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Introduction 

Despite new technologies such as calculators making it obsolete, for example, knowing 

how to calculate the square root of any number by hand, the development of new 

technologies often require new skills and may make certain new topics more relevant. A 

case in point is the ease by which learners could ‘accidentally’ drag a quadrilateral in 

dynamic geometry into the shape of a ‘crossed’ quadrilateral (or directed to do so), and 

perhaps observing that not only is Varignon’s theorem that the midpoints of a 

quadrilateral form a parallelogram still valid, but that the area of the Varignon 

parallelogram EFGH remains half that of the original quadrilateral ABCD (see Figure 1). 

 
Figure 1: Varignon’s theorem for a crossed quadrilateral 

Though the vast majority teachers (and textbooks) are likely choose the easy way out by 

just ignoring a crossed quadrilateral by the Lakatosian process of ‘monster-barring’ by 

just conveniently declaring it as a ‘non-quadrilateral’, a very interesting and informative 

opportunity for further investigation is unfortunately lost. 
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Clearly there are questions seriously begging for an explanation: How is the area of a 

crossed quadrilateral determined by the software? Why is the ratio between the two areas 

still two? 

 

In this sense, one would pedagogically be using the computer software as a kind of ‘black 

box’ to generate surprise and wonder, hopefully to stimulate students’ curiosity further, 

and creating intellectual needs for both causality (explanation) and certainty to use the 

terminology of the framework of Harel (2013) and others. 

 

Proving that EFGH is a parallelogram in the case when ABCD is crossed is left to the 

reader, since it is quite easy to prove in the same way as for convex and concave 

quadrilaterals (except that both diagonals AC and BD fall outside). We shall now proceed 

to first prove the area relationship for the convex and concave cases before proceeding to 

consider determining the area of a crossed quadrilateral. 

Figure 2: Convex case 

Proving the area relationship 

There are several different ways of proving this result for the convex case, of which we 

will only consider one approach, since it generalizes more easily. What follows below is 

based on ideas from Coxeter & Greitzer (1967), and is essentially taken from the Teacher 

Notes in De Villiers (1999a). It might be instructive for one’s students to first work 

through hints like those given below with reference to Figure 2, which might help guide 

them to explaining why (prove that) the result is true for the convex case. 
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Hints 

1. Express the area of EFGH in terms of the area of ABCD and the areas of triangles 

AEH, CFG, BEF and DHG.   

2. Drop a perpendicular from A to BD, and express the area of triangle AEH in terms 

of the area of triangle ABD.  

3. Similarly, express the areas of triangles CFG, BEF and DHG respectively in 

terms of the areas of CBD, BAC and DAC, and substitute in 1. 

4. Simplify the equation in 3 above to obtain the desired result. 

 

Proof 

1. Using the notation (XYZ) for the area of polygon XYZ we have: (EFGH) = 

(ABCD) - (AEH) - (CFG) - (BEF) - (DHG). 

2. If the height of ∆ABD is h, then (ABD) = ½*BD*h and (AEH) = ½*(½*BD)* ½*h 

= ¼*(ABD), or simply base and height are half those of large triangle. 

3. (EFGH) = (ABCD) - ¼(ABD) - ¼(CBD) - ¼(BAC) - ¼(DAC). 

4. (EFGH) = (ABCD) - ¼(ABCD) - ¼(ABCD) = ½ (ABCD). 

 
Figure 3: Concave case 

Further Discussion 

You may also want your students to work through an explanation for the concave case, as 

it is generically different. For example, unless the notation is carefully reformulated (e.g. 

see crossed quadrilaterals below), the equation in 1 does not hold in the concave case, but 
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becomes (EFGH) = (ABCD) - (AEH) - (CFG) - (BEF) + (DHG) (see Figure 3). However, 

substituting into this equation as before, and simplifying, leads to the same conclusion. 

 

Area of Crossed Quadrilaterals 

Varignon’s theorem is also true for crossed quadrilaterals ABCD that EFGH is half its 

area, as mentioned and illustrated in Figure 1 above. This obviously requires careful 

consideration of what we mean by the area of a crossed quadrilateral. Let us now first 

carefully try and define a general area formula for convex and concave quadrilaterals, and 

then consistently apply it to a crossed quadrilateral.  

 

It seems natural to define the area of a convex quadrilateral to be the sum of the areas of 

the two triangles into which it is decomposed by a diagonal. For example, diagonal AC 

decomposes the area as follows (see 1st figure in Figure 4): (ABCD) = (ABC) + (CDA).  
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Figure 4: Decomposing a quadrilateral into triangles 

 

In order to make this formula also work for the concave case (see 2nd figure in Figure 4) 

we obviously need to define (CDA) = - (ADC). In other words, we can regard the area of 

a triangle as being positive or negative according as its vertices are named in 

counterclockwise or clockwise order (or vice versa). For example:  

  (ABC) = (BCA) = (CAB) = -(CBA) = -(BAC) = -(ACB). 
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Figure 5: Decomposing a crossed quadrilateral 

Applying the above formula and definition of area in a crossed quadrilateral (see Figure 

5) we find that diagonal AC decomposes its area as follows: 

 (ABCD) = (ABC) + (CDA) = (ABC) - (ADC). 

