FACTA UNIVERSITATIS (NIS)
SER.: ELEC. ENERG. vol. 20, no. 1, April 2007, 31-43

Measurement of the Achieved Performance Levels of the
WEB Applications With Distributed Relational Database

Dragan Simi¢, Srecko Risti¢, and Slobodan Obradove

Abstract: This paper describes the methods and means used for creatmgputer
cluster using ordinary PCs. The cluster is running a repdi¢aelational database,
and two custom Web applications, used as the databasescl@pérating system run-
ning all this is Linux 2.4, with Linux Virtual Server (LVS) &sl as the load-balancing
solution, MySQL 4.0 as the replicated database (suppoitargactions and referen-
tial integrity), and Apache 1.3 as the Web server. PHP4 id fmeWeb applications
development. Additionally, a High Performance ComputiHgC) cluster is imple-
mented, using OpenMOSIX. Measurement and comparison oéaethperformance
levels is done as the final aim, using two custom applicati@veloped for that pur-
pose, acting as clients of two deployed Web applicationdoReance-measurement
applications are running under Microsoft Windows, and aeetbped using Borland
Delphi 7.

Keywords: Relational databases, Web applications, Linux Virtual/8elLVS, HPC,
Load balancing, MySQL 4.0, PHP4.

1 Introduction

The cluster of independent servers interconnected by a@asputer network, is
nowadays a common way used to make systems able of achiegifgyrpance
levels demanded by deployed applications and day-to-dayigg number of ac-
tual endusers. Many enterprise or business applicatiostspmy Web sites, are
realized as a form of distributed Web application, commamdyng a relational
database backend for actual data storage. So the actualfareaaking perfor-
mance improvements, always having scalability in mind, agplication servers
(Web servers), database servers and the network infrasteuc

Manuscript received Jan. 27, 2006.

The authors are with The Advanced School of Electrical Eegiimg, Vojvode Stepe
283, 11000 Belgrade, Serbia (e-maildr agan. si m c@nmei | . com sreckor @l i c. net,
sobradovi c@et s. edu. yu).

31

32 D. Simi¢, S. Risti¢, and S. Obradovi¢:

In this paper, the application server performance levalssgalability is achieved
by grouping moraeal Apache Web servers into oarge virtual server, with the
ease of adding one or moreal servers to the virtualarge one, using LVS as
the load balancer. The database subsystem is achievingriperice levels and
scalability in a similar way. MySQL database is replicatato grouping more
real into one virtuallarge database server, keeping the possibility of adding one or
morereal servers into the virtual server. Network infrastructuratttvas used is a
switched 100Mbps Fast Ethernet, which keeps the scalabiiithe levels achieved
by the application servers and database subsystem - FashEtitan be speeded
up by using either bonding of more interfaces together oa@ig=thernet (possibly
bonded, too).

Also, it is important to note that the aim of this work was notaichieve the
maximum possible performance levels at the present dagithevas to get relative
relations between performance levels achieved using nubuéiens and scenarios
for simulated real-life situations.

2 Cluster Realization

The actual cluster consisted of five Web servers, five dagabassers, one LVS
load-balancer, and two client machines. All servers weraing Slackware 9.0
with custom 2.4.21 Linux kernel (withiddenpatch applied), and had the identi-
cal hardware configuration - Intel Celeron 1100MHz, ASUSmedboard with SiS
chipset, 256MB PC133 SDRAM, 20GB ATA-66 5400rpm HDD, 100idhpte-
grated SiS NIC (Network Interface Controller) whereas LV&amine had also two
additional 100Mbps Realtek-8139C NICs as PCI cards. Baghtcinachines were
running Windows 2000 Professional with SP3, and had thewaetlg hardware
configuration: Intel Pentium 4 1600MHz, ASUS motherboarthvimtel chipset,
512MB PC133 SDRAM, 40GB ATA-100 7200rpm HDD, 100Mbps VIA Réill
NIC.

Logically, LVS balancer has two Virtual IP addresses (V|fs3t for the virtual
Web server and second for the virtual Database server.

