
Wavelet Methods for Time Series Analysis

Part IV: MODWT and Examples of DWT/MODWT Analysis

• MODWT stands for ‘maximal overlap discrete wavelet trans-
form’ (pronounced ‘mod WT’)

• transforms very similar to the MODWT have been studied in
the literature under the following names:

− undecimated DWT (or nondecimated DWT)

− stationary DWT

− translation (or time) invariant DWT

− redundant DWT

• also related to notions of ‘wavelet frames’ and ‘cycle spinning’

• basic idea: use values removed from DWT by downsampling
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Quick Comparison of the MODWT to the DWT

• unlike the DWT, MODWT is not orthonormal (in fact MODWT
is highly redundant)

• unlike the DWT, MODWT is defined naturally for all samples
sizes (i.e., N need not be a multiple of a power of two)

• similar to the DWT, can form multiresolution analyses (MRAs)
using MODWT, but with certain additional desirable features;
e.g., unlike the DWT, MODWT-based MRA has details and
smooths that shift along with X (if X has detail D̃j, then

T mX has detail T mD̃j)

• similar to the DWT, an analysis of variance (ANOVA) can be
based on MODWT wavelet coefficients

• unlike the DWT, MODWT discrete wavelet power spectrum
same for X and its circular shifts T mX
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DWT Wavelet & Scaling Filters and Coefficients

• recall that we obtain level j = 1 DWT wavelet and scaling
coefficients from X by filtering and downsampling:

X −→ H( k
N ) −→

↓2
W1 and X −→ G( k

N ) −→
↓2

V1

• transfer functions H(·) and G(·) are associated with impulse
response sequences {hl} and {gl} via the usual relationships

{hl} ←→ H(·) and {gl} ←→ G(·)
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Level j Equivalent Wavelet & Scaling Filters

• for any level j, rather than using the pyramid algorithm, we
could get the DWT wavelet and scaling coefficients directly
from X by filtering and downsampling:

X −→ Hj(
k
N ) −→

↓2j
Wj and X −→ Gj(

k
N ) −→

↓2j
Vj

• transfer functions Hj(·) & Gj(·) depend just on H(·) & G(·)
− actually can say ‘just on H(·)’ since G(·) depends on H(·)
− note that H1(·) & G1(·) are the same as H(·) & G(·))

• impulse response sequences {hj,l} and {gj,l} are associated
with transfer functions via the usual relationships

{hj,l} ←→ Hj(·) and {gj,l} ←→ Gj(·),
and both filters have width Lj = (2j − 1)(L − 1) + 1
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Haar Equivalent Wavelet & Scaling Filters
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• Lj = 2j is width of {hj,l} and {gj,l}
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D(4) Equivalent Wavelet & Scaling Filters
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• Lj dictated by general formula Lj = (2j − 1)(L − 1) + 1,

but can argue that effective width is 2j (same as Haar Lj)
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D(6) Equivalent Wavelet & Scaling Filters

....
..

................

....................................

............................................................................

......

................

....................................

............................................................................

{hl}
{h2,l}
{h3,l}
{h4,l}
{gl}
{g2,l}
{g3,l}
{g4,l}

L = 6

L2 = 16

L3 = 36

L4 = 76

L = 6

L2 = 16

L3 = 36

L4 = 76

• {h4,l} resembles discretized version of Mexican hat wavelet

IV–7

LA(8) Equivalent Wavelet & Scaling Filters
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• {hj,l} resembles discretized version of Mexican hat wavelet,

again with an effective width of 2j
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Squared Gain Functions for Equivalent Filters

• squared gain functions give us frequency domain properties:

Hj(f ) ≡ |Hj(f )|2 and Gj(f ) ≡ |Gj(f )|2
• example: squared gain functions for LA(8) J0 = 4 partial DWT
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Definition of MODWT Wavelet & Scaling Filters

• define MODWT filters {h̃j,l} and {g̃j,l} by renormalizing the
DWT filters (widths of MODWT & DWT filters are the same):

h̃j,l = hj,l/2j/2 and g̃j,l = gj,l/2j/2

• whereas DWT filters have unit energy, MODWT filters satisfy
Lj−1∑
l=0

h̃2
j,l =

Lj−1∑
l=0

g̃2
j,l =

1

2j

• let H̃j(·) and G̃j(·) be the corresponding transfer functions:

