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In this paper we present a knowledge-based approach for the automatic detection of microcalcifications
and clusters in mammographic images. Our proposal is based on using local features extracted from a
bank of filters to obtain a local description of the microcalcifications morphology. The developed
approach performs an initial training step in order to automatically learn and select the most salient fea-
tures, which are subsequently used in a boosted classifier to perform the detection of individual micro-
calcifications. Subsequently, the microcalcification detection method is extended in order to detect
clusters. The validity of our approach is extensively demonstrated using two digitised databases and
one full-field digital database. The experimental evaluation is performed in terms of ROC analysis for
the microcalcification detection and FROC analysis for the cluster detection, resulting in better than
80% sensitivity at 1 false positive cluster per image.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Breast calcifications are deposits of calcium inside breast tissue.
They appear widespread in the breast and most women will have a
few on their mammograms at some point in time, more commonly
after menopause [1]. Most calcifications will not be detected dur-
ing clinical exams or breast self-examination. However, mammog-
raphy allows to find them long prior to they could move forward
into an actual lump. This fact explains why developed countries
are adopting the so-called screening programs, which mainly con-
sist in promoting regular women examinations using mammogra-
phy, usually starting at 40 years and performing them every
2 years.

It is usual to distinguish between two major types of calcifica-
tions according to the size: macrocalcifications and microcalcifica-
tions. While macrocalcifications are nearly always non-cancerous
and need neither additional follow-up nor biopsy, microcalcifica-
tions should be diagnosed in more detail. Although about 80% of
microcalcifications are typically non-cancerous, when the micro-
calcifications are new, clustered firmly together, and distributed
in specific configurations, they are suspicious signs of breast can-
cer, most frequently a non-invasive ductal carcinoma in situ. Due
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to its high spatial resolution, mammography allows to detect mic-
rocalcifications at an early stage, a fundamental step for improving
prognosis [2,3]. In a mammogram, microcalcifications appear as
small bright spots within an inhomogeneous background. Fig. 1
shows two mammograms from the MIAS database [4] containing
a cluster of microcalcifications.

The automatic detection of microcalcifications and clusters is a
well-known topic in mammography, as can be seen in the different
surveys covering this topic [5,6]. More recent approaches are by
Papadopoulos et al. [7], Pal et al. [8], Rizzi et al. [9] and Yu et al.
[10]. Papadopoulos et al. [7] improve previous work [11], which
was based on detecting microcalcifications using a neural network,
by adding a pre-processing image enhancement step. In their work,
different algorithms were tested, obtaining the best results when
using the local range modification and the redundant discrete
wavelet linear stretching and shrinkage enhancement algorithms.
Pal et al. [8] also proposed to use neural networks for microcalcifi-
cation detection. The first step of their approach consisted in using
a multi-layered perceptron network for selecting 29 features that
best account for the microcalcification detection from the 87 ini-
tially tested. These features are subsequently used to segment
the mammograms using another perceptron network. A final step
for false positive reduction was necessary for removing thin elon-
gated regions. In this approach, clusters were detected by using a
weighted density function which takes the position of the micro-
calcifications into account. Rizzi et al. [9] proposed a two-stage
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Fig. 1. Two mammograms containing microcalcifications (extracted from the MIAS
database). Both examples were selected for a good visualisation of the problem,
although in general microcalcifications are more subtle and difficult to appreciate,
even for experts radiologists.

Fig. 3. Creation of the dictionary. From each manually marked microcalcification a
patch is extracted and used together with the filter bank to create the words of the
dictionary.
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decomposition wavelet filtering for detecting microcalcifications.
The first stage is used to reduce background noise preserving all
suspect microcalcifications by thresholding mammograms accord-
ing to image statistics (mean grey level pixel value and standard
deviation), while the second one acts as a hard threshold tech-
nique, identifying the microcalcifications from the background. A
cluster was considered if more than 3 microcalcifications were de-
tected in a 1 cm2 square area. Yu et al. [10] combined model-based
and statistical textural features for clustered microcalcifications
detection. Firstly, suspicious regions containing microcalcifications
were detected using a wavelet filter and two thresholds. Secondly,
textural features based on Markov random fields and fractal mod-
els together with statistical textural features were extracted from
each suspicious region and were classified by a back propagated
neural network.

