Wavelet Methods for Time Series Analysis	Quick Comparison of the MODWT to the DWT
Part IV: MODWT and Examples of DWT/MODWT Analysis	• unlike the DWT, MODWT is not orthonormal (in fact MODWT is highly redundant)
• MODWT stands for 'maximal overlap discrete wavelet trans- form' (pronounced 'mod WT')	• unlike the DWT, MODWT is defined naturally for all samples sizes (i.e., N need not be a multiple of a power of two)
 transforms very similar to the MODWT have been studied in the literature under the following names: undecimated DWT (or nondecimated DWT) stationary DWT translation (or time) invariant DWT redundant DWT also related to notions of 'wavelet frames' and 'cycle spinning' basic idea: use values removed from DWT by downsampling 	 similar to the DWT, can form multiresolution analyses (MRAs) using MODWT, but with certain additional desirable features; e.g., unlike the DWT, MODWT-based MRA has details and smooths that shift along with X (if X has detail D̃_j, then T^mX has detail T^mD̃_j) similar to the DWT, an analysis of variance (ANOVA) can be based on MODWT wavelet coefficients unlike the DWT, MODWT discrete wavelet power spectrum same for X and its circular shifts T^mX
DWT Wavelet & Scaling Filters and Coefficients	Level j Equivalent Wavelet & Scaling Filters
 recall that we obtain level j = 1 DWT wavelet and scaling coefficients from X by filtering and downsampling: X → H(k/N) → W₁ and X → G(k/N) → V₁ transfer functions H(·) and G(·) are associated with impulse response sequences {h_l} and {g_l} ↔ G(·) 	 for any level j, rather than using the pyramid algorithm, we could get the DWT wavelet and scaling coefficients directly from X by filtering and downsampling: X → H_j(k/N) → W_j and X → G_j(k/N) → V_j transfer functions H_j(·) & G_j(·) depend just on H(·) & G(·) - actually can say 'just on H(·)' since G(·) depends on H(·)

- note that $H_1(\cdot)$ & $G_1(\cdot)$ are the same as $H(\cdot)$ & $G(\cdot))$
- \bullet impulse response sequences $\{h_{j,l}\}$ and $\{g_{j,l}\}$ are associated with transfer functions via the usual relationships

 $\{h_{j,l}\} \longleftrightarrow H_j(\cdot) \text{ and } \{g_{j,l}\} \longleftrightarrow G_j(\cdot),$ and both filters have width $L_j = (2^j - 1)(L - 1) + 1$

Squared Gain Functions for Equivalent Filters

- squared gain functions give us frequency domain properties: $\mathcal{H}_i(f) \equiv |H_i(f)|^2$ and $\mathcal{G}_j(f) \equiv |G_j(f)|^2$
 - $f(f) = \left| f(f) \right|^{2} \quad \text{and} \quad f(f) = \left| f(f) \right|^{2}$
- example: squared gain functions for LA(8) $J_0 = 4$ partial DWT

Definition of MODWT Coefficients: I

• level j MODWT wavelet and scaling coefficients are *defined* to be output obtaining by filtering **X** with $\{\tilde{h}_{j,l}\}$ and $\{\tilde{g}_{j,l}\}$:

$$\mathbf{X} \longrightarrow \left[\widetilde{H}_j(\frac{k}{N})\right] \longrightarrow \widetilde{\mathbf{W}}_j \text{ and } \mathbf{X} \longrightarrow \left[\widetilde{G}_j(\frac{k}{N})\right] \longrightarrow \widetilde{\mathbf{V}}_j$$

• compare the above to its DWT equivalent:

$$\mathbf{X} \longrightarrow \overline{H_j(\frac{k}{N})} \xrightarrow{1}{\downarrow 2^j} \mathbf{W}_j \text{ and } \mathbf{X} \longrightarrow \overline{G_j(\frac{k}{N})} \xrightarrow{1}{\downarrow 2^j} \mathbf{V}_j$$