H̃j(f ) =
1

2j/2
Hj(f ) and G̃j(f ) =

1

2j/2
Gj(f )

so that

{h̃j,l} ←→ H̃j(·) and {g̃j,l} ←→ G̃j(·)
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Definition of MODWT Coefficients: I

• level j MODWT wavelet and scaling coefficients are defined to
be output obtaining by filtering X with {h̃j,l} and {g̃j,l}:

X −→ H̃j(
k
N ) −→ W̃j and X −→ G̃j(

k
N ) −→ Ṽj

• compare the above to its DWT equivalent:

X −→ Hj(
k
N ) −→

↓2j
Wj and X −→ Gj(

k
N ) −→

↓2j
Vj

• DWT and MODWT have different normalizations for filters,
and there is no downsampling by 2j in the MODWT

• level J0 MODWT consists of J0 + 1 vectors, namely,

W̃1,W̃2, . . . ,W̃J0
and ṼJ0

,

each of which has length N
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Definition of MODWT Coefficients: II

• MODWT of level J0 has (J0 + 1)N coefficients, whereas DWT
has N coefficients for any given J0

• whereas DWT of level J0 requires N to be integer multiple of
2J0, MODWT of level J0 is well-defined for any sample size N

• when N is divisible by 2J0, we can write

Wj,t =

Lj−1∑
l=0

hj,lX2j(t+1)−1−l mod N and W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l mod N,

and we have the relationship

Wj,t = 2j/2W̃j,2j(t+1)−1 and, likewise, VJ0,t = 2J0/2Ṽ
J0,2

J0(t+1)−1

(here W̃j,t & ṼJ0,t denote the tth elements of W̃j & ṼJ0
)
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Properties of the MODWT

• as was true with the DWT, we can use the MODWT to obtain

− a scale-based additive decomposition (MRA) and

− a scale-based energy decomposition (ANOVA)

• in addition, the MODWT can be computed efficiently via a
pyramid algorithm
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MODWT Multiresolution Analysis: I

• starting from the definition

W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l mod N, can write W̃j,t =

N−1∑
l=0

h̃◦j,lXt−l mod N,

where {h̃◦j,l} is {h̃j,l} periodized to length N

• can express the above in matrix notation as W̃j = W̃jX, where

W̃j is the N × N matrix given by⎡
⎢⎢⎢⎢⎢⎢⎣

h̃◦j,0 h̃◦j,N−1 h̃◦j,N−2 h̃◦j,N−3 · · · h̃◦j,3 h̃◦j,2 h̃◦j,1
h̃◦j,1 h̃◦j,0 h̃◦j,N−1 h̃◦j,N−2 · · · h̃◦j,4 h̃◦j,3 h̃◦j,2

... ... ... ... · · · ... ... ...

h̃◦j,N−2 h̃◦j,N−3 h̃◦j,N−4 h̃◦j,N−5 · · · h̃◦j,1 h̃◦j,0 h̃◦j,N−1

h̃◦j,N−1 h̃◦j,N−2 h̃◦j,N−3 h̃◦j,N−4 · · · h̃◦j,2 h̃◦j,1 h̃◦j,0

⎤
⎥⎥⎥⎥⎥⎥⎦
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MODWT Multiresolution Analysis: II

• recalling the DWT relationship Dj = WT
j Wj, define jth level

MODWT detail as D̃j = W̃T
j W̃j

• similar development leads to definition for jth level MODWT
smooth as S̃j = ṼT

j Ṽj

• can show that level J0 MODWT-based MRA is given by

X =

J0∑
j=1

D̃j + S̃J0
,

which is analogous to the DWT-based MRA
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MODWT Multiresolution Analysis: III

• if we form DWT-based MRAs for X and its circular shifts
T mX, m = 1, . . . , N − 1, we can obtain D̃j by appropriately
averaging all N DWT-based details (‘cycle spinning’)
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MODWT Multiresolution Analysis: IV

• left-hand plots show D̃j, while right-hand plots show average

of T −mDj in MRA for T mX, m = 0, 1, . . . , 15
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MODWT Decomposition of Energy

• for any J0 ≥ 1 & N ≥ 1, can show that

‖X‖2 =

J0∑
j=1

‖W̃j‖2 + ‖ṼJ0
‖2,

leading to an analysis of the sample variance of X:

σ̂2
X =

1

N

J0∑
j=1

‖W̃j‖2 +
1

N
‖ṼJ0

‖2 − X
2
,

which is analogous to the DWT-based analysis of variance
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MODWT Pyramid Algorithm

• goal: compute W̃j & Ṽj using Ṽj−1 rather than X

• letting Ṽ0,t ≡ Xt, can show that, for all j ≥ 1,

W̃j,t =

L−1∑
l=0

h̃lṼj−1,t−2j−1l mod N and Ṽj,t =

L−1∑
l=0

g̃lṼj−1,t−2j−1l mod N

• inverse pyramid algorithm is given by

Ṽj−1,t =

L−1∑
l=0

h̃lW̃j,t+2j−1l mod N +

L−1∑
l=0

g̃lṼj,t+2j−1l mod N

• algorithm requires N log2(N) multiplications, which is the same
as needed by fast Fourier transform algorithm

IV–19

Example of J0 = 4 LA(8) MODWT

• oxygen isotope records X from Antarctic ice core

 

 

     

 

T −45Ṽ4
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Relationship Between MODWT and DWT

• bottom plot shows W4 from DWT after circular shift T −3 to
align coefficients properly in time

• top plot shows W̃4 from MODWT and subsamples that, upon
rescaling, yield W4 via W4,t = 4W̃4,16(t+1)−1

T −53W̃4

T −3W4

3

0

−3
12

0

−12
1800 1850 1900 1950 2000

year
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Example of J0 = 4 LA(8) MODWT MRA

• oxygen isotope records X from Antarctic ice core
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Example of Variance Decomposition

• decomposition of sample variance from MODWT

σ̂2
X ≡ 1

N

N−1∑
t=0

(
Xt − X

)2
=

4∑
j=1

1

N
‖W̃j‖2 +

1

N
‖Ṽ4‖2 − X

2

• LA(8)-based example for oxygen isotope records

− 0.5 year changes: 1
N‖W̃1‖2 .

= 0.145 (
.
= 4.5% of σ̂2

X)

− 1.0 years changes: 1
N‖W̃2‖2 .

= 0.500 (
.
= 15.6%)

− 2.0 years changes: 1
N‖W̃3‖2 .

= 0.751 (
.
= 23.4%)

− 4.0 years changes: 1
N‖W̃4‖2 .

= 0.839 (
.
= 26.2%)

− 8.0 years averages: 1
N‖Ṽ4‖2 − X

2 .
= 0.969 (

.
= 30.2%)

− sample variance: σ̂2
X

.
= 3.204

IV–23

Summary of Key Points about the MODWT

• similar to the DWT, the MODWT offers

− a scale-based multiresolution analysis

− a scale-based analysis of the sample variance

− a pyramid algorithm for computing the transform efficiently

• unlike the DWT, the MODWT is

− defined for all sample sizes (no ‘power of 2’ restrictions)

− unaffected by circular shifts to X in that coefficients, details
and smooths shift along with X (example coming later)

− highly redundant in that a level J0 transform consists of
(J0 + 1)N values rather than just N

• as we shall see, the MODWT can eliminate ‘alignment’ arti-
facts, but its redundancies are problematic for some uses
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Examples of DWT & MODWT Analysis: Overview

• look at DWT analysis of electrocardiogram (ECG) data

• discuss potential alignment problems with the DWT and how
they are alleviated with the MODWT

• look at MODWT analysis of ECG data, subtidal sea level fluc-
tuations, Nile River minima and ocean shear measurements

• discuss practical details

− choice of wavelet filter and of level J0

− handling boundary conditions

− handling sample sizes that are not multiples of a power of 2

− definition of DWT not standardized
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Electrocardiogram Data: I
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• ECG measurements X taken during normal sinus rhythm of a
patient who occasionally experiences arhythmia (data courtesy
of Gust Bardy and Per Reinhall, University of Washington)

• N = 2048 samples collected at rate of 180 samples/second; i.e.,
∆t = 1/180 second

• 11.38 seconds of data in all

• time of X0 taken to be t0 = 0.31 merely for plotting purposes
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Electrocardiogram Data: II
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• features include

− baseline drift (not directly related to heart)

− intermittent high-frequency fluctuations (again, not directly
related to heart)