In this paper we present a new approach for the detection of
microcalcifications and clusters. The roots of this work can be
Fig. 2. Schematic representation of our approach. Firstly, a dictionary is created by convo
bank (obtaining an amount of ND � NF words). Afterwards, the training data is obtained b
and used as the learning of the classifier. When a new image is analysed, each pixel of
classifier. Therefore, the final result of the algorithm is a probability image where brigh
found in our previous work [12,13], which was only centred in
the detection of individual microcalcifications. In this paper we in-
crease the experimental evaluation of this part, and further, we ex-
tend the approach for the detection of clusters, which is more
relevant from a clinical point of view. Briefly, the individual micro-
calcification detection is based on learning the variation in mor-
phology of the microcalcifications using local image features.
Afterwards, this set of features is used to train a pixel-based boost-
ing classifier which at each round automatically selects the most
salient microcalcification feature. Therefore, when a new mammo-
gram is tested, only the salient features are computed and used to
classify each pixel of the mammogram as being part of a microcal-
cification or actually being normal tissue. Afterwards, the microcal-
cification clusters are found by inspecting the local neighbourhood
of each microcalcification. Note that with our boosting framework
we are able to perform both microcalcification and cluster detec-
tion without requiring a further classification step as done in
lving all the ND patches of the dictionary database with all the NF filters of the filter
y cross-correlating the NT patches of the training data with all the dictionary words,
the breast is used as the centre of a patch, which is subsequently analysed by the
ter pixels represent more confidence to be a microcalcification.
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previous approaches [7–10]. Moreover, it is important to remark
that we are not dealing with diagnosis in this paper, which is usu-
ally performed by means of knowledge-based systems [14–16].

It is well known that digital mammography allows to improve
the detection of microcalcifications thanks to its superior sensitiv-
ity [17], and new approaches only dealing with full-field digital
microcalcification detection are appearing. Unfortunately, this
technology is not yet available in many countries and clinical cen-
tres due to its cost. Therefore, reliable automatic approaches able
to detect microcalcifications clusters in digitised film plates are
still necessary. In the experimental section of this paper, we vali-
date our approach using both technologies. In particular, we used
the whole set of 322 mammograms of the MIAS database [4] and
a set of 280 mammograms extracted from a non-public full-field
digital database. The results show the validity of our approach to
deal with mammograms of both natures.

The remainder of this paper is structured as follows. The follow-
ing section describes the proposed approach for detecting individ-
ual microcalcifications in a mammogram. In Section 3 we extend
our approach to the detection of microcalcifications clusters.
Section 4 presents the experimental set-up designed for testing
our approach, while the results are presented in Section 5. The
experimental evaluation is done in terms of ROC and FROC analysis.
Finally, the paper ends with discussion and conclusions.
2. Microcalcification detection

The presented approach for microcalcification detection is
based on the work of Murphy et al. [18] for object detection using
local features and a boosting classifier. Their approach relies on
detecting an object by learning their salient parts and the relative
position of these parts to the object centre. The filtering of each of
these patches with a bank of filters allows to create a dictionary of
visual words, which represent the object morphology at a given
position respect to the object centre. These words of the dictionary
are subsequently used to extract a set of features from the training
data, which will are used to learn the classifier. Afterwards, using
the same dictionary, the features are extracted from the testing
images and through the classifier, used for detecting the object.
Therefore, its centre is found by combining all the relative posi-
tions of the analysed patches. Instead of following the same strat-
egy, which is of general purpose, in this paper we propose to
directly characterise the microcalcifications with one patch, since
the centre and the boundaries of the microcalcification are close
enough to be represented by a single patch. This represents a dif-
ferent challenging problem, since only one patch is used to charac-
terise the object, instead of a set of patches.