Physically, LVS balancer machine has three Fast Ethertetfaces and they
are all connected to a common Fast Ethernet switch becaasgs#éd way of im-
plementing LVS was LVS/DR (Direct Routing), which requimdkreal servers and
load balancer to have one physical interface connectedet@dame switch. For
an explanation and more information of the way LVS/DR woidsgd about LVS
in general, please consult [1], [2] and [3]. The separatibmcoming and outgo-
ing network traffic through the balancer machine was aclddxethe appropriate

Measurement of the Achieved Performance Levels of ... 33

manipulation of balancer machine responses to addreslsitiesoprotocol (ARP)
queries for virtual IPs (VIPs), whel@ddenpatch plays the main role together with
appropriaterp_filter andarp_filter Ethernet interfaces settings. The final flows of
traffic through the LVS balancer are shown in Figure 2.

Webl Web2 Web3 Web4 ‘Web5
5 . -
10.0.0.11 100.0.12 10.0.0.13 10.0.0.14 10.0.0.15 LVS load—balancer
—
=
—
=
{ — Web servers o
— eth 10.0.0.1/24
— (abzed:ef:ab:cd:ef)
= database clients
ethl (default gw) 10.0.2.1/24
Web clients (ababsod:cd:cf:cf) 10.0.23 [Web VIP]
‘ 10/100 Mbps Fas
eth2 10.0.1.1/24
s database servers (abzef:cd:abrofied) 10.0.2.2 [database VIP]
10.0.0.0/24
Web servers
10.0.1.0/24
Database servers
10.0.2.0/24

DB1 DB2 DB3 DB4 DB5 VIPs, Clients
10.0.1.11 10.0.1.12 10.0.1.13 10.0.1.14 ~ 10.0.1.15

Fig. 1. The used cluster structure, networkFig. 2. Configuration of load-balancer inter-
topology and IP addresses. faces, and the traffic flow.

The relational database replication was implemented tirahe MySQL’s na-
tive replication mechanism, please see [4] for detailedrimfition about MySQL
replication, and for more information about database cafitbn in general please
see [5]. One detail about that replication mechanism is dhat database server
acts as a master, while the others have slave roles; with stream of having all
of the non-readonly SQL queries executed only on the mastees which does
the propagation of changes on all slave servers. All databassers were running
tuned official binary release of MySQL 4.0.15-Max.

One of the Web servers (one that actedvessterserver) was runningsync
server, which was used brgyncclients on the rest of Web serversgveservers)
to synchronize the HTML and PHP contents of a shared dingcldre reason why
some of the more sophisticated methods for sharing a digectmtents were not
used (like NFS, for example) is a completely static naturiefdirectory’s content
(it was actually synchronized just once). All Web serversemveinning custom
built and tuned Apache 1.3.28, with PHP 4.3.3 as a Dynamicggfabject (DSO)
module. For more information about Apache and PHP in gengledise consult [6]
and [7].

As an addition, an OpenMOSIX (HPC Cluster at the operatysiesn level)

34 D. Simi¢, S. Risti¢, and S. Obradovi¢:

was also implemented and tested, with the total of eleveresiadit. All of the
servers were connected to a common 100Mbps switch, eachrseith a single
Fast Ethernet interface. All servers were running a custofri?2 Linux kernel,
with OpenMOSIX patches applied. HPC Cluster was used to Bum&ances of
distributed.net(http://www.distributed.net/) client, with the expectalhost-linear
increase of performances. The reason why OpenMOSIX wasseat to create a
HPC cluster on which the Web testing applications would sjnst because Open-
MOSIX does not have the possibility of thread migration kesw cluster nodes.
At the same time, MySQL RDBMS is a true multi-threaded agtian. For more
details about this problem, and more information about ®f@8IX in general,
please consult [8] and [9].

3 WEB Applications

Two custom Web applications were developed, keeping in rtiiedobjective of
creating and simulating real-life scenarios and situatiosing PHP4 as the script-
ing language.

