
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 20, no. 1, April 2007, 31-43

Measurement of the Achieved Performance Levels of the
WEB Applications With Distributed Relational Database

Dragan Simić, Srécko Ristić, and Slobodan Obradovíc

Abstract: This paper describes the methods and means used for creatinga computer
cluster using ordinary PCs. The cluster is running a replicated relational database,
and two custom Web applications, used as the database clients. Operating system run-
ning all this is Linux 2.4, with Linux Virtual Server (LVS) used as the load-balancing
solution, MySQL 4.0 as the replicated database (supportingtransactions and referen-
tial integrity), and Apache 1.3 as the Web server. PHP4 is used for Web applications
development. Additionally, a High Performance Computing (HPC) cluster is imple-
mented, using OpenMOSIX. Measurement and comparison of achieved performance
levels is done as the final aim, using two custom applicationsdeveloped for that pur-
pose, acting as clients of two deployed Web applications. Performance-measurement
applications are running under Microsoft Windows, and are developed using Borland
Delphi 7.

Keywords: Relational databases, Web applications, Linux Virtual Server, LVS, HPC,
Load balancing, MySQL 4.0, PHP4.

1 Introduction

The cluster of independent servers interconnected by a fastcomputer network, is
nowadays a common way used to make systems able of achieving performance
levels demanded by deployed applications and day-to-day growing number of ac-
tual endusers. Many enterprise or business applications, not only Web sites, are
realized as a form of distributed Web application, commonlyusing a relational
database backend for actual data storage. So the actual areas for making perfor-
mance improvements, always having scalability in mind, areapplication servers
(Web servers), database servers and the network infrastructure.

Manuscript received Jan. 27, 2006.
The authors are with The Advanced School of Electrical Engineering, Vojvode Stepe

283, 11000 Belgrade, Serbia (e-mails:dragan.simic@gmail.com, sreckor@blic.net,
sobradovic@vets.edu.yu).

31



32 D. Simić, S. Ristić, and S. Obradović:

In this paper, the application server performance levels and scalability is achieved
by grouping morereal Apache Web servers into onelarge virtual server, with the
ease of adding one or morereal servers to the virtuallarge one, using LVS as
the load balancer. The database subsystem is achieving performance levels and
scalability in a similar way. MySQL database is replicated,also grouping more
real into one virtuallarge database server, keeping the possibility of adding one or
morereal servers into the virtual server. Network infrastructure that was used is a
switched 100Mbps Fast Ethernet, which keeps the scalability on the levels achieved
by the application servers and database subsystem - Fast Ethernet can be speeded
up by using either bonding of more interfaces together or Gigabit Ethernet (possibly
bonded, too).

Also, it is important to note that the aim of this work was not to achieve the
maximum possible performance levels at the present day, theaim was to get relative
relations between performance levels achieved using more solutions and scenarios
for simulated real-life situations.

2 Cluster Realization

The actual cluster consisted of five Web servers, five database servers, one LVS
load-balancer, and two client machines. All servers were running Slackware 9.0
with custom 2.4.21 Linux kernel (withhiddenpatch applied), and had the identi-
cal hardware configuration - Intel Celeron 1100MHz, ASUS motherboard with SiS
chipset, 256MB PC133 SDRAM, 20GB ATA-66 5400rpm HDD, 100Mbps inte-
grated SiS NIC (Network Interface Controller) whereas LVS machine had also two
additional 100Mbps Realtek-8139C NICs as PCI cards. Both client machines were
running Windows 2000 Professional with SP3, and had the following hardware
configuration: Intel Pentium 4 1600MHz, ASUS motherboard with Intel chipset,
512MB PC133 SDRAM, 40GB ATA-100 7200rpm HDD, 100Mbps VIA Rhine-II
NIC.

Logically, LVS balancer has two Virtual IP addresses (VIPs), first for the virtual
Web server and second for the virtual Database server.

Physically, LVS balancer machine has three Fast Ethernet interfaces and they
are all connected to a common Fast Ethernet switch because the used way of im-
plementing LVS was LVS/DR (Direct Routing), which requiresall real servers and
load balancer to have one physical interface connected to the same switch. For
an explanation and more information of the way LVS/DR works,and about LVS
in general, please consult [1], [2] and [3]. The separation of incoming and outgo-
ing network traffic through the balancer machine was achieved by the appropriate



Measurement of the Achieved Performance Levels of ... 33

manipulation of balancer machine responses to address resolution protocol (ARP)
queries for virtual IPs (VIPs), wherehiddenpatch plays the main role together with
appropriaterp filter andarp filter Ethernet interfaces settings. The final flows of
traffic through the LVS balancer are shown in Figure 2.

