertices, and see that no face diagonal is
parallel to it. This is in contrast to the situation with Kepler’s
dodecahedron.

By the theorems of Fedorov mentioned previously, since
Bilinski’s dodecahedron B is a zonohedron combinatorially
equivalent to Kepler’s, it is a parallelohedron. This can be
easily established directly, most simply by manipulating
three or four models of B. It is strange that Bilinski does not
mention the fact that B is a parallelohedron.

In this context we must mention a serious error com-
mitted by A. Schoenflies [30, pp. 467 and 470] and very
clearly formulated by E. Steinitz. It is more subtle than that
of Coxeter, who may have been misguided by the follow-
ing statement of Steinitz [34, p. 130]:

The aim [formulated previously in a different form] is to
determine the various partitions of the space into con-
gruent polyhedra in parallel positions. Since an affine
image of such a partition is a partition of the same kind,
affinely related partitions are not to be considered as
different. Then there are only five convex partitions of
this kind. [My translation and comments in brackets].
How did excellent mathematicians come to commit such

errors? The confusion illustrates the delicate interactions
among the concepts involved, considered by Fedorov,
Dirichlet, Voronoi, and others. A correct version of Stei-
nitz’s statement would be (see Delone [8]):

Every convex parallelohedron P is affinely equivalent to a
parallelohedron P0 such that a tiling by translates of P0

K

H*o H*a

Figure 5. Kepler’s rhombic dodecahedron K and its descen-

dant, rhombohedron H*o. The rhombohedron H*a is ‘‘related’’

to them since its faces are congruent to those of the other two

isozonohedra shown; however, it is not obtainable from K by

zone elimination.

T

Ho Ha

B

F

Figure 4. The triacontahedron and its descendants: Kepler’s

triacontahedron T, Fedorov’s icosahedron F, Bilinski’s

dodecahedron B, and the two hexahedra, the obtuse Ho and

the acute Ha. The first three are shown by .wrl illustrations in

[25] and other web pages.
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coincides with the tiling by the Dirichlet-Voronoi regions
of the points of a lattice L0. The lattice L0 is affinely related
to the lattice L associated with one of the five Fedorov
parallelohedra P00. But P0 need not be the image of P00

under that affinity. Affine transformations do not com-
mute with the formation of Dirichlet-Voronoi regions.
In particular, isozonohedra other than rhombohedra are

not mapped onto isozonohedra under affine transforma-
tions that are not similarities.

As an illustration of this situation, it is easy to see that
Bilinski’s dodecahedron B is affinely equivalent to a poly-
hedron B0 that has an insphere (a sphere that touches all its
faces). The centers of a tiling by translates of B0 form a
lattice L0 such that this tiling is formed by Dirichlet-Voronoi
regions of the points of L0. The lattice L0 has an affine image
L such that the tiling by Dirichlet-Voronoi regions of the
points of L is a tiling by copies of the Kepler dodecahedron
K. However, since the Dirichlet domain of a lattice is not
affinely associated with the lattice, there is no implication
that either B or B0 is affinely equivalent to K.

A simple illustration of the analogous situation in the
plane is possible with hexagonal parallelogons (as men-
tioned earlier, a parallelogon is a polygon that admits a
tiling of the plane by translated copies). As shown in
Figure 6, the tiling is by the Dirichlet regions of a lattice of
points. This lattice is affinely equivalent to the lattice
associated with regular hexagons, but the tiling is obviously
not affinely equivalent to the tiling by regular hexagons.

It is appropriate to mention here that for simple paral-
lelohedra (those in which all vertices have valence 3) that
tile face-to-face Voronoi proved [38] that each is the affine
image of a Dirichlet-Voronoi region. For various strength-
enings of this result see [26].

Nonconvex Parallelohedra
Bilinski’s completion of the enumeration of isozonohedra
needs no correction. However, it may be of interest to

examine the situation if nonconvex rhombic monohedra
are admitted; we shall modify the original definition and
call them isozonohedra as well. Moreover, there are various
reasons why one should investigate—more generally—
nonconvex parallelohedra.

It is of some interest to note that the characterization of
plane parallelogons (convex or not) is completely trivial. A
version is formulated as Exercise 1.2.3(i) of [16, p. 24]: A
closed topological disk M is a parallelogon if and only if it is
possible to partition the boundary of M into four or six arcs,
with opposite arcs translates of each other. Two examples
of such partitions are shown in Figure 7.

