
DMB DATABASE MANAGEMENT
AND
BIOMETRICS

.06871

ZERO DOWNTIME SCHEMA MIGRATIONS IN
HIGHLY AVAILABLE DATABASES

Coen van Kampen

MASTER’S ASSIGNMENT

Committee:
Maurice van Keulen
Tim Soethout (ING)

Kevin van der Vlist (ING)

June, 2022

2022DMB0003
Data Management and Biometrics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

2

Abstract

Nowadays, online services are becoming more important in every day life. Some
services are so important that they require to be online at all times. They are
expected to have (near) zero-downtime. Downtime can either be planned for or
unplanned for. To account for unplanned downtime, services can be made highly
available by replicating the service across multiple nodes and balance the workload.
If a node crashes or the service errors, the remaining nodes will take over their
workload. Planned downtime however is difficult to diminish. It is a result of
deploying a new software version. To have zero-downtime, both the old and new
application versions have to live beside each other. Blue-green deployments make
use of this practice to ensure zero-downtime in a stateless application.

However zero-downtime deployments are not as straightforward for stateful ap-
plications. To migrate a database schema along the application deployment, another
strategy is required. This research is based around the expand-contract pattern that
can be used in combination with the blue-green deployments. In earlier work from
Dijkstra, he proposes the use of this pattern and applies it to an Oracle database
using the Liquibase versioning tool. In this research, the pattern has been applied
to a Postgres database and a Liquibase plugin was implemented to simplify deploy-
ments. In addition, the pattern is tested on a data-intensive application that aims
for high availability by replicating the database. A benchmarking tool has been used
to measure the latency and throughput of the database. From the results, it can be
concluded that the expand-contract pattern provides zero-downtime.

i

ii Abstract

Acknowledgements

Before I started this research, I did not have a topic in mind myself. I started looking
for topics on the university website under open master thesis assignments. There
were several assignments that caught my eye. After weighing the pros and cons of
each of them, I concluded that the topic that most suits my knowledge and interest
is about zero-downtime schema migrations at ING. Unfortunately, I was notified
that ING was not able to provide a workspace for me to do my research. Neverthe-
less, that did not change my mind about my research topic. Even throughout the
research, I never lost interest in the topic.

Throughout my research, I had weekly meetings with my supervisor Maurice
van Keulen, and Tim Soethout and Kevin van der Vlist from ING. Overall, we were
always able to find a date for a meeting. Sometimes we were not able to meet with
the whole group, but that did not add any difficulties to my research. During these
meetings, I was able to tell how my research was going and ask questions when
necessary. However, the reason I especially felt these meetings were important to
me, is because they provided me with motivation to continue my research. Even if
I still had questions after the meeting, I was always able to contact Tim and Kevin,
and quickly receive a reaction. I would like to thank Maurice, Tim and Kevin for
their effort in providing me with support for my research. In the end, my research
would not have been where it is without their help.

Finally, I would like to thank Jorryt Dijkstra, since his research provided the
perfect direction for mine. I was able to use a lot of concepts from his paper in my
implementation which would not have been possible without his efforts.

iii

iv Acknowledgements

Contents

Abstract i

Acknowledgements iii

Contents v

Glossary ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem definition . 2
1.3 Research method . 3
1.4 Paper structure . 3

2 Problem investigation 5
2.1 Requirements . 5
2.2 Schema migrations . 6

2.2.1 State-of-the-art . 6
2.2.2 Shortcomings . 7
2.2.3 Expand-contract pattern . 7
2.2.4 Additional research . 7

2.3 Zero-downtime deployments . 8
2.4 Database replication . 9
2.5 Change operations . 10

3 Background 11
3.1 Relational databases . 11

3.1.1 Database schemas . 11
3.1.2 Schema migrations . 11
3.1.3 Database management system 11
3.1.4 ACID properties . 12
3.1.5 Concurrency control . 14
3.1.6 Strict serializability . 15

3.2 Software architectural styles . 16
3.2.1 Monolithic architecture . 16
3.2.2 Layered architecture . 16
3.2.3 Microservices architecture . 17

3.3 Distributed systems . 19

v

vi Contents

3.3.1 High availability clusters . 20
3.4 Database replication . 21

3.4.1 CAP theorem . 22
3.4.2 One-copy serializability . 22
3.4.3 Database architecture for replication 23
3.4.4 Replica control . 24
3.4.5 Conflicts . 25

3.5 Application deployments . 25
3.5.1 Deployment practices . 26
3.5.2 Zero-downtime . 26
3.5.3 After-hours deployment . 27
3.5.4 Blue-green deployment . 27

3.6 Expand-contract pattern . 28
3.7 Physical and logical replication . 30

4 Technology stack 33
4.1 Liquibase . 33
4.2 Kubernetes cluster . 34
4.3 HammerDB benchmarks . 35

5 Expand-contract pattern implementation 37
5.1 Plugin features . 37

5.1.1 Switch between expand and contract 37
5.1.2 Metadata retrieval . 38
5.1.3 Rolling back changes . 38

5.2 Rename view . 39
5.3 Rename column . 39
5.4 Modify data type . 42
5.5 Rename table . 42

5.5.1 Rename table using copy . 42
5.5.2 Rename table using view . 43

5.6 Batch migration . 44
5.6.1 Intra-table batch migration 44
5.6.2 Inter-table batch migration . 45

6 Evaluation 47
6.1 Functional correctness . 47

6.1.1 Data equivalence . 47
6.1.2 Identical schematic structure 48

6.2 Experimental setup . 49
6.3 Results . 50

6.3.1 Asynchronously replicated database 51
6.3.2 Synchronously replicated database 55
6.3.3 Contract from mixed-state . 58
6.3.4 Batch migration change . 58

6.4 Requirement validation . 60

Contents vii

7 Discussion 63
7.1 Limitations . 63
7.2 Future work . 64

8 Conclusion 67
8.1 Deliverables . 67
8.2 Research answers . 68

Appendices 73

A Machine specifications 75

B Benchmark results 77
B.1 Asynchronously replicated database 77
B.2 Synchronously replicated database . 81
B.3 Contract from mixed-state . 84
B.4 Batch migration change . 86

viii Contents

Glossary

availability A database is available if it is online and can be accessed by the user.

blue-green deployment A blue-green deployment is an application deployment
technique that enables developers to install a new application version and
transition users to instances of the new application without having them ex-
perience downtime.

consistency A database must always be in a consistent state. Data integrity con-
straints, such as data types or nullability, cannot be violated.

convergence Convergence is used in the context of distributed systems and means
that each replicated instance of an object returns the same last updated value.

data-intensive application "We call an application data-intensive if data is its
primary challenge the quantity of data, the complexity of data, or the speed
at which it is changing as opposed to compute-intensive, where CPU cycles
are the bottleneck." [22].

database A database is a structured collection of data that is commonly stored on
a server.

deployment Deployment is the process that installs a software unit on a server
and exposes it for use.

distributed system "A distributed system is a collection of autonomous comput-
ing elements that appears to its users as a single coherent system." [31].

downtime Downtime is the amount of time that an application is offline or un-
available to its users.

eventual convergence Eventual convergence is used in the context of distributed
systems and means that, provided no additional updates are made, each repli-
cated instance of an object will eventually have the same last updated value.

fault tolerance A fault tolerant system is able to resist failure of a component and
continue operating.

full replication Full replication is one of the possible database replication tech-
niques. It involves replicating all available data in a database to another one.
This is different from sharding where only parts are replicated.

ix

x Glossary

high availability High availability requirements describe guarantees about the avail-
ability of a service. Highly available services aim for a small amount of down-
time.

latency Latency describes the time it takes to send a request for a query, process
it and send back a response.

linearizability Linearizability guarantees that a write operation to a single object
is instantly visible to any later (in real-time) read operation of the same object.

load balancer A load balancer is a node that efficiently distributes the incom-
ing requests across multiple servers running the same application or database
instance.

microservice A microservice is a software unit that encapsulates the functionality
for a single business capability. Microservices are small, independent and
loosely coupled.

mixed-state A database is in a mixed-state if it supports two distinct schema
versions.

one-copy serializability A non-serial schedule of concurrent transactions across a
replicated database system is one-copy serializable if the result after execution
is equivalent to the result of a serial schedule on a single database instance.

replication Database replication is the process of continuously replicating data
from one database to another in order to keep both databases in sync.

schema A schema describes the logical structure of the database.

schema migration A schema migration is a change operation that updates the
logical structure of the database.

serializability A non-serial schedule of database transactions is serializable if the
result is equivalent to the result of a serial schedule of the corresponding trans-
actions.

snapshot isolation Once a transaction starts, it takes a snapshot of the current
data and only operates on the snapshot. Read operations are only able to see
changes that were applied before the start of the transaction. Write operations
are only applied to the snapshot until the transaction is committed.

strict serializability The combination of serializability and linearizability.

synchronization Synchronization is the process of keeping data between two data
stores equivalent to ensure consistency. Changes on one end are automatically
updated on the other end and vice versa.

throughput The throughput of an application defines how many transactions are
executed within a unit of time.

Glossary xi

transaction A transaction is a group of database operations that either executes
as a whole or does not execute at all. In case of failure, all operations will be
rolled back.

zero-downtime Zero-downtime describes that a construct does not entail any
downtime that is perceived by the user as a change in latency or through-
put.

Chapter 1

Introduction

1.1 Motivation

Traditional applications often used a monolithic architecture. These resulted in
vast mainframe applications. The advantage of these applications is that they were
straightforward to set up. Unfortunately, they were also hard to manage and not
reusable. Additionally, a fault lead to failure of the entire system. In the mean-
time, several new application architectures have been designed to deal with these
problems.

Nowadays, microservices architectures are becoming more and more popular.
microservices architectures are better able to fulfill the requirements that stakehold-
ers ask for. Applications that make use of this architecture are often more fault
tolerant, maintainable, scalable and highly modular. Consequently, they produce
less downtime. The latter requirement is the focus of this research. The advan-
tage of (nearly) zero-downtime is that users do not observe any interruptions. This
is less frustrating for the user and results in a better user experience overall, and
therefore more trust in the company. Downtime can be unplanned for, in the case
of a server crash, and therefore requires a resilient system. High availability clusters
add redundancy, in the form of additional standby servers, to quickly recover from
a failure. It is also possible to provide high availability in a database cluster. This
is done through replication: a process that creates a snapshot of the database on a
separate server and synchronizes the data in both instances.

On the other hand, there is also planned downtime. This happens when applica-
tion features are updated or added and the new application code has to be deployed.
For a large number of companies, the procedure is to let the customer know at what
time the system will be updated. The system is then taken down, resulting in down-
time, and the updated application is deployed over a small time frame. This expe-
rience might be undesirable for the customer. In the case of a banking application
for example, it should be ensured to the customer that they can make a transaction
whenever they want. Therefore, applications should be deployed without downtime.
This is where blue-green deployments come in. A blue-green deployment ensures
zero-downtime by making sure that at least one application instance is online at all
times.

For stateless applications, blue-green deployments are mostly straightforward. In

1

2 1.2. Problem definition

a data-intensive application, however, schema migrations also have to be deployed.
This can result in quite complex blue-green deployments, since the application and
database are coupled by a domain model. Both the application and database require
an updated version. Therefore, a blue-green deployment has to be coordinated with
care and requires some form of backwards compatibility. Dijkstra has implemented
the expand-contract pattern for Oracle databases, using the Liquibase versioning
tool, which shows how this can be done [18]. The pattern is divided in two steps:
the expand step adds features to the schema, which results in a mixed-state that
supports both database versions, while the contract step removes features to end
up with the intended version. This is quite a robust pattern. However, additional
complexity has to be taken into account when working with replicated databases
such as in a highly available database cluster.

To build on Dijkstra’s implementation, this research implements the expand-
contract pattern for Postgres and extends its functionality to support more change
types. Finally, the implementation is tested on a replicated database in a Kubernetes
cluster. Postgres is chosen since it is widely-used, open source and has a large
community. Additionally, ING has mentioned their interest for an implementation
of the pattern for Postgres databases.

1.2 Problem definition

As explained, this research is focused around building a zero-downtime schema mi-
gration pattern. A tool has been requested by ING that can deploy schema migra-
tions in a zero-downtime fashion. In previous research advocated by Dijkstra, an
expand-contract pattern has been proposed. Several migrations were implemented
for Oracle databases, using the Liquibase versioning tool. The deliverables of Di-
jkstra include, among others, a Liquibase extension that adds support for Oracle’s
Online DDL, and a set of expand-contract change templates that can be deployed
without downtime. Since ING has mentioned their interest in using a Postgres
database, this research will build upon the expand-contract templates to support
Postgres. Another goal is to incorporate these templates into a Liquibase plugin.
This would simplify the definition of a schema migration; the database administrator
is not required to scholar themselves to understand each expand-contract migration.

Additionally, data-intensive applications nowadays require to be highly avail-
able. This is achieved by replicating application and database instances across
several server nodes. This ensures that the system is fault tolerant. Once a node
experiences a crash, it is expected that another node takes over their workload. In
addition, the total workload will be distributed across all instances and therefore
increases overall performance. To replicate database instances, data has to continu-
ously be synchronized across all instances. This ensures that each instance contains
a consistent state. Database replication can be done in many different ways and
these will be discussed in this research.

Based on the aforementioned research goals, the following research questions
have been formulated:

RQ1 How can the change templates from Dijkstra’s research be extended to support

Chapter 1. Introduction 3

more change operations that can be deployed on a Postgres database in a zero-
downtime fashion?

RQ1.1 How can a Liquibase plugin be built that incorporates the change tem-
plates?

RQ2 To what extent can the expand-contract pattern be applied to a data-intensive
system with a fully-replicated database to support zero-downtime deploy-
ments?

RQ2.1 How can the expand-contract pattern be applied when using master-slave
replication?

RQ3 How much does the expand-contract pattern affect the latency and throughput
of a data-intensive system?

RQ3.1 What tool is able to simulate a data-intensive system and can be used to
test the Liquibase plugin and monitor the latency and throughput?

RQ3.2 To what extent can the tool be used to test and monitor a data-intensive
system with a fully-replicated database?

RQ3.3 How does the latency and throughput for an asynchronously replicated
database differ from the latency and throughput for a synchronously repli-
cated database?

1.3 Research method
This research was conducted in several phases. The research started with a pre-
liminary study during which required knowledge of the topic was acquired. This
phase has been projected in Chapter 3. After the preliminary study, the research
questions were defined. The next step was to do a full literature review in order
to gain more detailed knowledge in the field and current state-of-the-art techniques
that handle zero-downtime. Chapter 2 was written based on the obtained literature.
An important aspect is the list of requirements for our Liquibase plugin which was
taken from Dijkstra’s research [18].

The next step in our research was to implement the Liquibase plugin which
we have called liquibase-zd. While implementing the expand-contract pattern,
the usage requirements were taken into account. The plugin was debugged in a
Kubernetes cluster. Once the implementation was ready to be tested, HammerDB
benchmarks were setup and run within the Kubernetes cluster. The benchmarks
evaluate the performance requirements. In addition, the functional correctness of
the implementation was evaluated by deduction.

1.4 Paper structure
In this section, we shortly explain the structure of this paper. This chapter has in-
troduced the research and defined the research questions. In the next chapter, some

4 1.4. Paper structure

related work will be discussed. Background information is provided in Chapter 3
to get a better understanding of the theory. In Chapter 4, the used technologies
are discussed and the implementation of liquibase-zd is described in Chapter 5.
The tests and benchmarks are presented and the results are examined in Chapter 6.
Finally, the research paper is concluded by answering the research questions based
on the results.

Chapter 2

Problem investigation

This chapter investigates the problem by first defining the requirements for a zero-
downtime schema migration strategy. Next, literature related to the topic of this
research is discussed. In Section 2.2, several state-of-the-art zero-downtime schema
migration techniques are described and their limitations, with respect to the require-
ments, are considered. Furthermore, the method proposed by Dijkstra is presented
and some additional research with respect to schema migrations is discussed. In
Section 2.3, zero-downtime deployment techniques are described, and the concept
of high availability is applied to databases by means of replication and is reported
in Section 2.4. Finally, a list of change operations and their usage frequency from
the research of Dijkstra is depicted in Section 2.5.