The proposed approach, depicted in Fig. 2, is divided in three
parts. Firstly, we create the word dictionary, which is obtained
by convolving patches containing a microcalcification with a bank
of filters. This dictionary allows to characterise examples of known
microcalcifications and will be subsequently used to characterise
unknown images. First, the training data is found by convolving
positive samples (patches containing a microcalcification) and neg-
ative samples (patches of other tissues) with the words of the dic-
tionary, and it is used as input to the Gentleboost classifier [19].
And second, new mammograms are classified pixel-by-pixel by
this trained classifier. Hence, the detection problem is translated
to a pixel-based classification approach. In the following subsec-
tions we describe in more detail the three parts of our approach.
Fig. 4. Creation of the classifier training data. Each patch of the database is
characterised using the words of the dictionary (actually, the length of the vector xt

is equal to 9 � ND, i.e. the number of filters used multiplied by the number of
patches of the dictionary database).
2.1. Building the dictionary

The first task of the system consists in building the dictionary.
This dictionary is similar to an atlas, since it contains samples
(patches) of microcalcifications and is used for the system to learn
their morphologies. Moreover, the dictionary contains also the
convolution of the patches with a bank of filters. Fig. 3 shows an
example of this process. A patch including in its centre a microcal-
cification is extracted from the mammogram, and together with
the 9 filters is included in the dictionary. From top to bottom,
the filters used in this work are: the delta function (which returns
the original patch as a result), a Gaussian filter (which produces a
smoothed version of the patch), the four Gaussian derivatives, the
two Sobel filters, and the Laplacian one (which all of them return
an image related with the gradient of the patch). In the figure,
the mean grey value of the filters represents a 0, while brighter pix-
els are positive values and darker pixels are negative values. There-
fore, the dictionary contains grey-level and gradient information of
the microcalcifications and their neighbourhood.

Mathematically, each dictionary word wij can be understood as
the ordered pair (pi, fj), where pi represents the patch and fj the fil-
ter. Assuming there are ND patches in the dictionary database,
there are 9 � ND words in the dictionary. In a recent study, Varma
and Zisserman [20] show that for the general goal of characterising
and classifying texture, like is done with textons, one could use the
image patches themselves instead of convolving them using a bank
of filters. However, in our experimental results we found that the
use of filters improves the final detection results. This point will
be discussed with more detail in Section 6.

2.2. Training step

Our approach is a supervised strategy, therefore requiring an
initial training step before starting the detection process (testing
step). The features used for detecting the microcalcifications are
obtained using the words of the dictionary. Therefore, for the train-
ing step, we need a database of patches containing instances of
both patches with microcalcifications and ‘‘normal’’ patches from
the rest of tissues.

For each training image patch the feature extraction consists of
two operations. Firstly, the patch is convolved with our filter bank,
and secondly, the normalised cross-correlation with all the words
is computed. Fig. 4 visually shows this operation, which can be
mathematically summarised as:

xtk ¼ ðIt � fjÞ �wij ¼ ðIt � fjÞ � ðpi � fjÞ ð1Þ

where It is the training image patch convolved (⁄) with the filter fj

and cross-correlated (�) with the word wij (kth word). The resulting
value xtk represents the similarity of the training patch and the kth



Fig. 5. Result of applying the proposed microcalcification detection approach to the
mammograms shown in Fig. 1. Only the cropped regions are shown for easier
visualisation.
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dictionary word. Therefore, for each training image patch, a vector
of features xt is constructed by cross-correlating all the dictionary
words wij with the convolution of the patch itself with filter fj. No-
tice here the necessity of keeping the filter as well as the patch in
the dictionary word. Assuming that there are NT patches in the
training database, the training data x can be seen as a matrix of
NT column vectors of length 9 � ND.