The first Web application calleBilling, acts as an application for a hypothetical
mobile-devices telecom operator. One interesting detamlutithis application is
that it is using adynQuerysystem for dynamic creation and execution of SQL
queries and PHP scripts, which is developed especiallyhisr\web application.
The core idea oflynQueryis to also keep SQL queries in the database, of course
in special tables used just for that purpose and to get adipaters used to choose
the actual SQL queries and substitute the values for thgimaents, from the Web
client by GET or POST methods.

The database used f@&illing application has a total of four InnoDB tables,
with referential integrity constraints, and a total of abdy000,000 records. For
more details about InnoDB please have a look at [10]. SQLigs¢hat are used
for performance testing, include both read-only and updatgies.

The second Web application, call&mployeesis actually a modified test
database shipped with Borland’s Interbase RDBMS and theabotodifications
were targeted to get it in compliance with MySQL 4.0 RDBMS LS§peries used
for performance tests are contained in statically gendr®idP scripts (one PHP
script - one SQL query) having actual values for their argntag@assed from the
Web client by using GET method.

The database used fe&mployeespplication has a total of 10 InnoDB tables
with referential integrity constraints and a total of abdQ0 records. SQL queries
used for performance testing are only read-only queries.

Measurement of the Achieved Performance Levels of ... 35

4 Performance Measurement Applications

Web Server Load Tool (WSL@pplication used for performance measuring, was
written in Delphi 7 using Indy component suite (http://wwwilyproject.org/). The
main goal for this application was the generation of largd\&ferver load simulat-
ing real users’ behavior.

To achieve this goal, multithreaded programming model wsexiu Microsoft
Windows, of course, has appropriate API calls for the cdmifprocesses executed
through threads. The most significant calldseateThreadvhich enables parallel
execution for created threaded processes. For the actypédnmentation, Delphi
abstract clas$ Threadis used. New clas§Robotis inherited fromT Thread and it
was used to create web server requeERobotclass has following properties:

e Increment step (connections),
Polling interval (ms),

Max. number of connections,
Time to run (sec),

e No. of browsers,

Use authorization, and

e Method.

Based on these properties values, WSLT performs reque¥islicserver clus-
ter using URLs stored in a text file. The actual order of URIbsidates a real-user-
browsing-Web-site behavior.

While running, WSLT produces a large amount of data that bée tstored for
later analysis. WSLT is actually just saving the resultsaadatplain text format,
what is not suitable for effective analysis, so a new utiMys developed Analysis
Tool (AT)

AT was developed in Delphi 7 and is relying on the InterbaseDBRIS. AT
reads and processes WSLT output files, stores the actuairdatdatabase and
produces a set of reports based on stored data. Using thephtatmon, all of the
collected data was loaded into the database and the actlgbsnwas performed
using the reports generated by AT.

Reports generated by AT are stored in HTML files usii@asePageProducer
component which is shipped as an integral part of Delphi .tf® generation of
graphsTeeChartcomponent was used, which is also a part of Delphi 7.

Some parts of the report depend on the actually used applicgee the Web
test applications section) and some depend on the clustégocation and WSLT,

36

D. Simi¢, S. Risti¢, and S. Obradovi¢:

so the AT uses an XML based configuration file for the reporiegation configu-
ration.

The produced report includes the following test results:

Total number of HTTP requests (greater value is better),

HTTP requests per second, average (greater value is better)
Number of good HTTP responses (200 OK) (greater value ietett
Number of bad HTTP responses (non-200 OK) (lower value iebhet
Total HTML received [MB],

Average HTML traffic [Mbit/s],

Minimum HTTP response time [ms] (lower value is better),
Maximum HTTP response time [ms] (lower value is better),
Minimum number of HTTP connections (lower value is better),
Maximum number of HTTP connections (lower value is better),
Update SQL queries per second (average value),

Non-update SQL queries per second (average value),

Total SQL queries per second (average value).

