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Abstract— Detection of traffic light state is essential for au-
tonomous driving in cities. Currently, the only reliable systems
for determining traffic light state information are non-passive
proofs of concept, requiring explicit communication between a
traffic signal and vehicle. Here, we present a passive camera-
based pipeline for traffic light state detection, using (imperfect)
vehicle localization and assuming prior knowledge of traffic
light location. First, we introduce a convenient technique for
mapping traffic light locations from recorded video data using
tracking, back-projection, and triangulation. In order to achieve
robust real-time detection results in a variety of lighting condi-
tions, we combine several probabilistic stages that explicitly
account for the corresponding sources of sensor and data
uncertainty. In addition, our approach is the first to account for
multiple lights per intersection, which yields superior results by
probabilistically combining evidence from all available lights.
To evaluate the performance of our method, we present several
results across a variety of lighting conditions in a real-world
environment. The techniques described here have for the first
time enabled our autonomous research vehicle to successfully
navigate through traffic-light-controlled intersections in real
traffic.

I. INTRODUCTION

Reliably detecting the state of traffic lights, where state €
{red,yellow,green}, is essential for autonomous driving
in real-world situations. Even in non-autonomous vehicles,
traffic light state detection would also be beneficial, alert-
ing inattentive drivers to changing light status and making
intersections safer. Non-passive traffic light systems that
broadcast their current state and other information have
been demonstrated in industry and academic settings [1],
and can reliably provide exact state information to vehicles.
However, such active systems require expensive hardware
changes to both intersections and vehicles, and thus have yet
to materialize in any significant market. Thus, in the domain
of autonomous driving, reliance on non-passive systems for
conveying traffic signal information is not currently feasible,
as it requires new infrastructure.

While prior work has demonstrated proof of concept in
camera-based traffic light state detection, in recent years the
data rate and accuracy of the sensors required for passive
traffic light state detection has increased, and supporting
sensors such as GPS have improved to the point where such
a system could conceivably be operated safely in real-time.
The key to safe operation is the ability to handle common
failure cases, such as false positives and transient occlusion,
which arise frequently and test the limits of camera-only
methods.

Fig. 1. This figure shows two consecutive camera images overlaid with
our detection grid, projected from global coordinates into the image frame.
In this visualization, recorded as the light changed from red to green, grid
cells most likely to contain the light are colored by their state predictions.

To overcome the limitations of purely vision-based ap-
proaches, we take advantage of temporal information, track-
ing and updating our estimate of the actual light location
and state using a histogram filter. To somewhat constrain our
traffic light search region, we pre-map traffic light locations
and therefore assume that a prior on the global location of
traffic lights is available during detection, utilizing pose data
available from a GPS system.

Approaching this problem with prior knowledge of the
traffic light location has been mentioned in previous work
[2], though the implications of such an assumption, including
specific methods for dealing with sources of error, have not
be thoroughly explored. One contribution of our work is a
principled analysis and modeling of the sources of error in
each stage of our traffic light state detection, and the creation
of a general framework for evidence gathering in a camera
and global object prior system.

With respect to our system, global coordinates of each
relevant traffic light are quickly obtained, as discussed in
Section II during a pre-drive of the course. Such prior
knowledge also facilitates the assignment of traffic lights to
specific lanes of the road, which is required for efficient route
planning and safe driving.

As we do in this paper, several approaches in the literature
have focused on camera-based detection of traffic lights. In
1999 [3] described general methods for detection of traffic
lights and other urban-driving information, but lacked the
sensors and processing power to completely test and deploy
their system. In [4] images are analyzed based on color sim-
ilarity spaces to detect traffic lights, but the method does not
run in real-time. Somewhat similar to our image processing
algorithm, the detector in [5] biases toward circular regions
of high intensity surrounded by regions of low intensity to



Fig. 2. Simultaneous detection of three distinct traffic lights at one
intersection.

represent a light lens inside a darker frame. Their work also
attempts to report the state of the light; however, their method
does not reliably differentiate between multiple lights, or
determine the state of more than one light in a single camera
frame.