The image patches were manually selected from a set of (train-
ing) images. In particular, we select the centre of the microcalcifi-
cations as positive training examples and some random locations
of the background containing examples of different tissues as neg-
ative training examples. Note that we could also use all the pixels
not being microcalcifications instead of selecting only a subset, but
this strategy will drastically increase the computational cost of the
approach due to the large size of the mammograms. However, the
total number of negative examples is still larger than the set of po-
sitive examples, since they should represent the different tissues
that appear in a mammogram.

At this point, the positive and negative training examples have
been characterised. The subsequent step is to use this data for
training a classifier. For this task we used the Gentleboost algo-
rithm [19,21]. Boosting algorithms are based on the idea that the
sum of weak classifiers can produce a strong classifier [22,23]. In
the Gentleboost algorithm, the weak classifiers (hr) used at each
round are simple regression stumps with one of the features:

hrðxt; kÞ ¼ ahðxtk > thÞ þ b ð2Þ

where a and b are the parameters of the regression stump, being
a = 2, b = �1 the values obtained in the perfect case and a = 0 and
b = 0 the values obtained in a random example, h(/) refers to the
Heaviside step function (0 if / < 0; 1 otherwise), th is the threshold
that determines if pattern xtk belongs to the object class, and xtk re-
fers to the kth dimension of column vector xt (the feature actually
selected). At each round, the values of the parameters a, b, and th
are selected to minimise the error of the classifier:

e ¼ argmin
k

XNT

t¼1

zr
t :ðyt � hrðxt ; kÞÞ2

� �
ð3Þ

where yt is the data label (being 1 or �1) and zr
t the training data

weights of the t-patch at round r. The minimisation is done by
exhaustively looking for all the values of th, since assuming a fixed
th the values of a and b are automatically assigned. Hence, the va-
lue of b corresponds to the mean weighted label of the instances
lower than the threshold, while a is the mean weighted label of
the instances greater than the threshold (minus b to satisfy
Eq. (2)):

b ¼
P

xtk<thyt:z
r
tP

xtk<thzr
t

ð4Þ

a ¼
P

xtkPthyt :z
r
tP

xtkPthzr
t
� b ð5Þ

At each round, only the feature kr that obtains the minimum error e
is selected and used in the testing step to classify the new data.
Moreover, at each round of the boosting the weights z are updated,
increasing in the following round the possibility of classifying
correctly the previous incorrectly classified instances. In the Gentle-
boost algorithm the data weights are updated using:

zrþ1 ¼ zr:ey�hrðx;krÞ ð6Þ

Hence, when testing new data, the final (strong) classifier is com-
puted using the weak classifier created at each round of the boost-
ing. Therefore, the testing data is classified according to the sign of
the sum of weak classifiers:
HðxÞ ¼
XNR

r¼1

hrðx; krÞ ð7Þ

Therefore, pixels being part of a microcalcification should obtain
positive values while the rest of pixels should obtain negative val-
ues. Furthermore, the absolute value of H(x) shows the confidence
of the classified data. Moreover, the classifier also returns the kr fea-
tures selected, i.e. the NR filters and words that must be used at each
round for extracting the features of the new testing mammograms,
where NR is the number of rounds used in the boosting (100 in
this paper). Note that a filter and a word can be used more than
once.

2.3. Testing step

Once the classifier is trained, the system is ready for the testing
step. Therefore, the strong classifier H(x) is applied to new mam-
mograms in order to detect each individual microcalcification.
Note that the classifier is pixel-based, i.e. it is applied one-by-one
to all the image pixels. Therefore, the result of our approach after
evaluating a mammogram is a probability image, where high val-
ues represents more confidence to be a microcalcification. Fig. 5
shows the result of applying the proposed approach to mammo-
grams shown in Fig. 1.