− ‘PQRST’ portion of normal heart rhythm

• provides useful illustration of wavelet analysis because there are
identifiable features on several scales
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Electrocardiogram Data: III

Haar

D(4)

LA(8)

W1 W2 W3 W4 V6
4

0

−4

4

0

−4

4

0

−4
0 512 1024 1536 2048

n

• partial DWT coefficients W of level J0 = 6 for ECG time series
using the Haar, D(4) and LA(8) wavelets (top to bottom)
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Electrocardiogram Data: IV

• elements Wn of W are plotted versus n = 0, . . . , N−1 = 2047

• vertical dotted lines delineate 7 subvectors W1, . . . ,W6 & V6

• sum of squares of 2048 coefficients W is equal to those of X

• gross pattern of coefficients similar for all three wavelets
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Electrocardiogram Data: V

T −2V6

T −3W6T −3W5T −3W4

T −3W3

T −2W2

T −2W1

R

X

1.5

0.5

−0.5

−1.5
0 2 4 6 8 10 12

t (seconds)

• LA(8) DWT coefficients stacked by scale and aligned with time

• spacing between major tick marks is the same in both plots
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Electrocardiogram Data: VI

• R waves aligned with spikes in W2 and W3

• intermittent fluctuations appear mainly in W1 and W2

• setting J0 = 6 results in V6 capturing baseline drift

IV–31

Electrocardiogram Data: VII

• to quantify how well various DWTs summarize X, can form
normalized partial energy sequences (NPESs)

• given {Ut : t = 0, . . . , N − 1}, square and order such that

U2
(0) ≥ U2

(1) ≥ · · · ≥ U2
(N−2) ≥ U2

(N−1)

• U2
(0)

is largest of all the U2
t values while U2

(N−1)
is the smallest

• NPES for {Ut} defined as

Cn ≡
∑n

m=0 U2
(m)∑N−1

m=0 U2
(m)

, n = 0, 1, . . . , N − 1
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Electrocardiogram Data: VIII

• plots show NPESs for

− original time series (dashed curve, plot (a))

− Haar DWT (solid curves, both plots)

− D(4) DWT (dashed curve, plot (b)); LA(8) is virtually iden-
tical

− DFT (dotted curve, plot (a)) with |Ut|2 rather than U2
t
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Electrocardiogram Data: IX

S6
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• Haar DWT multiresolution analysis of ECG time series

• blocky nature of Haar basis vectors readily apparent
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Electrocardiogram Data: X
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• D(4) DWT multiresolution analysis

• ‘shark’s fin’ evident in D5 and D6
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Electrocardiogram Data: XI
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• LA(8) DWT MRA (shape of filter less prominent here)

• note where features end up (will find MODWT does better)
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Effect of Circular Shifts on DWT
X T 5X X T 5X

T −2V4

T −3W4

T −3W3

T −2W2

T −2W1

S4

D4

D3

D2

D1

0 64 128 0 64 128 0 64 128 0 64 128
t t t t

• bottom row: bump X and bump shifted to right by 5 units

• J0 = 4 LA(8) DWTs (first 2 columns) and MRAs (last 2)
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Effect of Circular Shifts on MODWT
X T 5X X T 5X

T −45Ṽ4

T −53W̃4

T −25W̃3

T −11W̃2

T −4W̃1

S̃4

D̃4

D̃3

D̃2

D̃1

0 64 128 0 64 128 0 64 128 0 64 128
t t t t

• unlike the DWT, shifting a time series shifts the MODWT co-
efficients and components of MRA
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Electrocardiogram Data: XII

T −189Ṽ6T −221W̃6 T −109W̃5T −53W̃4

T −25W̃3

T −11W̃2

T −4W̃1

R

X

1.5

0.5

−0.5

−1.5
0 2 4 6 8 10 12

t (seconds)

• level J0 = 6 LA(8) MODWT, with W̃j’s circularly shifted

• vertical lines delineate ‘boundary’ coefficients (explained later)
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Electrocardiogram Data: XIII

T −221W̃6

T −3W6

R

X
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−1.5
0 2 4 6 8 10 12

t (seconds)

• comparison of level 6 MODWT and DWT wavelet coefficients,
after shifting for time alignment