Another reason for considering nonconvex parallelohe-
dra is that there is no intrinsic justification for their exclusion,
whereas—as we shall see—many interesting forms become
possible, and some tantalizing problems arise. The crosses,
semicrosses, and other clusters studied by Stein [32] and
others provide examples of such questions and results.7 It
also seems reasonable that the use of parallelohedra in
applications need not be limited to convex ones.

It is worth noting that by Fedorov’s Definition 24 (p. 285
of [9], p. 691 of [10]) and earlier ones, a parallelohedron
need not be convex, nor do its faces need to be centrally
symmetric.

Two nonconvex rhombic monohedra (in fact, isohedra)
have been described in the nineteenth century; see Coxeter
[7, pp. 102–103, 115–116]. Both are triacontahedra, and are
self-intersecting. This illustrates the need for a precise
description of the kinds of polyhedra we wish to consider
here.

Convex polyhedra discussed so far need little explana-
tion, even though certain variants in the definition are
possible. However, now we are concerned with wider
classes of polyhedra regarding which there is no generally
accepted definition.8 Unless the contrary is explicitly noted,
in the present note we consider only polyhedra with sur-
face homeomorphic to a sphere and adjacent faces not
coplanar. We say they are of spherical type. There are
infinitely many combinatorially different rhombic mono-
hedra of this type—to obtain new ones it is enough to
‘‘appropriately paste together’’ along common faces two or
more smaller polyhedra. This will interest us a little bit later.

The two triacontahedra mentioned above are not
accepted in our discussion. However, a remarkable

Figure 6. An affine transform of the lattice of centers at left

leads to the lattice of the tiling by regular hexagons. The

Dirichlet domains of the points of the lattice are transformed

into the hexagons at right, which clearly are not affinely

equivalent to regular hexagons.

Figure 7. Planigons without center have boundary parti-

tioned into 4 or 6 arcs, such that the opposite arcs are

translates of each other.

7Recent results on crosses and semicrosses can be found in [14].
8Many different classes of nonconvex polyhedra have been defined in the literature. It would seem that the appropriate definition depends on the topic considered, and

that a universally accepted definition is not to be expected.

! 2010 Springer Science+Business Media, LLC



nonconvex rhombic hexecontahedron of the spherical type
was found by Unkelbach [37]; it is shown in Figure 8. Its
rhombi are the same as those in Kepler’s triacontahedron T.
It is one of almost a score of rhombic hexecontahedra
described in the draft of [15]; however, all except U are not
of the spherical type.

For a more detailed investigation of nonconvex isozono-
hedra,we first restrict attention to rhombic dodecahedra.We
start with the two convex ones—Kepler’s K and Bilinski’s
B—and apply a modification we call indentation. An
indentation is carried out at a 3-valent vertex of an isozono-
hedron. It consists of the removal of the three incident faces
and their replacement by the three ‘‘inverted’’ faces—that is,
the triplet of faces that has the same outer boundary as the
original triplet, but fits on the other side of that boundary.
This is illustrated in Figure 9, where we start from Kepler’s
dodecahedron K shown in (a), and indent the nearest
3-valent vertex (b). It is clear that this results in a nonconvex
polyhedron. Since all 3-valent vertices of Kepler’s dodeca-
hedron are equivalent, there is only one kind of indentation
possible. On the other hand, Bilinski’s dodecahedron B in
Figure 10(a) has twodistinct kinds of 3-valent vertices, so the
indentation construction leads to two distinct polyhedra; see
parts (b) and (c) of Figure 10.

Returning to Figure 9, we may try to indent one of the
3-valent vertices in (b). However, none of the indentations
produces a polyhedron of spherical type. The minimal
departure from this type occurs on indenting the vertex
opposite to the one indented first; in this case the two
indented triplets of faces meet at the center of the original
dodecahedron (see Fig. 9c). We may eliminate this coin-
cidence by stretching the polyhedron along the zone
determined by the family of parallel edges that do not
intrude into the two indented triplets. This yields a paral-
lelogram-faced dodecahedron that is of spherical type (but
not a rhombic monohedron); see Figure 9(d). A related
polyhedron is shown in a different perspective as
Figure 121 in Fedorov’s book [9].

It is of significant interest that all the isozonohedra in
Figures 9 and 10—even the ones we do not quite accept,
shown in Figures 9(c) and 10(e)—are parallelohedra. This
can most easily be established by manipulating a few
models; however, graphical or other computational verifi-
cation is also readily possible.