Fig. 1. The used cluster structure, network
topology and IP addresses.

Fig. 2. Configuration of load-balancer inter-
faces, and the traffic flow.

The relational database replication was implemented through the MySQL’s na-
tive replication mechanism, please see [4] for detailed information about MySQL
replication, and for more information about database replication in general please
see [5]. One detail about that replication mechanism is thatone database server
acts as a master, while the others have slave roles; with a constraint of having all
of the non-readonly SQL queries executed only on the master server, which does
the propagation of changes on all slave servers. All database servers were running
tuned official binary release of MySQL 4.0.15-Max.

One of the Web servers (one that acted asmasterserver) was runningrsync
server, which was used byrsyncclients on the rest of Web servers (slaveservers)
to synchronize the HTML and PHP contents of a shared directory. The reason why
some of the more sophisticated methods for sharing a directory contents were not
used (like NFS, for example) is a completely static nature ofthe directory’s content
(it was actually synchronized just once). All Web servers were running custom
built and tuned Apache 1.3.28, with PHP 4.3.3 as a Dynamic Shared Object (DSO)
module. For more information about Apache and PHP in general, please consult [6]
and [7].

As an addition, an OpenMOSIX (HPC Cluster at the operating-system level)



34 D. Simić, S. Ristić, and S. Obradović:

was also implemented and tested, with the total of eleven nodes in it. All of the
servers were connected to a common 100Mbps switch, each server with a single
Fast Ethernet interface. All servers were running a custom 2.4.21 Linux kernel,
with OpenMOSIX patches applied. HPC Cluster was used to run 22 instances of
distributed.net(http://www.distributed.net/) client, with the expectedalmost-linear
increase of performances. The reason why OpenMOSIX was not used to create a
HPC cluster on which the Web testing applications would run is just because Open-
MOSIX does not have the possibility of thread migration between cluster nodes.
At the same time, MySQL RDBMS is a true multi-threaded application. For more
details about this problem, and more information about OpenMOSIX in general,
please consult [8] and [9].

3 WEB Applications

Two custom Web applications were developed, keeping in mindthe objective of
creating and simulating real-life scenarios and situations using PHP4 as the script-
ing language.

The first Web application calledBilling, acts as an application for a hypothetical
mobile-devices telecom operator. One interesting detail about this application is
that it is using adynQuerysystem for dynamic creation and execution of SQL
queries and PHP scripts, which is developed especially for this Web application.
The core idea ofdynQueryis to also keep SQL queries in the database, of course
in special tables used just for that purpose and to get all parameters used to choose
the actual SQL queries and substitute the values for their arguments, from the Web
client by GET or POST methods.

The database used forBilling application has a total of four InnoDB tables,
with referential integrity constraints, and a total of about 4,000,000 records. For
more details about InnoDB please have a look at [10]. SQL queries that are used
for performance testing, include both read-only and updatequeries.

The second Web application, calledEmployees, is actually a modified test
database shipped with Borland’s Interbase RDBMS and the actual modifications
were targeted to get it in compliance with MySQL 4.0 RDBMS. SQL queries used
for performance tests are contained in statically generated PHP scripts (one PHP
script - one SQL query) having actual values for their arguments passed from the
Web client by using GET method.

The database used forEmployeesapplication has a total of 10 InnoDB tables
with referential integrity constraints and a total of about400 records. SQL queries
used for performance testing are only read-only queries.



Measurement of the Achieved Performance Levels of ... 35

4 Performance Measurement Applications

Web Server Load Tool (WSLT)application used for performance measuring, was
written in Delphi 7 using Indy component suite (http://www.indyproject.org/). The
main goal for this application was the generation of large Web server load simulat-
ing real users’ behavior.

To achieve this goal, multithreaded programming model was used. Microsoft
Windows, of course, has appropriate API calls for the control of processes executed
through threads. The most significant call isCreateThreadwhich enables parallel
execution for created threaded processes. For the actual implementation, Delphi
abstract classTThreadis used. New classTRobotis inherited fromTThread, and it
was used to create web server requests.TRobotclass has following properties:

• Increment step (connections),

• Polling interval (ms),

• Max. number of connections,

• Time to run (sec),

• No. of browsers,

• Use authorization, and

• Method.