• boundary coefficients delineated by vertical red lines

• subsampling & rescaling W̃6 yields W6 (note ‘aliasing’ effect)
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Electrocardiogram Data: XIV
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• LA(8) MODWT multiresolution analysis of ECG data
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Electrocardiogram Data: XV
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• MODWT details seem more consistent across time than DWT
details; e.g., D̃6 does not fade in and out as much as D6

• ‘bumps’ in D6 are slightly asymmetric, whereas those in D̃6
aren’t
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Electrocardiogram Data: XVI

S̃6

Ṽ6

R

X
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• MODWT coefficients and MRA resemble each other, with lat-
ter being necessarily smoother due to second round of filtering

• in the above, S̃6 is somewhat smoother than Ṽ6 and is an
intuitively reasonable estimate of the baseline drift
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Subtidal Sea Level Fluctuations: I

X
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• subtidal sea level fluctuations X for Crescent City, CA, col-
lected by National Ocean Service with permanent tidal gauge

• N = 8746 values from Jan 1980 to Dec 1991 (almost 12 years)

• one value every 12 hours, so ∆t = 1/2 day

• ‘subtidal’ is what remains after diurnal & semidiurnal tides are
removed by low-pass filter (filter seriously distorts frequency
band corresponding to first physical scale τ1 ∆t = 1/2 day)
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Subtidal Sea Level Fluctuations: II

S̃7

D̃6

D̃4

D̃2
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−40
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• level J0 = 7 LA(8) MODWT multiresolution analysis
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Subtidal Sea Level Fluctuations: III

• LA(8) picked in part to help with time alignment of wavelet
coefficients, but MRAs for D(4) and C(6) are OK

• Haar MRA suffers from ‘leakage’

• with J0 = 7, S̃7 represents averages over scale λ7 ∆t = 64 days

• this choice of J0 captures intra-annual variations in S̃7 (not of
interest to decompose these variations further)
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Subtidal Sea Level Fluctuations: IV

S̃7

D̃6

D̃4

D̃2

X

40
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years

• expanded view of 1985 and 1986 portion of MRA

• lull in D̃2, D̃3 and D̃4 in December 1985 (associated with
changes on scales of 1, 2 and 4 days)

IV–47

Subtidal Sea Level Fluctuations: V

• MRA suggests seasonally dependent variability at some scales

• because MODWT-based MRA does not preserve energy, prefer-
able to study variability via MODWT wavelet coefficients

• cumulative variance plots for W̃j useful tool for studying time
dependent variance

• can create these plots for LA or coiflet-based W̃j as follows

• form T −|ν(H)
j |

W̃j, i.e., circularly shift W̃j to align with X
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Subtidal Sea Level Fluctuations: VI

• form normalized cumulative sum of squares:

Cj,t ≡
1

N

t∑
u=0

W̃ 2

j,u+|ν(H)
j | mod N

, t = 0, . . . , N − 1;

note that Cj,N−1 = ‖T −|ν(H)
j |

W̃j‖2/N = ‖W̃j‖2/N

• examples for j = 2 (left-hand plot) and j = 7 (right-hand)

C2,t C7,t

1980 1984 1988 1991
years

1980 1984 1988 1991
years
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Subtidal Sea Level Fluctuations: VII

• easier to see how variance is building up by subtracting uniform
rate of accumulation tCj,N−1/(N − 1) from Cj,t:

C ′
j,t ≡ Cj,t − t

Cj,N−1

N − 1

• yields rotated cumulative variance plots

C ′
2,t C ′

7,t

1980 1984 1988 1991
years

1980 1984 1988 1991
years

• C ′
2,t and C ′

7,t associated with physical scales of 1 and 32 days

• helps build up picture of how variability changes within a year
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Nile River Minima: I

X
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9
600 700 800 900 1000 1100 1200 1300

year

• time series X of minimum yearly water level of the Nile River

• data from 622 to 1284, but actually extends up to 1921

• data after about 715 recorded at the Roda gauge near Cairo

• method(s) used to record data before 715 source of speculation

• oldest time series actually recorded by humans?!
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Nile River Minima: II

S̃4

D̃4D̃3

D̃2

D̃1
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year

• level J0 = 4 Haar MODWT MRA points out enhanced vari-
ability before 715 at scales τ1 ∆t = 1 year and τ2 ∆t = 2 year

• Haar wavelet adequate (minimizes # of boundary coefficients)
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Ocean Shear Measurements: I