Since the classifier is pixel-based, a pre-processing step is nec-
essary in order to avoid the algorithm detecting microcalcifications
in the background (in digitised images) and in the pectoral muscle.
We used a previous developed algorithm to detect the skin-line
border [24] and the approach of Kwok et al. [25] to remove the pec-
toral muscle. Recently, Paradkar and Pande [26] suggested to speed
up the overall computational detection time by analysing only the
image pixels of the breast region brighter than a certain threshold.
Although this pre-processing allows to reduce the computational
time, it introduces a new parameter that has to be properly tuned.
Since the goal of our paper is to evaluate the boosting detection ap-
proach and its parameters, we have not included this extra step in
our approach.
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3. Cluster detection

As stated in the introduction, most women will develop breast
microcalcifications during their lifetime. If the microcalcifications
are scattered in all the breast it is usually a sign of benign abnor-
mality. However, when clustered together they may be a suspi-
cious sign of breast cancer. Hence, the automatic detection of
clusters is another important issue.

In order to deal with cluster detection, we use the probability
image resulting of the microcalcification detection approach de-
scribed in the previous section. When a set of microcalcifications
is present in a region, the probability image should contain also
high probabilities inside this region (see Figs. 1 and 5). Hence,
the natural extension for cluster detection is to locally integrate
this probability image. Notice that pixels in this region that are
not microcalcification should have negative values and, therefore,
decrease the output of such integration. In order to avoid this issue,
we firstly threshold the negative values to zero:

IQ ðx; yÞ ¼
IPðx; yÞ; if IPðx; yÞ > 0
0; otherwise

�
ð8Þ

where IP is the probability image resulting from the microcalcifica-
tion step. Therefore, the cluster probability is defined by:

ICðx; yÞ ¼
Z

X
IQ ðx0; y0Þdx0dy0 ð9Þ

where x0 and y0 are the individual microcalcification probability in-
cluded in the local neighbourhood X. Note that this extension for
cluster detection is straightforward and only needs one additional
parameter (the size of the neighbourhood). In the experimental sec-
tion we will provide details of how to properly adjust this parame-
ter. Fig. 6 shows the probability images obtained for cluster
detection in the mammograms shown in Fig. 1.
Fig. 6. Result of applying the proposed cluster detection approach to the mammo-
grams shown in Fig. 1. Note that some false positive regions can appear depending
on the final threshold.
The final step is to threshold the probability image to estimate if
a mammogram contains microcalcifications or not. Note that if this
threshold is high only few suspicious regions will be detected but
with a great probability of being real clusters. In contrast, if the
threshold is low, more suspicious regions will be detected but
probably with some regions not being real clusters (i.e. false posi-
tive regions). This final threshold decision can be used according to
the preference of the physicians.

4. Experimental set-up

The experimental results were performed using two different
sets of mammograms. The first one was the full (digitised) MIAS
database [4], which contained 207 normal mammograms, 25 mam-
mograms with microcalcifications (with a total of 28 clusters), and
90 mammograms containing other types of abnormalities (masses,
spiculations, architectural distortions, and asymmetries). The spa-
tial resolution of the images was 50 lm � 50 lm and the optical
density was linear in the range 0 � 3.2 and quantised to 8 bits. The
second set of mammograms was a set of 280 full-field digital
mammograms extracted from a non-public database, 90 of them
containing microcalcifications and 190 mammograms without
abnormalities. The mammograms were acquired using a Hologic
Selenia mammograph, with resolution 70 micron-pixel, size
4096 � 3328, and 12-bit depth.

For the training step, our approach needs the exact location of
some individual microcalcifications (positive examples). Therefore,
an expert accurately marked among 5 and 15 microcalcifications in
those mammograms containing microcalcifications in the MIAS
and the digital databases. Hence, these two databases were used
to train the system. The negative examples were obtained from
the rest of the tissues of these mammograms and also from the
normal ones, using around 20 marks in each mammogram. For
testing the system, only an ellipse (or just a circle) circumscribing
the clusters was necessary. Therefore, the public annotations of the
MIAS database were used to test our approach. In addition, two ex-
perts annotated the corresponding ellipses for the testing images
of the digital database (each radiologist annotated a different sub-
set of images).