2.1 Requirements
In this section, the requirements of a zero-downtime schema migration strategy are
described. These are mainly taken from the research of Dijkstra [18] who took R5
onward from de Jong et al. [15]. R8 has slightly been adjusted to comprise any
constraint instead of only foreign key constraints.

R1 Integration. Fits the current stack and software engineering process.

R2 Detachable. The design can be omitted at any point and the way of working
can continue where it left off.

R3 Transparent. The effects of the design should be fully transparent to the
software engineer prior to utilizing it.

R4 Generalizable. The design is generic in a sense that it is not specifically tied
to the current RDBMS and can be adapted to support a different RDBMS.

R5 Non-blocking schema changes. Changing the schema should not block
queries issued by any database client.

R6 Schema changesets. It should be possible to make several non-trivial changes
to the database schema in one go. This prevents software engineers from hav-
ing to develop and deploy intermediate versions of the web service.

5

6 2.2. Schema migrations

R7 Concurrently active schemas. Multiple database schemas should be able
to be “active” at the same time, to ensure that different versions of the web
service can access the data stored in the database according to their own chosen
schema. This avoids putting restrictions on the method of deployment when
upgrading the web service.

R8 Integrity. Constraints, such as foreign key constraints, should be supported.
Both during regular use and while migrating the schema, constraints should
not be invalidated.

R9 Schema isolation. Any changes made to the database schema should be
isolated from the database clients. In other words, no client should see any
database schema other than the version it relies on.

R10 Non-invasive. Any integration with the application should require as little
change to the source code as possible.

R11 Resilience. The solution must ensure that the data stored in the database
always remains in a consistent state. In other words, when the migration fails,
it must be possible to roll back the changes and return to a consistent state
without affecting the database clients.

2.2 Schema migrations

2.2.1 State-of-the-art

There are many frameworks that try to solve the zero-downtime problem. Most of
these make use of an interim or ghost table which is a copy of the original table.
Essentially, a ghost table is created by copying the structure of the original table.
The next step is to apply schema changes and finally copy the data from the original
to the ghost table.

Examples of frameworks that use this strategy are gh-ost and pt-online-
schema-change. Another example is QuantumDB which provides a wrapper for the
JDBC driver that rewrites SQL queries by replacing the table name with the name
of the ghost table depending on which table structure the application version de-
pends on [14, 15]. Therefore, QuantumDB is very well applicable to zero-downtime
schema migrations where a mixed-state is required (R7). A similar system, called
Ratchet, has been developed by Zhu which creates a view for each table in the
updated database schema and redirects queries to either the original table or the
migrated view based on the query [35]. The advantage is that the data is not re-
quired to be copied to a ghost table, but the method does need an external proxy
that sits between the application and database server. The same can be said for
PRISM which also uses a proxy to rewrite queries in order to support the current
schema version [11,12,13].

Additionally, Sheng proposes a lazy schema migration approach [29]. The idea
is to apply the schema change to a copy of the original relation. The copy initially
does not contain any data. The copy is only filled with data when a query cannot

Chapter 2. Problem investigation 7

be applied to the original. A similar approach is used in BullFrog, an open source
Postgres extension, which is able to achieve minimal changes in throughput and
latency [4].

2.2.2 Shortcomings

The aforementioned frameworks have some shortcomings and limitations, and are
therefore not the preferred approach for this research. First of all, most of these
frameworks make use of ghost tables, hence require additional resources. Only
renaming a column requires an additional table and copying of all the data. In a
million-record table, this can be an expensive operation and should be eliminated
where possible. The approaches proposed by Sheng [29] and Bhattacherjee et al [4]
overcome this problem by lazily copying the original table. Systems such as Ratchet
and PRISM require an additional proxy between the application and database server.
This requires additional setup which we are trying to prevent (R3, R10). Finally,
most of these frameworks do not support the enforcement of foreign key constraints
during schema migration, which is considered a requirement (R8) [14, 15, 18]. For
these reasons, a different solution has been chosen.

2.2.3 Expand-contract pattern

As described in the previous section, current state-of-the-art solutions do not fit the
requirements. There are several other strategies to guarantee zero-downtime schema
migrations as described by Dijkstra [18].

One of these strategies involves event sourcing. The approach requires a proxy
that records all changes as events while the database schema is being migrated.
Finally, the events that queued up during migration are forwarded to the updated
database. Aside from requiring a whole new framework, as discussed by Dijkstra,
earlier research has shown that this approach is not a serious contender for zero-
downtime migrations.

The strategy that Dijkstra eventually decides upon, is called the expand-contract
pattern, also referred to as parallel change [28]. This pattern has broadly been
explained in 3.6. It has the advantage that the pattern is applied in-place, and
therefore takes up minimal resources. Additionally, after the expand step, while
the database is in a mixed-state (R7), the system can be tested and rolled back
without much effort (R11). The challenge is to transform blocking changes into non-
blocking alternatives (R5). Other strategies that Dijkstra refers to either require a
NoSQL database, or are specific to Oracle, and are therefore not applicable to this
research (R1). Furthermore, some of the techniques that Dijkstra uses to overcome
the blocking behavior of schema changes are only supported by Oracle. Therefore,
other solutions have to be found in this research.

2.2.4 Additional research

This section discusses additional research with respect to schema migrations that is
interesting to look into.

8 2.3. Zero-downtime deployments

Delplanque et al. figured that, specifically for PostgreSQL, schema migrations
can be a hassle [16]. It requires extra steps to modify a table that is used by
a view. Additionally, Postgres’s procedural language offers the ability to create
stored procedures. However, schema migrations do not migrate the code for these
procedures. The paper proposes a tool that is able to identify dependencies and
recommend changes to the developer that should be applied alongside the original
schema change. Such a tool has not been developed yet. Aside from dependencies
between database entities, the database is often coupled to an application by means
of a domain model. A tool that proposes changes in the application code, based
on a schema migration, has been developed by Meurice, Nagy and Cleve [24]. This
tool will not be used during this research, but can be useful to developers that work
with (zero-downtime) schema migrations.

Wevers et al. [32] have researched the effects of blocking operations on the
throughput for several databases. The research shows that PostgreSQL performs
rather well in comparison to MySQL and Oracle. PostgreSQL is able to add and
remove columns, and only blocks when adding a column with a default value. Oracle
is the only database that also blocks when dropping columns. Additionally, a bulk
update operation, i.e. an operation that updates a large number of rows, blocks both
PostgreSQL and MySQL. A solution, as implemented by Dijkstra [18], is to bulk
update in steps of small batches. The bulk update operation was not possible on
Oracle due to concurrency conflicts. All in all, the research shows that PostgreSQL
performs well when it comes to blocking behavior.

2.3 Zero-downtime deployments

When it comes to application architectures, the micro services architecture has
taken over from monolithic architectures. Micro services ensure more fault toler-
ance and are less demanding. Nevertheless, a software update would still require
the application to be redeployed, resulting in a short time frame of downtime. To
eliminate any downtime that the user would experience during a software update,
zero-downtime deployments are required. For continuous delivery, zero-downtime
deployments are a must. To be able to make the transition from the old to the
new application, it cannot be avoided that both versions need to be online for a
short period of time. Rudrabhatla discusses several deployment techniques to en-
sure zero-downtime [27]. One of the techniques that is also applied to micro services
in other research [8, 9, 17, 26, 34] is the blue-green deployment [19]. Rudrabhatla
has researched three different strategies to switch clients between the old and the
new application versions. It is concluded that the load balancer strategy performs
best in terms of switch-over time. However, it requires constant adjustment of the
load balancer configuration when applied to a canary style blue-green deployment.
Yang et al. – researchers from IBM, Amazon and Uber – propose a blue-green de-
ployment strategy that utilizes automatic service discovery, dynamic routing and
automated application deployment for improved continuous delivery [34]. Facebook
has developed their own zero-downtime framework that seamlessly hands over con-
nections, as well as current state, to the new server [25]. These papers also describe
that containerization is very well applicable to micro services [9, 17, 27], because of

Chapter 2. Problem investigation 9

their ability to launch quickly and provide lightweight environments. Kubernetes is
mentioned as a suitable system to manage containerized applications.

2.4 Database replication
In a highly available data-intensive application, high availability is applied to databases
through replication. Database replication techniques are often distinguished as be-
ing synchronous or asynchronous. Most papers refer to these variants as eager and
lazy replication. A large amount of research has been done in this field. Lazy repli-
cation has been introduced in 1992 [23]. It aims to improve performance by requiring
less overhead than eager replication. Lazy replication does result in a replication
lag and should therefore only be used in case eventual consistency is allowed. Even
though, eager replication does guarantee consistency, in practice, database replica-
tion is often applied lazily [33]. In the end, it depends on what the system permits.
Wiesmann et al. discuss several protocols for eager replication and describe where
overhead can be reduced [33]. In this research, both techniques will be discussed
and evaluated for zero-downtime schema migrations.

10 2.5. Change operations

2.5 Change operations
One of the deliverables from the research of Dijkstra is a tool that analyzes Liquibase
changelogs and produces a frequency table. Using this tool, Dijkstra has put together
a table with the frequencies of Liquibase changes used within a set of ING projects.
This table is depicted in Table 2.1. From the results of the pam application, it can
be seen that most operations involve adding or creating a database object while it
happens less frequent that database objects are also removed. This table will be
used as a guideline as to how urgent it is to implement the zero-downtime variant
of certain changes.

aax pam cha irs srv cpa nfe total

addColumn 6 79 0 10 0 0 0 95
addNotNullConstraint 0 0 0 4 0 0 0 4
addForeignKey 0 38 0 0 0 0 0 38
addPrimaryKey 0 34 0 3 0 0 0 37
addUniqueConstraint 0 32 0 0 0 0 0 32
createIndex 8 15 0 6 0 0 0 29
createSequence 4 37 0 0 0 0 0 41
createTable 2 37 0 5 0 0 0 44
dropColumn 4 3 0 1 0 0 0 8
dropIndex 0 2 0 2 0 0 0 4
dropSequence 2 0 0 0 0 0 0 2
dropTable 1 4 0 1 0 0 0 6
dropNotNullConstraint 0 10 0 0 0 0 0 10
dropUniqueConstraint 0 7 0 0 0 0 0 7
modifyDataType 0 2 0 1 0 0 0 3
renameColumn 3 0 0 5 0 0 0 8
renameTable 0 0 0 1 0 0 0 1
sql 1 0 0 8 0 0 0 9
sqlFile 0 5392 3437 1 5 1511 478 10824
tagDatabase 0 739 646 0 2 60 109 1556
update 0 0 0 2 0 0 3 5

NChangeSets 10 6131 4083 38 7 1571 572 12412
NRollbackableChangeSets 7 1545 1353 24 4 111 267 9335
NChanges 31 6131 4083 50 7 1571 590 12463
NRollbackableChanges 23 739 646 34 2 60 109 1613

Table 2.1: Frequency analysis of Liquibase change types for several ING
applications. For the pam project, a separate manual analysis has been done
on SQL code changes to discover their respective change types. These num-
bers have been included in the table.

Chapter 3

Background

This section is meant to provide some background theory that is necessary to under-
stand the research topic. The theory can be grouped into three parts. We start off by
explaining database-specific theory after which we continue to application-specific
concepts. The final section explains the expand-contract pattern as a schema migra-
tion technique for zero downtime deployments in the context of a stateful application.

3.1 Relational databases

3.1.1 Database schemas

A database schema defines an architecture for the database. It is a template of how
the data is structured. There are different classes of databases based on how the
structure is defined. In this research, we focus on relational databases. In a relational
database, the structure describes the tables, and other associated database objects,
and their relationships. The database schema is defined through a formal language
like SQL. A database can have multiple schemas. Oracle, for example, creates a
schema per database user. Nonetheless, often one schema is used in the context of
an application.

3.1.2 Schema migrations

Now we have an understanding of what a schema is, we need to know what schema
migrations are. A schema migration can involve adding a column to a table, re-
naming a column, or changing the data type of a column. These are only some
examples. There are much more migrations possible. Schema migrations are exe-
cuted programmatically through SQL queries which are received and processed by
the DBMS.

3.1.3 Database management system

The database schema is defined by the database management system or DBMS.
This is a system that allows for the definition and modification of a schema, but
also for addition, manipulation and retrieval of the data. The DBMS provides a

11

12 3.1. Relational databases

language that enables us to apply these operations. This language is known as SQL
for structured query language and can be deconstructed in the following groups of
statements:

• Data definition language (DDL). DDL consists of statements that operate
on the database schema. This includes statements such as CREATE, ALTER,
DROP, RENAME and TRUNCATE. These statements modify the database
schema and are therefore used for schema migrations. These operations are
often blocking in nature.

• Data query language (DQL). To read data from the database, DQL pro-
vides a single statement called the SELECT statement.

• Data manipulation language (DML). Aside from reading data, there are
also statements that manipulate the data such as INSERT, UPDATE and
DELETE statements. These comprise the data manipulation language.

• Transaction control language (TCL). Several operations can be combined
to form a database transaction. This is a series of queries which are executed
sequentially as a single unit. The transaction control language provides us
with statements to manage transactions. This includes statements such as
COMMIT, to save the results of the transaction, and ROLLBACK, to undo a
transaction and restore the last database state.

• Data control language (DCL). Finally, the data control language allows us
to manage the privileges of database users. We can GRANT or REVOKE a
privilege. We grant privileges in the form of statements that a user is allowed
to execute or not.

3.1.4 ACID properties

A database is a critical construct. It can be used to store important data. The
DBMS provides us with operations to update, insert, delete and retrieve data. We
are relying on the DBMS to ensure that data does not go corrupt, as a result of a
transaction, so we can focus on the application logic. Therefore, the DBMS must
provide us some guarantees about database transactions. These guarantees are
described in the ACID properties:

• Atomicity. A database transaction should either be executed entirely, or the
state is rolled back in case of a failure. It can be seen as an all-or-nothing
operation. An example that is often used to explain this property is a banking
system. If an account A transfers money to an account B, then the amount has
to be subtracted from account A and added to account B. These steps have to
be executed atomically, i.e. they are seen as a single operation. If atomicity
is not guaranteed, then it could be possible that the transaction fails after the
subtract operation. As a result, some amount of money disappeared and this
should be reversed. Generally, atomicity is implemented by keeping a copy of
the data prior to execution of the transaction.

Chapter 3. Background 13

• Consistency. It must be guaranteed that the database is in a consistent or
correct state at all times. That means that data integrity constraints cannot
be violated. These are restrictions on the data such as data types or nullability
constraints. A column that is specified to be NOT NULL, should be guaran-
teed not to contain a row where the value is NULL. A transaction that tries
to insert a NULL value in this column, should be rolled back. Application-
specific constraints cannot be guaranteed by the DBMS. An example would be
to ensure that an account balance can never be negative and a transaction that
tries to subtract an amount that would result in a negative balance, should
never be executed. These restrictions have to be enclosed in the application
code.

• Isolation. The DBMS needs to guarantee that the database is safe to concur-
rent executions. In other words, the database state after concurrent execution
of transactions and after sequential execution are the same. There are several
phenomena that can occur when reading data:

– Dirty read. A dirty read occurs when uncommitted data is being read.
This should never happen.

– Non-repeatable read. If a row is read at time T1 and read again at
time T2, the data in that row might have changed.

– Phantom read. If a query is executed at time T1 and re-executed at
time T2, additional rows may have been added that might affect the
results.

Based on these phenomena, four isolation levels are defined that provide their
own guarantees:

Isolation level Dirty read Non-repeatable read Phantom read
Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

Table 3.1: The isolation levels described by the possibility of the three
phenomena.