- \bullet DWT and MODWT have different normalizations for filters, and there is no downsampling by 2^j in the MODWT
- level J_0 MODWT consists of $J_0 + 1$ vectors, namely,

$$\widetilde{\mathbf{W}}_1, \widetilde{\mathbf{W}}_2, \dots, \widetilde{\mathbf{W}}_{J_0}$$
 and $\widetilde{\mathbf{V}}_{J_0}$

each of which has length ${\cal N}$

IV-11

Definition of MODWT Wavelet & Scaling Filters

- define MODWT filters $\{\tilde{h}_{j,l}\}$ and $\{\tilde{g}_{j,l}\}$ by renormalizing the DWT filters (widths of MODWT & DWT filters are the same): $\tilde{h}_{j,l} = h_{j,l}/2^{j/2}$ and $\tilde{g}_{j,l} = g_{j,l}/2^{j/2}$
- whereas DWT filters have unit energy, MODWT filters satisfy

$$\sum_{l=0}^{L_j-1} \tilde{h}_{j,l}^2 = \sum_{l=0}^{L_j-1} \tilde{g}_{j,l}^2 = \frac{1}{2^j}$$

• let $\widetilde{H}_j(\cdot)$ and $\widetilde{G}_j(\cdot)$ be the corresponding transfer functions:

$$\widetilde{H}_j(f) = \frac{1}{2^{j/2}} H_j(f)$$
 and $\widetilde{G}_j(f) = \frac{1}{2^{j/2}} G_j(f)$

so that

$$\{\widetilde{h}_{j,l}\}\longleftrightarrow \widetilde{H}_{j}(\cdot) \text{ and } \{\widetilde{g}_{j,l}\}\longleftrightarrow \widetilde{G}_{j}(\cdot)$$

IV-10

Definition of MODWT Coefficients: II

- MODWT of level J_0 has $(J_0 + 1)N$ coefficients, whereas DWT has N coefficients for any given J_0
- whereas DWT of level J_0 requires N to be integer multiple of 2^{J_0} , MODWT of level J_0 is well-defined for any sample size N
- when N is divisible by 2^{J_0} , we can write

$$\begin{split} W_{j,t} &= \sum_{l=0}^{L_j-1} h_{j,l} X_{2^j(t+1)-1-l \mod N} \text{ and } \widetilde{W}_{j,t} = \sum_{l=0}^{L_j-1} \tilde{h}_{j,l} X_{t-l \mod N}, \\ \text{and we have the relationship} \\ W_{j,t} &= 2^{j/2} \widetilde{W}_{j,2^j(t+1)-1} \text{ and, likewise, } V_{J_0,t} = 2^{J_0/2} \widetilde{V}_{J_0,2^{J_0}(t+1)-1} \\ \text{(here } \widetilde{W}_{j,t} \& \widetilde{V}_{J_0,t} \text{ denote the } t\text{th elements of } \widetilde{\mathbf{W}}_j \& \widetilde{\mathbf{V}}_{J_0}) \end{split}$$

Properties of the MODWT

- as was true with the DWT, we can use the MODWT to obtain
 - a scale-based additive decomposition (MRA) and
 - a scale-based energy decomposition (ANOVA)
- in addition, the MODWT can be computed efficiently via a pyramid algorithm

IV-13

MODWT Multiresolution Analysis: II

- recalling the DWT relationship $\mathcal{D}_j = \mathcal{W}_j^T \mathbf{W}_j$, define *j*th level MODWT detail as $\widetilde{\mathcal{D}}_j = \widetilde{\mathcal{W}}_j^T \widetilde{\mathbf{W}}_j$
- similar development leads to definition for *j*th level MODWT smooth as $\widetilde{S}_j = \widetilde{\mathcal{V}}_j^T \widetilde{\mathbf{V}}_j$
- \bullet can show that level J_0 MODWT-based MRA is given by

$$\mathbf{X} = \sum_{j=1}^{J_0} \widetilde{\mathcal{D}}_j + \widetilde{\mathcal{S}}_{J_0},$$

which is analogous to the DWT-based MRA

MODWT Multiresolution Analysis: I

• starting from the definition

$$\widetilde{W}_{j,t} = \sum_{l=0}^{L_j-1} \widetilde{h}_{j,l} X_{t-l \mod N}, \text{ can write } \widetilde{W}_{j,t} = \sum_{l=0}^{N-1} \widetilde{h}_{j,l}^{\circ} X_{t-l \mod N},$$
where $\{\widetilde{h}_{j,l}^{\circ}\}$ is $\{\widetilde{h}_{j,l}\}$ periodized to length N
• can express the above in matrix notation as $\widetilde{W}_j = \widetilde{W}_j X$, where
 \widetilde{W}_j is the $N \times N$ matrix given by