The experiments of [2] show that traffic light detection is
possible in real-time, and that a traffic light detection system
can be used in conjunction with a GPS-based navigation
system. Although the methods in this work are effective
in detecting lights, they do not clearly define a way to
avoid false positives in their detection. They also utilize a
grid-based probabilistic weighting scheme to estimate the
location of a light in the current frame based on its location
in the previous frame. Unlike our method, however, they
define their grid in image-space, where we define our grid
in global coordinates, allowing for motion in image-space
due to perspective changes, which may occur as a vehicle
approaches a light. The method of [6] uses a three-stage
pipeline consisting of a detector, tracker, and classifier, and
operates under the assumption that traffic signals may appear
anywhere (although they note that this can be alleviated
with enhanced maps and GPS information). Using matched
filtering and shaped detection based on a Hough Transform,
they focus on real-time detection of the lights themselves,
as opposed to reliable state detection, showing that the light
shapes can be matched in both color and gray scale images.
In [7] the focus is also on achieving a high detection rate by
thresholding based on intensity information to determine if
lights are present in the camera image.

Thus, while employing similar concepts to previous work
in some respects, we take a more rigorous probabilistic
approach to the entire pipeline which allows for improved
handling of several sources of uncertainty. In addition, to
our knowledge, ours is the only approach that attempts to
detect the state of multiple traffic lights within an intersection
in real-time (see Figure 2). As we will show, this insight
significantly improves reliability. Finally, we believe we are
the first to present quantitative accuracy results for a fixed
algorithm operating in several different lighting conditions,
which is clearly crucial for a real system.

The remainder of the paper is organized as follows. We
discuss traffic light mapping in Section II. In Section III we
detail our traffic light state detection pipeline and discuss
how we handle sources of uncertainty. We then evaluate an
implementation of our system in Section IV.

II. TRAFFIC LIGHT MAPPING

To obtain light locations in global coordinates, we drive a
route once and record a sensor log comprising both vehicle
pose and camera data. Upon review of this log, we manually
select lights relevant to our trajectory from video and track
them using the algorithm CamShift [8], which attempts to
adjust the bounds of an ellipse such that a hue histogram
taken over its interior matches that of the original selection.

For each frame in which the light is tracked, the set
X :={(u,v),C,R} is recorded, where (u,v) are the image
coordinates of the ellipse’s center pixel and C and R are
the estimated global camera position and orientation, re-
spectively. To reduce subtractive cancellation during future
calculations, we store the vehicle’s global coordinates from
the first frame in which the light is selected as a local origin
Co. Then, for each X, we find the ray d = (a,b,c) from the
camera lens with local position C—Cp = (x,y,7) to the traffic
light lens using the back projection formula:

d=AR'K (uv,1)T, (1)

where K is the camera’s intrinsic parameter matrix and A
normalizes d to unit length. Once light tracking has finished,
the optimal point of intersection from each ray is determined
as in [9] from the following. Suppose the light is tracked for
n frames, let
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then the estimated global light position is given by I, =
A~'b+Cy. The resulting traffic light locations are stored in
a text file which is read by the traffic light detection system
described in Section III. Also during tracking, a bitmap
of the ellipse’s interior is stored at five meter intervals of
vehicle travel for use in our probabilistic template matching
algorithm (see Section III-D).

III. TRAFFIC LIGHT STATE DETECTION
A. Prominent Failure Cases

Our system must be robust to pathological situations,
like superfluous lights and temporary occlusions, and must
also work at all times of day, under all possible lighting
conditions.

Assuming that a vision algorithm could distinguish tail
lights from traffic lights during the day in real-time, the task
becomes impossible at night with most video cameras. All
distinguishing features, aside from light color, are lost. Since
in the United States there is no legally-defined standard for
light lens material and intensity [10], tail lights near where
we expect a traffic light could be considered traffic lights in
the image processing algorithm.



Fig. 3.

Many traffic lights appear almost as dim as their surroundings

either by design or by accident.
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Fig. 4. Often, a lens flare or back lighting will obscure a light’s state.
Using cheaper consumer-grade cameras could necessitate additional noise
filtering and perhaps explicit flare detection.

In the following section, we will describe the probabilistic
techniques used to make our system invariant to lighting con-
ditions and reliable in situations that would be challenging
for a vision-only approach.

Two major technical problems have to be solved in order
to be able to detect the state of a traffic light robustly:

1) Inferring the image region which corresponds to the
traffic light.

2) Inferring its state by analyzing the acquired intensity
pattern.

Ideally, in solving these problems we would like to choose

a reference frame that allows us to take advantage of
temporal consistency. The choice of our detection grid as a

Fig. 5. (Top) A left-pointing red arrow appears in the camera image
as circular, making non-contextual state detection difficult. (Bottom) The
vehicle needs to know the state of the next intersection far in advance so
appropriate actions are taken. In this case, 200mm green lights appear far
apart among a cluttered scene with many light sources.
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Fig. 6.  Several random variables and their uncertainties influence the
accuracy of the localization result. This diagram shows the dependencies of
the different coordinate frames: [W]orld, [V]ehicle, [C]amera and [O]bject
(here: traffic light).

reference frame assumes several structured error components
(as we discuss below), allowing the light’s position within
the grid to change slowly over time. Given this temporal
constraint, and our vision algorithm that performs within
the limits of reasonable expectations, we can then apply a
histogram filter to infer the image region of the light and
determine the color, as discussed in the sections that follow.