The serializable isolation level makes the best guarantees to ensure consistency.
Serializable transactions are all executed one after the other to ensure that a
transaction cannot read an inconsistent state as a result of a partial execution
of another transaction. A negative consequence is that serial executions are
less performant than parallel executions. In many situations serializability is
not even required to keep a consistent state and a lower isolation level would
actually improve performance [2, 3].

• Durability. All committed transactions must be persisted in the database
and a system failure or restart should not affect the data. Data should not

14 3.1. Relational databases

be kept in non-volatile memory, but should be written to persistent memory,
such as a hard drive, instead.

3.1.5 Concurrency control

The ACID properties are implemented through concurrency control. Concurrency
control ensures that transactions can be executed concurrently, i.e. in parallel,
without producing incorrect or corrupt results.

Concurrency control protocols can be categorized as being optimistic or pes-
simistic. Pessimistic concurrency control prevents two transactions from modifying
the same record at the same time by blocking operations if there is a possibility that
the ACID properties are violated. The blocking results in a performance overhead.
Additionally, pessimistic mechanisms are prone to deadlocks. A deadlock occurs
when two transactions are waiting for each other to unblock some portion of the
data. Consequently, they each wait for an infinite amount of time and cannot finish
their execution. On the other hand, optimistic concurrency control does not block
concurrent operations. Instead, it allows for concurrency conflicts to happen. If a
conflict happens, it is detected by the DBMS and one of the transactions is rolled
back. The transaction is restarted and re-executed. Evidently this means that con-
flicts are expensive. Therefore, optimistic concurrency control should be used in case
conflicts are expected not to happen too often. Otherwise, pessimistic concurrency
control can result in better performance.

Locking

The conventional concurrency control protocol involves locking. This is a pessimistic
method. Any transaction that tries to access the database has to acquire a lock.
There are two kinds of locks: exclusive and shared locks. In case of a write operation,
the transaction acquires an exclusive lock on a database object and releases it again
after the operation finishes execution. The shared lock is used for read operations.
It is possible for multiple transactions to acquire a shared lock and perform a con-
current read operation. On the other hand, an exclusive lock can only be acquired
if no other lock is held on an object. Additionally, locks can be held on rows, or an
entire table. Holding a row-level lock instead of a table-level lock allows for multiple
transactions to concurrently write to separate rows.

The mechanics of these two locks ensure that ACID properties remain intact.
However, it does not guarantee the exclusion of deadlocks. For example, assume
transaction T1 holds an exclusive lock on object A and transaction T2 holds an
exclusive lock on object B. If T2 also tries to acquire an exclusive lock on object A
and T1 tries to acquire an exclusive lock on object B, both transactions need to wait
on each other to release the initial locks, resulting in a deadlock. There are many
ways to handle a deadlock situation. Generally, it is difficult to prevent deadlocks,
but it can be done by tracking resource allocation and reason which resources a
process requires in the future1. Another approach is to allow deadlocks, detect their
occurance by tracking the resources and recover from the undesirable state.

1https://en.wikipedia.org/wiki/Deadlock

https://en.wikipedia.org/wiki/Deadlock

Chapter 3. Background 15

Multiversion concurrency control

Multiversion concurrency control or MVCC is a concurrency control protocol that
has been widely employed by database management systems such as Postgres and
Oracle. It is an optimistic method. Moreover, it is a timestamp-based protocol.
That means that it assigns a timestamp to each transaction. The older the transac-
tion is, the higher its priority. A new transaction has to wait until older transactions
finished execution. Additionally, as opposed to locking, MVCC prevents read and
write operations from blocking each other. This is done through snapshots. Each
query works on a snapshot of the current state at the time the query starts. This
is where the term snapshot isolation comes in. Once a transaction starts, it takes a
snapshot of the current data and only operates on the snapshot. Read operations
are only able to see changes that were applied before the start of the transaction.
A write operation only updates the snapshot to ensure that concurrent reads can
still access the old state. As a consequence, read transactions never have to wait.
On the other hand, timestamps ensure that write operations block each other and
therefore do not result in conflicts.

3.1.6 Strict serializability

Serializability speaks about the correctness of the execution of concurrent transac-
tions. A set of concurrent transactions is executed in a schedule. It is possible to
execute one transaction completely after the other which is referred to as a serial
schedule. Serially scheduled transactions prevent any data inconsistencies. A non-
serial schedule comes to mind when transactions are not serial and instead individual
operations of the transactions are interleaved. This can lead to concurrency issues.
A non-serial schedule can however still be serializable. A non-serial schedule is serial-
izable if the result is equivalent to the result of a serial schedule of the corresponding
transactions. Non-serializability of a schedule leads to conflicting operations and an
inconsistent database state.

Linearizability is another term used in databases and it is important that the
reader has a good understanding of this term. It provides a real-time guarantee
about single operations on single (database) objects. That means that a write
operation to a single object should instantly be visible to a read operation of the
same object. Any read operation that is executed after the write operation, in real-
time, should read the written value or the value of a later write. Another term for
linearizability is atomic convergence.

The combination of serializability and linearizability is called strict serializabil-
ity2. It puts real-time constraints on the execution order of the transactions. If
a transaction A starts before transaction B, then A is scheduled before B and the
result after execution is equivalent to the result of a serial schedule.

2http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

16 3.2. Software architectural styles

3.2 Software architectural styles

An application consists of several layers that are working together to provide the
user a functioning product. These are usually defined in order as:

1. Presentation layer

2. Business logic layer

3. Data access layer

A stateless application does not persist any user data and does therefore not
require a data layer. However, most applications are stateful and use a database
to persist their data. Each layer builds logic on top of the other layer and is only
allowed to request information from the layer below it. The business layer consists
processes or tasks that use data from the data layer and perform some operation
on it. The presentation layer translates information from the business layer into
something that the user can understand. In a web application, this usually means
that information is displayed in the form of an HTML page. An HTTP request
is sent from the presentation layer to the business layer to request any stateful
information.

3.2.1 Monolithic architecture

A monolithic application is an application in which there is no clear separation of the
three layers, and the layers run in a single environment and on a single computing
device. An advantage of monolithic applications is that they are easy to develop,
and easy to test and deploy. This makes it a good use case for a proof of concept or
a small project. However, monolithic applications tend to be more difficult to scale
horizontally; it requires to deploy all the code on multiple machines. Moreover,
maintaining a monolithic application is not straightforward either, since a small
change can affect the whole system [20]. Another disadvantage is that updating a
single component requires the entire application to be redeployed.

3.2.2 Layered architecture

By splitting up the parts that comprise an application, we can make it more mod-
ular, more maintainable and easier to scale. Therefore, an improvement on the
monolithic architecture is the layered architecture. First of all, the presentation,
business and data layer are separated from each other. Each layer can even run
on a separate device. There is no need for the presentation layer to know how the
business layer functions. All it needs to know is that there is a business layer that
provides information to display. Furthermore, the business layer does not need to
know how the presentation layer is going to display this information. Second of all,
the business layer can be split up into a coarse-grained set of services. The idea
behind this is that an application is meant to serve distinct business processes. For
example, a login service provides the user with a means to authenticate themselves

Chapter 3. Background 17

to the application. The login service does not have to know about any other ser-
vices and can therefore be structured as a separate component. There might also be
services that do require communication with each other. This usually involves data
passing or communication through middleware.

3.2.3 Microservices architecture

Microservices architecture goes a step further than the layered architecture. The
services are split up into even smaller more fine-grained services. Each service is
self-contained and implements a single business capability within a bounded con-
text. Bounded contexts separate business domains. For example, a checkout service
has its own bounded context and is separated from the catalogue service. Infor-
mation can still travel between these bounded contexts, but the business logic is
divided into features with well-defined boundaries. The microservices are therefore
small, independent and loosely coupled by hiding implementation details from each
other [10]. An important consequence is that small teams can work on their own
microservice. This avoids a vast overhead of communication within large teams. Mi-
croservices can be deployed independently without requiring to redeploy the entire
application. Additionally, they are responsible for persisting their own data, but
can communicate information to each other through APIs or middleware such as an
event bus. Finally, each microservice can be written in their own technology stack.
In other words, they do not need to share programming language or dependencies.

All of this does come at a cost: additional constructs are required to orchestrate
the microservices which increases the complexity of applications. The upcoming
sections will discuss some of the most important constructs.

Load balancer

The first component that is required is an API gateway or an enterprise service bus.
Clients do not need to know about the different services, but instead call the API
gateway with a request. It is then the job of the gateway to forward this request
to the appropriate services. This is another example of a construct that is used
to decouple parts of the application and make it more modular. An API gateway
usually also implements load balancing. This is a way to efficiently distribute the
incoming requests across multiple servers. For simplicity, the term load balancer is
often used when referring to an API gateway that implements load balancing.

Service registry

In order for the load balancer to forward a request to a microservice, it needs to
know about the existence of these microservices. Moreover, it needs to know the
IP addresses. These can be configured in a configuration file. However, cloud-based
applications assign addresses dynamically. In such cases, a service registry is used
where microservice instances can register themselves. The service registry consists
of a database of microservices, their instances and their IP addresses. Microservice
instances register themselves with the service registry when launched and deregister
themselves before shutting down.

18 3.2. Software architectural styles

Figure 3.2.1: An example of a microservices architecture for an online store.
The architecture implements the database-per-service and sagas pattern.

Shared database anti-pattern

In a stateful microservices architecture, the decision has to be made whether to
use a single database that is shared across all microservices, or whether to use one
database per service. It is possible to use a shared database where each service
can access data from other services using local ACID transactions. However, it
is strongly advised not to, and it is even considered to be an anti-pattern. The
reason is that it could result in microservices blocking each other when trying to
access the same data. Additionally, it breaks the idea of separating the concerns of
development teams. Teams have to communicate database schema migrations with
each other.

Database-per-service pattern

As explained in the previous section, a shared database is an anti-pattern. It is pre-
ferred that each microservice owns its own database instead. This has the advantage
that microservices are kept decoupled. Database schema migrations will not have to
be coordinated with other teams, and database queries do not block other services.

Sagas

Even though the database-per-service pattern is preferred, microservices might still
have to access and update data owned by other microservices. Think for example
of an online store. A request for an order that is received by the order service
needs to remove items from the inventory database which is owned by the inventory
service. There are a couple reasons why we cannot simply tell the inventory service
to remove these items. First of all, the inventory might not contain enough of these
items. Secondly, if the transaction from the inventory service fails, the order service
also needs to rollback its transaction.

Chapter 3. Background 19

The solution is to implement sagas. A saga is a sequence of local transactions
that live across multiple services. Each service commits a local transaction and
sends an event to trigger the next local transaction. If one transaction fails, then
an event is sent back down the saga to reset the state. In case of the online store,
the order service creates an order and tells the inventory service to update the
inventory as shown in Figure 3.2.1. If there are not enough items, or the transaction
fails, the inventory service tells the order service to cancel the order. Otherwise,
the inventory service sends a success event. The previously described coordination
method is called choreography. Another method uses an additional component,
called an orchestrator. Instead of sending events, the orchestrator sends commands
to the next microservice to tell what transaction to perform.

The additional complexity that comes with a microservices architecture is often
outweighed by the flexibility. Therefore, most companies implement a microservices
architecture and even legacy monolithic applications are migrated to use microser-
vices.

3.3 Distributed systems

In the previous section, we have already seen that we can either have a single machine
on which all components live such as in a monolithic architecture. On the other
hand, a system can be distributed. It is difficult to find a single interpretation of
a distributed system, but van Steen and Tanenbaum provide an accurate definition
[31]:

"A distributed system is a collection of autonomous computing elements
that appears to its users as a single coherent system."

In other words, in a distributed system, components are spread across multiple
machines and they all work together as a system. A distributed system can also be
geographically scattered. A microservices architecture (or layered architecture) is
a good example of a distributed system. Each microservice runs on its own server
and communicates with other microservices across the network to appear as a single
coherent unit.

In contrast to a distributed system, a monolithic application has one single point
of failure. This means that a fault will result in a system crash. Single points of
failure should always be avoided. Therefore, a distributed system is much more
attractive, since the workload is not put on a single machine, but spread across
several servers. If one microservice fails, other microservices are still available to the
user. This is called a partial failure. This is of course an advantage, but there is
also a disadvantage to it: there is no way for the other components to know that a
machine failed, let alone which machine. After all, the network is unreliable. This
means that requests may be lost or delayed, and vice versa for responses. Another
possibility is that a machine’s clock is out of sync with the rest of the system. There
are solutions out there that provide fault tolerance for distributed systems such as
health checking or the circuit breaker pattern.

20 3.3. Distributed systems

3.3.1 High availability clusters

The availability of a system is described by uptime and downtime. Uptime is the
amount of time that the system is working correctly and is available for requests.
When the system is not up, it is down and we refer to the amount of time that the
system is down as downtime. Generally, we try to minimize the downtime, so our
system can be used without (many) interruptions. In other words, we aim for a high
availability, meaning there is only a very small percentage of downtime. Promises
about uptime and downtime are described in service level agreements (SLAs).

A high availability cluster (or failover cluster) is a distributed system that ensures
high availability. Therefore, the system needs to be fault tolerant. That means that
a failure of one component does not result in a failure of the entire system. There
are three principles to high availability that ensure fault tolerance:

HA1 Failure detection. If a component fails, it needs to be detected by the
system. Usually, this is done by adding a monitor that sends health checks to
the system parts.

HA2 No single point of failure. If the system has a single point of failure, we
rely on that part of the system. If this component crashes, the whole system
might crash. Therefore, high availability clusters add redundancy by copying
parts of the system.

HA3 Reliable crossover. When a health check fails, the system needs to restart
the application on another machine. This is called failover or crossover.

The last two principles, HA2 and HA3, are mainly about failure recovery. When
one part of the system fails, it needs to be recovered on an additional machine. There
are two main architectures or strategies for a high availability cluster to ensure this:

1. Active-passive clusters. Alongside the primary server that serves the ap-
plication, there is an additional redundant server that is only activated when
the primary server fails.

2. Active-active clusters. Several servers run in parallel behind a load balancer
that distributes the workload. In case of a failure, the workload is distributed
across the remaining servers.

Active-active clusters are often preferred, since it ensures that all servers are
active, instead of having a redundant server that is only active in case of a failure
of the primary server. Additionally, this means that all workload is load balanced
which improves overall performance.

High availability for microservices

In the context of a microservices architecture, we might have several servers serving
the same microservice. These can even be geographically distributed. A geograph-
ically distributed system consists of clusters across several regions. This results in
a lower latency by redirecting clients to the closest regional cluster using a global

Chapter 3. Background 21

load balancer. Each cluster runs one or more instances of every microservice. By
having multiple active instances of a microservice, requests can be redirected to a
different instance in case of a failure. In case the entire cluster fails, the requests
will be forwarded to the next nearest regional cluster. These configurations ensure
that there is no single point of failure in the system.

3.4 Database replication

Database replication is the process of creating a copy of a database and keeping
the data in both instances synchronized. The original database is often called the
primary or master database, while a replica is called a standby or slave. Each
database instance lives on a separate server to ensure that a crash only results in
failure of a single instance. There are two different forms of replication:

• Sharding. Sharding or horizontal partitioning is understood as partitioning
the data across several database instances. Instead of keeping all rows in one
database instance, they are spread across multiple instances. Sharding is often
used to geographically distribute the data. Data objects that contain regional
information are sharded and located at the database of the corresponding
region. These data objects are most often accessed at their respective regions,
hence sharding decreases latency. Additionally, since each database instance
is of limited size, queries require less lookup time.

• Full replication. Another form of replication is full replication which repli-
cates the entire database across all instances. This shall research focus on full
replication and full replication is to be understood when referring to replica-
tion.

It is important to note that database replication is different from duplication.
A duplicate of a database is an exact copy of the database at a specific moment in
time and is often used to keep a back-up. Replication, on the other hand, keeps the
data synchronized such that the replicas are consistent with the primary database.
Replication is implemented to fulfill two main goals:

DR1 Availability. A consequence of database replication is an increase in avail-
ability of the data. The data is available as long as one instance is online and
is accessible. Of course, this requires the system to be fault tolerant. That
is, the system should still function correctly if part of the system fails. As
we have seen, high availability is an important concept in order to implement
fault tolerance in a distributed system. The same principles can be applied to
database replication to ensure fault tolerant databases.