Based on these properties values, WSLT performs requests toWeb server clus-
ter using URLs stored in a text file. The actual order of URLs simulates a real-user-
browsing-Web-site behavior.

While running, WSLT produces a large amount of data that has to be stored for
later analysis. WSLT is actually just saving the results data in plain text format,
what is not suitable for effective analysis, so a new utilitywas developed -Analysis
Tool (AT).

AT was developed in Delphi 7 and is relying on the Interbase 6 RDBMS. AT
reads and processes WSLT output files, stores the actual datainto database and
produces a set of reports based on stored data. Using the AT application, all of the
collected data was loaded into the database and the actual analysis was performed
using the reports generated by AT.

Reports generated by AT are stored in HTML files usingTBasePageProducer
component which is shipped as an integral part of Delphi 7. For the generation of
graphsTeeChartcomponent was used, which is also a part of Delphi 7.

Some parts of the report depend on the actually used application (see the Web
test applications section) and some depend on the cluster configuration and WSLT,



36 D. Simić, S. Ristić, and S. Obradović:

so the AT uses an XML based configuration file for the report generation configu-
ration.

The produced report includes the following test results:

• Total number of HTTP requests (greater value is better),

• HTTP requests per second, average (greater value is better),

• Number of good HTTP responses (200 OK) (greater value is better),

• Number of bad HTTP responses (non-200 OK) (lower value is better),

• Total HTML received [MB],

• Average HTML traffic [Mbit/s],

• Minimum HTTP response time [ms] (lower value is better),

• Maximum HTTP response time [ms] (lower value is better),

• Minimum number of HTTP connections (lower value is better),

• Maximum number of HTTP connections (lower value is better),

• Update SQL queries per second (average value),

• Non-update SQL queries per second (average value),

• Total SQL queries per second (average value).

The produced report also includes the following graphs (an example with all
eight produced graphs is given on Figure 3):

• Graph 1: Represents the number of active requests in a particular second of
testing - for active requests, the requests without server response are counted

• Graph 2: Represents minimal, average and maximal response time in a par-
ticular second of testing. In the ideal situation, difference between all three
times should be small and without any variations in the wholetest time

• Graph 3: Represents the amount of received HTML traffic in a particular sec-
ond of testing. It is important to highlight the fact that it shows the HTML
code traffic speed, as seen by WSLT, and not the actual TCP/IP protocol
speed. That is an explanation of the fact that sometimes WSLT(as a plain
user space application) sees the HTML traffic rates exceeding the actual net-
work interface speeds, because the Windows probably has some buffers im-
plemented inside the TCP/IP stack that make those traffic bursts possible.

• Graph 4: Represents the number of ’good’ responses receivedfrom the tested
Web server (for the ’good’ type, the HTTP /1.1 code 200 responses are
counted)



Measurement of the Achieved Performance Levels of ... 37

• Graph 5: Represents the number of ’bad’ responses received from the tested
Web server (for the ’bad’ type, the HTTP /1.1 responses different from code
200 are counted)

• Graph 6: Represents the distribution of responses by percentage

• Graph 7: Represents the number of update SQL queries in a particular second
(this report was created only for theBilling application)

• Graph 8: Represents the number of non-update SQL queries in aparticular
second (this report was created only forBilling application)

Fig. 3. An example of the graphs produced by WebServer Load Tool.



38 D. Simić, S. Ristić, and S. Obradović:

5 Scenarios and Situations

Various scenarios for actual performance measurements were chosen by two main
parameters determining the scenario: Load level (producedby WebServer Load
Tool, WSLT), and cluster configuration (number of used Web and database servers,
and some other realization details). The following three load levels were chosen
and they are listed here using WSLT configuration parametersfor simulating those
load levels:

Table 1. The parameters of simulated load levels.

