
University of Huddersfield Repository

Waters, Laura J., Manchester, Kieran R., Maskell, Peter D., Haegeman, Caroline and Haider, 
Shozeb

The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor
binding of newly emerging benzodiazepines

Original Citation

Waters, Laura J., Manchester, Kieran R., Maskell, Peter D., Haegeman, Caroline and Haider, 
Shozeb (2018) The use of a quantitative structure-activity relationship (QSAR) model to predict 
GABA-A receptor binding of newly emerging benzodiazepines. Science and Justice. ISSN 1355-
0306 

This version is available at http://eprints.hud.ac.uk/id/eprint/34383/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



The use of a quantitative structure-activity relationship (QSAR) model to 

predict GABA-A receptor binding of newly emerging benzodiazepines 
 

 
 

 

 There is a deficiency in the pharmacological data available for new benzodiazepines.  

 69 benzodiazepines were used to develop a quantitative structure-activity relationship 

(QSAR).  

 The resultant QSAR model returned an R
2
 value of 0.90. 

 This model will allow rapid prediction of the pharmacology of emerging 

benzodiazepines. 

 

*Highlights (for review)
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The use of a quantitative structure-activity relationship (QSAR) model to 1 

predict GABA-A receptor binding of newly emerging benzodiazepines 2 

 3 

Abstract 4 

The illicit market for new psychoactive substances is forever expanding. Benzodiazepines 5 

and their derivatives are one of a number of groups of these substances and thus far their 6 

number has grown year upon year. For both forensic and clinical purposes it is important to 7 

be able to rapidly understand these emerging substances. However as a consequence of the 8 

illicit nature of these compounds, there is a deficiency in the pharmacological data available 9 

for these ‘new’ benzodiazepines. In order to further understand the pharmacology of ‘new’ 10 

benzodiazepines we utilised a quantitative structure-activity relationship (QSAR) approach. 11 

A set of 69 benzodiazepine-based compounds was analysed to develop a QSAR training set 12 

with respect to published binding values to GABAA
 
receptors. The QSAR model returned an 13 

R
2
 value of 0.90. The most influential factors were found to be the positioning of two H-bond 14 

acceptors, two aromatic rings and a hydrophobic group. A test set of nine random compounds 15 

was then selected for internal validation to determine the predictive ability of the model and 16 

gave an R
2
 value of 0.86 when comparing the binding values with their experimental data. 17 

The QSAR model was then used to predict the binding for 22 benzodiazepines that are 18 

classed as new psychoactive substances. This model will allow rapid prediction of the 19 

binding activity of emerging benzodiazepines in a rapid and economic way, compared with 20 

lengthy and expensive in vitro/in vivo analysis. This will enable forensic chemists and 21 

toxicologists to better understand both recently developed compounds and prediction of 22 

substances likely to emerge in the future.  23 

 24 

Keywords: benzodiazepines; QSAR; biological activity; prediction; new psychoactive 25 

substances; GABAA receptor 26 
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Introduction 27 

Benzodiazepines and their derivatives are routinely prescribed for a variety of medical 28 

conditions as anxiolytic, anti-insomnia and anti-convulsant drugs, acting on the gamma-29 

aminobutyric acid type A (GABAA) receptor [1, 2]. The endogenous neurotransmitter for the 30 

GABAA receptor is gamma-aminobutyric acid (GABA), the binding of which reduces the 31 

excitability of the cell [3]. Benzodiazepines potentiate the response of the GABAA receptor to 32 