DR2 Scalability. It is possible to load balance the workload across several replicas
to ensure a higher throughput. This makes the database more scalable, even
though it requires more storage space.

22 3.4. Database replication

3.4.1 CAP theorem

Replication can be implemented in many different ways. In order to understand
which technique might be preferred, we need to know about the CAP theorem by
Brewer [7]. Its definition can be quite unclear and has been critiqued throughout
the years [6, 21]. The CAP theorem states that any distributed database can only
guarantee two of the following three properties: consistency, availability & partition
tolerance. The critique discusses several aspects that are wrong or unclear in the
definition. First of all, the last property is unclear. It essentially means that the
system should be tolerant against network failures between distributed nodes. In
practice, this property should always be preserved and the theorem comes down to
choosing between consistency and availability. It means that the database cannot
provide both consistency and availability in case of a network failure. However,
as the critique states, this is not a system-wide decision. It is possible that one
subsystem prefers consistency over availability, and vice versa for another subsystem.

Abadi provides more critique to the CAP theorem and discuss that, when no
network partition is present, there is still a tradeoff between consistency and latency
[1]. Latency describes the time it takes to send a request for a query, process it
and send back a response. Essentially, an unavailable system has very high latency,
while a low latency indicates availability. Availability does not mean no latency at
all. Moreover, as Abadi describes, for a replicated database to be consistent, more
latency is unavoidable. Abadi captures this tradeoff in a variant of the CAP theorem
called the PACELC theorem: in presence of a network partition (P) in a distributed
system, there is a tradeoff between availability (A) and consistency (C), but else
(E), when there is no network partition, latency (L) or consistency (C) should be
weighed up.

Additionally, to the above critique towards the CAP theorem, we should critique
the use of the word consistency. In this case, the definition of availability is as
described before. However, we have seen the use of the word consistency in two
concepts: ACID properties and the CAP theorem. Most research uses the same
name for both definitions. Nonetheless, they are considered two different constructs.
Therefore, it is important to make the distinction. Consistency, in the context of
ACID, is a guarantee that data integrity constraints are not violated. On the other
hand, we have consistency in the context of a distributed database and the CAP
theorem. In this context, consistency states that all replicas read the same database
state. That is, a write operation is instantly applied to all database instances. To
distinguish both constructs, we will use a different name for the latter definition:
convergence3. In section Section 3.4.4, it will become clear how the CAP theorem
is applied in practice. There we will also distinguish another form of convergence
called eventual convergence.

3.4.2 One-copy serializability

In Section 3.1.6, we have discussed the meaning of serializability in the context of a
non-replicated database. The terminology behind serializability can also be extended

3https://pathelland.substack.com/p/dont-get-stuck-in-the-con-game-v3

https://pathelland.substack.com/p/dont-get-stuck-in-the-con-game-v3

Chapter 3. Background 23

to replicated databases. In that case we are talking about one-copy serializability.
A non-serial schedule of concurrent transactions across a replicated database system
is one-copy serializable if the result after execution is equivalent to the result of a
serial schedule on a single database instance.

3.4.3 Database architecture for replication

Before implementing the replication mechanism, an architecture has to be designed.
For instance, it has to be decided how many replicas the database will have. Most of
all though, a decision has to be made whether write operations are only allowed to be
received by the primary database or also by the replicas. This question categorizes
two architectures:

• Master-slave. In a master-slave architecture, the primary or master database
receives write operations and replicates them to one or more replicas. For a
master-slave architecture, we can additionally decide between a warm standby
or a hot standby. A warm standby is a replica that only tracks changes of
the master and updates accordingly. On the other hand, a hot standby is, in
addition, online and available for read-only transactions. Since we aim for high
availability and scalability, the better option is to use hot standby servers. The
disadvantage is that it has to be ensured that the hot standby has processed
all updates. This could lead to added latency when waiting for the standby to
be in-sync with the primary database. In Section 3.4.4, this will be discussed
in more detail. An example of the master-slave architecture can be found
in Figure 3.4.1a. It is also referred to as unidirectional replication, since the
changes are always replicated from the master to a slave.

• Master-master. In a master-master setting, every database is considered
equivalent. That means that any database can receive write operations or
read operations. A write operation will have to be synchronized with the rest
of the databases. The main disadvantage, in comparison to a master-slave
setting, is that concurrent write operations to multiple databases can result
in conflicts. Therefore, there needs to be a conflict resolution mechanism in
place.

There are reasons to choose master-slave over master-master and vice versa. A
master-slave architecture is more straightforward to setup and does not have to
deal with conflict resolution. On the other hand, all write operations are forwarded
to a single database node. For that reason, in a system where lots of writes are
expected, a master-master replication mechanism is preferred. Conflicts will have
to be dealt with in an orderly manner. For the remainder of this section, we assume
a master-slave architecture since this simplifies our replication process.

It should be noted that databases are different from software systems. Additionally
to a system crash, it is possible that the underlying hardware has been physically
damaged and corrupted the data. Therefore, it is always important to create a
backup if decided against replication.

24 3.4. Database replication

(a) An example of a master-slave repli-
cation architecture with a hot-standby.

(b) An example of a master-master repli-
cation architecture. Replica control is
bidirectional.

Figure 3.4.1: A comparison of the master-slave and master-master replica-
tion architectures.

3.4.4 Replica control

As discussed, replication can be used to provide high availability for databases.
Replication is the process of creating a copy of a database and keeping the data in
both instances synchronized. While previous principles focused on the architecture
of a replicated database system, this section puts emphasis on the synchronization
step. The synchronization step is called replica control. There are many mechanisms
to implement replica control. A replica control mechanism can either synchronously
or asynchronously replicate the data:

• Synchronous replication. Any write transaction waits for the transaction
to be committed to the replica before committing itself. With respect to
the CAP theorem, synchronous replication provides convergence across all
replicas. However, this means that a transaction might take longer to finish
and therefore reduces availability.

• Asynchronous replication. Write transactions are replicated after being
committed. This is done asynchronously. Therefore, there is a short time
frame, called the replication lag, during which the replica database has not
converged. While asynchronous replication can promise availability, conver-
gence cannot be guaranteed. Instead, it provides eventual convergence: if no
additional data is written, the system will eventually converge across all repli-
cas. In some systems, eventual convergence can be enough. A disadvantage of
asynchronous replication is that data can be lost if the system crashes during
replication.

Deciding between synchronous and asynchronous replication means deciding be-
tween convergence and availability. Synchronous replication can provide better fault
tolerance. If the primary database fails, a replica is guaranteed to converge and
can directly catch any incoming workload. Asynchronous replication on the other
hand does not provide any replication overhead. Instead of deciding between syn-
chronous and asynchronous replication on an application-level, we can also decide
per database. Some data requires to be consistent all the time, while other data can
do with eventual convergence.

There are many replication mechanisms, and it depends highly on the DBMS
which technique should be used. Next, we present some of these solutions:

Chapter 3. Background 25

• SQL-based replication. The SQL statements can be intercepted and for-
warded to the replicas. This way, the same SQL query will be executed on all
servers. However, non-deterministic query statements such as CURRENT_-
TIMESTAMP can result in different data across the replicas. Furthermore, it
must be ensured that a transaction is committed on all servers. This can be
done using an atomic commit protocol such as two-phase commit. For these
reasons, SQL-based replication is not preferred.

• Trigger-based replication. Replicates data based on SQL triggers. An
SQL trigger can listen for update or insert operations and act upon them. By
placing triggers on the primary server, it can send data changes to replicas.
This has as an advantage over the SQL-based replication that the SQL query is
only executed once, resulting in less overhead. The results are directly copied
across all replicas.

• Log shipping. Trigger-based replication replicates the data through SQL. On
the other hand, databases keep a transaction log. This is a file that records
all the modifications to the database. These logs are mainly used to recover
your database to a correct state after a failure. However, they can also be
used for replication. In log shipping, the primary server sends changes as log
records to the replicas. The replica then updates the database by applying the
changes seen in the log record. The advantage to trigger-based replication is
that we offload the replication process from the database. In addition, it does
not require us to write SQL triggers. Overall, log shipping is the preferred
method. It can be implemented asynchronously, or synchronously by waiting
for approval from all the replicas.

3.4.5 Conflicts

Even log shipping replication still has some challenges to overcome. These challenges
mostly arise from conflicts between the primary and standby servers. If a write
happens on the primary server, simultaneous to a read operation on the standby
server that accesses the same data, there are two choices that we can make. One
is to wait for the read query to finish before publishing the changes to the replica.
However, if the query takes a long time, the replica can run behind on the primary.
The second choice is to forcefully cancel the read query and maybe try to re-execute
it after applying the log records.

3.5 Application deployments

When releasing a new software version, the new application needs to be deployed.
There are several ways to come about this. This section talks about deployment
pipelines, gives a definition for zero-downtime, and discusses several deployment
strategies to overcome downtime.

26 3.5. Application deployments

Figure 3.5.1: A comparison of the continuous integration, continuous de-
livery and continuous deployment pipelines.
Source: https://aws.amazon.com/devops/continuous-delivery/

3.5.1 Deployment practices

Application deployments are often automated in a pipeline. A code change has
to be committed by the developer after which the pipeline executes a sequence of
automated steps to check for correctness of the application:

1. First of all, the pipeline runs a build script to ensure that the application
compiles. The unit tests are run as well.

2. If the first step succeeds, the build is deployed to the testing environment in
order to run additional tests such as integration tests.

3. Finally, assuming all tests succeeded, the application is deployed to the pro-
duction environment.

It is not required to run all these steps. There are several deployment practices
that each have their own pipeline as shown in Figure 3.5.1. One of the deployment
practices is continuous integration where only the first step is executed. Continuous
integration is used in case developers commit changes often. It ensures that the
code always functions correctly. An extension of continuous integration is continuous
delivery. A continuous delivery pipeline executes the first two steps described before.
This ensures that there is always a release version ready which has to be manually
deployed to the production environment. If we include automatic deployment into
the pipeline, we speak of continuous deployment.

3.5.2 Zero-downtime

It is important to give a definition of zero-downtime, since it can be interpreted in
different ways. The term can be deconstructed into ’zero’ and ’downtime’. Downtime
is defined as the time that an application is offline and thus zero-downtime would
mean that the application is always online and available for requests. Generally,
this would be a correct definition for zero-downtime and can be achieved. However,
a will always result in some (additional) latency and a change in the throughput.
The current definition of zero-downtime does not tell us anything about how much
latency or throughput a user might observe. Therefore, if we speak of in this
research, we extend it to the perception of the user. In other words, we try to
minimize the perceived change in latency and throughput.

https://aws.amazon.com/devops/continuous-delivery/

Chapter 3. Background 27

3.5.3 After-hours deployment

The following sections describe some deployment strategies and discuss their prop-
erties with respect to zero-downtime.

The most straightforward deployment strategy is to take down the current ap-
plication, apply database migrations, and deploy the new application. This can be
scheduled to be done during low usage hours. Such an after-hours deployment can
often be recognized by the maintenance notification that users receive. Of course,
this results in some downtime. Hence a different deployment pattern needs to be
used to guarantee zero-downtime.

3.5.4 Blue-green deployment

A blue-green deployment is more robust and does not entail any downtime [27]. All
in all, to be able to support zero-downtime when transition from one application
version to another, there can never only be one application instance running. In
other words, we always have to run both application versions in parallel for some
time frame. For this concept to work, a load balancer is required. A blue-green
deployment initially only has one or more instances of the old application running
behind the load balancer; all requests are forwarded to the old application. The
old instances are called the "blue" instances. After the updated application has
been developed, we deploy several instances in parallel with the blue instances and
call them "green" instances. Once the green instances are active and have been
thoroughly tested, we tell the load balancer to direct any requests to the green
instances. As soon as all clients are moved to the green instances, it is safe to take
down the blue instances.

As we can see, during this entire process, clients will still be able to use the
application. At any point in time, at least one of the application instances is active.
Therefore resulting in zero-downtime. However, the user might experience some
latency when the client is moved to the green instance.

When it comes to blue-green deployments, there are some best practices to keep
in mind. First of all, it is good to do several deployments by repeatedly deploying
small changes and switching from blue to green until all changes are applied. This
ensures that we do not directly deploy a new application version that is not compat-
ible with the old version. Furthermore, the application instances should always be
monitored and the new instance should be thoroughly tested. If the new instance
fails or results in unforeseen behaviour, it is still possible to take down the green
instance while keeping the blue instance running.

Besides, the standard blue-green deployments, there exist some variations such
as:

• Canary deployment. In a canary deployment, we only redirect a small
subset of users to the green instance. This is great for performance monitoring
and user testing, and makes it less demanding to rollback. When the green
instance has been thoroughly tested, the rest of the clients can be redirected
to use the new application version.

28 3.6. Expand-contract pattern

• Rolling deployment. Blue-green deployments instantly switch all service
instances from the old to the new version. In a rolling deployment, we swap
instances out one after the other. This results in slower deployments, but
requires less resources since it only needs one extra instance to run in parallel
at a time.

3.6 Expand-contract pattern

The aforementioned blue-green deployments work in a stateless application. How-
ever, applications often require state and a database to store that state. The state
is incorporated in the application as the domain model. Essentially, it is a definition
of the database structure inside the application. The database is coupled to the do-
main model and any database query loads the data into the domain model. When
the database schema requires a migration, the domain model that depends on that
schema also needs to be updated. To facilitate zero-downtime schema migrations,
the application deployment and schema migration have to be coordinated in order
to stay coupled. It is inevitable that two application versions, conforming to two
versions of the domain model, require to be online at the same time. This asks for
a mixed-state database [14]. In other words, the database is required to support
both application versions. The expand-contract pattern, as described by Dijkstra,
supports a mixed-state [18].

The expand-contract pattern consists of two steps: expanding the schema and
then contracting it. This is best explained by looking at an example. If we want to
rename a database column, the expand step creates a new column with the updated
name. The database is now in a mixed-state. That means that both the old and
new application version are supported. Subsequently, the new and old column are
synchronized by applying update and insert operations to both columns and copy
any remaining data from the old column to the new column. This synchronization
step can be done through application code or database triggers. Finally, the contract
step removes the old column.

There are several advantages to the expand-contract pattern. First of all, it does
not require a great amount of extra insight from the developer. Secondly, the pattern
is backwards compatible while the database is in a mixed-state. This also means
that, after the expand step, the migration can easily be rolled back to the original
state. The expand-contract pattern will not block access to the database either.
Finally, this pattern can be interwoven into the blue-green deployment pipeline
without much trouble. After all, blue-green deployments are a form of parallel
change providing zero-downtime [28], similar to the expand-contract pattern. The
steps of both methods can be alternated to ensure zero-downtime schema migrations.
An example of this is described below. In addition, the steps are illustrated in
Fig. 3.6.1.

Expand-contract blue-green deployment pipeline

1. Start with application version 1.0.0 and database version v1.

Chapter 3. Background 29

2. Apply the expand step to the database. The database is now in a mixed-state
supporting both version v1 and v2.

3. Deploy one or more application instances of version 2.0.0.

4. Ensure the new application functions correctly.

5. Redirect all clients to the new application instances and wait until no client
is using application version 1.0.0 anymore before moving on. It might be a
good idea to monitor the new application. If the application fails and needs
to rollback, then now is the time. For these reasons, a good alternative to
the blue-green deployment could be a canary deployment where only a small
portion of users is redirected to the green application instances while being
monitored. This ensures that faults in the system are detected early on and
can be managed more easily.

6. Take down the old application instances.

7. Finally, apply the contract step to the database. The database is now in
version v2. After this, the migration cannot be rolled back anymore. Instead,
a separate migration that reverts to the old state would have to be applied.
This is called a forward roll.

Figure 3.6.1: An explanation of how the expand-contract pattern is applied
in a blue-green deployment. Each number represents a step in the expand-
contract blue-green deployment pipeline as defined in Section 3.6.