B. Traffic Light Tracking

Consider the diagram in Figure 6. Two chains of infor-
mation lead to the observation of an object in the camera
image. Given the distances at which traffic lights have to
be detected (70-80m for our vehicle to be able to react
appropriately at reasonable traveling speeds), small errors in
camera calibration or vehicle localization can lead to large
deviations between the expected location of the traffic light
on the image and the actual one. From our experience, this
error lies in the order of 50 pixels (corresponding to 5-10m
in scene space) for state-of-the-art localization hardware and
algorithms [11], [12].

Current computer vision algorithms are not yet capable
of reliable, holistic scene understanding such that the small
image of the traffic light (with the lens less than 3-5 pix-
els wide) could be distinguished reliably from surrounding
patterns.

We propose to make explicit the mismatch between ex-
pected perceptions and actual ones (hereafter called percep-
tual offset) by introducing a random time-varying vector o' =
(0},05). Expected perceptions include the position predicted
by the mapping, localization, and GPS components of the
pipeline while actual perceptions are the data scores returned
by our image processing algorithm. We update our belief
about o' sequentially using a Bayes filter, implemented as
a histogram filter. One of the critical questions that arises
is in which coordinate frame the perceptual offset is rep-
resented best. We argue that two straight-forward choices
are suboptimal. First, tracking the displacement in the image
coordinate frame leads to drastically changing posteriors at
every movement of the vehicle. This introduces an unnec-
essary estimation bias, since the actual displacement effect
varies only slowly. Second, tracking the offset in complete
three dimensional world space, that is, essentially treating
the world pose of the traffic light as a random variable and



updating it over time, is hard to accomplish robustly, due to
the nature of the construction of a camera image, our main
data source. Without a planar constraint, all positions along
the ray from the camera sensor through the plane could be
weighted equally, since they all project to the same pixel on
the image plane.

In contrast to these choices, we found that the most
suitable space for modeling the perceptual offset is a bounded
plane centered and oriented as the traffic light in world space.
Our grid is a natural way to restrict the implied distance
from the camera, and is supported by our assumption of a
fairly good light mapping prior with respect to latitude and
longitude. We represent our belief about the offset at time 7
by a histogram over this bounded plane (i.e., a normalized
grid) and update it recursively according to Bayes rule [13]

Po' 7,0 ) =v-P(Z:0")-P(o: 0. 4)

We assume a relatively peaked Gaussian motion model
for P(o' : o'~!) to account for changes to the perceptual
offset caused by motion of the vehicle and the vehicle pose
uncertainties, and mapping uncertainties (observed as light
movement in the detection grid frame due to camera percep-
tive changes not properly captured) implicit in this motion,
where the standard deviation of the Gaussian is proportional
to € +k, where k o< vehicle speed. The observation model
P(Z : 0"), which defines the relationship between camera
observations 7' and the perceptual offset o' of the traffic light
is detailed further below.

The prior distribution of o' on the grid is a two dimensional
Gaussian distribution centered at the mapped traffic light
location with standard deviations chosen according to the ex-
pected error in mapped traffic light location plus the expected
perceptual offset. From our experience, these quantities are
easy to optimize using a recorded training sequence of traffic
light observations.

Our approach works under the following assumptions:

1) The maximal perceptual offset (depending on the
localization accuracy of the vehicle and the camera
calibration) is smaller than half the side lengths of the
grid used to track it.

2) The resolution of the grid is high enough such that
traffic light observations falling onto the border of two
grid cells are not represented as two distinct lights with
disparate locations (as light location is estimated at the
grid cell center).

3) The camera image plane remains approximately paral-
lel to the grid plane during the tracking process. We
found that an orientation mismatch of up to about 35
degrees does not pose a problem (and this is already
beyond they legally possible orientation mismatch be-
tween traffic lights and their corresponding lanes).

4) Neighboring traffic lights are spaced at least half the
side length of the grid apart from one another. If this
is not the case, the lights should be modeled jointly,
which can be achieved in a straightforward way by

constructing a joint sensor model with additional color
channels, though this is not further addressed here.