GABA which results in far less cellular excitability which,  in physiological terms, results in 33 

sedation and relaxation [1]. 34 

In these circumstances benzodiazepines are medically beneficial by alleviating stress and 35 

agitation in patients through their anxiolytic effects. However, as a result of their 36 

psychoactive effects, benzodiazepines have a long history of abuse and are often illicitly 37 

obtained [4-6].  In more recent years a steady stream of benzodiazepines have appeared on 38 

the illicit market that have either been newly-synthesised or are licensed as prescription drugs 39 

in another country but not in the home country [7-10]. These are termed ‘new psychoactive 40 

substances’ (NPS) [11, 12]. The majority of these emerging benzodiazepines have not 41 

undergone standard pharmaceutical trials and can be quite variant in their effects and 42 

potentially dangerous in their activity [13]. Although relatively safe when used as medically 43 

prescribed, concurrent use of benzodiazepines and opioids (either prescribed or abused) can 44 

lead to respiratory depression and death [4, 14, 15]. When benzodiazepines are not carefully 45 

prescribed and monitored, they can cause a variety of side effects including tolerance and 46 

dependency if taken long-term and sudden withdrawal can cause medical problems including 47 

anxiety and insomnia [16-18]. These NPS benzodiazepines have already been reported in a 48 

number of overdose cases, driving under the influence of drugs (DUID) cases and hospital 49 

admissions [8, 19-22]. The lack of control and safety over these illicit benzodiazepines is a 50 
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prevalent issue and it is likely that it will become an even more worrying trend as their 51 

misuse continues to rise.  52 

Benzodiazepines are a diverse group of psychoactive compounds with a central structural 53 

component consisting of a benzene ring and a diazepine ring (Figure 1). A whole host of 54 

derivatives exist which include triazolobenzodiazepines, thienotriazolobenzodiazepines and 55 

imidazobenzodiazepines (see Supplementary Information Figure S1 and Table S1).  56 

Quantitative structure-activity relationship (QSAR) models attempt to correlate molecular 57 

structure to biological activity, often using a variety of molecular descriptors such as 58 

physiochemical, topological, electronic and steric properties [23]. Typically, a set of 59 

compounds whose biological activity is known is used to create a ‘training’ dataset and a 60 

model. This model can then be used to predict the unknown biological activity of compounds 61 

with a similar structure or to explore the structural features that are important for the specific 62 

biological activity in question. QSAR has been extensively used for a variety of reasons such 63 

as compound development in the pharmaceutical industry and the pharmacological 64 

interpretation of drug-related deaths [24-26]. In terms of applications towards new 65 

psychoactive substances, the predictive power of QSAR has been mainly applied to 66 

cannabinoid binding to the CB1 and CB2 receptors [27-29] but has also been used to examine 67 

the biological activity of hallucinogenic phenylalkylamines [30], the binding of 68 

phenylalkylamines, tryptamines and LSD to the 5-HT2A receptor [31] and methcathinone 69 

selectivity for dopamine (DAT), norepinephrine (NAT) and serotonin transporters (SERT) 70 

[32].  Currently, the majority of novel benzodiazepines have not been analysed to determine 71 

their physicochemical and biological properties as this would require a substantial investment 72 

in both time and money. It is for this reason that a fast, yet economical method to predict their 73 

properties is desirable. 74 
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QSAR has previously been applied to benzodiazepines to predict bioavailability, absorption 75 

rate, clearance, half-life and volume of distribution for a group of benzodiazepines. This 76 

study included phenazepam [33], a benzodiazepine that appeared as an NPS in 2007 [34].  77 

Other benzodiazepines (such as etaziolam) only appeared as new psychoactive substances in 78 

the years following the publication of this study. Furthermore, the application of a QSAR 79 

methodology has been used for modelling post-mortem redistribution of benzodiazepines 80 

where a good model was obtained (R
2
 = 0.98) in which energy, ionisation and molecular size 81 

were found to exert significant impact [35]. Quantitative structure-toxicity relationships  82 

(QSTR) have been used to correlate the toxicity of benzodiazepines to their structure in an 83 

attempt to predict the toxicity of these compounds  [36]. More recently, a study reported the 84 

use of QSTR whereby it was concluded that it is possible to identify structural fragments 85 

responsible for toxicity (the presence of amine and hydrazone substitutions as well as 86 

saturated heterocyclic ring systems resulted in a greater toxicity) and potentially use this 87 

information to create new, less toxic benzodiazepines for medical use [37].  88 

Various QSAR models have been used to correlate benzodiazepine structure to GABAA 89 

receptor binding and tease apart the complex relationship between various substituents and 90 

their effect on activity [38-43] although none have specifically attempted to predict binding 91 

values for benzodiazepines that are new psychoactive substances. 92 

In this study we focus on the relationship between the structure of characterised 93 

benzodiazepines and GABAA receptor binding, expressed as the logarithm of the reciprocal 94 

of concentration (log 1/c) where c is the molar inhibitory concentration (IC50) required to 95 

displace 50 % of [3H]-diazepam from rat cerebral cortex synaptosomal preparations [41]. 96 