30 3.7. Physical and logical replication

3.7 Physical and logical replication
Postgres supports two types of replication: physical and logical replication. Physical
replication is the default and deals with replication on a file system level [5]. Data
and schema changes are replicated in a binary format by means of write-ahead
logging (WAL). The WAL records are streamed to the standby server which applies
them to the database replica.

Physical replication is worried about having the same file structure. On the
other hand, logical replication only ensures that the data is copied correctly on the
basis of SQL statements [5]. It does not care about how the underlying file structure
is implemented. Therefore, an important advantage of logical replication is that it
allows replication between two different (major) Postgres versions. Logical replica-
tion makes use of a publisher and subscriber pattern. The primary database sets
up one or more publications. A publication can be applied to the entire database,
or limited to a subset of tables. Furthermore, it is possible to specify which DML
operations it should be restricted to. Once a publication exists, the standby server
can create a subscription that listens to changes from the publication. Each change
is then applied to the database.

Both physical and logical replication have their advantages and disadvantages [5]:

1. Logical replication does not support DDL changes while physical replication
does. This is a major advantage of physical replication for our use case, since
schema migrations only have to be applied once to the primary database.

2. Logical replication is unable to stream changes. A transaction is only send
to the replica on commit. Therefore, there could be a large delay before the
replica converges.

3. Logical replication does not support replication of sequences, truncate opera-
tions, or large objects.

4. On the other hand, it is possible to use logical replication in a multi-master
architecture while physical replication does not support this.

5. Moreover, as mentioned, logical replication enables replication between two
major Postgres versions.

Even though, DDL statements are not replicated by logical replication, it is still
feasible to apply the expand-contract pattern on a replicated database. Since logical
replication copies changes by means of SQL statements, changes in the data can be
replicated to an expanded (mixed-state) database. Consequently, the example in
Section 3.6 can be extended for a logically replicated database. In that case, step 2
should be applied to the slave instance before applying it to the master database.
Any write operations coming in on the master database can still be forwarded to the
slave that is in the mixed-state. Similarly, the contract phase in step 7 should first
be applied to the master database, since the contracted state is compatible with the
mixed-state of the slave.

For this research, it has been decided to use physical replication, since it is much
more dependable and simplifies the deployment pipeline. Logical replication has

Chapter 3. Background 31

been around since Postgres version 10. Therefore, it is still quite new and has not
been widely adopted. Moreover, physical replication is the default replication type
and is also a technique found in other DBMSs while logical replication is specific to
Postgres.

32 3.7. Physical and logical replication

Chapter 4

Technology stack

4.1 Liquibase

Liquibase is an open-source database schema versioning tool 1. The tool records
each schema migration. This enables the user to keep track of the current database
schema and ensure it lines up with the application code. In addition, we can eas-
ily revert to a previous schema version by rolling back the last schema change.
Schema changes are defined in a Liquibase specification in the form of, for example,
XML. The specification is translated into SQL statements for the target database.
Liquibase supports a range of different databases.

Liquibase defines several constructs that encapsulate the schema changes. On
the top level, a changelog is composed of schema changes called changesets. A
changeset, on the other hand, captures several schema changes that are intended to
be applied in a single transaction. Some examples of schema changes that Liquibase
supports include adding, dropping or renaming a column. For each schema change,
Liquibase also creates rollback statements to revert changes with ease.

The master changelog keeps track of all schema changes. Liquibase uses the
master changelog to determine which changes have and which changes have not
been applied yet. Any changelog that should be applied has to be included in the
master changelog as follows:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <databaseChangeLog
3 xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-
4.7.xsd">

4
<!-- each changelog corresponds to a new version of the database schema -->

5 <include file="db/changelog/db.changelog-v1.xml"/>

1https://www.liquibase.org/

33

https://www.liquibase.org/

34 4.2. Kubernetes cluster

6 <include file="db/changelog/db.changelog-v2.xml"/>
7 <include file="db/changelog/db.changelog-v3.xml"/>

8 </databaseChangeLog>

The schema changes are recorded in a separate table called databasechangelog.
Before migrating the database, Liquibase has to acquire a lock using the databasechangeloglock
table. This ensures that only one Liquibase instance performs operations at any
moment in time. After applying a schema change, the change is registered in the
databasechangelog table which tells Liquibase that this change does not need to be
applied anymore. Additionally, a rollback request looks at the last schema change
to determine the rollback statement.

Liquibase is open-source and exposes endpoints that can be extended to imple-
ment new schema changes or add implementations for an unsupported database.
This research produces a Liquibase plugin that overrides the base schema changes.
To override an existing schema change, we need to specify a higher priority level.
The plugin needs to be added to the lib folder to be able to use it. When reading
a change specification, Liquibase scans the lib folder for implementations of that
schema change and executes the one with the highest priority.

4.2 Kubernetes cluster
For this research, a Kubernetes cluster has been constructed 2. It runs a Postgres
cluster that is configured by Crunchy Data’s Postgres Operator (PGO) 3. PGO
manages the database, ensures replication and provides automatic failover. In the
master-slave replication architecture, a load balancer is required to forward write
queries only to the master database. This functionality is provided by Pgpool-II. To
test the expand-contract pattern, a Spring application sits in front of the Pgpool-
II instance and receives HTTP requests through a REST API. The step-by-step
approach to perform a blue-green deployment, as described in Section 3.6, will be
applied to ensure correctness of the applied pattern.

The entire architecture of the Kubernetes cluster is depicted in Fig. 4.2.1. The
figure shows that high availability is achieved in the form of redundant containers.
The services act as load balancers and distribute incoming requests equally across all
instances. The architecture is meant to be as representative as possible. A similar
architecture is used in the production environment at ING. This ensures that the
results of our tests and benchmarks are accurate and trustworthy.

It should be noted that limited resources were available for this research. The
Kubernetes cluster was run on a single machine, being a laptop, using minikube
to simulate the different nodes 4. Consequently, the overall performance could be
influenced by other processes running on the machine in parallel. We take this
into account when evaluating the results. The laptop specifications can be found in
Appendix A.

2https://github.com/coenvk/kubernetes-postgresql
3https://access.crunchydata.com/documentation/postgres-operator/latest/
4https://minikube.sigs.k8s.io/docs/

https://github.com/coenvk/kubernetes-postgresql
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://minikube.sigs.k8s.io/docs/

Chapter 4. Technology stack 35

Figure 4.2.1: Architecture of the Kubernetes cluster that is used to test
the expand-contract pattern.

4.3 HammerDB benchmarks
HammerDB is a benchmarking tool that we use to measure the latency and through-
put of database transactions 5. The Transaction Processing Performance Council
(TPC) has specified a benchmark for online transaction processing (OLTP) called
TPC-C. Based on the TPC-C specification, the TPROC-C benchmark has been cre-
ated that is suitable for HammerDB. Dijkstra has also made use of HammerDB for
his benchmarks [18].

Before running the benchmark, HammerDB creates a Postgres database. The
database represents a warehousing system where customers send in orders. The
benchmark automatically generates orders in bulk to provide a constant workload.
The orders are processed and update the stock of the warehouses. The TPROC-C
database is, in addition to benchmarking, used to debug liquibase-zd.

5https://www.hammerdb.com/

https://www.hammerdb.com/

36 4.3. HammerDB benchmarks

Chapter 5

Expand-contract pattern
implementation

This chapter describes how several schema migrations have been implemented in
liquibase-zd. The first section describes features specific to the plugin and how
they can be used. The next sections describe the schema changes that have been
implemented. The findings in this research and the research by Dijkstra can be
used to provide implementations of the expand-contract pattern for other schema
migrations or other versioning tools.

5.1 Plugin features

liquibase-zd replaces the original schema change by a custom change that executes
the required individual changes.

5.1.1 Switch between expand and contract

By means of a Liquibase property, we can specify whether we are in the expand or in
the contract phase. Based on this property, the corresponding changes are generated
and executed. The property can take on one of the following values: disabled, expand,
contract. The first value specifies that the original Liquibase implementation of the
schema change should be applied. The property can be used as follows:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <databaseChangeLog
3 xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-
4.7.xsd">

4 <property name="zd-strategy" value="expand" global="false"/>

37

38 5.2. Rename view

5 <changeSet id="rename.column.expand" author="Coen">
6 <renameColumn tableName="customer" oldColumnName="name"

newColumnName="fullname"/>
7 </changeSet>
8 </databaseChangeLog>

The property is defined in line 4 as a non-global property. This ensures that the
value of the property can be changed in a different file. If the property is excluded, it
is assumed that the zero-downtime plugin is disabled. Generally, the idea is to create
two files: one for the expand step and one for the contract step. The definition of
the schema change should be exactly the same. The only difference is the property
value and the identifier of the changeset.

5.1.2 Metadata retrieval

Some schema changes require additional information about database objects. When
renaming a view, as explained in Section 5.2, the expand phase consists of adding
the same view with a different name. The definition of the original view is required
to create an exact copy. There are two options to acquire this information. The
first option is that the software engineer provides the definition, or other metadata,
to the schema change. However, this has a lot of disadvantages. The metadata has
to be exactly the same as the original specification. Moreover, this goes against
the transparency requirement R3. Instead, prior to the schema migration, the view
definition is retrieved from the Postgres system catalogs. Other metadata, such
as table structures and column constraints, can also be obtained from the system
catalogs. The upcoming sections will refer to metadata retrieval when information
is required about a database object in order to complete a specific schema change.

5.1.3 Rolling back changes

After applying the expand step, the database is in a mixed-state. The database sup-
ports both the old and the new database version. From this state, it is still possible
to rollback the schema change and revert to the old database version. However, after
the contract step has also been processed, the database only supports the new ver-
sion and cannot be reverted as described in the example in Section 3.6. liquibase-
zd implements this behavior. Liquibase keeps track of the schema changes in the
databasechangelog table. A rollback looks at the last schema change and tries to
revert the operation. If the last schema change was applied using the contract strat-
egy, the rollback operation will throw an exception. Not only does this prevent
the contract operation from rolling back, it also ensures that the expand operation
cannot be reverted. Instead, a forward roll can be applied to revert the database
back to the old state.

Chapter 5. Expand-contract pattern implementation 39

v1

retrieve metadata
create new view drop new view

v1+v2

(a) Expand and rollback steps

v1+v2

drop original view

v2

(b) Contract step

Figure 5.2.1: Expand-contract pattern for renaming a view.

5.2 Rename view
Before going into more complicated schema changes, we start with a schema change
for which the expand and contract steps are more straightforward, to show how the
pattern is applied. The expand-contract pattern is the simplest for renaming a view.
In Fig. 5.2.1, the pattern has been illustrated. We refer to the original view and
the renamed version as original and new respectively. The same names will be used
when describing other schema changes. The expand phase for this schema change
consists of two steps:

1. The first step is to retrieve metadata about the view. Specifically, we want to
know the definition: the query that retrieves the data.

2. Finally, a new view is created with the updated name based on the retrieved
definition.

After the expand step, the database contains a view with the original name
and the same view with the new name. The rollback operation corresponds to the
schema changes displayed on the right in Fig. 5.2.1a, applied in reverted order. The
operation can be rolled back by dropping the renamed view, while the contract step
drops the original view.

5.3 Rename column
The next change that has been implemented involves renaming a column. The
pattern is applied similarly to Dijkstra’s implementation. However, as Dijkstra
also describes in his future work section [18], his implementation does not work
for composite foreign key constraints. In our implementation, we solve this issue
by acquiring metadata about the database column that describes its foreign key
constraints.

Expand

The expand phase consists of the following steps:

1. The first step is to retrieve metadata about the original column. This can in-
clude the data type, default value, and constraints such as nullability, unique-
ness, foreign keys and primary keys.

40 5.3. Rename column

2. Using the retrieved metadata, we can now add the new column. The new
column is required to be nullable, since it will not contain any values for the
existing records.

3. A unique constraint on the original column is applied to the new column.
This can already be done before synchronizing the two columns, since Postgres
allows multiple null values in a unique column.

4. The new column needs to contain the same data as the original. To make this
guarantee, we use triggers to synchronize the two columns. An update to the
original column is also propagated to the new column. An insert operation is
propagated in both directions.

5. Any records that have not been synchronized to the new column are copied.
This is done is small batches to ensure that this operation does not block access
to the table for too long. The plugin provides the ability to adjust the batch
size. Between each batch update, Liquibase waits for a specified amount of
time to not overload the database. A custom Liquibase change, as illustrated
in Section 5.6, implements this functionality.

6. The next step is to copy any remaining constraints from the original column
to the new column. The retrieved metadata contains all the information we
need for this. Special care is taken when adding foreign keys. In the foreign
key definition, the plugin replaces the name of the original column with the
updated name. Consequently, a composite foreign key constraint would also
be added correctly. Moreover, by default, adding a foreign key validates the
existing records against the constraint. In a million-row table, this can be a
computationally expensive operation. Therefore, Postgres provides function-
ality to disable validation on existing data 1. This feature is currently only
available for foreign key and check constraints. The plugin makes use of this
functionality to improve performance.

7. In addition, if the original column has a default value, the same default value
is added to the new column. By doing this after converging the new column,
there are no empty records that Postgres would have to initialize with the
default value. This process would keep a lock on the table and could last a
substantially long period of time.

8. Finally, a trigger is added that updates the original column when the new
column is updated.

Rollback

While the contract phase has not been processed yet, it is possible to rollback from
the mixed-state. This is done in the following manner:

1. The triggers that were created during the expand phase are dropped.
1https://www.postgresql.org/docs/current/sql-altertable.html

https://www.postgresql.org/docs/current/sql-altertable.html

Chapter 5. Expand-contract pattern implementation 41

v1

retrieve metadata
add new nullable column drop new column

add (possible) unique constraint drop unique constraint
create trigger T1: original update−−−→ new drop trigger T1
create trigger T2: original insert←−−→ new drop trigger T2

batch migration
add (possible) foreign key constraint drop foreign key constraint

add (possible) not-null constraint drop not-null constraint
add (possible) default value

create trigger T3: new update−−−→ original drop trigger T3

v1+v2

(a) Expand and rollback steps
v1+v2

drop trigger T1
drop trigger T2
drop trigger T3
drop constraints

drop column

v2

(b) Contract step

Figure 5.3.1: Expand-contract pattern for renaming a column.

2. Additionally, the constraints on the new column are dropped.

3. Finally, the new column is dropped in order to return to the initial database
state.

Contract

After the expand phase has successfully been processed, as described in Section 3.6,
and the operation is not rolled back, the original column can be removed. As a result,
the database version is incremented. As mentioned before, the contract phase can
be enabled by setting the zd-strategy property to contract. The migration is similar
to the rollback operation, but is applied to the original column instead:

1. All the triggers that synchronize the two columns are dropped.

2. Additionally, the constraints on the original column need to be dropped before
we can drop the column.

3. Finally, the original column is dropped.

42 5.4. Modify data type

5.4 Modify data type
Data type modification is one of the schema migrations that Dijkstra was not able
to implement yet. As he suggests [18], it is recommended to do this similarly as
to how a column can be renamed. The step that adds the new column would have
to specify the new data type. This is how liquibase-zd implements data type
modification.

There are some caveats to this implementation however:

• Modifying the data type of a column requires it to be renamed. It is impossible
for a table to have two columns with the same name, hence a new column is
required to have a different name. This is not a large downside, but has to be
taken into account. It means that any reference in the application code has to
be updated as well. Another possibility is to work around it by renaming the
column back to the original directly after modifying the data type, but this
requires an additional (possibly long-lasting) operation.

• Additionally, it might not be possible to convert between data types. Postgres
is able to convert text to varchar and vice versa. However, it is not possible
to change the data type from varchar to int. An important use case for this
schema migration is expanding the size of a varchar column. If a varchar(10)
column is expanded to 20 characters, the expand step can copy the data to the
new column. However, copying data from the new column to the original could
go wrong if a value of more than 10 characters is inserted. This situation would
cause the triggers, that keep the columns synchronized, to raise an error. A
possible workaround for this caveat is to put a limit on the size of the variable
in the updated application code. Once the contract step has been applied, this
limit can be eliminated.