Since we are using the same database for training and testing
the algorithm, we applied a 10-fold cross-validation methodology.
Therefore, we divided each dataset in 10 different groups. One of
the groups was used to create the dictionary, eight of them were
merged for training the system, while the remaining one was used
for testing it. This procedure was repeated until all groups were
used for testing (in each fold the dictionary was also created using
a different group). Hence, each mammogram appears in the test set
only once.

To perform the quantitative evaluation of the microcalcification
detection algorithm we used Receiver Operating Characteristic
(ROC) analysis. In this analysis, a graphical curve represents the
true positive rate (number of detected mammograms with micro-
calcifications divided by the total number of mammograms with
microcalcifications) as a function of the false positives rate (num-
ber of normal mammograms incorrectly detected as containing
microcalcifications divided by the total number of normal mam-
mograms). Moreover, the percentage value under the curve (Az)
is an indication for the overall performance of the observer, and
is typically used to analyse the performance of the algorithms.
Note that the different points on the curve are obtained by thres-
holding equation (7) at different levels.

On the other hand, to evaluate the ability of the algorithm for
the cluster detection we used Free-response Receiver Operating
Characteristic (FROC) analysis. In FROC analysis the Lesion Locali-
sation Fraction (LLF) is obtained as the number of correctly de-
tected lesions relative to the total number of lesions and the



Table 1
Evaluation of the approach for detecting mammograms containing microcalcifica-
tions, detailing the database, the number of mammograms containing microcalcifi-
cations, the number of mammograms without microcalcifications, and the obtained
area under the curve.

Database # Micros # Normals Results (Az)

MIAS 25 297 0.903
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Non-lesion Localisation Fraction (NLF) as the number of incorrectly
detected lesions relative to the total number of images. The FROC
curve is the graphical summary of both measures [27]. Note that
the definition of what is a detected cluster is needed. In this paper
we assume that a cluster is detected if the centre of the automat-
ically found cluster is inside the manually marked region (this is
similar to the approach of Linguraru et al. [28]).
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Fig. 8. Obtained FROC when testing the MIAS and the digital database. Note that we
obtained better results when testing the latter.
5. Results

5.1. Evaluation of the microcalcification detection

The first experimental evaluation is related to the ability of the
algorithm to detect those mammograms containing microcalcifica-
tions. In order to empirically find the best number of dictionary
words, we repeated the 10-fold cross-validation methodology
above explained using 100, 250, 500, 750, and 1000 words for
the MIAS database. As is graphically shown in Fig. 7, the best re-
sults were achieved when using 500 visual words for describing
the different microcalcifications morphology. Note that similar re-
sults were obtained when increasing the number of words, while
lower results were obtained using fewer words. However, the com-
putational time of the whole process dramatically increased when
increasing the number of patches and words used for building the
dictionary, and the empirical values used here provided a good
trade-off between performance and feature vector length.

On the other hand, when testing the digital database using
again a 10-fold cross-validation methodology, we achieved an area
under the ROC of Az = 0.918, using again 500 words for describing
the microcalcifications. This results shows that the algorithm can
correctly detect almost all the mammograms containing microcal-
cifications without a large number of false positive mammograms.
Table 1 summarises the result of the approach when testing the
two different databases. We can observe that the results based
are very similar, obtaining sensitivities higher than 90% at high
specificities.

5.2. Evaluation of the cluster detection

To evaluate the cluster detection we used FROC curves, which
are shown in Fig. 8. As in the previous experiment, similar results
were obtained for the MIAS and the digital databases. In order to
extract significant conclusions, in what follows we used the
approach of Bornefalk [29,30] to compute the 95% confidence level
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Fig. 7. 10-fold cross-validation results when using different number of words.
of the number of false positives per image at a given sensitivity.
Note that this approach allows us to obtain statistical meaning of
the results avoiding executing multiple trials of our algorithm.