To summarize the situation concerning dodecahedral
rhombic monohedra, we have the following polyhedra of
spherical type:

Two convex dodecahedra (Kepler’s and Bilinski’s);
Three simply indented dodecahedra (one from Kepler’s
polyhedron, two from Bilinski’s);
One doubly indented dodecahedron (from Bilinski’s
polyhedron).
We turn now to the two larger isozonohedra, Fedorov’s

icosahedron F and Kepler’s triacontahedron T. Since each
has 3-valent vertices, it is possible to indent them, and since
the 3-valent vertices of each are all equivalent under sym-
metries, a unique indented polyhedron results in each case
(Fig. 11).

The icosahedron F admits several nonequivalent double
indentations (see Fig. 12); two are of special interest, and

Figure 8. Unkelbach’s hexecontahedron. It has pairs of dis-

joint, coplanar but not adjacent faces, which are parts of the

faces of the great stellated triacontahedron. All its vertices are

distinct, and all edges are in planes of mirror symmetry.

(b)(a)

(d)(c)

Figure 9. Indentations of the Kepler rhombic dodecahedron

K, shown in (a). In (b) is presented the indentation at the vertex

nearest to the observer; this is the only indentation arising from

(a). A double indentation of the dodecahedron in (a), which is

a single indentation of (b), is shown in (c); it fails to be a

polyhedron of the spherical type, since two distinct vertices

coincide at the center; hence it is not admitted. By stretching

one of the zones, as in (d), an admissible polyhedron is

obtained—but it is not a rhombic monohedron.
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we shall denote them by D1 and D2. There are many other
multiple—up to sixfold—indentations; their precise num-
ber has not been determined. An eightfold indentation of
the triacontahedron T is shown in [39, p. 196]; it admits
several additional indentations.

The double indentations D1 and D2 of F shown in
Figure 12 are quite surprising and deserve special mention:
They areparallelohedra! Again, the simplestway to verify this
is by using a few models and investigating how they fit. This
contrastswith the singly indented icosahedron,which is not a
parallelohedron. None of the other isozonohedra obtainable
by indentation of F or T seems to be a parallelohedron.

A different construction of isozonohedra is through the
union of two or more given ones along whole faces, but
without coplanar adjacent faces; clearly this means that all
those participating in the union must belong to the same
family of rhombic monohedra—either the family of the
triacontahedron, or of Kepler’s dodecahedron, or of rhom-
bohedra (with equal rhombi) not in either of these families.

Besides a brief notice of this possibility by Fedorov, the only
other reference is to the union of two rhombohedra men-
tioned by Kappraff [22, p. 381].9

For an example of this last construction, by attaching two
rhombohedra in allowablewaysone canobtain threedistinct
decahedra, one of which is shown in Figure 13. Another is
chiral, that is, comes in two mirror-image forms. This con-
struction can be extended to arbitrarily long chains of
rhombohedra; from n rhombohedra there results a parallel-
ohedron with 4n + 2 faces; see Figure 13 for n = 3. For
another example, from three acute and one obtuse rhom-
bohedra of the triacontahedron family, that share an edge,
one can form a decahexahedron E. It is chiral, but it has an
axis of 2-fold rotational symmetry. By suitable unions of one
of these decahexahedron with a chain of n rhombohedra
(n C 2), one can obtain isozonohedra with 4n+ 16 faces. All
isozonohedra mentioned in this paragraph happen to be
parallelohedra aswell.Hence there are rhombicmonohedral
parallelohedra for all even k C 6 except for k = 8.

The isozonohedra just described show that there exist
rhombic monohedral parallelohedra with arbitrarily long
zones. However, there is a related open problem:

Given an even integer k C 4, is there a rhombic
monohedral parallelohedron such that every zone has
exactly k faces?
The cube has k = 4, the rhombic dodecahedra K and B

have k = 6, and the doubly indented icosahedra D1 and D2

(b)(a)

(c) (d)

Figure 11. (a) Icosahedron F and (b) its indentation; (c)

Triacontahedron T and (d) its indentation.

(a)

(c)(b)

(e)(d)

Figure 10. Indentations of the Bilinski dodecahedron shown

in (a). The two different indentations are illustrated in (b) and

(c), the former at an ‘‘obtuse’’ 3-valent vertex, the latter at an

‘‘acute’’ vertex. The double indentation of (a), resulting from a

single indentation of (b), is presented in (d); (e) shows an

additional indentation of (c) which, however, is not a

polyhedron in the sense adopted here, since two faces overlap

in the gray rhombus.