Parameter/Load level Light Normal Heavy

Increment step (connections) 50 120 250
Polling interval (msec) 20 50 50
Max number of connections 200 500 1000
Time to run (sec) 90 90 90
No. of browsers 15 25 50

The main background idea used while choosing these parameters for all three
load levels, is to make WSLT reach the desired number of simultaneous connec-
tions (Max number of connections) in approximately one second. After starting the
simulation, WSLT tries to reach and keep up the desired number of connections
by checking the number of active connections every Polling interval milliseconds
and if the number is lower than desired, increases the numberof connections by
Increment step; but if the number of connections is equal or greater, WSLT waits
for the next Polling interval and the described process is repeated until expiration
of Time to run. By using this algorithm, WSLT tries to simulate a real-life scenario
of users accessing and using a Web application.

There are a few commercial applications for Web server and database bench-
marking and one of them is Quest Software’s Benchmark Factory for Databases
[11]. Benchmark Factory for Databases is a performance and code scalability test-
ing tool that simulates users and transactions on the database and replays production
or synthetic workload in non-production environments.

The following cluster configurations were used for each Web application, using
Light, NormalandHeavyload levels, keeping in all cases LVS load-balancer in the
LVS/DR(LVS/Direct Routing) mode:

• 1 database + 1 Web server, 1 WSLT

• 2 database + 5 Web servers,wrr andwlc scheduler, 1 WSLT

• 5 database + 5 Web servers,wrr andwlc scheduler, 1 WSLT

• the configurations listed above, but with two WSLT clients



Measurement of the Achieved Performance Levels of ... 39

• some of the configurations were also tested having SQL updates removed, in
order to measure the impact of propagating SQL updates to overall perfor-
mance.

PHP4 has a built-in support for persistent MySQL database connections (please
see [7] for more details), and all tests were repeated using persistent database con-
nections but with no noticeable performance gains. Those results of no perfor-
mance gains are quite surprising as persistent connectionseliminate the repeating
database connection establishments what should result in significant performance
gains. One of the possible explanations for no performance gains while using per-
sistent database connections is that used connection pool is created once, at the
beginning of the test (exactly, the pool creation is finishedafter WSLT reaches the
maximum number of simultaneous connections). LVS distributes database con-
nections over the cluster members only while some new connections are added to
the pool after that point the whole task of distribution overthe cluster members
is performed solely by the PHP engine, which either does not distribute them in a
performance-efficient manner or distributes them in a way which is in conflict with
the initial distribution done by LVS.

6 Results

While analyzing the measured values, it is important to keepin mind that the es-
tablishment of each TCP connection involves numerous steps: opening client TCP
connection to the virtual Web server, scheduling the request to one of the real Web
servers, HTTP request processing, opening a connection to the virtual Database
server, scheduling the connection to one of the real Database servers, database re-
quest processing, returning the database query result and (optionally) closing the
database connection, and finally returning the Web server response and closing the
Web client connection. In the other words, measurement results were gathered,
produced and analyzed by measuring the user-space HTTP traffic, as seen by the
WSLT as a Windows application, keeping out of sight all the latencies, overheads
and other parameters irrelevant from the aspect of an average real-world user, what
WSLT actually intended to simulate and measure.

Table 2 and Table 3 are showing the measured performance levels and the per-
formance level differences, respectively, for theBilling application. Results are
shown for all of the cluster configurations and all of the generated load levels. For
every category, the best result is shown inbold font.

Table 4 and Table 5 show the measured performance levels and the performance
level differences, respectively, for theEmployeesapplication. Results are shown for



40 D. Simić, S. Ristić, and S. Obradović:

Table 2. The parameters of simulated load levels.

Cluster configuration/Results (1)a (2)b (3)c (4)d

1 DB, 1 Web, Light 4003 44.48 2.60 41.88
2 DB, 5 Web, Light, wrr 6142 68.24 4.02 64.22
5 DB, 5 Web, Light, wrr 5861 65.12 3.92 61.20
5 DB, 5 Web, Light, wlc 1899 21.10 1.34 19.76

1 DB, 1 Web, Normal 5827 64.74 4.32 60.42
2 DB, 5 Web, Normal, wrr 11108 123.42 8.01 115.41
5 DB, 5 Web, Normal, wrr 11114 123.49 7.96 115.53
5 DB, 5 Web, Normal, wlc 11139 123.77 7.86 115.91

1 DB, 1 Web, Heavy 8592 95.47 6.11 89.36
2 DB, 5 Web, Heavy, wrr 22748 252.76 15.07 237.69
5 DB, 5 Web, Heavy, wrr 23249 258.32 15.99 242.33
5 DB, 5 Web, Heavy, wlc 23134 257.04 16.26 240.79

5 DB, 5 Web, Heavy, wlc, 2 WSLT 45961 510.68 32.47 478.21
5 DB, 5 Web, Light, wlc, no SQL upd. 6022 66.91 0.00 66.91

aThe total number of performed HTTP requests during the test
bNumber of processed HTTP requests per second
cNumber of performed update SQL queries per second
dNumber of performed non-update SQL queries per second

Table 3. Cluster performance level differences for Billingapplication.