S̃6

D̃j

X

6.4

0.0

−6.4
300 450 600 750 900 1050

depth (meters)

• level J0 = 6 MODWT multiresolution analysis using LA(8)
wavelet of vertical shear measurements (in inverse seconds) ver-
sus depth (in meters; series collected & supplied by Mike Gregg,
Applied Physics Laboratory, University of Washington)
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Ocean Shear Measurements: II

• ∆t = 0.1 meters and N = 6875

• LA(8) protects against leakage and permits coefficients to be
aligned with depth

• J0 = 6 yields smooth S̃6 that is free of bursts (these are isolated

in the details D̃j)

• note small distortions at beginning/end of S̃6 evidently due to
assumption of circularity

• vertical blue lines delineate subseries of 4096 ‘burst free’ values
(to be reconsidered later)

• since MRA is dominated by S̃6, let’s focus on details alone
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Ocean Shear Measurements: III

D̃6

D̃5

D̃4

300 450 600 750 900 1050
depth (meters)

• D̃j’s pick out bursts around 450 and 975 meters, but two bursts
have somewhat different characteristics

• possible physical interpretation for first burst: turbulence in D̃4
drives shorter scale turbulence at greater depths

• hints of increased variability in D̃5 and D̃6 prior to second burst
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Choice of Wavelet Filter: I

• basic strategy: pick wavelet filter with smallest width L that
yields an acceptable analysis (smaller L means fewer boundary
coefficients)

• very much application dependent

− LA(8) good choice for MRA of ECG data and for time/depth
dependent analysis of variance (ANOVA) of subtidal sea lev-
els and shear data

− D(4) or LA(8) good choice for MRA of subtidal sea levels,
but Haar isn’t (details ‘locked’ together, i.e., are not isolating
different aspects of the data)

− Haar good choice for MRA of Nile River minima
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Choice of Wavelet Filter: II

• can often pick L via simple procedure of comparing different
MRAs or ANOVAs (this will sometimes rule out Haar if it
differs too much from D(4), D(6) or LA(8) analyses)

• for MRAs, might argue that we should pick {hl} that is a good
match to the ‘characteristic features’ in X

− hard to quantify what this means, particularly for time series
with different features over different times and scales

− Haar and D(4) are often a poor match, while the LA filters
are usually better because of their symmetry properties

− can use NPESs to quantify match between {hl} and X

• use LA filters if time alignment of {Wj,t} with X is important
(LA filters with even L/2, i.e., 8, 12, 16 or 20, yield better
alignment than those with odd L/2)
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Choice of Level J0: I

• again, very much application dependent, but often there is a
clear choice

− J0 = 6 picked for ECG data because it isolated the baseline
drift into V6 and Ṽ6, and decomposing this drift further is
of no interest in studying heart rhythms

− J0 = 7 picked for subtidal sea levels because it trapped intra-
annual variations in Ṽ7 (not of interest to analyze these)

− J0 = 6 picked for shear data because Ṽ6 is free of bursts;
i.e., ṼJ0

for J0 < 6 would contain a portion of the bursts

− J0 = 4 picked for Nile River minima to demonstrate that
its time-dependent variance is due to variations on the two
smallest scales
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Choice of Level J0: II

• as J0 increases, there are more boundary coefficients to deal
with, which suggests not making J0 too big

• if application doesn’t naturally suggest what J0 should be, an
ad hoc (but reasonable) default is to pick J0 such that circu-
larity assumption influences < 50% of WJ0

or DJ0
(next topic

of discussion)
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Handling Boundary Conditions: I

• DWT and MODWT treat time series X as if it were circular

• circularity says XN−1 is useful surrogate for X−1 (sometimes
this is OK, e.g., subtidal sea levels, but in general it is ques-
tionable)

• first step is to delineate which parts of Wj and Dj are influ-
enced (at least to some degree) by circular boundary conditions

• by considering

Wj,t = 2j/2W̃j,2j(t+1)−1 and W̃j,t ≡
Lj−1∑
l=0

h̃j,lXt−l mod N,

can determine that circularity affects

Wj,t, t = 0, . . . , L′
j − 1 with L′

j ≡
⌈
(L − 2)

(
1 − 1

2j

)⌉
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Handling Boundary Conditions: II