9In carrying out this construction we need to remember that adjacent faces may not be coplanar. This excludes the ‘‘semicrosses’’ of Stein [32] and other authors,

although it admits the (1,3) cross. For more information see [33].
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are examples with k = 8. No information is available for any
k C 10.

Although the number of examples of nonconvex isoz-
onohedra and parallelohedra could be increased indefi-
nitely, in the next section we shall propose a possible
explanation of which isozonohedra are parallelohedra.10

Remarks
(i) The parallelohedra discussed previously lack a center

of symmetry, which was traditionally taken as present in
parallelohedra and more generally—in zonohedra. Convex
zonohedra have been studied extensively; they have many

interesting properties, among them central symmetry.11

However, the assumption of central symmetry (of the faces,
and hence of the polyhedra) amounts to putting the cart
before the horse if one wishes to study parallelohedra—
that is, polyhedra that tile space by translated copies

In fact, the one and only immediate consequence of
the assumed property of polyhedra that allow tilings by
translated copies is that their faces come in pairs that are
translationally equivalent. For example, the octagonal
prism in Figure 14 is not centrally symmetric, and its bases
have no center of symmetry either. But even so, it clearly is a
parallelohedron. The dodecahedra in Figures 9(b) and
10(b),(c) have no center of symmetry although their faces are
rhombi and have a center of symmetry each. On the other
hand, the doubly indented polyhedron is Figure 10(d)
has a center. As mentioned before, each of these is a
parallelohedron.

We wish to claim that central symmetry is a red herring
as far as parallelohedra are concerned. The reason that the
requirement of central symmetry may appear to be natural
is that studies of parallelohedra have practically without
exception been restricted to convex ones. Now, for convex
polyhedra the pairing of parallel faces by translation
implies that they have equal area, whence by a theorem of
Minkowski (see Footnote 2) the polyhedron has a center,
which implies that the paired faces coincide with their
image by reflection in a point—that is, are necessarily
centrally symmetric, and therefore are zonohedra. But this
argument is not valid for nonconvex parallelohedra, hence
such polyhedra need not have a center of symmetry.

In his first short description of nonconvex parallelohe-
dra, Fedorov writes (§83 in [9, p. 306]):

The preceding deduction of simple [that is, centrally
symmetric polyhedra with pairwise parallel and equal
faces] convex parallelohedra is equally applicable to
simple concave [that is, non-convex] ones, and hence we
bring here only illustrations.We do not show the concave

(a) F

(c) D2(b) D1

(a) (b) 

Figure 12. (a) The Fedorov rhombic icosahedron F; (b) A

double indentation of the F yields a nonconvex rhombic

icosahedron D1 of the spherical type that is a parallelohe-

dron; (c) A different double indentation D2 is also a

parallelohedron.

Figure 13. Isozonohedra with 10 and 14 faces.

Figure 14. A nonconvex parallelohedron without a center of

symmetry.

10Crystallographers are interested in parallelohedra far more general than the ones considered here: The objects they study in most cases are not polyhedra in the

sense understood here, but object combinatorially like polyhedra but with ‘‘faces’’ that need not be planar. The interested reader should consult [29] and [24] for more

precise explanations and details.
11It is worth mentioning that Fedorov did not require any central symmetry in the definition of zonohedra ([9, p. 256], [10, p. 688]). However, he switched without

explanation to considering only zonohedra with centrally symmetric faces. As pointed out by Taylor [36], this has become the accepted definition.

THE MATHEMATICAL INTELLIGENCER



tetraparallelohedron [the hexagonal prism] since this is
simply a prism with a concave par-hexagon as basis.
Fig. 121 presents the ordinary, and Fig. 122 the elongated
concave hexaparallelohedron [the rhombic dodecahe-
dron and the elongated dodecahedron]; Fig. 123 shows
the concave heptaparallelohedron [the truncated octa-
hedron]. Obviously, there exists no concave triparallel-
ohedron [cube]. (My translation and bracketed remarks)

Fedorov’s parallelohedron in Figure 121 of [9] is isomor-
phic to the polyhedron shown in our Figure 9(d). A mono-
hedral rhombic dodecahedron combinatorially equivalent to
it is shown in our Figure 10(d) and is derived from the
Bilinski dodecahedron.

However, Fedorov does not provide any proof for his
assertion, and in fact it is not valid in general. For example,
his Figure 123 does not showapolyhedron of spherical type,
since one of the edges is common to four faces. This can be
remedied by lengthening the short horizontal edges, but
shows the need for care in carrying out the construction.