$$\begin{bmatrix} \widetilde{h}_{j,0}^{\circ} & \widetilde{h}_{j,N-1}^{\circ} & \widetilde{h}_{j,N-2}^{\circ} & \widetilde{h}_{j,N-3}^{\circ} & \cdots & \widetilde{h}_{j,3}^{\circ} & \widetilde{h}_{j,2}^{\circ} & \widetilde{h}_{j,1}^{\circ} \\ \widetilde{h}_{j,1}^{\circ} & \widetilde{h}_{j,0}^{\circ} & \widetilde{h}_{j,N-1}^{\circ} & \widetilde{h}_{j,N-2}^{\circ} & \cdots & \widetilde{h}_{j,4}^{\circ} & \widetilde{h}_{j,3}^{\circ} & \widetilde{h}_{j,2}^{\circ} \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ \widetilde{h}_{j,N-2}^{\circ} & \widetilde{h}_{j,N-3}^{\circ} & \widetilde{h}_{j,N-4}^{\circ} & \widetilde{h}_{j,N-5}^{\circ} & \cdots & \widetilde{h}_{j,1}^{\circ} & \widetilde{h}_{j,0}^{\circ} & \widetilde{h}_{j,N-1}^{\circ} \\ \widetilde{h}_{j,N-1}^{\circ} & \widetilde{h}_{j,N-2}^{\circ} & \widetilde{h}_{j,N-3}^{\circ} & \widetilde{h}_{j,N-4}^{\circ} & \cdots & \widetilde{h}_{j,2}^{\circ} & \widetilde{h}_{j,1}^{\circ} & \widetilde{h}_{j,0}^{\circ} \end{bmatrix}$$

MODWT Multiresolution Analysis: III

• if we form DWT-based MRAs for **X** and its circular shifts $\mathcal{T}^m \mathbf{X}$, $m = 1, \ldots, N - 1$, we can obtain $\widetilde{\mathcal{D}}_j$ by appropriately averaging all N DWT-based details ('cycle spinning')

IV-16

Relationship Between MODWT and DWT

- bottom plot shows \mathbf{W}_4 from DWT after circular shift \mathcal{T}^{-3} to align coefficients properly in time
- top plot shows $\widetilde{\mathbf{W}}_4$ from MODWT and subsamples that, upon rescaling, yield \mathbf{W}_4 via $W_{4,t} = 4\widetilde{W}_{4,16(t+1)-1}$

Example of Variance Decomposition

• decomposition of sample variance from MODWT

$$\hat{\sigma}_X^2 \equiv \frac{1}{N} \sum_{t=0}^{N-1} \left(X_t - \overline{X} \right)^2 = \sum_{j=1}^4 \frac{1}{N} \|\widetilde{\mathbf{W}}_j\|^2 + \frac{1}{N} \|\widetilde{\mathbf{V}}_4\|^2 - \overline{X}^2$$

- LA(8)-based example for oxygen isotope records
- $\begin{array}{ll} -0.5 \text{ year changes:} & \frac{1}{N} \| \widetilde{\mathbf{W}}_1 \|^2 \doteq 0.145 \ (\doteq \ 4.5\% \text{ of } \hat{\sigma}_X^2) \\ -1.0 \text{ years changes:} & \frac{1}{N} \| \widetilde{\mathbf{W}}_2 \|^2 \doteq 0.500 \ (\doteq \ 15.6\%) \\ -2.0 \text{ years changes:} & \frac{1}{N} \| \widetilde{\mathbf{W}}_3 \|^2 \doteq 0.751 \ (\doteq \ 23.4\%) \\ -4.0 \text{ years changes:} & \frac{1}{N} \| \widetilde{\mathbf{W}}_4 \|^2 \doteq 0.839 \ (\doteq \ 26.2\%) \\ -8.0 \text{ years averages:} & \frac{1}{N} \| \widetilde{\mathbf{V}}_4 \|^2 \overline{X}^2 \doteq 0.969 \ (\doteq \ 30.2\%) \\ -\text{ sample variance:} & \hat{\sigma}_X^2 \doteq 3.204 \end{array}$

Example of $J_0 = 4$ LA(8) MODWT MRA

Summary of Key Points about the MODWT

- similar to the DWT, the MODWT offers
 - a scale-based multiresolution analysis
 - a scale-based analysis of the sample variance
 - a pyramid algorithm for computing the transform efficiently
- unlike the DWT, the MODWT is
- defined for all sample sizes (no 'power of 2' restrictions)
- unaffected by circular shifts to \mathbf{X} in that coefficients, details and smooths shift along with \mathbf{X} (example coming later)
- highly redundant in that a level J_0 transform consists of $(J_0 + 1)N$ values rather than just N
- as we shall see, the MODWT can eliminate 'alignment' artifacts, but its redundancies are problematic for some uses