The produced report also includes the following graphs ¢eamgle with all
eight produced graphs is given on Figure 3):

Graph 1: Represents the number of active requests in ayart®econd of
testing - for active requests, the requests without sepsgranse are counted

Graph 2: Represents minimal, average and maximal respnedrt a par-
ticular second of testing. In the ideal situation, differerbetween all three
times should be small and without any variations in the whed time

Graph 3: Represents the amount of received HTML traffic inriqudar sec-
ond of testing. It is important to highlight the fact that fitesvs the HTML
code traffic speed, as seen by WSLT, and not the actual TCrdltiBcpl
speed. That is an explanation of the fact that sometimes W&&R plain
user space application) sees the HTML traffic rates excgetimactual net-
work interface speeds, because the Windows probably has baffers im-
plemented inside the TCP/IP stack that make those traff&tdpossible.

Graph 4: Represents the number of 'good’ responses recimdhe tested
Web server (for the 'good’ type, the HTTP /1.1 code 200 respsnare
counted)

Measurement of the Achieved Performance Levels of ... 37

Graph 5: Represents the number of 'bad’ responses recawetthe tested
Web server (for the 'bad’ type, the HTTP /1.1 responses wiffefrom code
200 are counted)

Graph 6: Represents the distribution of responses by pegen

Graph 7: Represents the number of update SQL queries iniaartsecond
(this report was created only for tiBilling application)

Graph 8: Represents the number of non-update SQL queriepantiaular
second (this report was created only Riling application)

Number of active HTTP requests per second HTTP respanse fime, in miisecands
100,000
T [~
i - tvg
40,000 S I L
4
Z o
ugJ. E 1,000 4 ¥~
2 o
2 £ |
3 B ook
3 &
2 :
I g 10
G [
E
i
e s b b b b e O B O 0 O O
0 5 10 15 20 25 30 35 40 45 50 55 60 63 7O 75 60 83 90 0§ 1015 20 26 30 35 40 45 50 55 60 £S5 70 75 80 85 90
Seconds Secontis

Mumber of updste SOL queries per second Humber of non-update SGL queries per second

0 10 il 30 40 50 &0 0] 50 a0
Secands

Generated HTML traffic, in Kbitfs Good HTTP responses per second

100,000

10,000

1,000

004 - om oo

Tratc [Khités]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 €5 W
Seconds

Bad HTTP responses per second

HTTP responses percentage by type

HTTRH .1 200 0K 100.00%

[
Seconts

Fig. 3. An example of the graphs produced by WebServer Loadl To

38 D. Simi¢, S. Risti¢, and S. Obradovi¢:

5 Scenarios and Situations

Various scenarios for actual performance measurements et®rsen by two main
parameters determining the scenario: Load level (prodietvebServer Load

Tool, WSLT), and cluster configuration (number of used Weth database servers,
and some other realization details). The following thresditevels were chosen
and they are listed here using WSLT configuration paraméeisimulating those

load levels:

Table 1. The parameters of simulated load levels.

I Parameter/Load level || Light | Normal | Heavy ||

Increment step (connectiong 50 120 250
Polling interval (msec) 20 50 50
Max number of connections|| 200 500 1000
Time to run (sec) 20 20 90
No. of browsers 15 25 50

The main background idea used while choosing these paresrfeteall three
load levels, is to make WSLT reach the desired number of $amabus connec-
tions (Max number of connections) in approximately one sdc@fter starting the
simulation, WSLT tries to reach and keep up the desired nurabeonnections
by checking the number of active connections every Pollimgrival milliseconds
and if the number is lower than desired, increases the nuibeonnections by
Increment step; but if the number of connections is equalreatgr, WSLT waits
for the next Polling interval and the described processpeagd until expiration
of Time to run. By using this algorithm, WSLT tries to simda real-life scenario
of users accessing and using a Web application.

There are a few commercial applications for Web server atdb@ae bench-
marking and one of them is Quest Software’s Benchmark FadtorDatabases
[11]. Benchmark Factory for Databases is a performance add scalability test-
ing tool that simulates users and transactions on the degaval replays production
or synthetic workload in non-production environments.