Cluster configuration/Differences (1)a (2)b (3)c (4)d

1 DB, 1 Web, Light 34.82 34.82 35.32 34.78
2 DB, 5 Web, Light, wrr 0.00 0.00 0.00 0.00
5 DB, 5 Web, Light, wrr 4.58 4.57 2.48 4.71
5 DB, 5 Web, Light, wlc 69.08 69.08 66.67 69.23

1 DB, 1 Web, Normal 47.68 47.69 46.07 47.87
2 DB, 5 Web, Normal, wrr 0.28 0.28 0.00 0.43
5 DB, 5 Web, Normal, wrr 0.22 0.23 0.62 0.33
5 DB, 5 Web, Normal, wlc 0.00 0.00 1.87 0.00

1 DB, 1 Web, Heavy 63.04 63.04 62.42 63.12
2 DB, 5 Web, Heavy, wrr 2.15 2.15 7.32 1.91
5 DB, 5 Web, Heavy, wrr 0.00 0.00 1.66 0.00
5 DB, 5 Web, Heavy, wlc 0.49 0.50 0.00 0.64

5 DB, 5 Web, Heavy, wlc, 2 WSLT −98.67 −98.68 −99.69 98.60
5 DB, 5 Web, Light, wlc, no SQL upd. −217 −217 n/a −238

aDifference of the total number of performed HTTP requests during the test
bDifference of the average number of processed HTTP requestsper second
cDifference of the average number of performed update SQL queries per second
dDifference of the average number of performed nonupdate SQLqueries per second



Measurement of the Achieved Performance Levels of ... 41

Table 4. Measured cluster performance levels forEmployeesapplication.

Cluster configuration/Results (1)a (2)b

1 DB, 1 Web, Light 6289 69.88
5 DB, 5 Web, Light, wrr 5094 56.60
5 DB, 5 Web, Light, wlc 13551 150.57

1 DB, 1 Web, Normal 14280 158.67
5 DB, 5 Web, Normal, wrr 14349 159.43
5 DB, 5 Web, Normal, wlc 14579 161.99

1 DB, 1 Web, Heavy 23176 257.51
5 DB, 5 Web, Heavy, wrr 23000 255.56
5 DB, 5 Web, Heavy, wlc 23249 258.32

aThe total number of performed HTTP requests during the test
bThe average number of processed HTTP requests per second

all cluster configurations and all generated load levels. For every category, the best
result is shown inbold font.

Table 5. Cluster performance levels differences forEmployeesapplication.

Cluster configuration/Differences (1)a (2)b

1 DB, 1 Web, Light 53.59 53.59
5 DB, 5 Web, Light, wrr 62.41 62.41
5 DB, 5 Web, Light, wlc 0.00 0.00

1 DB, 1 Web, Normal 2.05 2.05
5 DB, 5 Web, Normal, wrr 1.58 1.58
5 DB, 5 Web, Normal, wlc 0.00 0.00

1 DB, 1 Web, Heavy 0.31 0.31
5 DB, 5 Web, Heavy, wrr 1.07 1.07
5 DB, 5 Web, Heavy, wlc 0.00 0.00

aDifference of the total number of performed HTTP requests during the test
bDifference of the average number of processed HTTP requestsper second

TheBilling application showed the following performance levels, for all cluster
configurations:

• Light load level: 50% of performance levels increase for the cluster configu-
rations with more than one Web and Database servers, compared to the 1 DB
/ 1 Web configuration.

• Normal load level: 90% of performance level increase for the cluster config-
urations with more than one Web and Database servers, compared to the 1
DB / 1 Web configuration. The unexpected behavior of minor performance
increase of 0.1% between 5 DB / 5 Web and 2 DB / 5 Web configurations



42 D. Simić, S. Ristić, and S. Obradović:

can be explained by the better optimization of Database servers for multiple
concurrent connections.