Examples of DWT & MODWT Analysis: Overview

- look at DWT analysis of electrocardiogram (ECG) data
- discuss potential alignment problems with the DWT and how they are alleviated with the MODWT
- look at MODWT analysis of ECG data, subtidal sea level fluctuations, Nile River minima and ocean shear measurements
- discuss practical details
 - choice of wavelet filter and of level J_0
 - handling boundary conditions
 - handling sample sizes that are not multiples of a power of 2
 - definition of DWT not standardized

Electrocardiogram Data: I

- ECG measurements **X** taken during normal sinus rhythm of a patient who occasionally experiences arhythmia (data courtesy of Gust Bardy and Per Reinhall, University of Washington)
- N = 2048 samples collected at rate of 180 samples/second; i.e., $\Delta t = 1/180$ second
- 11.38 seconds of data in all
- time of X_0 taken to be $t_0 = 0.31$ merely for plotting purposes

Electrocardiogram Data: III

• partial DWT coefficients **W** of level $J_0 = 6$ for ECG time series using the Haar, D(4) and LA(8) wavelets (top to bottom)

Electrocardiogram Data: II

IV-25

- \bullet features include
 - baseline drift (not directly related to heart)
 - intermittent high-frequency fluctuations (again, not directly related to heart)
 - 'PQRST' portion of normal heart rhythm
- provides useful illustration of wavelet analysis because there are identifiable features on several scales

Electrocardiogram Data: IV

- elements W_n of **W** are plotted versus $n = 0, \ldots, N-1 = 2047$
- vertical dotted lines delineate 7 subvectors $\mathbf{W}_1, \ldots, \mathbf{W}_6 \& \mathbf{V}_6$
- sum of squares of 2048 coefficients \mathbf{W} is equal to those of \mathbf{X}
- gross pattern of coefficients similar for all three wavelets

Electrocardiogram Data: V

- LA(8) DWT coefficients stacked by scale and aligned with timespacing between major tick marks is the same in both plots
 - IV-30

Electrocardiogram Data: VI

IV-29

- R waves aligned with spikes in \mathbf{W}_2 and \mathbf{W}_3
- intermittent fluctuations appear mainly in \mathbf{W}_1 and \mathbf{W}_2
- setting $J_0 = 6$ results in \mathbf{V}_6 capturing baseline drift

Electrocardiogram Data: VII

- to quantify how well various DWTs summarize \mathbf{X} , can form normalized partial energy sequences (NPESs)
- given $\{U_t : t = 0, \dots, N-1\}$, square and order such that $U_{(0)}^2 \ge U_{(1)}^2 \ge \dots \ge U_{(N-2)}^2 \ge U_{(N-1)}^2$
- $U_{(0)}^2$ is largest of all the U_t^2 values while $U_{(N-1)}^2$ is the smallest
- NPES for $\{U_t\}$ defined as

$$C_n \equiv \frac{\sum_{m=0}^n U_{(m)}^2}{\sum_{m=0}^{N-1} U_{(m)}^2}, \quad n = 0, 1, \dots, N-1$$

Electrocardiogram Data: VIII

- plots show NPESs for
 - original time series (dashed curve, plot (a))
 - Haar DWT (solid curves, both plots)
 - D(4) DWT (dashed curve, plot (b)); LA(8) is virtually identical
 - DFT (dotted curve, plot (a)) with $|U_t|^2$ rather than U_t^2

- D(4) DWT multiresolution analysis
- 'shark's fin' evident in \mathcal{D}_5 and \mathcal{D}_6

Haar DWT multiresolution analysis of ECG time series
blocky nature of Haar basis vectors readily apparent

Electrocardiogram Data: XI

Subtidal Sea Level Fluctuations: VI

• form normalized cumulative sum of squares:

$$C_{j,t} \equiv \frac{1}{N} \sum_{u=0}^{t} \widetilde{W}_{j,u+|\nu_{j}^{(H)}| \mod N}^{2}, \ t = 0, \dots, N-1$$

note that $C_{j,N-1} = \|\mathcal{T}^{-|\nu_j^{(H)}|} \widetilde{\mathbf{W}}_j\|^2 / N = \|\widetilde{\mathbf{W}}_j\|^2 / N$

• examples for j = 2 (left-hand plot) and j = 7 (right-hand)

Nile River Minima: I

IV-49

- \bullet time series ${\bf X}$ of minimum yearly water level of the Nile River
- data from 622 to 1284, but actually extends up to 1921
- \bullet data after about 715 recorded at the Roda gauge near Cairo
- method(s) used to record data before 715 source of speculation
- oldest time series actually recorded by humans?!