The following cluster configurations were used for each Watdieation, using
Light, NormalandHeavyload levels, keeping in all cases LVS load-balancer in the
LVS/DR(LVS/Direct Routing) mode:

e 1 database + 1 Web server, 1 WSLT

e 2 database + 5 Web servevar andwlc scheduler, 1 WSLT
e 5 database + 5 Web servevar andwlc scheduler, 1 WSLT
¢ the configurations listed above, but with two WSLT clients

Measurement of the Achieved Performance Levels of ... 39

e some of the configurations were also tested having SQL updeteoved, in
order to measure the impact of propagating SQL updates talbyerfor-
mance.

PHP4 has a built-in support for persistent MySQL databaseections (please
see [7] for more details), and all tests were repeated usingjgtent database con-
nections but with no noticeable performance gains. Thoseltge of no perfor-
mance gains are quite surprising as persistent conneaionsate the repeating
database connection establishments what should resutnificant performance
gains. One of the possible explanations for no performamaggsgvhile using per-
sistent database connections is that used connection paotated once, at the
beginning of the test (exactly, the pool creation is finisaftdr WSLT reaches the
maximum number of simultaneous connections). LVS distebulatabase con-
nections over the cluster members only while some new cadiomscare added to
the pool after that point the whole task of distribution otlee cluster members
is performed solely by the PHP engine, which either does stilolite them in a
performance-efficient manner or distributes them in a waictvis in conflict with
the initial distribution done by LVS.

6 Results

While analyzing the measured values, it is important to keemind that the es-
tablishment of each TCP connection involves humerous stggning client TCP
connection to the virtual Web server, scheduling the refioesne of the real Web
servers, HTTP request processing, opening a connectioneteittual Database
server, scheduling the connection to one of the real Dagabawvers, database re-
quest processing, returning the database query resultaatidrially) closing the
database connection, and finally returning the Web sergporese and closing the
Web client connection. In the other words, measurementtsestere gathered,
produced and analyzed by measuring the user-space HTTie,tesf seen by the
WSLT as a Windows application, keeping out of sight all theraies, overheads
and other parameters irrelevant from the aspect of an ageesg-world user, what
WSLT actually intended to simulate and measure.

Table 2 and Table 3 are showing the measured performands kve the per-
formance level differences, respectively, for tBéling application. Results are
shown for all of the cluster configurations and all of the gated load levels. For
every category, the best result is showrboid font.

Table 4 and Table 5 show the measured performance levelbapeiformance
level differences, respectively, for tlienployeespplication. Results are shown for

D. Simi¢, S. Risti¢, and S. Obradovi¢:

Table 2. The parameters of simulated load levels.

I Cluster configuration/Results | (12| (°] Q@F] @]
1 DB, 1 Web, Light 4003 | 4448 260 | 4188
2 DB, 5 Web, Light, wrr 6142 | 68.24| 4.02| 64.22
5 DB, 5 Web, Light, wrr 5861 | 6512 | 392 | 6120
5 DB, 5 Web, Light, wic 1899 | 2110 | 134 | 1976
1 DB, 1 Web, Normal 5827 | 6474] 432 6042
2 DB, 5 Web, Normal, wrr 11108 | 12342 | 8.01 | 11541
5 DB, 5 Web, Normal, wrr 11114 | 12349 | 7.96 | 11553
5 DB, 5 Web, Normal, wic 11139 | 123.77| 7.86 | 115.91
1 DB, 1 Web, Heavy 8502 | 9547 | 6.11] 8936
2 DB, 5 Web, Heavy, wrr 22748 25276 | 1507 | 23769
5 DB, 5 Web, Heavy, wrr 23249 | 258.32| 1599 | 242.33
5 DB, 5 Web, Heavy, wic 23134 | 25704 | 16.26 | 24079
5 DB, 5 Web, Heavy, wic, 2 WSLT 45961 | 51068 | 3247 | 47821
5 DB, 5 Web, Light, wic, no SQL upd|| 6022 | 6691 | 0.00 | 6691

aThe total number of performed HTTP requests during the test
PNumber of processed HTTP requests per second

®Number of performed update SQL queries per second
dNumber of performed non-update SQL queries per second

Table 3. Cluster performance level differences for Billeggplication.