• Heavyload level: 170% of performance level increase for the cluster config-
urations with more than one Web and Database servers, compared to the 1
DB / 1 Web configuration.

TheEmployeesapplication showed almost the same performance levels for all
cluster configurations and load levels, except for theLight load level. Light load
level showed performance level increase of 110% what was caused by an internal
error of the WSLT’s internal logic, but unfortunately the timeline did not allow
the wrong measurements to be repeated. Almost the same performance levels are
explained by a load level generated by theEmployeesapplication that was too low
to take noticeable advantages of the cluster environment.

7 Conclusion

This project has three main goals, as follows:

• To design and realize a Web and Database server cluster with the capability
of large-scale applications deployment

• To design and implement the Web testing applications and other needed test-
ing tools and strategies for performance measurements

• Prove that the realized cluster actually has the capabilityof handling heavy
loads

One of the main conclusions is a much better optimization of the used Database
server (MySQL 4.0) for many concurrent connections, compared to the used Web
server (Apache 1.3), which was expected because of the nature and main concerns
that were used while the companies were designing all of the actual RDBMS’es.
The choice of a load-balancing scheduler did not have noticeable impacts on the
achieved performance levels, which can be explained by a quite long duration of
client TCP connections (Web and Database connections).

The second of main conclusions is that a Web application needs to be properly
designed with the intention of running it on a cluster. As thecluster adds additional
overheads that result in greater latencies, but increases the throughput many times,
Web application must have the real needs for making the idea of running it on a
cluster reasonable. In the other words, running a Web application on the cluster
will show a noticeable performance boost only if the Web application generates
load that is really high - only in that case the multiple throughput increase makes



Measurement of the Achieved Performance Levels of ... 43

more improvement that outperforms the additional latencies which lower the final
performance levels.

The last conclusion is based on the measured performance levels that showed
performance increase of 150% up to 270%, while the performance increase gets
higher as the load generated by the Web application also getshigher.

The conclusions drawn from obtained results are comparablewith the conclu-
sions stated in another Web and database benchmarking research paper [12]. The
objective of those experiments was to evaluate LVS’s ability to distribute Web re-
quests among several servers in a variety of LVS configurations and offer a com-
parison of LVS’s ability to scale on Linux 2.2 versus Linux 2.4.

References

[1] Linux Virtual Server (LVS),Official LVS on-line documentation. GPL licensed,
2004. [Online]. Available: http://www.linuxvirtualserver.org/

[2] W. Zhang, S. Jin, and Q. Wu,Creating Linux Virtual Servers. National Laboratory
for Parallel and Distributed Processing, China, 2003.

[3] W. Zhang,Linux Virtual Server for Scalable Network Services. National Laboratory
for Parallel and Distributed Processing, China.

[4] MySQL AB, MySQL Reference Manual for version 4.0.15, official on-line
documentation. GPL licensed, 2004. [Online]. Available: http://www.mysql.com/

[5] R. Vanderwall,Database Replication Prototype-Master thesis. Department of Math-
ematics and Computer Science,: University of Groningen, 2003.

[6] The Apache Web Server,Apache 1.3 Documentation, on-line documentation. GPL
licensed, 2004. [Online]. Available: http://www.apache.org/

[7] PHP Hypertext Preprocessor,Official PHP on-line documentation. GPL licensed,
2004. [Online]. Available: http://www.-php.net/

[8] K. Buytaert,MOSIX HOWTO, on-line documentation, part of The Linux Documen-
tation Project. GPL licensed, 2004. [Online]. Available: http://www.tldp.org/

[9] OpenMOSIX,Official OpenMOSIX on-line documentation. GPL licensed, 2004.
[Online]. Available: http:// openmosix.sourceforge.net/

[10] Innobase Oy Inc,InnoDB Engine in MySQL-Max 3.23.56 and MySQL 4.0.12,
official on-line documentation. GPL licensed, 2004. [Online]. Available: http://
www.innodb.com/

[11] Quest Software,Benchmark Factory for Databases, 2006. [Online]. Available:
http://www.quest.com/benchmarkfactory

[12] P. O’Rourke, Performance Evaluation of Linux Virtual Server, 2005. [Online].
Available: http://www.linuxvirtualserver.org/performance/lvs.ps.gz