Subtidal Sea Level Fluctuations: VII

• easier to see how variance is building up by subtracting uniform rate of accumulation $tC_{j,N-1}/(N-1)$ from $C_{j,t}$:

$$C'_{j,t} \equiv C_{j,t} - t \frac{C_{j,N-1}}{N-1}$$

• yields rotated cumulative variance plots

- $C'_{2,t}$ and $C'_{7,t}$ associated with physical scales of 1 and 32 days
- helps build up picture of how variability changes within a year

IV-50

Nile River Minima: II

- level $J_0 = 4$ Haar MODWT MRA points out enhanced variability before 715 at scales $\tau_1 \Delta t = 1$ year and $\tau_2 \Delta t = 2$ year
- Haar wavelet adequate (minimizes # of boundary coefficients)

• level $J_0 = 6$ MODWT multiresolution analysis using LA(8) wavelet of vertical shear measurements (in inverse seconds) versus depth (in meters; series collected & supplied by Mike Gregg, Applied Physics Laboratory, University of Washington)

IV-53

Ocean Shear Measurements: III

- $\widetilde{\mathcal{D}}_j$'s pick out bursts around 450 and 975 meters, but two bursts have somewhat different characteristics
- possible physical interpretation for first burst: turbulence in $\hat{\mathcal{D}}_4$ drives shorter scale turbulence at greater depths
- hints of increased variability in $\widetilde{\mathcal{D}}_5$ and $\widetilde{\mathcal{D}}_6$ prior to second burst

Ocean Shear Measurements: II

- $\Delta t = 0.1$ meters and N = 6875
- LA(8) protects against leakage and permits coefficients to be aligned with depth
- $J_0 = 6$ yields smooth $\widetilde{\mathcal{S}}_6$ that is free of bursts (these are isolated in the details $\widetilde{\mathcal{D}}_j$)
- note small distortions at beginning/end of \tilde{S}_6 evidently due to assumption of circularity
- vertical blue lines delineate subseries of 4096 'burst free' values (to be reconsidered later)
- since MRA is dominated by $\widetilde{\mathcal{S}}_6$, let's focus on details alone

IV-54

Choice of Wavelet Filter: I

- basic strategy: pick wavelet filter with smallest width L that yields an acceptable analysis (smaller L means fewer boundary coefficients)
- very much application dependent
 - LA(8) good choice for MRA of ECG data and for time/depth dependent analysis of variance (ANOVA) of subtidal sea levels and shear data
 - D(4) or LA(8) good choice for MRA of subtidal sea levels, but Haar isn't (details 'locked' together, i.e., are not isolating different aspects of the data)
 - Haar good choice for MRA of Nile River minima

Choice of Wavelet Filter: II

- can often pick L via simple procedure of comparing different MRAs or ANOVAs (this will sometimes rule out Haar if it differs too much from D(4), D(6) or LA(8) analyses)
- for MRAs, might argue that we should pick $\{h_l\}$ that is a good match to the 'characteristic features' in **X**
 - hard to quantify what this means, particularly for time series with different features over different times and scales
 - Haar and D(4) are often a poor match, while the LA filters are usually better because of their symmetry properties
 - can use NPESs to quantify match between $\{h_l\}$ and \mathbf{X}
- use LA filters if time alignment of $\{W_{j,t}\}$ with **X** is important (LA filters with even L/2, i.e., 8, 12, 16 or 20, yield better alignment than those with odd L/2)

IV-57

Choice of Level J_0 : II

- as J_0 increases, there are more boundary coefficients to deal with, which suggests not making J_0 too big
- if application doesn't naturally suggest what J_0 should be, an ad hoc (but reasonable) default is to pick J_0 such that circularity assumption influences < 50% of \mathbf{W}_{J_0} or \mathcal{D}_{J_0} (next topic of discussion)