The purpose of this work is to create a QSAR model that can be used to predict the potential 97 

biological activity of the newly-emerging benzodiazepines to help understand, and therefore 98 

minimise their harmful potential in a faster time scale compared with in vitro/in vivo testing.  99 
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Methods and Materials 100 

Selection of the dataset 101 

The binding data for the benzodiazepines was used as obtained from the literature, 102 

experimentally determined using spectrometric measurements of [3H]-diazepam 103 

displacement [44]. Benzodiazepines were selected from four categories; 1,4-benzodiazepines, 104 

triazolobenzodiazepines, imidazobenzodiazepines and thienotriazolobenzodiazepines.  105 

Benzodiazepines that did not have definitive binding values (i.e. listed values were simply 106 

stated as >1000 or >5000) were excluded. For simplicity benzodiazepines with atypical atoms 107 

or substituents (e.g. Ro 07-9238 which contained a sodium atom and Ro 05-5065 which 108 

contained a naphthalene ring) were also excluded. Benzodiazepines that also had atypical 109 

substitutions (i.e. positions R6, R8 and R9 from Figure 1 which are not found in medically-110 

used benzodiazepines or indeed those that are new psychoactive substances) were also 111 

excluded. In total, 88 benzodiazepines were selected for the training dataset. 112 

QSAR/Software and Data Analysis Method 113 

The 88 benzodiazepines were converted from SMILES to 3D structures based on Merck 114 

Molecular Force Field (MMFF) atom type and force field optimisation. These compounds 115 

were then aligned by common substructure and confirmation to Ro 05-306. Subsequently, the 116 

aligned compounds were clustered by Atomic Property Fields (APF) to identify 117 

benzodiazepines with poor alignment. The APF method, designed by MolSoft, uses the 118 

assignment of a 3D pharmacophore potential on a continuously distributed grid using physio-119 

chemical properties of the selected compound(s) to classify or superimpose compounds. 120 

These properties include: hydrogen bond donors, acceptors, Sp2 hybridisation, lipophilicity, 121 

size, electropositivity/negativity and charge [45, 46]. Poorly aligned benzodiazepines 122 

identified by APF clustering were subjected to re-alignment using APF-based flexible 123 
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superimposition. At this point, 10 benzodiazepines with poor alignment were removed to 124 

improve model accuracy. (Supplementary Information Table 1S). 125 

From the remaining 78 aligned compounds, 9 compounds were selected using a random 126 

number generator based on atmospheric noise. These compounds were removed from the 127 

training set and used for final model validation. The residual 69 compounds were used as the 128 

training set to build a 3D QSAR model, as shown in Figure 2.  129 

The APF 3D QSAR method was used where, for each of the 69 aligned compounds, the 130 

seven physicochemical properties were calculated and pooled together. Based on the activity 131 

data obtained from literature and the 3D aligned structures for the known compounds, 132 

weighted contributions for each APF component were obtained to allow quantitative activity 133 

predictions for unknown compounds. The optimal weight distributions were assigned by 134 

partial least-squares (PLS) methodology, where the optimal number of latent vectors for PLS 135 

was established by leave-one-out cross-validation on the training set. Then the weighted 136 

contributions were added together. The 9 compounds for validation and unknown compounds 137 

were assigned predicted binding values by calculating their fit within the combined QSAR 138 

APF. Any unknown benzodiazepines were subjected to the conversion and alignment 139 

protocol before predicted binding data was obtained. The above steps were conducted using 140 