(ii) The study of nonconvex parallelohedra necessitates
the revision of various well-established facts concerning
convex parallelohedra. For example, one of the crucial
insights in the enumeration of parallelohedra (and parallel-
otopes in higher dimensions) is the property that every zone
has either four or six faces. This is not true for nonconvex
parallelohedra. For example, the double indentation D1 of
Fedorov’s F shown in Figure 12(b) is a parallelohedron—
even though all zones of D1 have 8 faces.

For another example, in some cases changing of the
lengths of edges of a zone has limitations if the spherical
type is to be preserved.

At present, there seems to be no clear understanding of
the requirements on a polyhedron of spherical type to be a
parallelohedron. As mentioned earlier, the three indented
polyhedra in Figures 9(b) and 10(b),(c) are parallelohedra;
They can be stacked like six-sided prisms. In fact, with a
grain of salt added, starting with suitably chosen six-sided
prisms, they may be considered as examples of Fedorov’s
second construction of nonconvex polyhedra [9, p. 306]:

If we replace one or several faces of a parallelohedron,
or parts of these, by some arbitrary surfaces supported
on these same broken lines, in such a way that a closed
surface is obtained, and observing that precisely the
same [translated] replacement is made in parallel posi-
tion on the faces that correspond to the first ones or their
parts, then, obviously the new figure will be a parallel-
ohedron, though without a center….
It seems clear that Fedorov did not consider this con-

struction important or interesting, since he did not provide
even a single illustration. But it does lead to parallelohedra
with some or all faces triangular, in contrast to the convex
case; an example is shown in Figure 15. A more elaborate
example of a nonconvex parallelohedron with some trian-
gular faces, that does not admit a lattice tiling, is described by
Szabo [35].

Another difference between convex and nonconvex
parallelohedra is that the convex ones can be decomposed
into rhombohedra; this is of interest in various contexts—
see, for example, Hart [18] and Ogawa [28]. In general, such

decomposition is not possible for nonconvex parallelohe-
dra. For example, the doubly indented dodecahedron in
Figure 10(d) is not a union of rhombohedra.

(iii) Examination of the various isozonohedra that are—
or are not—parallelohedra, together with the observation
that questions of central symmetry appear irrelevant in this
context, lead to the following conjecture:

Conjecture
Let P be a sphere-like polyhedron, with no pairs of
coplanar faces. If the boundary of P can be partitioned
into pairs of non-overlapping ‘‘patches’’ {S1, T1}; {S2, T2};
…; {Sr, Tr}, each patch a union of contiguous faces, such
that the members in each pair {Si, Ti} are translates of
each other, and the complex of ‘‘patches’’ is topologically
equivalent as a cell complex to one of the parallelohedra
in Figure 2, then P is a parallelohedron. Conversely, if
no such partition is possible then P is not a
parallelohedron.
As illustrations of the conjecture, we can list the fol-

lowing examples:

(a) The three singly indented dodecahedra in Figures 9 and
10 satisfy the conditions, with the patches S1, T1 formed
by the triplet of indented faces and their opposites, and
the other pairs formed by pairs of opposite faces. Then
this cell complex is topologically equivalent to the cell
complex of the faces of the six-sided prism (Fig. 2d). As
we know, these dodecahedra are parallelohedra. Note
that the fact that they are combinatorially equivalent to
the convex dodecahedra K and B is irrelevant, since the
complex of pairs of faces of the indented polyhedra is
not isomorphic to that of the un-indented ones: Some
pairs {Si, Ti} of parallel faces are separated by only a
single other face, whereas in K and B they are separated
by two other faces.

(b) The doubly indented dodecahedron in Figure 10(d)
complies with the requirements of the conjecture in a
different way: Each pair {Si, Ti} consists of just a pair of
parallel faces; the complex so generated is isomorphic
to the one arising from Kepler’s K.

(c) The doubly indented icosahedron D1 of Fedorov’s F,
shown in Figure 12(b), provides additional support for
the conjecture. Two of the pairs—say {S1, T1} and {S2,
T2}—are formed by the indented triplets and their

Figure 15. A monohedral parallelohedron with triangles as

faces.

! 2010 Springer Science+Business Media, LLC



opposites. The other pairs {Si, Ti} are the remaining four
pairs of parallel faces. The complex they form is
isomorphic to the face complex of the elongated
dodecahedron shown in Figure 2(b). The same situa-
tion prevails with the doubly indented icosahedron D2

of Figure 12(c). Other double indentations of the
icosahedron F, as well as the single indentation of F,
fail to satisfy the assumptions of the conjecture and are
not parallelohedra.