Choice of Level J_0 : I

- again, very much application dependent, but often there is a clear choice
 - $-J_0 = 6$ picked for ECG data because it isolated the baseline drift into \mathbf{V}_6 and $\widetilde{\mathbf{V}}_6$, and decomposing this drift further is of no interest in studying heart rhythms
 - $-J_0 = 7$ picked for subtidal sea levels because it trapped intraannual variations in $\widetilde{\mathbf{V}}_7$ (not of interest to analyze these)
 - $-J_0 = 6$ picked for shear data because $\widetilde{\mathbf{V}}_6$ is free of bursts; i.e., $\widetilde{\mathbf{V}}_{J_0}$ for $J_0 < 6$ would contain a portion of the bursts
 - $-J_0 = 4$ picked for Nile River minima to demonstrate that its time-dependent variance is due to variations on the two smallest scales

IV-58

Handling Boundary Conditions: I

- \bullet DWT and MODWT treat time series ${\bf X}$ as if it were circular
- circularity says X_{N-1} is useful surrogate for X_{-1} (sometimes this is OK, e.g., subtidal sea levels, but in general it is questionable)
- first step is to delineate which parts of \mathbf{W}_j and \mathcal{D}_j are influenced (at least to some degree) by circular boundary conditions
- by considering

$$W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1}$$
 and $\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_{j}-1} \tilde{h}_{j,l} X_{t-l \mod N}$,

can determine that circularity affects

$$W_{j,t}, t = 0, \dots, L'_j - 1$$
 with $L'_j \equiv \left[(L-2) \left(1 - \frac{1}{2^j} \right) \right]$

Handling Boundary Conditions: IV

- boundary regions increase as the filter width L increases
- \bullet for fixed L, boundary regions in DWT MRAs are smaller than those for MODWT MRAs
- for fixed L, MRA boundary regions increase as J_0 increases (an exception is the Haar DWT)
- \bullet these considerations might influence our choice of L and DWT versus MODWT

Handling Boundary Conditions: V

• comparison of DWT smooths \mathcal{S}_6 (top 3 plots) and MODWT smooths $\widetilde{\mathcal{S}}_6$ (bottom 3) for ECG data using, from top to bottom within each group, the Haar, D(4) and LA(8) wavelets

Handling Boundary Conditions: VI

- just delineating parts of \mathbf{W}_j and \mathcal{D}_j that are influenced by circular boundary conditions can be misleading (too pessimistic)
- effective width $\lambda_j = 2\tau_j = 2^j$ of *j*th level equivalent filters can be much smaller than actual width $L_j = (2^j - 1)(L - 1) + 1$
- arguably less pessimistic delineations would be to always mark boundaries appropriate for the Haar wavelet (its actual width is the effective width for other filters)

Handling Boundary Conditions: VII

• plots of LA(8) equivalent wavelet/scaling filters, with actual width L_j compared to effective width of 2^j

IV-66

Handling Boundary Conditions: IX

• comparison of effect of reflection (red/blue) and circular (black) boundary conditions on LA(8) DWT-based MRA for oxygen isotope data

Handling Boundary Conditions: VIII

IV-65

- to lessen the impact of boundary conditions, we can use 'tricks' from Fourier analysis, which also treats \mathbf{X} as if it were circular
 - extend series with \overline{X} (similar to zero padding)
 - polynomial extrapolations
 - use 'reflection' boundary conditions by pasting a reflected (time-reversed) version of \mathbf{X} to end of \mathbf{X}

- note that series so constructed of length 2N has same sample mean and sample variance as original series ${\bf X}$

Handling Non-Power of Two Sample SizesLack of Standard Definition for DWT: I• not a problem with the MODWT, which is defined naturally
for all sample sizes N• our definition of DWT matrix \mathcal{W} based upon
– convolutions rather than inner products
– odd indexed downsampling rather than even indexed
– using $(-1)^{l+1}h_{L-1-l}$ to define g_l rather than $(-1)^{l-1}h_{1-l}$
– ordering coefficients in resulting transform from small to
large scale rather than large to small

- truncate at end of series & do analysis

trix (after reordering of its row vectors)

15 -----

0 5 10 15

5 10 15

• can use a specialized pyramid algorithm involving at most one

IV-69

Lack of Standard Definition for DWT: II

• two left-hand columns: D(4) DWT matrix \mathcal{W} as defined here

• two right-hand columns: S-Plus Wavelets D(4) DWT ma-

10

0

IV-71

10 15

5

بعلوب ومعمدها

Les TTPE STORES

and the states

0

5 10 15

• only the scaling coefficient is guaranteed to be the same!!!

- combine two analyses together

special term at each level

• choices other than the above are used frequently elsewhere, resulting in DWTs that can differ from what we have presented

IV-70