Molsoft’s ICM Pro software [47]. 141 

Further analysis of the PLS model fragment contributions from the 69 compounds was 142 

conducted using SPCI software. Here, a 2D QSAR model was built using the same PLS 143 

methodology as above. Additionally, a consensus model was created from averaging the 144 

predictions of PLS, gradient boosting, support vector machine and random forest modelling 145 

methods. The compounds were then subjected to automatic fragmentation and contribution 146 

calculations, which resulted in information on 11 key contributing groups [48]. Using Ligand 147 
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Scout with default settings, four ligand-based pharmacophore models were created using 148 

compounds with binding values of 6.0-9.0, 7.0-9.0, 8.0-9.0 and 8.5-9.0, as exemplified in 149 

Figure 3. 150 

Ten benzodiazepines that had the highest predicted binding values were docked into a 151 

modelled GABAA5 receptor using ICM software. The GABAA5 receptor model was generated 152 

by homology modelling, using the crystal structure of a human GABA(A)R-beta3 153 

homopentamer (PDB id 4COF) as a template. A pre-defined binding site containing co-154 

crystallised benzodiazepine is already present in the template, which was retained in the final 155 

model. Modeller software was used to generate the homology models [49]. The final chosen 156 

model was energy minimized using the ACEMD software [50]. The stereochemistry was 157 

checked using Procheck and ProSA software [51, 52]. The benzodiazepine in the allosteric 158 

binding site on the GABAA5 receptor was used as a chemical template to dock NPS-159 

benzodiazepines and the best-scoring conformations were analysed.  160 

The distances between principle physiochemical properties and their weights in the 161 

pharmacophore model were calculated using the software LigandScout [53]. 162 

163 
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Results and Discussion 164 

The data that was used to create the QSAR model (i.e. benzodiazepine structural substitutions 165 

and experimentally-observed binding values) is provided in the Supplementary Information 166 

(Table S1). 167 

From the pharmacophore model visualised in Figure 3 for highly bound benzodiazepines (log 168 

1/c of 8.0 – 9.0), it is evident that important binding features for the benzodiazepines were the 169 

positioning of two H-bond acceptors, two aromatic rings and a hydrophobic group all with 170 

weights of 1.0. 171 

The predicted binding values are not presented here but are listed in Supplementary 172 

Information (Table S1). They can be visualised in Figure 4 as a plot of the observed binding 173 

value versus the predicted binding value.   174 

Nine compounds were selected at random from the QSAR training set and their binding 175 

values estimated using the model as a system of internal validation. These estimated values 176 

were then compared to the experimental binding values (Figure 5).  177 

The QSAR model was then used to predict the binding for 22 benzodiazepines that are 178 

classed as new psychoactive substances. The results are divided in to four categories 179 

depending upon the nature of the substitutions, as shown in Tables 1, 2, 3 and 4.  180 

Five compounds were present in the training dataset but have also appeared as new 181 

psychoactive substances; adinazolam, desalkylflurazepam, desmethylflunitrazepam 182 

(fonazepam), etizolam and meclonazepam. The experimental binding values from the 183 

literature and the predicted binding values are displayed in Table 5.  184 

The NPS-benzodiazepine with the highest predicted log 1/c value was flunitrazolam with 185 

8.88, closely followed by clonazolam with 8.86. However, based upon experimental data, 186 
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meclonazepam with a log 1/c value of 8.92 (8.52 predicted) actually exhibited the greatest 187 

binding affinity. Only two benzodiazepines in the training set experimental values had a log 188 

1/c value of 8.92; these were meclonazepam and brotizolam with the rest falling below this 189 

point. In general, the limitations to this model are most likely caused by the small size of the 190 

data set. It is widely reported that QSAR models have poorer predictive capabilities with 191 

training sets under 100 compounds [54, 55]. Moreover, the diversity of substitutions within 192 

the small set of training compounds, created difficulties with APF superimposition and 193 

therefore may have reduced the accuracy of the model predictors. Secondary modelling with 194 

SPCI highlighted these limitations and demonstrated the existing dataset was less suitable for 195 