 

In other words, this formula forces us to regard the "area" of a crossed quadrilateral as 

(the absolute value of) the difference between the areas of the two small triangles ABO 

and ODC. {Note that diagonal BD similarly decomposes (ABCD) into (BCD) + (DAB) = 

-(DCB) + (DAB)}. An interesting consequence of this is that a crossed quadrilateral will 

have zero "area" if the areas of triangles ABO and ODC are equal, as dragging with 

dynamic geometry will easily confirm. 

Figure 6: Proof of Varignon’s area relationship  
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We can now determine the area of the Varignon parallelogram EFGH of the crossed 

quadrilateral ABCD in Figure 6 as follows (and assuming here for convenience that the 

area of the clockwise labeled ABCD is positively signed): 

(EFGH) = (ABDC) – (EBDH) – (AEFC) – (CFG) – (HDG) 

      = (ABDC) – ¾ (ABD) – ¾ (ABC) – ¼ (CBD) – ¼ (ADC) 

      = (ABDC) – ½(ABD) – ½(ABC) – ¼[(ABC) + (CBD)] – ¼[(ABD) + (ADC)]  

      = (ABDC) – ½ (ABD) – ½ (ABC) – ½ (ABDC) 

      = ½[[(ABDC) – (ABD)] – (ABC)] 

      = ½[(ADC) – (ABC)] 

      = ½[(ODC) – (OBA)] 

      = ½(ABCD) … (as shown earlier (ODC) – (OBA)] = (ABCD))  

 

However, we can also formally use the idea of signed areas developed earlier as follows 

to determine the area of EFGH in terms of the crossed quadrilateral ABCD in exactly the 

same way as for the clockwise-labeled convex or concave quadrilaterals ABCD shown 

with reference to Figures 2 and 3. (Note that clockwise labeling is assumed positive 

below, and that the second and third steps of the proof are not necessary, but merely 

illustrative of using the oppositely signed areas in relation to the particular example 

shown in Figure 6). For example,  

(EFGH) = (ABCD) - (AEH) - (FCG) - (EBF) - (DHG) 

      = (ABCD) - (AEH) + (GCF) - (EBF) + (GHD) … (triangles FCG & DHG 

become labeled counter-clockwise when clockwise, convex ABCD becomes crossed)   

      = (ABCD) - ¼ (ABD) + ¼ (BDC) - ¼ (BCA) + ¼ (CAD) 

  = (ABCD) – ¼ (ABCD) – ¼ (ABCD)  

  = ½ (ABCD) 
 

The above method can also be extended to determine the areas of crossed polygons of 

higher order as was done to define and determine the area of the formed crossed hexagon 

in the investigation discussed in De Villiers (1999b). 

   . 
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Software method 

The reader may wonder if this is actually how the area of polygons, including crossed 

ones, is generally determined by dynamic geometry software. While I don’t have access 

to the machine code, my guess is that the area is actually quite easily defined and 

determined by using the trapezium rule as follows (compare Nishiyama, 2013). 

 
Figure 7: Using coordinates and trapezium rule 

 

Consider Figure 7 showing a quadrilateral with the coordinates of the vertices labeled in 

order as (x1, y1), (x2, y2), (x3, y3) and (x4, y4). In the given diagram the area ABCD is 

clearly determined by the area under the graph DABC minus the area under graph CD. 

Hence, in coordinates and using the trapezium rule, the area of ABCD = ½ [(y1 + y2)(x2 – 

x1) + (y2 + y3)(x3 – x2) - (y3 + y4)(x3 – x4) + (y4 + y1)(x1 – x4) = ½ [(y1 + y2)(x2 – x1) + (y2 + 

y3)(x3 – x2) + (y3 + y4)(x4 – x3) + (y4 + y1)(x1 – x4). 

 

This cyclic formula not only generalizes to any closed polygon, and as one would expect 

(for consistency), it also produces the same area for a crossed quadrilateral as the earlier 

formula |(ABC) - (ADC)|, as experimentally illustrated in Figure 8 using Sketchpad by the 

two different measurements and calculations. 
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Figure 8: Experimental illustration of equivalent area formulae 

 

Concluding remarks 

This example firstly illustrates the value of looking at simpler cases of a problem. 

Secondly, it nicely illustrates the important general mathematical principle of maintaining 

structural consistency of definitions is when moving from a familiar to an unfamiliar 

context in mathematics. The same sense of maintaining structure and consistency can 

guide us to defining ‘interior angles’ for crossed polygons in general as well as the 

deduction of a general formula for the interior angles of any polygon. A surprising, 

counter-intuitive conclusion of such an extension is that two of the ‘interior’ angles of a 

crossed quadrilateral become reflexive, and that its interior angle sum is 720 degrees (De 

Villiers, 1999c). 

The same applies when moving from operations for positive whole numbers to 

negative whole numbers, then further towards fractions, and eventually to complex 

numbers and quaternions, etc. Engaging at least one’s mathematically talented students 

with this intriguing problem, which can quite naturally arise in dynamic geometry, could 

therefore provide them with the fruitful seed of a worthwhile instructive learning 

experience that can carry them further into their mathematical studies. 

Note: A dynamic geometry sketch using GeoGebra to investigate and illustrate the 

Varignon area for crossed quadrilaterals result online, as well as other interesting 

properties of crossed quadrilaterals is available at: 

http://dynamicmathematicslearning.com/crossedquad_anglesum.html  
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