5.5 Rename table
The final change that liquibase-zd covers involves renaming a table. Dijkstra has
described how the expand-contract pattern can be applied to rename a table in an
Oracle database. It is done using a table synonym. Unfortunately, Postgres does
not have functionality for synonyms or aliases. Therefore, the pattern has to be
applied in a different manner. In this section, we show two techniques that have
been implemented.

5.5.1 Rename table using copy

Similarly to renaming a column, it is possible to create a renamed version of a
table and keep the data synchronized. The main disadvantage is that, as opposed
to single columns, it takes much more computational power to converge an entire
table. Therefore, depending on the table size, it can take a large amount of time
to apply this schema migration. It should be noted that the triggers also forward a
delete operation to remove a record in both tables. Since a delete statement removes
entire rows, this is not required for intra-table synchronization between columns.

Chapter 5. Expand-contract pattern implementation 43

v1

copy original table as new table drop new table
create trigger T1: original update,insert,delete−−−−−−−−−−−→ new drop trigger T1

batch migration
create trigger T2: new update,insert,delete−−−−−−−−−−−→ original drop trigger T2

v1+v2

(a) Expand and rollback steps
v1+v2

drop trigger T1
drop trigger T2

drop original table

v2

(b) Contract step

Figure 5.5.1: Expand-contract pattern for renaming a table using a copy.

Some Postgres magic is required to duplicate a table. The below statement cre-
ates a new table with the structure of another table. In other words, all columns,
constraints (except for foreign keys) and indexes are copied. The foreign key con-
straints are added by querying the metadata of the original table.

1 CREATE TABLE newTable (LIKE oldTable INCLUDING ALL);

After the new table has been constructed, the triggers and batch migration (see
Section 5.6) ensure that both tables are kept in sync. It should be mentioned that
an update statement is propagated as an upsert operation. In other words, if the
row exists in the new table, it is updated. However, it is inserted if the row has not
been added to the new table yet.

During testing, a problem was discovered that was not accounted for. The trig-
gers, referred to as T1 and T2 in Fig. 5.5.1a, were recursively calling each other.
When a record is updated in the original table, trigger T1 propagates it to the new
table. Consequently, trigger T2 is fired which again activates trigger T1. To resolve
this issue, we need to verify that a trigger is not fired from within another trigger.
Postgres provides a system function called pg_trigger_depth which returns the cur-
rent trigger nesting level. The trigger recursion can be prevented by verifying that
the current depth is equal to zero before executing a trigger function.

5.5.2 Rename table using view

Another approach is to rename the original and create a view with the name of the
original table in the expand phase. This method is much faster, but will block the

44 5.6. Batch migration

table for a short period of time. The operation can be rolled back by dropping the
view and renaming the table back, again blocking access to the table. The contract
phase simply drops the view.

liquibase-zd implements both aforementioned techniques, referred to as rename-
TableUsingCopy and renameTableUsingView respectively, making it the responsibil-
ity of the developer to choose the one that best fits their needs. The first approach
is more time consuming, but does not put a lock on the table. Vice versa for the
latter approach.

5.6 Batch migration
The batch migration change that is mentioned in Section 5.3 and Section 5.5, ensures
that the copy of a database object converges to the original. While the triggers take
care of new data, the batch migration change copies existing data. The result of
this operation is that both database objects contain the same data. The plugin
implements the batch migration change for columns and tables. The operation is
similar to an update statement, but prevents Postgres from blocking access for an
extensive amount of time. Instead, the batch migration change performs updates
in small batches by limiting the number of records to update. This limit is set by
the chunkSize parameter. In addition, the sleepTime can be specified as the time
between consecutive executions of a batch update (in milliseconds). This feature
has been added to prevent overloading the database and provide a time window for
regular access from the application. Accordingly, the application is able to access
the database parallel to the batch migration.

5.6.1 Intra-table batch migration

Dijkstra has implemented a batch migration change for columns in Oracle. This
implementation has been adjusted for Postgres. It is a custom Liquibase change
and can be used in a changeset as follows:

1 <changeSet id="batchMigration" author="Coen">
2 <customChange

class="liquibase.ext.change.update.BulkColumnCopyChange">

v1

rename original table to new undo rename
create original view drop original view

v1+v2

(a) Expand and rollback steps

v1+v2

drop original view

v2

(b) Contract step

Figure 5.5.2: Expand-contract pattern for renaming a table using a view.

Chapter 5. Expand-contract pattern implementation 45

3 <param name="tableName" value="tableName"/>
4 <param name="fromColumns" value="oldColumn"/>
5 <param name="toColumns" value="newColumn"/>
6 <param name="chunkSize" value="1000"/>
7 <param name="sleepTime" value="0"/>
8 </customChange>
9 </changeSet>

The source and destination columns can be specified as comma-separated lists.
The number of source and destination columns need to be equal and they cannot
overlap. In other words, it is not possible to copy data from columns (A,B) to (B,C).

The query that a batch migration executes requires a row identifier. In an Oracle
table, each record can uniquely be identified by a rowId. They should never be used
as primary keys, since they can be reused when a row gets deleted. Nonetheless,
in our use case, it can be guaranteed that no problems arise [18]. Postgres has a
similar identifier called ctid. However, the ctid of a row changes when its content gets
updated 2. Therefore, a more reliable row identifier is the primary key. A metadata
query is used to retrieve the primary key of a table. The following statement is an
example of what the batch migration change executes:

1 UPDATE tableName
2 SET newColumn = oldColumn
3 WHERE (primaryKey) IN
4 (
5 SELECT primaryKey FROM tableName WHERE (newColumn IS NULL AND

oldColumn IS NOT NULL) LIMIT 1000
6);

5.6.2 Inter-table batch migration

The batch migration change is slightly different for entire tables. We have seen
that copying data between two columns requires updating an existing record. To
copy data from one table to another, insert statements are used. Postgres allows us
to insert records found in a SELECT query. Therefore, the idea is to retrieve all
rows from the original table which do not exist in the new table. These are records
that were not caught by the synchronization triggers. Inserting these records into
the new table ensures that it converges. Correspondingly, the SQL query looks as
follows.

1 INSERT INTO newTable
2 SELECT a.* FROM oldTable a
3 LEFT OUTER JOIN newTable b USING (primaryKey)

2https://www.postgresql.org/docs/current/ddl-system-columns.html

https://www.postgresql.org/docs/current/ddl-system-columns.html

46 5.6. Batch migration

4 WHERE b.primaryKey IS NULL
5 LIMIT 1000;

Chapter 6

Evaluation

liquibase-zd has been evaluated. In the next section, we show by deduction that
the schema migrations function as expected. This will help to verify requirement
R7. The sections that follow, describe how the HammerDB benchmarks are run and
use the results to verify R5. Non-blocking schema changes ensure that application
deployments, and specifically blue-green deployments, provide zero-downtime. That
is, the user does not experience a change in application performance. The final
section, discusses how the requirements from Section 2.1 have been tested against
the expand-contract pattern. All in all, this shows us that the expand-contract
pattern correctly implements the schema migrations.

6.1 Functional correctness

The expand-contract pattern has been implemented for several schema migrations
with zero-downtime in mind. Before we can evaluate the blocking behavior of the
schema changes, it is important that we prove that the schema changes are func-
tionally correct. That is, the result after applying the expand-contract pattern is
equivalent to the result of executing the original schema change. We have seen that
the expand phase tries to create a copy of the original database object with the
required schema changes. The contract phase continues by removing the original
database object. Therefore, showing functional correctness of the expand-contract
pattern is equivalent to proving that the original and new database object are iden-
tical before the contract step is applied. The database objects have to both contain
the same data and be identical in schematic structure. We prove both requirements
in the next subsections.

6.1.1 Data equivalence

Most of the implemented schema changes use triggers and a batch migration change
to synchronize data between the two database objects. Only when renaming a table
using a view this is not required, since a view by definition contains the same data
as the table it is defined from. Data can be manipulated in three different ways:
updating existing data, inserting new data, and deleting data. Triggers are added
that propagate each of these data changes to the new database object. The batch

47

48 6.1. Functional correctness

(a) Copy data from original database ob-
ject to newly created database object.

(b) Copy data from new database object
to original database object.

Figure 6.1.1: Data change propagation to prove functional correctness of
implemented schema migrations.

migration change takes care of data that was inserted or updated before the triggers
were created.

There are several executions of DML statements that can result from this con-
struction which are described in Fig. 6.1.1a. Data insertions are directly caught by
a trigger and propagated to the new database object. They can happen before or
after the batch migration change. The same goes for deletion operations. On the
other hand, data updates should be handled differently before and after the batch
migration change. If we update data before the batch migration change is executed
or has propagated that data, the updated data is inserted into the new database
object. If the batch migration change has already added the corresponding data,
the same update is applied on the new database object. From these statements, we
can deduce that all DML changes on the original database object are forwarded to
the new database object.

Finally, triggers are created that ensure data manipulations on the new database
object are registered by the original database object. These triggers did not miss
any data changes, since the new database object can only be manipulated after
the expand phase has finished. Consequently, the two database objects contain
equivalent data which concludes the prove.

6.1.2 Identical schematic structure

Secondly, we show that the schematic structure of the two database objects is iden-
tical. This is achieved by retrieving metadata about the original database object,
such as constraints and indexes, and applying them to the newly created database
object. Although, the current implementation does have some shortcomings. For
example, when modifying the data type of a column, the column is renamed as well.
This is unavoidable, since a table cannot contain two columns with the same name.
In addition, when renaming a primary key column, the current implementation does
not apply the primary key constraint to the new column. It should be possible to
implement this feature, but it is quite cumbersome and is out of the scope of this
research. Foreign keys can depend on the primary key and it can therefore not easily
be changed without breaking requirement R11. Moreover, a primary key cannot

Chapter 6. Evaluation 49

simply be altered, but needs to be removed and recreated with the adjustments.

6.2 Experimental setup
As mentioned earlier, HammerDB has been used to run performance benchmarks
and monitor the blocking behavior of the implemented schema changes. From the
results, we can determine whether the schema changes ensure zero-downtime de-
ployments. This section describes how the benchmarks have been configured to get
reliable results.

The benchmarks have been tested on an asynchronously replicated Postgres
database, as well as a synchronously replicated database. The isolation level is
kept at the default value of read committed. To determine the blocking behavior
of the schema changes, the throughput and latency have been measured during ex-
ecution of the migrations. The throughput or TPM is defined as the number of
transactions that are processed within a minute. HammerDB queries the Postgres
Statistics Collector 1 every second for the number of transactions committed and
rolled back on the database using the following query:

1 SELECT SUM(xact_commit + xact_rollback) FROM pg_stat_database

The TPM is calculated as the difference between two subsequent results of this
query, multiplied by 60.

The latency is measured in microseconds and defines the time between receiving
a transaction request and sending back a response. The first benchmark that we run
is a baseline. The baseline runs without a schema migration and shows database
performance under regular use. The rest of the benchmarks can be compared with
the baseline to determine the effects of the schema migration. Each benchmark runs
for about 20 minutes and conforms to the following procedure:

1. Before each benchmark, the database schema needs to be re-initialized to get
an equivalent starting state. The initial database schema is called v1. The
TPROC-C database has been instantiated with ten warehouses.

2. Once the database is ready, HammerDB starts a warm-up period that builds
up the workload to reach a constant transaction rate. Immediately when the
warm-up period has finished, the TPM and latency are recorded every second.
This is when the benchmark officially starts. HammerDB is configured with a
read-write ratio of 3:1. The following steps are also depicted in Fig. 6.2.1.

3. After five minutes, the schema migration is executed. Depending on the type
of schema change and the size of the database, it can take some time to finish
up the migration. The migrated database is in the mixed-state conforming
to both version v1 and v2. By examining the TPM and latency during the
schema migration, we can verify R5.

1https://www.postgresql.org/docs/current/monitoring-stats.html

https://www.postgresql.org/docs/current/monitoring-stats.html

50 6.3. Results

4. The schema migration is followed with five minutes of rest during which we can
examine whether the mixed-state is correctly implemented; the transactions
fired by HammerDB should not fail. This validates R7 in one direction: it
shows that the mixed-state captures v1, but not necessarily v2.

5. Finally, the database is rolled back to version v1 to determine the blocking
behavior of the rollback operation as well.

Similarly, the contract phase has been benchmarked by starting from schema
version v2. HammerDB generates a workload for v2 while the migration contracts
the database schema from a mixed-state to v2. In step 4 of the above enumeration,
we can validate that the mixed-state captures v2.

In addition to the aforementioned benchmarks, the performance of the batch
migration change has been measured in a separate test. The duration of the schema
migration is highly dependent on the duration of the batch migration change. For
different sizes of the database, based on the number of warehouses, the batch mi-
gration change was executed and its execution time was recorded. The goal of these
benchmarks is to determine whether the relation between table size and execution
time is linear or exponential. In case the relation is exponential, it could lead to
long-running schema migrations for vast databases. Even though, we are aiming at
non-blocking schema changes, the duration of the migration is an important factor
as well. Generally, small changes are deployed and will be deployed often. Therefore,
the deployment pipeline should not take up an immense amount of time.

6.3 Results

This section discusses the results of the benchmarks. Every schema migration has
been tested on an asynchronously replicated database as well as a synchronously
replicated database. For each benchmark, the recorded TPM and latency are de-
picted in a chart. The dotted lines indicate the start or end of a migration using the
same color scheme as in Fig. 6.2.1. Some results have been excluded in this section,
since they either are not interesting enough to discuss, or they do not deviate from
the priorly discussed results. All of the results can be found in Appendix B.

Figure 6.2.1: Execution process of the HammerDB benchmarks.

Chapter 6. Evaluation 51

6.3.1 Asynchronously replicated database

Baseline

Before testing each schema change, a baseline has been measured. The baseline
can be found in Fig. 6.3.1. The top chart displays the TPM over time, while the
bottom chart shows the latency. The baseline is used to compare the other results
to. Therefore, no schema change is executed during this benchmark; the results
show the database performance under normal use.

From the results, it can be determined that the TPM fluctuates a lot. The
reasoning behind this could be that the Kubernetes cluster is running on one machine
that is also processing other programs. However, the baseline does show a constant
trend and never goes to zero. Moreover, we can argue about the results and draw
conclusions.

The chart that depicts the latency shows several metrics. The minimum and
maximum latency speak for themselves. In addition, the P50, P95 and P99 latency
are presented. The P50 latency, for example, tells us that 50% of the incoming
requests is handled faster than that. Similar definitions can be provided for the
P95 and P99 values. The baseline shows that the maximum latency is peaking
sometimes. However, the P99 latency is at a constant rate. Therefore, these are
merely outliers which might be caused by vacuuming or other automatic database
processes.

Figure 6.3.1: Baseline

52 6.3. Results

Figure 6.3.2: Rename column with a batch size of 1.000

Rename column

The schema change to rename a column is the first schema change that has been
benchmarked. The results are presented in Fig. 6.3.2. During the schema migration,
the throughput decreases by about 35%. In other words, the change is non-blocking.
The schema change involves adding a new column which does acquire a lock on the
corresponding table, but this operation takes close to no time. In addition, the
synchronization triggers and the batch migration possibly have an effect on the
throughput. As we can see in Fig. 6.3.3, the throughput deduction can be reduced
by decreasing the batch size for the batch migration. For a batch size of 250, the
throughput only decreases by about 15% while the migration only takes a couple of
seconds longer.

The rollback operation involves dropping the newly created column which ac-
quires an exclusive lock on the table blocking all access. Nonetheless, Postgres does
not completely remove the column, but rather marks it as unused. Vacuuming
operations take care of eventually removing unused data. Consequently, the roll-
back operations is quite brief and should not be noticeable. Moreover, there is no
approach to drop a column without locking.