PLS 2D QSAR modelling [48]. However, the consensus from multiple modelling methods 196 

improves the predictive power of the 2D QSAR model.  Additionally, as experimental errors 197 

in the training set are amplified both by the logarithmic scale and when calculating the 198 

weighted contributions, consistency and accuracy in the initial experimental values are 199 

essential for a strong QSAR model. Ideally, further improvements to the model could be 200 

made by using a larger training dataset with lower diversity yet this cannot be achievable as a 201 

consequence of limitations on literature data available. 202 

From these docking studies with the modelled GABAA5 receptor it can be seen that they only 203 

partially occupy the available volume at the allosteric binding site (exemplified in Figure 6 204 

for flunitrazolam). From the ten compounds that had the greatest binding affinity, four had 205 

non-bonded interactions with the T80 region within the receptor, two had non-bonded 206 

interactions with the K182 and S231 regions respectively. There were also stacking 207 

interactions with the Y96 region for four of the compounds. Therefore the possibility is that 208 

the binding is not completely optimal for these benzodiazepines and that with a modified 209 

chemical structure, a greater binding affinity could be theoretically possible. The reality 210 
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exists that a benzodiazepine with an optimised binding affinity could emerge onto the illicit 211 

drugs market and could potentially (but not necessarily) exhibit a greater potency. 212 

The 10 compounds with the greatest binding affinity for the receptor are listed in Table 6 213 

(lower scores indicate a greater binding effect).  214 

There are 35 benzodiazepines and their derivatives currently subject to international control, 215 

30 of these compounds had binding values listed in the original source [44]. The average log 216 

1/c value for these 30 controlled compounds was 7.57. Out of these compounds, 43 % (13 out 217 

of 30) had a log 1/c value that was greater than 8.00. The average log 1/c value for the whole 218 

training dataset was 7.81 and 48 % of the compounds (33 out of 69) had a log 1/c value that 219 

was greater than 8.00. These values are fairly similar, however when comparing the results of 220 

the benzodiazepines that are new psychoactive substances, the average log 1/c value that was 221 

predicted was 8.22 and 68 % of the compounds (15 out of 22) had a log 1/c value that was 222 

greater than 8.00. From this it is appears that benzodiazepines that are appearing as new 223 

psychoactive substances are more likely to have a greater binding affinity at the GABAA 224 

receptor. Whether this trend is deliberate is unclear.  225 

A log 1/c value of 7.88 was obtained for 4-chlorodiazepam (Ro 5-4864). This suggests a 226 

relatively high affinity for the GABAA receptor when compared with the log 1/c values for 227 

clinically-used benzodiazepines; the binding value for diazepam is 8.09 and 8.40 for 228 

triazolam. However it has been reported that the experimental value for 4-chlorodiazepam 229 

(Ro-4864) is actually 3.79 (i.e. an IC50 value of 160,500 nM) in one dataset when compared 230 

with a log 1/c of 7.80 for diazepam and 8.72 for triazolam in the same dataset [56]. There are 231 

obvious impracticalities with comparing different datasets as a result of differences in 232 

methods (e.g. the use of [
3
H]-diazepam versus [

3
H]-flunitrazepam as a radioligand), the 233 

differences in the species used (rat vs. mouse) and the differences in GABAA receptor 234 

expression between different brain homogenates. Despite this it is clear that 4-235 



11 
 

chlorodiazepam observes an extremely low affinity for GABAA receptors and one that this 236 

model did not accurately predict. This most likely results from the deficit of compounds in 237 

the training dataset that had a similar substitution on the R4’ position of the phenyl ring. 238 

Indeed, this model focused upon the ‘classical’ 1,4-benzodiazepine, triazolobenzodiazepine, 239 

imidazobenzodiazepine and thienotriazolodiazepine substitutions. Substitutions on the R4’ 240 

position of the phenyl ring are known to exhibit strong steric repulsion at the GABAA 241 

receptor interface and therefore compound binding is severely inhibited [40] [57]. 4-242 

chlorodiazepam is an outlier and atypical benzodiazepine as it does not act upon the GABAA 243 

receptor; instead exerting its pharmacological effects through the translocator protein 18 kDa 244 