For the MIAS database, at a sensitivity of 80% we obtained a
confidence interval of (0.96,1.73) false positives per image, while
at 90% the false positive number per image ranges between
(3.23,5.52). Looking at the results, we noticed that two of the 28
annotated clusters1 were detected with very low probabilities.
Inspecting them we noted that they were located in highly dense re-
gions. These clusters were not detected with high probabilities due
to the small number of similar cases in the database, and we assume
that training with a larger database will be beneficial to avoid this
issue. On the other hand, Fig. 9 shows the two mammograms where
the algorithm obtained a false positive cluster with the highest prob-
ability. Note that in the first case, a cumulus of calcifications is pres-
ent, while in the second case, the calcified vessel confused the
algorithm.

In the cluster detection approach, the only parameter is the ra-
dius of the local neighbourhood (kernel). We used different kernel
sizes in order to empirically find the best one. In particular, we
used 10 different square kernel sizes: from 50 pixels to 500 pixels
in steps of 50 pixels (other shape kernels can be used although the
final result should be similar). The best results were obtained using
the kernels of size 150 � 150 and 200 � 200 pixels (corresponding
to 7.5 � 7.5 and 10 � 10 mm2, respectively). Note that this is con-
sistent with the annotations of the database, since the median of
the diameter of the annotated clusters is 205 pixels.

Finally, when using the digital database we obtained the follow-
ing confidence intervals: at 80% sensitivity, the false positives per
image ranged between (1.28,3.02), while at 90%, they moved
1 Note that this number (28) is different from the number of mammograms
containing microcalcifications (25) since there are images with more than one
annotated clusters. Moreover, 3 of the mammograms contained microcalcifications
spread to the entire breast and were not considered in this evaluation.



Fig. 9. Mammograms of the MIAS database where the algorithm obtained false
positives. The location of the false positive is marked by the black square.
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between (3.54,4.09). Note that these results are similar to the ones
obtained when testing the MIAS database. In this case, the best
results were obtained using the kernels of size 50 � 50 and
100 � 100 (3.5 � 3.5 and 7.0 � 7.0 mm2, respectively). This reduc-
tion of the kernel size may indicate that the clusters detected in
this database are more subtle and hence difficult to detect than
the ones detected in the digitised database. This is an expected
behaviour, since digital mammography improves the contrast
between the different internal structures.
6. Discussion and conclusion

We have presented a new fully automatic computer aided
detection system for microcalcification detection. The core of the
system is based on extracting local features for characterising the
morphology of the microcalcifications. Afterwards, the proposed
approach follows a boosting scheme, allowing the selection of
the most salient features at each round. At the testing stage, only
these features are computed and used to detect the individual mic-
rocalcifications. Subsequently, the cluster detection is performed
by locally integrating the individual microcalcifications probability
images.

The results of the individual microcalcifications detection are
analysed at image level using ROC analysis, obtaining Az values
higher that 0.90 when using the same database for training and
testing, in a cross-validation fashion. However, it is well known that
using a cross-validation scheme may produce optimistic results and
it is worth demonstrating the performance of the approach using
less training data. In this sense, we carried out again the microcal-
cification detection experiment using the MIAS database but using
half of the data for training and the other half for testing. In order to
obtain significant results, we repeated the experiment 10 times. We
obtained mean Az = 0.850 ± 0.032, which is slightly lower than the
results obtained when using the 10-folder cross-validation scheme.
This result can be seen as satisfactory considering the fact that the
database used in this case was relatively small (just 12 mammo-
grams contained microcalcifications). We can compare our results
with current state-of-the-art approaches. Note that each approach
used a different set of images coming also from different databases
and hence the comparison is only done in a qualitative way. For
instance, Chang et al. [31] obtained Az = 0.90 with a database of
194 mammograms, Nunes et al. [32] obtained Az = 0.93 with a data-
base of 121 mammograms, Papadopoulos et al. [7] obtained
Az = 0.92 with a database of 60. Note that we obtained similar
results but with two larger databases.