Similarly to the baseline, the latency chart does show several high maximum
values. There is a very large peak at five and a half seconds during the schema
migration. Nevertheless, this is only a maximum value, and the P99 value is at
a constant level. The P95 value is peaking during the schema migration. All in
all, it can be deduced that the schema migration has an effect on the latency.
However, the effect is quite minimal, since we are talking about less than half a
second increase. Moreover, these effects are not applicable anymore after the schema

Chapter 6. Evaluation 53

Figure 6.3.3: Rename column with a batch size of 250

Figure 6.3.4: Rename column with a batch size of 100.000

migration completes.
To see the effects of a blocking schema change, the same schema migration was

executed with a vast batch size of 100.000 for the batch migration. The results are

54 6.3. Results

Figure 6.3.5: Modify data type with a batch size of 1.000

shown in Fig. 6.3.4. One batch covers one third of the table, and therefore blocks
most transactions. The chart shows that the TPM goes almost all the way to zero.
The effects on the latency are similar to using the default batch size of 1.000.

Modify data type

Modifying the data type of a column has been benchmarked next. A column with
the charactervarying datatype has been expanded by double the number of allowed
characters. It makes sense to compare the results against the results for renaming
a column, since the schema migration is so similar. As seen in Fig. 6.3.5, it seems
that modifying the data type has similar effects on the throughput and latency.

Rename table using copy

Renaming a table can be done in two ways: using a copy of the original table
or using a view. We started with benchmark the prior technique. The results in
Fig. 6.3.6 show that the TPM has a similar reduction as to renaming a column or
modifying the data type of a column. However, the throughput deduction is not as
large. The reasoning behind this could be that a different kind of SQL statement is
executed. The batch migration change copies that data to another table. Therefore,
it performs a SELECT statement on the original table and inserts this data in the
newly created table. Since the SELECT operation does not require a lock, the
original table can still be used in parallel. The throughput still experiences a slight
deduction, which could be a result of the additional load on the table.

There is no significant impact on the latency: the P95 value shows a small peak,

Chapter 6. Evaluation 55

Figure 6.3.6: Rename table using copy with a batch size of 1.000

but is not worrisome. Similar peaks appear under regular operation of the database.
Moreover, 95% of the requests are processed faster than this.

The rollback operation drops the new table. The HammerDB workload does not
touch the new table, since it only exists in schema version v2. Therefore, the schema
migration can be rolled back unnoticed.

Rename table using view

Finally, we look at the benchmark results for renaming a table using a view. The
schema migration acquires a lock when renaming the table, but even under a high
workload this operation is not perceived. Moreover, the charts in Fig. 6.3.7 show
that the throughput and latency are not influenced.

The rollback operation drops the view that is only visible in schema version v2.
Accordingly, the throughput and latency are not affected by the rollback operation.

The previous observations lead us to the following conclusion: it is preferred to
rename the table in combination with a view, instead of creating a copy. Copying
the table drops the throughput and ultimately leads to a longer migration time,
while directly renaming the table and creating a view is almost instant.

6.3.2 Synchronously replicated database

Baseline

The synchronously replicated database seems to behave very distinctively. The
baseline in Fig. 6.3.8 shows large fluctuations in both the throughput and latency.

56 6.3. Results

Figure 6.3.7: Rename table using view with a batch size of 1.000

Figure 6.3.8: Baseline

Overall, the TPM is lower than the TPM in Fig. 6.3.1. Similarly, the P95 latency
does not go below half a second. Sometimes the throughput sinks to a couple
hundred transactions per minute. Moreover, the exact moment that the TPM drops,

Chapter 6. Evaluation 57

Figure 6.3.9: Rename column with a batch size of 1.000

the latency peaks. The reason could be that a long running transaction is executed
which keeps a lock. The master database has to wait for the slaves to commit the
result, before committing itself. Consequently, other transactions that access the
same table are blocked, increasing their respective latency.

Rename column

The results for renaming a column in a synchronously replicated database are de-
picted in Fig. 6.3.9. Overall, the schema migration affects the database performance
in a similar manner as to in an asynchronously replicated database. There is a mod-
est decrease in the TPM. All the latency metrics, even the P50 have a small peak
during execution of the schema migration. It can be concluded that the schema
change is non-blocking. Nonetheless, the user might experience an extra second of
processing time for their requests.

Remaining schema changes

The results for the remaining schema changes can be found in Appendix B.2. We
have chosen not to discuss these results here, since they show a similar pattern as
to the results in the asynchronously replicated database. The aspects that do differ
are comparable to the differences for renaming a column which have been discussed
in the previous section. Additionally, Appendix B can be referred to for an overview
of all benchmark results.

58 6.3. Results

Figure 6.3.10: Rename column

6.3.3 Contract from mixed-state

The previous results show that the mixed-state, as a result of the expand step,
captures schema version v1. To ensure the mixed-state also captures v2, we bench-
marked the contract step. In Fig. 6.3.10, the results for renaming a column can be
found. We can see that the throughput is at a constant level and that it remains
constant after the contract step has been applied. Moreover, it can be concluded
that the mixed-state is correctly implemented. The latency peaks shortly after the
contraction, but there is no reason to assume that it is related.

Similar results are produced for the other schema migrations. The charts can be
found in Appendix B.3.

6.3.4 Batch migration change

The second set of benchmarks evaluates the execution time of the batch migration
change. Specifically, the execution time has been measured for various table sizes
as well as for several batch sizes. Both the intra-table and inter-table variants have
been tested on the customer table. The table size is a multiple of the number of
warehouses in the HammerDB database; there are 30.000 customers per warehouse.
The results have been averaged over five benchmark runs. The reasoning behind
these benchmarks is that there is a trade-off between batch size and throughput as
seen in Section 6.3. However, if the run time significantly decreases for larger batch
sizes, this trade-off could be acceptable. That is left as a decision to the software
engineer.

Chapter 6. Evaluation 59

(a) Warehouses (b) Batch sizes

Figure 6.3.11: Benchmark results for the intra-table batch migration
change.

(a) Warehouses (b) Batch sizes

Figure 6.3.12: Benchmark results for the inter-table batch migration
change.

Intra-table batch migration

The results of the first benchmark are depicted in Fig. 6.3.11a. The chart shows
a linear relationship between the number of warehouses and the execution time.
In other words, if the table is twice as large, the migration takes twice as long.
Moreover, the duration of updating one batch, does not depend on table size.

The execution time seems to be constant for different batch sizes as seen in
Fig. 6.3.11b. Nonetheless, the batch migration change appears to be slightly faster
for smaller batch sizes where the minimal execution time has been achieved for
batches of 1.000 rows. Since greater batch sizes result in less batches overall, it can
be concluded that Postgres’ update statement linearly increases in run time with
the row count.

All in all, these benchmark results show that it is better to use the intra-table
batch migration variant with a low batch size. Its execution time is not dependant
on the table size or batch size. Furthermore, a lower batch size guarantees better
performance as shown in Section 6.3.

60 6.4. Requirement validation

Inter-table batch migration

Fig. 6.3.12 shows the results for the inter-table batch migration. Unlike for the
intra-table batch migration, the relation between the number of warehouses and the
execution time is non-linear. In fact, the chart shows an exponential distribution.
It takes longer to insert data into a large database, because it has to be re-indexed
every time. Updating the indexes can take some time when the index is vast.
However, it should be taken into account that these benchmarks batch migrate the
entire table. In practice, the batch migration change is used in conjunction with the
expand-contract pattern which starts off with an optimized table copy operation.
The batch migration change only inserts rows that are not initially copied or not
caught by the synchronization triggers.

On the other hand, the run time decreases more than exponentially for larger
batch sizes. It seems that Postgres has optimized insertion in bulk. Therefore,
increasing the batch sizes for vast tables could be a solution to decrease the run
time. Nonetheless, it should be tested how much the throughput and latency are
affected to determine whether it is worth the trade-off.

6.4 Requirement validation
The requirements from Section 2.1 are listed again below. It is important that the
plugin meets these requirements. Therefore, each requirement has been tested or
can be verified by implementation of the plugin.

R1 Integration. liquibase-zd has been tested in a Kubernetes cluster. This
cluster is representative in the sense that it follows a similar architecture to
microservices that ING implements. Each of the other requirements has been
tested within this cluster.

R2 Detachable. The plugin can be disabled by excluding the zd-strategy property
from the Liquibase specification, or by setting its value to disabled. When the
plugin is disabled, the original schema changes, as implemented by Liquibase,
are applied.

R3 Transparent. It has been taken into account that the software engineer
should be able to use the plugin without any additional knowledge. The plugin
is designed such that the software engineer does not have to update their
changeset specifications. The only alteration that has to be carried out is the
addition of the zd-strategy property.

Nonetheless, some schema changes do require additional information from the
developer. To modify the data type of a column, for example, a (new) name has
to be provided for the added column. Furthermore, there are two implementa-
tions that rename a table which can be referred to as renameTableUsingCopy
and renameTableUsingView.

R4 Generalizable. Even though, the expand-contract pattern has only been
implemented for the Postgres database, the implementation can be extended

Chapter 6. Evaluation 61

to support other databases. Liquibase is database-independent and generates
SQL statements based on the active database. In fact, the implementation
of the plugin has been built on top of the original Liquibase changes. Solely
the creation of triggers, and the retrieval of metadata, is specific to Postgres.
These implementations can be adjusted to support other databases. Conse-
quently, it is feasible to use the plugin with other databases as well. Moreover,
the expand-contract pattern can similarly be implemented for other database
versioning tools such as Flyway.

R5 Non-blocking schema changes. To evaluate the blocking behavior of the
expand-contract pattern, the HammerDB benchmarks were set up. In the
previous sections, several test cases have been determined, and the latency and
throughput have been measured during execution of the schema migrations.
The results have been discussed in Section 6.3.

R6 Schema changesets. It is possible to apply several schema changes in one
go. First of all, the update command from Liquibase executes any migration
that has not been applied yet. Therefore, several expand-contract changes can
be applied sequentially. However, it becomes more complicated when zipping
together the expand and contract phases such that all expand phases finish be-
fore contracting any change. If two changes overlap, the created triggers could
interfere. Therefore, this is considered an anti-pattern. Generally, changes
should be kept small. Another advantage is that bugs can be found and fixed
more easily.

R7 Concurrently active schemas. In Section 6.1, we have shown that the
database objects, conforming to version v1 and v2, are identical. Both database
versions can be used in parallel and will remain equivalent.

The HammerDB benchmarks, in addition, show that both database versions
are supported in the mixed-state. The benchmarks put pressure on the database
in the form of a continuous workload. The workload consists of SQL transac-
tions that interact with the initial database version. Therefore, the benchmark
should result in an error if the mixed-state is incorrect. From the results in
Section 6.3, it can be determined that HammerDB did not experience any fail-
ure. In other words, the mixed-state is correctly implemented for each schema
change.

R8 Integrity. The plugin ensures that integrity constraints are not violated.
Triggers are added that propagate DML changes from the original database
object to a copy. It is assumed that the software engineer correctly implements
constraints on the original object. Therefore, if the original object does not
violate any constraint, neither does the copy. When the copy converges, meta-
data about the constraints is acquired in order to add the same constraints to
the object copy. Finally, triggers can be added in the other direction. This
keeps both database objects in sync. Consequently, integrity constraints will
not be violated.

62 6.4. Requirement validation

R9 Schema isolation. The expand step puts the database in a mixed-state.
In this state, the database supports both the schema prior to and after the
migration. It is in the application code that the schema versions are differen-
tiated. The old application is only able to see the old schema version while
the updated application sees the schema after the migration.

R10 Non-invasive. Usage of the plugin does not involve any change in the appli-
cation code. The plugin can be added to Liquibase in the lib folder and is
instantly usable.

R11 Resilience. For each schema migration, the plugin implements a rollback
operation. Rollbacks can take place while the database is in the mixed-state.
In Section 6.3, it is shown that the rollback operation does not block access to
the old database schema which can be queried in parallel. After contracting
the database schema, it is not possible to perform a rollback.

Chapter 7

Discussion

In this chapter, some limitations are discussed that influenced the research process
and possibly the results. Additionally, several recommendations are given for future
work that could enhance the results of this research.

7.1 Limitations

One of the limitations that had a lot of impact on this research is that we were limited
to a single laptop. We were unable to get access to a cluster of servers. Therefore,
the Kubernetes cluster had to be run on a single machine. Using minikube, it was
possible to simulate an entire cluster on one laptop. Nonetheless, it was inevitable
that performance would be affected. During research, we noticed that the through-
put goes down a lot when the laptop is processing other heavy operations parallel
to the Kubernetes cluster. Moreover, the throughput went down if the HammerDB
benchmark was run on multiple threads. Therefore, the benchmarks were run on a
single thread.

Nevertheless, the results show that the throughput is not completely constant; it
fluctuates more than expected. This particularly shows that the performance of the
database cluster is influenced by the fact that everything runs on a single laptop.
The latency, specifically the max-value, peaks sometimes as well with unclear cause.
Moreover, these peaks happen both during and exclusive of the schema migration.
Specifically, the baseline shows high fluctuations as well. During schema migrations
the peaks seem to last longer. Therefore, they could be correlated to the schema
migration, but this is not a conclusion we can draw as of now.

The setup used in this research is meant to be representative of the microservices
architecture used at ING. Nonetheless, to be more representative, the benchmarks
should be run on a multi-node cluster. This would either give us more certainty
about our results, or it could lead to different results.

In addition, there are some limitations to the implementation of the expand-
contract pattern. First of all, modifying the data type of a column requires renaming
the column as well. This is a requirement of the implementation. However, this
schema change could also have been implemented by creating a copy of the original
table where the respective column takes on the new data type. A disadvantage is
that the batch migration step would take longer and more storage is being used.

63

64 7.2. Future work

The final limitation is that the current implementation does not support primary
key columns. When renaming a primary key column, the expand step adds a new
column which would become the new primary key column. Unfortunately, it is
impossible to directly modify a primary key constraint. It would require removing
the current primary key constraint and adding a new one. There are various reasons
why this process is not as straightforward as it may seem. The current primary key
constraint might have dependent foreign keys that would have to be removed first
and added back at the end. Moreover, while the primary and foreign key constraints
are dropped, it is possible for invalid data to be inserted. Usually, application source
code expects automatically incremented primary keys. Therefore, the application
does not provide any primary key value when inserting new data. Consequently, an
insert operation could fail while the primary key is absent. For these reasons, the
current implementation of liquibase-zd throws an exception when trying to apply
a schema change to a primary key column using the expand-contract pattern. This
problem is out of the scope of this research, because of its complexity, and is left as
future work.

7.2 Future work

There are several research problems that were either out of the scope of this research,
or have not been done due to time limitations. These are left as suggestions for future
work:

FW1 The first recommendation for future research involves adding support for pri-
mary key constraints to the current implementation of the expand-contract
pattern. As explained in the previous section, this process could be quite
complex and further research has to be done to find a good and stable solu-
tion.

FW2 During this research, we have tested performance of the expand-contract pat-
tern in a master-slave replicated database cluster. From the results, we can
formulate an answer to research question RQ2.1. In addition, we wanted to
run the benchmarks on a multi-master replicated database to answer the fol-
lowing question: to what extent can the expand-contract pattern be applied
when using master-master replication? Unfortunately, due to time constraints
we have not been able to. Therefore, this research question is left unanswered
and is considered for future work. CrunchyData’s Postgres Operator (PGO)
only supports master-slave replication. Nonetheless, there are several solutions
that allow to setup multi-master replication in a Postgres database cluster.
One solution that seems promising is BDR by EnterpriseDB 1. Once the multi-
master replicated database cluster is setup, similar HammerDB benchmarks
can be run to evaluate performance of the expand-contract pattern.

FW3 As the limitations in Section 7.1 suggest, it is important that the expand-
contract pattern gets tested on a production-ready system. A Kubernetes

1https://www.enterprisedb.com/docs/bdr/latest/

https://www.enterprisedb.com/docs/bdr/latest/

Chapter 7. Discussion 65

cluster should be setup across several server nodes to spread the workload and
ensure that performance is not impacted by machine-related limitations. It
is expected that the benchmark results will be different, but this has to be
investigated in an extensive research.