When making decisions about the state of the traffic light,
the current pose uncertainty of the vehicle - that is, its current
posterior distribution over poses - has to be considered.
This can be achieved by convolving the current state of
the histogram filter for the vehicle pose with the current
state of the histogram filter for the perceptual offset, taking
the geometric transform between the two grid planes into
account.

Given the posterior estimate of the perceptual offset (rep-
resented by a histogram) over grid cells, we select the cell
containing the mode as the most likely location of the light.
We then report the most likely state at that grid cell, as
determined by our data scores.

C. Uncertainty Discussion

In our system, the quality of input sources varies. Re-
garding the map input latitude, longitude, altitude, and
orientation for each light, we assume a greater accuracy in
the first two coordinates than in the last. Without a good
estimate of latitude and longitude determining which lane
a traffic light applies to would be nearly impossible. This
accuracy requirement is also supported by our method for
collecting light location data.

Our light mapping procedure depends on accurate GPS
and camera calibration. In our system, even when the car
is driving directly towards the light, this method typically
gives repeatable errors which are easily compensated for
with a static offset. The result is a light localized to within
approximately two meters across and four meters high.

Another source of uncertainty is the projection of points
from global coordinates back to a given pixel in the camera
image. To project a three dimensional coordinate in some ob-
ject space into the two dimensional image plane of a camera,
first one usually transforms the coordinate so that its origin
is the camera center. To perform this transform beginning
with (latitude,longitude,altitude), we first transform our
coordinates to the projected Universal Transverse Mercator
(UTM) coordinates, then to “smooth coordinates”, which
are calculated by integrating our GPS-reported velocity over
time. This coordinate system is “smooth” because it does not
suffer from the abrupt changes of raw GPS information, but
does drift over time. We then transform smooth coordinates
to the vehicle’s local frame, where the origin moves with
the vehicle. After this we transform our coordinates to the
camera frame. Uncertainty is captured in our random variable
C in camera calibration and extrinsic camera parameters,
both in terms of static errors and those due to motion or
vibration of the vehicle, as well as camera sensor noise.

We used a Flea imager by Point Grey, set to fixed gain,
shutter speed and saturation such that the intensity and
saturation of the center pixel on an illuminated, 200mm,
LED-based green traffic light at 45 meters were reported
as 99% and 92%, respectively. The saturation of the sky at
noon on a clear day was reported as approximately 66%.
Because we are detecting light sources, fixing our camera



parameters implies the intensity and saturation of these light
sources, as our camera observes them, will remain constant
with respect to environmental lighting.

Even with fixed camera parameters, lens type and par-
ticular color characteristics of a light are probable culprits
for false negatives as discussed in Section III-A and so
are an important set of uncertainty sources. Our image
processing algorithm handles these variations by building
hue and saturation histograms from the lenses tracked dur-
ing the light mapping routine. These histograms are then
used as lookup tables (henceforth referred to as Histogram
As Lookup-Tables or HALTs) which condition our images
before template matching occurs.

D. Probabilistic Template Matching

The constraints of the traffic light state detection problem
are favorable for using template matching to generate higher-
order information from raw camera data. The color of an
active lens, since it emits light, remains nearly constant
regardless of external lighting conditions. Traffic lights in
particular are distinguishable from most other light sources
by their strong color saturation. However, variation among
lenses and minor effects due to external light direct us to use
color probabilistically.

Bitmaps of traffic light lenses {Bj};—; , are captured
during a pre-drive. From these bitmaps, hue and saturation
images {h;};—1., and {s;}r=1., are extracted. For each
state @ € {red,yellow,green}, HALTs H, (Figure 7) and
Sw, which represent histograms of lens hue and saturation,
are generated from (5) and (6). Lookup-table V, representing
a distribution of the expected intensity value of pixels lying
on the traffic light’s black frame, is defined by (7). We denote
the height and width of the k' image h; and wy.

n hgowy
2225 hy; ;. x) x=0..359 (5
=li=1j=
n hg wi
ZZZS Ski,j>X) x=0..255 (6)
=li=1j=
V[x] = 255-exp(—0.035x), x=0..255 (7)
[ 0 fora#b
d(a,b) = { 1 otherwise. ®)

In California, traffic light lenses have radii of either
200 or 300 mm [10]. A len’s resulting radius in pixels
can be approximated from the camera’s intrinsic parameters
magnification m and focal length f, the camera lens to light
source lens distance D and the physical radius of the traffic

light lens R, as in (9).
2Rm f
= {D J 9)

The adaptively generated light lens template T(r) is mod-
eled as a circle of diameter 2r 4 1 pixels centered over a
black square with side length / = 4r+ (1 — (4r mod 2)) after
a linear convolution (denoted ®) with a 3x3 Gaussian kernel
G(o) with 6 =0.95 [14].
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Fig. 7. Hue histograms Hy, are generated from individual lights at various
distances, captured during a pre-drive.