I Cluster configuration/Differences || (12 | (2P | Q] @]
1 DB, 1 Web, Light 34.82 34.82 35.32 | 34.78
2 DB, 5 Web, Light, wrr 0.00 0.00 0.00 | 0.00
5 DB, 5 Web, Light, wrr 4,58 4,57 248 | 4.71
5 DB, 5 Web, Light, wic 69.08 69.08 66.67 | 69.23
1DB, 1 Web, Normal 47.68 47.69 46.07 | 47.87
2 DB, 5 Web, Normal, wrr 0.28 0.28 0.00 0.43
5 DB, 5 Web, Normal, wrr 0.22 0.23 0.62 0.33
5 DB, 5 Web, Normal, wic 0.00 0.00 187 | 0.00
1DB, 1 Web, Heavy 63.04 63.04 6242 | 6312
2 DB, 5 Web, Heavy, wrr 2.15 2.15 732 | 191
5 DB, 5 Web, Heavy, wrr 0.00 0.00 1.66 | 0.00
5 DB, 5 Web, Heavy, wic 0.49 0.50 0.00 | 0.64
5 DB, 5 Web, Heavy, wic, 2 WSLT —9867 | —9868 | —99.69 | 9860
5 DB, 5 Web, Light, wic, no SQL upd. —217 —217 n/a| —238

aDifference of the total number of performed HTTP requestsndythe test
bpifference of the average number of processed HTTP regpestsecond
Difference of the average number of performed update SQLiemiper second
dDifference of the average number of performed nonupdate §@@tries per second

Measurement of the Achieved Performance Levels of ... 41

Table 4. Measured cluster performance levelsHorployeespplication.

I Cluster configuration/Results]| (12 | (2P |
1DB, 1 Web, Light 6289 | 69.88
5 DB, 5 Web, Light, wrr 5094 | 56.60
5 DB, 5 Web, Light, wic 13551 | 150.57
1 DB, 1 Web, Normal 14280 | 15867
5 DB, 5 Web, Normal, wrr 14349 | 15943
5 DB, 5 Web, Normal, wic 14579 | 161.99
1 DB, 1 Web, Heavy 23176 | 25751
5 DB, 5 Web, Heavy, wrr 23000 | 25556
5 DB, 5 Web, Heavy, wic 23249 | 258.32

aThe total number of performed HTTP requests during the test
bThe average number of processed HTTP requests per second

all cluster configurations and all generated load levels.eiery category, the best
result is shown irbold font.

Table 5. Cluster performance levels differencesHarployeespplication.

I Cluster configuration/Differences [[(12 | (2P ||

1 DB, 1 Web, Light 53.59 | 53.59
5 DB, 5 Web, Light, wrr 6241 | 6241
5 DB, 5 Web, Light, wic 0.00 | 0.00
1 DB, 1 Web, Normal 2.05 2.05
5 DB, 5 Web, Normal, wrr 1.58 1.58
5 DB, 5 Web, Normal, wic 0.00 | 0.00
1 DB, 1 Web, Heavy 0.31| 031
5 DB, 5 Web, Heavy, wrr 1.07 1.07
5 DB, 5 Web, Heavy, wic 0.00 0.00

apifference of the total number of performed HTTP requestsndithe test
bDifference of the average number of processed HTTP regpestsecond

TheBiIlling application showed the following performance levels, fbclaster
configurations:

e Lightload level: 50% of performance levels increase for the elusbnfigu-
rations with more than one Web and Database servers, cothfuatiee 1 DB
/1 Web configuration.

e Normalload level: 90% of performance level increase for the clustafig-
urations with more than one Web and Database servers, cethpathe 1
DB / 1 Web configuration. The unexpected behavior of minofgrerance
increase of 0.1% between 5 DB /5 Web and 2 DB / 5 Web configuratio

42 D. Simi¢, S. Risti¢, and S. Obradovi¢:

can be explained by the better optimization of Databasessefor multiple
concurrent connections.

e Heavyload level: 170% of performance level increase for the elusbnfig-
urations with more than one Web and Database servers, cethparthe 1
DB/ 1 Web configuration.