(TSPO), previously known as the peripheral benzodiazepine receptor [58, 59]. 245 

 246 

The oxazolobenzodiazepine flutazolam, a prescription drug in Japan, had a predicted log 1/c 247 

binding value of 6.83 which seems extremely low compared with the other benzodiazepines 248 

in this dataset. To the best of the authors’ knowledge there exists no experimental GABAA 249 

receptor binding data for flutazolam. However other oxazolobenzodiazepines have low 250 

affinities for the GABAA receptor such as ketazolam with a log 1/c value of 5.89 [60] and 251 

oxazolam with a log 1/c value of 5.00 [61]. These log 1/c binding values are from additional 252 

sources – the previous paragraph discusses the difficulties in comparing binding values from 253 

different datasets. Nonetheless it is clear that oxazolobenzodiazepines exhibit a much lower 254 

affinity for the GABAA receptor.   If the value for flutazolam is correct then this QSAR 255 

model successfully predicted the low binding affinity of flutazolam despite having no 256 

oxazolobenzodiazepines in the training dataset which serves as an indicator to the potential 257 

strength of the model. 258 
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Conclusions 259 

The emergence of benzodiazepines and their derivatives as new psychoactive substances 260 

necessitates the investigation of their pharmacological attributes. The use of a QSAR model 261 

is ideal to gain an understanding into the binding properties of these substances. In this work 262 

a QSAR model has been successfully developed to predict the binding data for NPS-263 

benzodiazepines. Benzodiazepines that have emerged as new psychoactive substances appear 264 

to have a greater binding affinity to GABAA receptors than those benzodiazepines that are 265 

used medically and are under international control. Whether this trend will continue is 266 

uncertain. Further in vitro work would allow the compilation of more data to improve the 267 

accuracy of this model. However, this model does allow a rapid estimation of the binding 268 

affinity of emerging benzodiazepines before more detailed studies can be carried out. 269 

270  
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 490 

 491 

 492 
 493 
Tables 494 

 495 
Table 1. Structural information and predicted binding values for 1,4-benzodiazepines 496 

Name 
Substitutions Log 1/c 

predicted 

Basic structure 

R7 R1 R2' R3 

Diclazepam Cl CH3 Cl - 8.39 

 

Desalkylflurazepam Cl - F - 8.44 

Meclonazepam NO2 - Cl CH3 8.52 

Phenazepam Br - Cl - 8.12 

Desmethylflunitrazepam NO2 - F - 8.46 

3-hydroxyphenazepam Br - Cl OH 8.42 

Flubromazepam F - Br - 8.37 

Nifoxipam NO2 - F OH 8.63 

Cloniprazepam NO2 - Cl C3H5CH3 7.83 

Nimetazepam NO2 CH3 - - 7.87 

4-chlorodiazepam
a
 Cl CH3 - - 7.88 

a4-chlorodiazepam has a Cl substituted on the R4’ position of the phenyl ring 

 
 

 
 

 497 

 498 
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Table 2. Structural information and predicted binding values for triazolobenzodiazepines 499 

 500 

 501 

Table 3. Structural information and predicted binding values for thienotriazolodiazepines 502 

Name 
Substitutions Log 1/c 

predicted 

Basic structure 

R9 R2 R2' 

Deschloroetizolam CH3 CH2CH3 - 7.96 

 

Etizolam CH3 CH2CH3 Cl 8.64 

Metizolam - CH2CH3 Cl 8.34 

 503 

Name 
Substitutions Log 1/c 

predicted 

Basic structure 

R8 R1 R2' R4 

Flubromazolam Br CH3 F - 8.77 

 

Clonazolam NO2 CH3 Cl - 8.86 

Flunitrazolam NO2 CH3 F - 8.88 

Bromazolam NO2 CH3 - - 8.25 

Adinazolam Cl CH3N(CH3)2 - - 7.18 

Pyrazolam
a
 Br CH3 - - 7.79 

Nitrazolam NO2 CH3 - - 8.34 

aPyrazolam has a 2-pyridyl ring at position 6 rather than a phenyl ring 
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Table 4. Structural information and a predicted binding value for an oxazolobenzodiazepine 504 

 505 

 506 

Table 5. Observed and predicted binding values for new psychoactive substances 507 

Compound 
Log 1/c 

observed 

Log 1/c 

predicted 
% (log 1/c obs.) / (log 1/c pred.) 