• can argue that L′
1 = L

2 − 1 and L′
j = L− 2 for large enough j

• circularity also affects the following elements of Dj:

t = 0, . . . , 2jL′
j − 1 and t = N − (Lj − 2j), . . . , N − 1,

where Lj = (2j − 1)(L − 1) + 1

• for MODWT, circularity affects

W̃j,t, t = 0, . . . , min{Lj − 2, N − 1}
• circularity also affects the following elements of D̃j:

t = 0, . . . , Lj − 2 and t = N − Lj + 1, . . . , N − 1
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Handling Boundary Conditions: III

T −2V6

T −3W6T −3W5

T −3W4

S6

D6D5

D4

• examples of delineating LA(8) DWT boundary coefficients for
ECG data and of marking parts of MRA influenced by circu-
larity
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Handling Boundary Conditions: IV

• boundary regions increase as the filter width L increases

• for fixed L, boundary regions in DWT MRAs are smaller than
those for MODWT MRAs

• for fixed L, MRA boundary regions increase as J0 increases (an
exception is the Haar DWT)

• these considerations might influence our choice of L and DWT
versus MODWT
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Handling Boundary Conditions: V

Haar

D(4)

LA(8)

Haar

D(4)

LA(8)

S6

S̃6

0 2 4 6 8 10 12
t (seconds)

• comparison of DWT smooths S6 (top 3 plots) and MODWT

smooths S̃6 (bottom 3) for ECG data using, from top to bottom
within each group, the Haar, D(4) and LA(8) wavelets
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Handling Boundary Conditions: VI

• just delineating parts of Wj and Dj that are influenced by cir-
cular boundary conditions can be misleading (too pessimistic)

• effective width λj = 2τj = 2j of jth level equivalent filters can

be much smaller than actual width Lj = (2j − 1)(L − 1) + 1

• arguably less pessimistic delineations would be to always mark
boundaries appropriate for the Haar wavelet (its actual width
is the effective width for other filters)
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Handling Boundary Conditions: VII

........

......................

..................................................

..........................................................................................................
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......................

..................................................
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{hl}
{h2,l}
{h3,l}
{h4,l}
{gl}
{g2,l}
{g3,l}
{g4,l}

L1 = 8 vs. 2

L2 = 22 vs. 4

L3 = 50 vs. 8

L4 = 106 vs. 16

L1 = 8 vs. 2

L2 = 22 vs. 4

L3 = 50 vs. 8

L4 = 106 vs. 16

• plots of LA(8) equivalent wavelet/scaling filters, with actual
width Lj compared to effective width of 2j
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Handling Boundary Conditions: VIII

• to lessen the impact of boundary conditions, we can use ‘tricks’
from Fourier analysis, which also treats X as if it were circular

− extend series with X (similar to zero padding)

− polynomial extrapolations

− use ‘reflection’ boundary conditions by pasting a reflected
(time-reversed) version of X to end of X

−44.2

−53.8
1800 1900 2000 2100 2200

year

− note that series so constructed of length 2N has same sample
mean and sample variance as original series X

IV–67

Handling Boundary Conditions: IX

S4

D4

D3

D2

D1

X

−44.2

−53.8
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year

• comparison of effect of reflection (red/blue) and circular (black)
boundary conditions on LA(8) DWT-based MRA for oxygen
isotope data
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Handling Non-Power of Two Sample Sizes

• not a problem with the MODWT, which is defined naturally
for all sample sizes N

• partial DWT requires just N = M2J0 rather than N = 2J

• can pad with sample mean X etc.

• can truncate down to multiple of 2J0

− truncate at beginning of series & do analysis

− truncate at end of series & do analysis

− combine two analyses together

• can use a specialized pyramid algorithm involving at most one
special term at each level
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Lack of Standard Definition for DWT: I

• our definition of DWT matrix W based upon

− convolutions rather than inner products

− odd indexed downsampling rather than even indexed

− using (−1)l+1hL−1−l to define gl rather than (−1)l−1h1−l

− ordering coefficients in resulting transform from small to
large scale rather than large to small

• choices other than the above are used frequently elsewhere,
resulting in DWTs that can differ from what we have presented
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Lack of Standard Definition for DWT: II

• two left-hand columns: D(4) DWT matrix W as defined here

• two right-hand columns: S-Plus Wavelets D(4) DWT ma-
trix (after reordering of its row vectors)

• only the scaling coefficient is guaranteed to be the same!!!
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