The Employeesipplication showed almost the same performance leveldlfor a
cluster configurations and load levels, except forltight load level. Light load
level showed performance level increase of 110% what wasechhy an internal
error of the WSLT's internal logic, but unfortunately thengline did not allow
the wrong measurements to be repeated. Almost the samerparfoe levels are
explained by a load level generated by Employeespplication that was too low
to take noticeable advantages of the cluster environment.

7 Conclusion

This project has three main goals, as follows:

e To design and realize a Web and Database server clusterveittetpability
of large-scale applications deployment

e To design and implement the Web testing applications aner oibeded test-
ing tools and strategies for performance measurements

e Prove that the realized cluster actually has the capalfityandling heavy
loads

One of the main conclusions is a much better optimizatiohelised Database
server (MySQL 4.0) for many concurrent connections, corapdo the used Web
server (Apache 1.3), which was expected because of theenatiak main concerns
that were used while the companies were designing all of theahRDBMS’es.
The choice of a load-balancing scheduler did not have raftieeimpacts on the
achieved performance levels, which can be explained by @ ¢pig duration of
client TCP connections (Web and Database connections).

The second of main conclusions is that a Web applicationsieede properly
designed with the intention of running it on a cluster. Asc¢hester adds additional
overheads that result in greater latencies, but increasethtoughput many times,
Web application must have the real needs for making the ifleanming it on a
cluster reasonable. In the other words, running a Web agtjiic on the cluster
will show a noticeable performance boost only if the Web mapion generates
load that is really high - only in that case the multiple trgbput increase makes

Measurement of the Achieved Performance Levels of ... 43

more improvement that outperforms the additional latengibich lower the final
performance levels.

The last conclusion is based on the measured performaneks lihat showed
performance increase of 150% up to 270%, while the perfoo@ancrease gets
higher as the load generated by the Web application alschigisr.

The conclusions drawn from obtained results are comparaittethe conclu-
sions stated in another Web and database benchmarkingalesemer [12]. The
objective of those experiments was to evaluate LVS'’s ghititdistribute Web re-
quests among several servers in a variety of LVS configuratand offer a com-
parison of LVS’s ability to scale on Linux 2.2 versus Linux2.

References

[1] Linux Virtual Server (LVS),Official LVS on-line documentation GPL licensed,
2004. [Online]. Available: http://www.linuxvirtualseev.org/

[2] W. Zhang, S. Jin, and Q. WiGreating Linux Virtual Servers National Laboratory
for Parallel and Distributed Processing, China, 2003.

[3] W. Zhang,Linux Virtual Server for Scalable Network Servicellational Laboratory
for Parallel and Distributed Processing, China.

[4] MySQL AB, MySQL Reference Manual for version 4.0.15, official on-line
documentation GPL licensed, 2004. [Online]. Available: http://www.ngygom/

[5] R.VanderwallDatabase Replication Prototype-Master thesiBepartment of Math-
ematics and Computer Science,: University of Groningef;320

[6] The Apache Web Serve\pache 1.3 Documentation, on-line documentatio@PL
licensed, 2004. [Online]. Available: http://www.apaabrg/

[7] PHP Hypertext Preprocess@fficial PHP on-line documentation GPL licensed,
2004. [Online]. Available: http://www.-php.net/

[8] K. Buytaert, MOSIX HOWTO, on-line documentation, part of The Linux Dogoim
tation Project GPL licensed, 2004. [Online]. Available: http://wwwjlabrg/

[9] OpenMOSIX,Official OpenMOSIX on-line documentationGPL licensed, 2004.
[Online]. Available: http:// openmosix.sourceforge /net

[10] Innobase Oy Inc,InnoDB Engine in MySQL-Max 3.23.56 and MySQL 4.0.12,
official on-line documentation GPL licensed, 2004. [Online]. Available: http://
www.innodb.com/

[11] Quest SoftwareBenchmark Factory for Database2006. [Online]. Available:
http://mwww.quest.com/benchmaféctory

[12] P. O’'Rourke, Performance Evaluation of Linux Virtual Serye2005. [Online].
Available: http://www.linuxvirtualserver.org/performnce/lvs.ps.gz