On the other hand, the results of the cluster detection are ana-
lysed at region level using FROC analysis. Summarising the results,
we obtained 1 false positive per image at a sensitivity of 80%, and 4
false positives per image at a sensitivity of 90%. Comparing again
with other approaches, Linguraru et al. [28] reached 95% sensitivity
with 0.4 false positives per image, while Ge et al. [33] reached 90%
sensitivity with 0.96 or 2.52 false positive per image when testing
digitised or digital mammograms, respectively. However, the ap-
proach of Linguraru et al. [28] was based on using a small database
of 82 mammograms from which 58 images contained microcalcifi-
cations and 24 were normal ones, while the approach of Ge et al.
[33] used 96 mammograms with microcalcifications and 108 nor-
mal for the digital dataset and 96 with microcalcifications and 71
normal for the digitised subset. In contrast, we have used larger
and more realistic databases, where the number of normal mam-
mograms is large compared to the number of mammograms con-
taining microcalcifications, which is the actual case in screening
programs.

A different way to show the robustness of an algorithm is to use
one database for training and another one for testing. Hence, with
the same set of parameters optimised for the MIAS database and
the same training dataset, we also tested a large subset of mammo-
grams extracted from the DDSM database [34]. In order to obtain
the results, we subdivided this dataset into three groups, depend-
ing on the hospital location and the used scanner machine. Accord-
ing to the DDSM database nomenclature, we used 420 A
mammograms (112 of them including clusters), 441 B mammo-
grams (205 including clusters), and 376 D mammograms (65
including clusters). The obtained mean area under the ROC curve
in each case was 0.71, 0.75, and 0.84, respectively. Note that worse
results were obtained compared to the MIAS dataset, mainly due to
fact microcalcifications were detected with lower probabilities
than in the MIAS database. This also affected the performance of
the algorithm when looking for clusters, obtaining 80% sensitivity
at (3.51,5.13) false positives per image. Analysing the results, we
noticed that the main problem was in the high number of false
positives, since almost all clusters were correctly detected. These
results show that the specificity of the algorithm highly depends
on training the system using the own testing database.

The overall computational cost of the approach is relatively
high. For instance, the time necessary to perform the training in
one fold of the MIAS cross-validation was approximately 82 min,
while the mean time for testing one case was 556.14 ± 112.33 s.
This large deviation of the time is due to the fact that mammo-
grams of the MIAS have four different sizes. In order to speed up
the process we resized the images by a factor of four, needing
approximately 65 min for training and only 24.75 ± 5.82 s for test-
ing one case. However, the Az value for the ROC analysis decreases
from 0.903 to 0.856, indicating that it is not a good idea to downs-
ample the mammograms when looking for microcalcifications.
Note also that the programming language used to implement our
approach has been Matlab and hence, this time can be largely re-
duced using other programming language like C++, or using the
CUDA platform to exploit the benefits of using the GPU hardware
acceleration and parallelisation. Another way to improve the veloc-
ity of the whole process would be to use directly the image patches
to perform the characterisation instead of using the full bank of fil-
ters (similar to the approach of Varma and Zisserman [20]). When
we performed this test on the MIAS database, although improving
the computational time for the feature extraction process, we
obtained an Az = 0.86 instead of the Az = 0.90 achieved when using
the filters. However, we want to clarify that our image patch



A. Oliver et al. / Knowledge-Based Systems 28 (2012) 68–75 75
description was not based on the whole framework described in
Varma and Zisserman [20] since we only used the extracted image
patches required to compute the correlation. Notice that when
comparing both approaches using exactly the same image data-
base, better results were obtained using the bank of filters. Note
that another way to speed up the time would be to use only suspi-
cious pixels, which can be found by using a pre-processing step
[10,26].

In summary, a new approach for the detection of individual
microcalcifications and clusters has been presented. The per-
formed experiments have shown the validity of our approach
when using either digitised or digital mammograms, obtaining
slightly better results when testing the digital database. However,
studies with larger databases will be needed in order to show the
feasibility of the approach in the clinical routine of screening
programs.
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