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4.1 Rotation Matrices

The mathematics of vector rotations is the realm of matrix algebra.  All rotations can be
described by the multiplication of matrices.  Although we will not use matrix
multiplications very often in describing the rotations of NMR, the methods will serve as
a useful model to introduce and visualize some rather bizarre ideas that we will
encounter in coupled spin systems.  Matrix methods are also very easy to program on a
computer and can be of great assistance in analyzing complicated pulse sequences.
 

This is the matrix representation for a rotation.  The one shown is for a rotation of an
angle N about the x axis.  The matrix with 3 rows and 3 columns (3 X 3) is the rotation
matrix and it "operates" on the 3 X 1 vector matrix which represents the magnetization
vector.  

To multiply a matrix and a vector, first the top row of the matrix is multiplied element by
element with the column vector, then the sum of the products becomes the top element
in the resultant vector.  The next row times the column vector gives the middle element
of the resultant and likewise for the third.

If a vector, I, has the components [0*I ,0*I ,1*I ] or I , then the a rotation of 90EI   (B/2x y z   z       x

radian) be represented as:
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which since cos(90E) = 0 and sin(90E) = 1 gives:

The resulting vector is [0*I ,-1*I ,0*I ] or -I .  In standard product operator notation,x y z   y

I   =B/2Î => -I  z  x  y
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The rotation matrices for rotations of a three dimensional vector around the three
coordinate axes are:

In most sequences there are more than one rotation.  As an example, consider a
sequence that rotates I  by 90E about the X axis followed by a rotation of Tt about the Zz

axis.  In standard notation:

I   =B/2Î =>  =T tÎ => ?z  x   I z

In matrix notation:

Note that the order of time sequential matrices is from right to left .  The first
rotation is next to the vector and the next rotation is placed to the left.  The order of
rotations is very important.  Once the physical order of matrices is established, the
order of multiplication is irrelevant.  The rightmost matrix can multiply the vector
yielding a resultant vector which is then multiplied by the next matrix to give the final
vector.  Alternatively, the two matrices can be multiplied together first and then the
resultant matrix can multiply the vector.  Both results will be the same.  However,
transposing the matricies will, in general, completely change the outcome.  To multiply
two matrices together:
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Using Equation 7 we can calculate the overall rotation of the sequence.

The result is the vector [sin(Tt)*I , -cos(Tt)*I , 0*I ].  x  y  z

Using operator formalism,

I   =B/2Î => I  cos B/2 - I  sin B/2,z  x  z    y

which is equal to 

-I . y

Since cos B/2 = 0 and sin B/2 = 1.  For the second rotation:

-I   =T tÎ => -I  cos T t + I  sin T t y  I z  y  I   x  I

Which is (whew!) the same as calculated by matricies.
Obviously, if the order of the rotations is reversed:

I   =T tÎ =>  =B/2Î => z  I z   x

The answer is completely different.

I   =T tÎ => I   =B/2Î => -I   z  I z  z  x  y



The operator notation is essentially an expanded version of more compact matrix
method.  When the sequences become very complicated (reality) and there is no
possibility for the luxury of simplification,  then the matrix method is a very nice tool to
use especially if a computer is available.  

So as to not create too much confusion for those who know something about density
matricies,  the rotation matricies are not  the density matrix.  In fact, the magnetization
vector is identical to the reduced spin density matrix.  The rotation matricies presented
here are related to unitary matricies called superoperators.  

As an example how one might use the rotation matrices to simplify calculations
consider a single isolated spin I subjected to the following pulse sequence:

      90x      180x
I       $   t    $$   t     ���� 
Calculating this sequence by product operators:

I   =B/2Î => -I   =T tÎ => -I  cos T t + I  sin T t z  x  y  I z  y  I   x  I

 =BÎ => I  cos T t + I  sin T t x  y  I   x  I

 =T tÎ => ( I  cos T t - I  sin T t ) cos T t I z   y  I   x  I    I

  +( I  cos T t + I  sin T t ) sin T t x  I   y  I    I

/ I  (cos² T t + sin² T t) y  I    I

/ I    y

With such a simple result, it would seem there should be a simpler way to calculate
the sequence.



Figure 4.1.  Vector representation of the refocusing effect of a 180E pulse placed
in the center of free precession period.

If we look only at the rotations:

 =B/2Î =>  =T tÎ =>  =BÎ =>  =T tÎ => x   I z   x   I z

We can simplify this sequence by modifying it in the following manner.
By introducing a rotation followed by the inverse of the same rotation we do no
cause any net motion of the spin system.  For example:

=BÎ =>  =-BÎ => x   x

rotates the spin system by 180E then by -180E.  The overall rotation is zero this is
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equivalent to multiplication by the identity matrix I . This can easily beE

demonstrated by multiplying two inverse matricies.

We can formally introduce these rotations anywhere in a pulse sequence.  Using the
above sequence:

=B/2Î => =BÎ => =-BÎ => =T tÎ => =BÎ => =T tÎ => x  x  x  I z  x  I z

We have not accomplished anything.  However, if we now look at the series of
rotations underlined in the next sequence,

=B/2Î => =BÎ => =-BÎ => =T tÎ => =BÎ => =T tÎ => ,x  x  x  I z  x  I z

we can simplify the sequence by means of matrix algebra.

-180ix * wtiz * 180ix 

[-180Ix wtiz] * 180ix 

-wtIz 



The matrix multiplication shows that the sequence:

=-BÎ => =T tÎ => =BÎ =>x  I z  x

is equivalent to the single rotation:

=-T tÎ => .I z

Substituting this rotation for the equivalent three rotations in the sequence:

=B/2Î => =BÎ => =-T tÎ => =T tÎ => x  x  I z  I z

Now two inverse rotations are adjacent:

=B/2Î => =BÎ => =-T tÎ => =T tÎ => x  x  I z  I z

And their product is equal to I . These rotations cancel, yielding:E

=B/2Î => =BÎ => x  x

or simply

=3B/2Î => x

We have eliminated the  =T tÎ => term completely and made the calculation muchI z

easier.  

I   =3B/2Î => Iz  x  y

This sequence is referred to as a spin echo sequence, and is used to eliminate the
chemical shift term, =T tÎ =>, during a period of a pulse sequence.I z