Adinazolam 6.87 7.18 95.9 % 

Desalkylflurazepam 8.70 8.44 103.1 % 

Desmethylflunitrazepam 

(fonazepam) 

8.82 8.46 104.3 % 

Etizolam 8.51 8.64 98.5 % 

Meclonazepam 8.92 8.52 104.7 % 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

Name 
Substitutions Log 1/c 

predicted 
Basic Structure 

R10 R7 R2' 

Flutazolam Cl CH2CH2OH F 6.83 
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Table 6. Binding scores and molecular descriptors of the 10 compounds exhibiting the 515 

greatest binding affinity for the receptor 516 

 517 

Compound 

Name 

Score  Numb

er of 

Atoms 

in 

ligand 

Number 

of 

rotatable 

torsions 

Hydrogen 

Bond 

energy 

hydroph

obic 

energy 

in 

exposin

g a 

surface 

to water  

van der 

Waals 

interacti

on 

energy  

internal 

conformation 

energy of the 

ligand  

desolvation 

of exposed 

h-bond 

donors and 

acceptors 

solvation 

electrostatics 

energy change 

upon binding  

potential 

of mean 

force score 

Flunitrazola

m 

-17.9003 37 1 -1.55071 -6.12229 -

27.3992 

4.10324 10.7377 13.4407 -158.403 

Clonazolam -15.4617 37 1 -1.53992 -6.124 -

27.9233 

7.64508 11.6698 16.8309 -154.162 

Flubromazol

am 

-18.2738 35 0 -1.61755 -6.89366 -

25.8773 

3.57746 11.0855 12.122 -151.357 

Etizolam -18.7025 38 1 -2.03733 -7.14073 -

25.5154 

7.89581 11.8052 11.0572 -101.516 

Nifoxipam -20.836 33 2 -5.90608 -4.9646 -22.352 6.0639 12.5432 13.905 -129.57 

Meclonazepa

m 

-13.4447 35 1 -2.27939 -5.98463 -

21.8787 

5.69717 10.6159 14.6192 -124.257 

Desmethylflu

nitrazepam 

-15.5192 32 2 -0.82246 -5.27009 -

26.2114 

2.37454 10.376 11.0938 -144.474 

Desalkylflura

zepam 

-21.7837 30 0 -2.01574 -5.82939 -27.462 0.691701 9.53716 11.4106 -154.372 

Diclazepam -16.8002 33 0 -0.60989 -6.76567 -25.688 2.00693 10.3028 10.9647 -121.093 

Metizolam -13.7614 35 1 -1.78622 -6.65559 -

24.7768 

3.51234 14.5321 12.8708 -138.056 

 518 
 519 

 520 
 521 

 522 
 523 
 524 

 525 
 526 
 527 
 528 
 529 

 530 
 531 

 532 
 533 
 534 
 535 
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Figures 536 
 537 

 538 

Figure 1: The basic structural formula for benzodiazepines considered in this work 539 

 540 

 541 

Figure 2: Alignment of 69 training set benzodiazepines shown in two orientations. 542 



24 
 

 543 
Figure 3: Pharmacophore model of 33 compounds with binding values 8.0-9.0  544 

 545 

 546 
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 547 

Figure 4: Literature (i.e. observed) binding values (log 1/c) vs. QSAR predicted binding 548 

values fit with a partial least squares (PLS) regression (R
2
 = 0.90).  549 

 550 
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 551 

Figure 5: Literature (i.e. observed) binding values (log 1/c) vs. QSAR predicted binding 552 

values for 9 compounds randomly selected for internal validation (R
2
 = 0.86).  553 

 554 
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 555 
 556 

Figure 6: Visualisation of the NPS-benzodiazepine flunitrazolam binding to the allosteric 557 

site of the GABAA5 receptor 558 

 559 
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