FW4 Another aspect that could be tested is whether there is a difference between
the performance under write operations in contrast to read operations. This
research ran the HammerDB benchmarks with a read-write ratio of 3:1. There-
fore, the results do not say much about performance under a high write load.
Benchmarks can be setup to only pressurize the database with write opera-
tions. The results can be evaluated to come to a conclusion.

FW5 Dijkstra has already implemented the expand-contract pattern for Oracle and
provides several change templates. This research has extended the pattern to
Postgres and implements a Liquibase plugin that takes care of the logic. In
future work, liquibase-zd can be extended to support other databases as
well. Furthermore, there are other database versioning tools such as Flyway
that are extensible, for which an implementation can be contributed.

66 7.2. Future work

Chapter 8

Conclusion

In data-intensive applications, schema migrations need to be deployed often. This
happens alongside updates of the application code. Dijkstra suggested implement-
ing an expand-contract pattern that can be used in combination with blue-green
deployments. Moreover, a non-blocking implementation of the expand-contract pat-
tern can ensure zero-downtime deployments.

This research has extended Dijkstra’s implementation of the expand-contract
pattern by producing a Liquibase plugin that implements the pattern. The plu-
gin provides zero-downtime schema migrations for Postgres databases. In addi-
tion to the schema migrations for which Dijkstra provided change templates, the
expand-contract pattern was implemented for modifying the data type of a col-
umn. Moreover, the plugin retrieves metadata about the database objects to ensure
that constraints such as foreign keys are persisted. To test the performance of the
expand-contract pattern, a Kubernetes cluster was setup with a master-slave repli-
cated Postgres database. The plugin was benchmarked using HammerDB on both
an asynchronously and synchronously replicated database. The benchmark results
show that the expand-contract pattern is non-blocking for all schema changes. How-
ever, as explained in Section 7.1, the implementation should be further exploited
to gain more certainty about its performance. In combination with a blue-green
deployment, the pattern can be applied to provide zero-downtime deployments.

The final two sections describe the deliverables of this research and answer the
research questions that have been specified in Section 1.2.

8.1 Deliverables

Besides this paper, this research contributes the following products:

1. A Kubernetes cluster setup running a master-slave replicated Postgres
database. The setup has been described in-depth in Section 4.2 1.

2. HammerDB benchmark results showing both the throughput and latency
during execution of the schema migrations. The expand-contract pattern was

1The final version of the setup can be found at https://github.com/coenvk/
kubernetes-postgresql

67

https://github.com/coenvk/kubernetes-postgresql
https://github.com/coenvk/kubernetes-postgresql

68 8.2. Research answers

both benchmarked on an asynchronously as well as a synchronously replicated
database. Furthermore, the batch migration change has been benchmarked
separately to gain insight in its behaviour.

3. A Liquibase plugin called liquibase-zd that implements the expand-contract
pattern for several schema changes [30].

8.2 Research answers
This research is an extension of Dijkstra’s research. The implementation tries to
improve upon Dijkstra’s technique. Dijkstra has written change templates while
we have written a Liquibase plugin that extends the default implementation of the
schema migrations and incorporates the expand-contract pattern (RQ1.1). The
plugin can be enabled by specifying either expand or contract for the zd-strategy
property corresponding to the expand and contract step respectively. Dijkstra has
mentioned that modifying the data type of a column and support for composite
foreign keys could be improvements upon his implementation. These have been
implemented in liquibase-zd (RQ1). In Section 7.1, some limitations to the plugin
have been discussed.

Nonetheless, the plugin is fully functional and has shown great performance
under a high workload. liquibase-zd was tested on a Kubernetes cluster running a
master-slave replicated Postgres database (RQ2, RQ2.1). Due to time constraints,
it has not been tested on a master-master replicated database. Instead, this is left
as a recommendation for future research. As explained in Section 7.2, BDR provides
a multi-master solution for replicated Postgres databases that could be used for this.

HammerDB has been used to benchmark liquibase-zd (RQ3.1). It is a widely
used tool to performance test a database. Since it sends thousands of transactions
to the database every minute, thus putting it under a lot of pressure. The pressure
is supposed to simulate a real life scenario. Therefore, disregarding the limitations,
the results are trustworthy and can very well be used to evaluate our implementa-
tion. HammerDB has no problem running benchmarks on a fully-replicated database
(RQ3.2). Overall, the benchmark results show that the expand-contract pattern
does not entail any downtime, but configuration of the batch size should be taken
into account. Altogether, the latency is mostly unaffected and the throughput goes
down slightly depending on the batch size. In case the TPM is set too high, the
throughput can go down to zero. In general, asynchronously replicated databases
show better performance and asynchronous replication affects the throughput and la-
tency less than synchronous replication. However, the effects of the expand-contract
pattern are similar on both the synchronously as well as asynchronously replicated
database (RQ3.3).

Bibliography

[1] Daniel Abadi. Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story. Computer, 45(2):37–42, 2012.

[2] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. Coordination avoidance in database systems (extended
version), 2014.

[3] Peter David Bailis. Coordination avoidance in distributed databases. Coordi-
nation avoidance in distributed databases, 2015.

[4] Souvik Bhattacherjee, Gang Liao, Michael Hicks, and Daniel J. Abadi. BullFrog:
Online Schema Evolution via Lazy Evaluation, page 194–206. Association for
Computing Machinery, New York, NY, USA, 2021.

[5] Zoltán Böszörményi and Hans-Jürgen Schönig. PostgreSQL Replication. Packt
Publishing, 2013.

[6] Eric Brewer. Cap twelve years later: How the "rules" have changed. Computer,
45(2):23–29, 2012.

[7] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7, pages
343477–343502. Portland, OR, 2000.

[8] Björn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices ap-
proach for the internet of things. In 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), pages 1–6, 2016.

[9] Alina Buzachis, Antonino Galletta, Antonio Celesti, Lorenzo Carnevale, and
Massimo Villari. Towards osmotic computing: a blue-green strategy for the
fast re-deployment of microservices. In 2019 IEEE Symposium on Computers
and Communications (ISCC), pages 1–6, 2019.

[10] Lianping Chen. Microservices: Architecting for continuous delivery and devops.
In 2018 IEEE International Conference on Software Architecture (ICSA), pages
39–397, 2018.

[11] Carlo Curino, Hyun J. Moon, and Carlo Zaniolo. Automating database schema
evolution in information system upgrades. In Proceedings of the 2nd Inter-
national Workshop on Hot Topics in Software Upgrades, HotSWUp ’09, New
York, NY, USA, 2009. Association for Computing Machinery.

69

70 Bibliography

[12] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Automating
the database schema evolution process. The VLDB Journal, 22(1):73–98, feb
2013.

[13] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database schema
evolution: The prism workbench. Proc. VLDB Endow., 1(1):761–772, aug 2008.

[14] Michael De Jong and Arie Van Deursen. Continuous deployment and schema
evolution in sql databases. In 2015 IEEE/ACM 3rd International Workshop on
Release Engineering, pages 16–19, 2015.

[15] Michael de Jong, Arie van Deursen, and Anthony Cleve. Zero-downtime sql
database schema evolution for continuous deployment. In 2017 IEEE/ACM
39th International Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP), pages 143–152, 2017.

[16] Julien Delplanque, Anne Etien, Nicolas Anquetil, and Olivier Auverlot. Re-
lational database schema evolution: An industrial case study. In 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME),
pages 635–644, 2018.

[17] Rodolfo Miranda Barros Diego Quirino Silva, Everton Gomede. Strategies for
zero-downtime releases: A comparative study. 2016.

[18] Jorryt-Jan Dijkstra. Zero-downtime schema changes. PhD thesis, University of
Twente, Netherlands, September 2021.

[19] Martin Fowler. Bliki: Bluegreendeployment, Mar 2010.

[20] Konrad Gos and Wojciech Zabierowski. The comparison of microservice and
monolithic architecture. In 2020 IEEE XVIth International Conference on the
Perspective Technologies and Methods in MEMS Design (MEMSTECH), pages
150–153. IEEE, 2020.

[21] Martin Kleppmann. A critique of the cap theorem. 09 2015.

[22] Martin Kleppmann. Designing data-intensive applications: The big ideas behind
reliable, scalable, and maintainable systems. " O’Reilly Media, Inc.", 2017.

[23] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Pro-
viding high availability using lazy replication. ACM Trans. Comput. Syst.,
10(4):360–391, nov 1992.

[24] Loup Meurice, Csaba Nagy, and Anthony Cleve. Detecting and preventing
program inconsistencies under database schema evolution. In 2016 IEEE In-
ternational Conference on Software Quality, Reliability and Security (QRS),
pages 262–273, 2016.

[25] Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni,
and Theophilus A. Benson. Zero downtime release: Disruption-free load bal-
ancing of a multi-billion user website. In Proceedings of the Annual Conference

Bibliography 71

of the ACM Special Interest Group on Data Communication on the Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 529–541, New York, NY, USA, 2020. Association
for Computing Machinery.

[26] Vinicius Feitosa Pacheco. Microservice Patterns and Best Practices: Explore
Patterns like CQRS and Event Sourcing to Create Scalable, Maintainable, and
Testable Microservices. Packt Publishing, 2018.

[27] Chaitanya K. Rudrabhatla. Comparison of zero downtime based deployment
techniques in public cloud infrastructure. In 2020 Fourth International Con-
ference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
pages 1082–1086, 2020.

[28] Danilo Sato. Bliki: Parallelchange, May 2014.

[29] Yangjun Sheng. Non-blocking lazy schema changes in multi-version database
management systems. PhD diss., Carnegie Mellon University Pittsburgh, PA,
2019.

[30] Coen van Kampen. coenvk/liquibase-zd: v4.8.0, June 2022.

[31] Maarten van Steen and Andrew S. Tanenbaum. A brief introduction to dis-
tributed systems. Computing, 98(10):967–1009, 2016.

[32] Lesley Wevers, Matthijs Hofstra, Menno Tammens, Marieke Huisman, and
Maurice van Keulen. Analysis of the blocking behaviour of schema transforma-
tions in relational database systems. In Morzy Tadeusz, Patrick Valduriez, and
Ladjel Bellatreche, editors, Advances in Databases and Information Systems,
pages 169–183, Cham, 2015. Springer International Publishing.

[33] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database
replication techniques: a three parameter classification. In Proceedings 19th
IEEE Symposium on Reliable Distributed Systems SRDS-2000, pages 206–215,
2000.

[34] Bo Yang, Anca Sailer, Siddharth Jain, Angel Reyes, Manu Singh, and Anirudh
Ramnath. Service discovery based blue-green deployment technique in cloud
native environments. pages 185–192, 07 2018.

[35] Y. Zhu. Towards automated online schema evolution. 2017.

72 Bibliography

Appendices

Appendices 73

A Machine specifications 75

B Benchmark results 77

B.1 Asynchronously replicated database 77
Figure B.1.1 Baseline . 77
Figure B.1.2 Rename column . 78
Figure B.1.3 Rename column with small batch size 78
Figure B.1.4 Rename column with large batch size 79
Figure B.1.5 Rename column with largest batch size 79
Figure B.1.6 Modify data type . 80
Figure B.1.7 Rename table using copy 80
Figure B.1.8 Rename table using view 81

B.2 Synchronously replicated database . 81
Figure B.2.1 Baseline . 81
Figure B.2.2 Rename column . 82
Figure B.2.3 Modify data type . 82
Figure B.2.4 Rename table using copy 83
Figure B.2.5 Rename table using view 83

B.3 Contract from mixed-state . 84
Figure B.3.1 Rename column . 84
Figure B.3.2 Modify data type . 84
Figure B.3.3 Rename table using copy 85
Figure B.3.4 Rename table using view 85

B.4 Batch migration change . 86
Figure B.4.1 Intra-table for increasing number of warehouses 86
Figure B.4.2 Intra-table for increasing batch sizes 86
Figure B.4.3 Inter-table for increasing number of warehouses 87
Figure B.4.4 Inter-table for increasing batch sizes 87

73

74 Appendices

Appendix A

Machine specifications

Operating system Microsoft Windows 11 Home (10.0.22000 Build 22000)
Processor Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz, 2592 Mhz, 6

Core(s), 12 Logical Processor(s)
Memory (RAM) 16GB
Disks 512GB NVMe SSD + 1TB HDD

Table A.1: Specifications of the laptop that has been used in this research.
The laptop simultaneously ran a Kubernetes cluster and the HammerDB
benchmarks.

75

76

Appendix B

Benchmark results

B.1 Asynchronously replicated database

Figure B.1.1: Baseline

77

78 B.1. Asynchronously replicated database

Figure B.1.2: Rename column with a batch size of 1.000

Figure B.1.3: Rename column with a batch size of 250

Appendix B. Benchmark results 79

Figure B.1.4: Rename column with a batch size of 10.000

Figure B.1.5: Rename column with a batch size of 100.000

80 B.1. Asynchronously replicated database

Figure B.1.6: Modify data type with a batch size of 1.000

Figure B.1.7: Rename table using copy with a batch size of 1.000

Appendix B. Benchmark results 81

Figure B.1.8: Rename table using view with a batch size of 1.000

B.2 Synchronously replicated database

Figure B.2.1: Baseline

82 B.2. Synchronously replicated database

Figure B.2.2: Rename column with a batch size of 1.000

Figure B.2.3: Modify data type with a batch size of 1.000

Appendix B. Benchmark results 83

Figure B.2.4: Rename table using copy with a batch size of 1.000

Figure B.2.5: Rename table using view with a batch size of 1.000

84 B.3. Contract from mixed-state

B.3 Contract from mixed-state

Figure B.3.1: Rename column

Figure B.3.2: Modify data type

Appendix B. Benchmark results 85

Figure B.3.3: Rename table using copy

Figure B.3.4: Rename table using view

86 B.4. Batch migration change

B.4 Batch migration change

Figure B.4.1: Intra-table batch migration duration for increasing number
of warehouses

Figure B.4.2: Intra-table batch migration duration for increasing batch
sizes

Appendix B. Benchmark results 87

Figure B.4.3: Inter-table batch migration duration for increasing number
of warehouses

Figure B.4.4: Inter-table batch migration duration for increasing batch
sizes

	Abstract
	Acknowledgements
	Contents
	Glossary
	Introduction
	Motivation
	Problem definition
	Research method
	Paper structure

	Problem investigation
	Requirements
	Schema migrations
	State-of-the-art
	Shortcomings
	Expand-contract pattern
	Additional research

	Zero-downtime deployments
	Database replication
	Change operations

	Background
	Relational databases
	Database schemas
	Schema migrations
	Database management system
	ACID properties
	Concurrency control
	Strict serializability

	Software architectural styles
	Monolithic architecture
	Layered architecture
	Microservices architecture

	Distributed systems
	High availability clusters

	Database replication
	CAP theorem
	One-copy serializability
	Database architecture for replication
	Replica control
	Conflicts

	Application deployments
	Deployment practices
	Zero-downtime
	After-hours deployment
	Blue-green deployment

	Expand-contract pattern
	Physical and logical replication

	Technology stack
	Liquibase
	Kubernetes cluster
	HammerDB benchmarks

	Expand-contract pattern implementation
	Plugin features
	Switch between expand and contract
	Metadata retrieval
	Rolling back changes

	Rename view
	Rename column
	Modify data type
	Rename table
	Rename table using copy
	Rename table using view

	Batch migration
	Intra-table batch migration
	Inter-table batch migration

	Evaluation
	Functional correctness
	Data equivalence
	Identical schematic structure

	Experimental setup
	Results
	Asynchronously replicated database
	Synchronously replicated database
	Contract from mixed-state
	Batch migration change

	Requirement validation

	Discussion
	Limitations
	Future work

	Conclusion
	Deliverables
	Research answers

	Appendices
	Machine specifications
	Benchmark results
	Asynchronously replicated database
	Synchronously replicated database
	Contract from mixed-state
	Batch migration change