(d) No indentation of the rhombic triacontahedron satisfies
the assumptions of the conjecture, and in fact none is a
parallelohedron.

(e) The decahexahedron E mentioned previously has a
decomposition into pairs {Si, Ti} that is isomorphic to
the complex of the faces of the cube. The same
situation prevails with regard to the chains of rhombo-
hedra mentioned previously.

(iv) The present article leaves open all questions regard-
ing parallelohedra that are not rhombic monohedra. In
particular, it would be of considerable interest to generalize
the above conjecture to these parallelohedra. Such an
extension would also have to cover the results on ‘‘clusters’’
of cubes such as the crosses and semicrosses investigated by
S. K. Stein and others [32, 33, 14]. One can also raise the
question of what are analogues for suitably defined ‘‘clus-
ters’’ of rhombohedra, or other parallelohedra.

(v) There just possibly may be a prehistory to the Bilinski
dodecahedron. As was noted by George Hart [17, 18], a net
for a rhombic dodecahedron was published by John Lodge
Cowley [6] in the mid-eighteenth century; see Figure 16. The
rhombi in this net appearmore similar to those of the Bilinski
dodecahedron than to the rhombi of Kepler’s. However,

these rhombi do not have the correct shape and cannot be
folded to form any polyhedron with planar faces. (Since the
angles of the rhombi are, as close as can be measured, 60"
and 120", the obtuse angles of the shaded rhombuswould be
incident with two other 120" angles—which is impossible.)
An Internet discussion about the net mentioned the possi-
bility that the engraver misunderstood the author’s
instructions; however, it is not clear what the author actually
had in mind, since no text describes the polyhedron.
The later edition of [6] mentioned by Hart [17] was not
available to me.
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igen Körper. Sitzungsberichte der Gesellschaft zur Beförderung

der gesammten Naturwissenschaften zu Marburg, No. 1–2

(1875), pp. 1–20.

[20] E. Hess, Bemerkungen zu E. v. Fedorow’s Elementen der

Gestaltenlehre. Neues Jahrbuch für Mineralogie, Geologie und

Paleontologie, 1894, part 1, pp. 197–199.

[21] E. Hess, Weitere Bemerkungen zu E. v. Fedorow’s Elementen

der Gestaltenlehre. Neues Jahrbuch für Mineralogie, Geologie

und Paleontologie, 1894, part 2, pp. 88–90.

[22] J. Kappraff, Connections. 2nd ed. World Scientific, River Edge,

NJ 2001.

[23] J. Kepler, Harmonice Mundi. Lincii 1619; English translation of

Book 2: J. V. Field, Kepler’s Star Polyhedra, Vistas in Astronomy

23 (1979), 109–141.

[24] E. A. Lord, A. L. Mackay, and S. Ranganathan, New Geometries

for New Materials. Cambridge Univ. Press 2006.

[25] J.McNeill, Polyhedra. http://www.orchidpalms.com/polyhedra/ In

particular http://www.orchidpalms.com/polyhedra/rhombic/RTC/

RTC.htm (as of Oct. 10, 2009).

[26] L. Michel, S. S. Ryshkov, and M. Senechal, An extension of

Voronoı̈’s theorem on primitive parallelohedra. Europ. J. Combi-

natorics 16 (1995), 59–63.

[27] H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder.

Nachr. Gesell. Wiss. Göttingen, math.-phys. Kl. 1897, pp. 198–

219 = Gesamm. Abh. von Hermann Minkowski, vol. 2, Leipzig

1911. Reprinted by Chelsea, New York 1967, pp. 103–121.

[28] T. Ogawa, Three-dimensional Penrose transformation and the

ideal quasicrystals.Science on Form: Proc. First Internat. Sympos.

for Science on Form, S. Isihzaka et al., eds. KTK Publisher, Tokyo

1986, pp. 479–489.

[29] M. O’Keeffe, 4-connected nets of packings of non-convex

parallelohedra and related simple polyhedra. Zeitschrift für

Kristallographie 214 (1999), 438–442.

[30] A. Schoenflies, Symmetrie und Struktur der Krystalle. Encykl.

Math. Wissenschaften. Bd. 7. Krystallographie. Teil B, (1906), pp.

437–478.

[31] M. Senechal and R. V. Galiulin, An Introduction to the Theory of

Figures: the geometry of E. S. Fedorov. Structural Topology 10

(1984), 5–22.

[32] S. K. Stein, Factoring by subsets. Pacif. J. Math. 22 (1967), 523–

541.
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