S0 [i—2r 1= 2r )] >y
Ti ;(r) _{ 255 otherwise, 1o
for 17‘] = 1...l
T(r) = G(o) 2 T(r) (”)

In the image processing pipeline, we limit ourselves to
the regions of interest projected onto our image plane from
the detection grid (ergo, Figure 1). For the remainder of this
section, we will consider each such region as an independent
image I. Image I is split into hue, saturation and value
images H, S and V. For an image N, we denote its height hn
and width wy. As a preprocessing step, we heavily weight
saturated and high intensity pixels in S and V by applying
transforms Ng and Ny.

Ns(x) = x° /2%, x € {0...255} (12)
1 f =60
Ny (x) _{ . O(Elrl;‘jise' ,xe{0.255)  (13)
Ui j = Ns(Si j)Nv (Vi j) (14)
Image G, is generated as follows:
ey W)
o(H,8,V) = ZZ 7,2 Z L(H,S)+F*(V))
i=1j=
15)
Ho[Hy 1)) [Su.n] (1 = 8(Tk,(r),0))
L(H,S) = ; : .
(H,5) max{T(r)} — Ty, (r)+1
(16)
F(V) = V[Vu(k,l)]s(Tk,l(r)vo)v (17)

where u(k,l) = (i+k—ht/2, j+1—wr/2). To eliminate non-
circular regions of bright saturation, we then apply a linear
convolution with circle template C over Gg:

0 if2r<=||(i—2r+1,j=-2r+1)||
C = —1 ifr<=||i-2r+1,j-2r+1)|| <2r
1 otherwise,
(13)

fori,j=1...1



Fig. 8. (Left) is a visualization constructed by merging
{Qred: Qgreens Oyetiow} as the red, green and blue channels of an
image. Color saturation corresponds to a higher certainty of a specific state
in the current frame (before the prior probability is processed). (Center)
depicts the detection grid image D, in which each cell’s color represents
a grid cell’s predicted state and its intensity represents that state’s score.
(Right) is the resulting prior as described in Section III-B. Each light
captured in figure 2 is shown from top to bottom.

Qw,i.,j = max ({C® Ga)}i"j,())

Since the projection of our detection grid D onto the image
plane does not guarantee square regions, we use a convex
polygon filling algorithm — quad-filling — as discussed in
[15]. For grid cell D;;, we project the region in Qg that
falls on D; ;’s interior. We then select the maximum value in
this region to be this cell’s score Eg ;.

19)

E. State Detection Pipeline
For a single light:

1) Supply the module with a pre-defined list of global
traffic light locations, specified by latitude,longitude
and altitude.

2) Supply the module with histograms of hue and satura-
tion for regional traffic lights.

3) Begin looking for lights at a distance determined by
the camera resolution and vehicle braking distance.

4) Generate a grid, in global coordinates, centered on the
expected location of the traffic light.

5) Project the grid D onto the camera image plane to
determine region of interest image I.

6) Compute Q, for each @ € {red,yellow,green}.

7) Back-project Q4 onto D to get score image E,.

8) Set P(state) := (G(oy) ® P(state))E2,

For multiple lights per intersection:

Given a state @ € {red,yellow,green}, an intersection /
with n lights, and a traffic light /x, k € {1...n} with histogram
filter outputs P(l; = ®w) at a particular intersection, the
probability for the intersection state is given by

P(lh=w

Pl = ) = [Pl = )
Zce{r%g} Hk P(lk = C)
which treats each light as an independent measurement of

the true intersection state, and so the final decision is given
by maxi{P(I =cj)} =1=c;.

(20)
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Fig. 9. Correct detection rates of individual lights and complete intersec-
tions from noon are depicted.
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Fig. 10. Correct detection rates of individual lights and complete intersec-
tions from sunset are depicted.

IV. EVALUATION AND RESULTS

We demonstrate the success of our techniques on Junior,
Stanford University’s autonomous research vehicle. Junior is
equipped with an Applanix LV-420 tightly coupled GPS/IMU
system that provides inertial updates and global position
estimates at 200 Hz. Although we typically run an additional
layer of laser-based localization to refine the GPS pose[16],
for the sake of more generally applicable results we disable
this refinement localization and rely only on the default
GPS output in the following results. Traffic lights are seen
by a Point Gray “Flea” video camera which provides 1.3
megapixel RGB frames at 15 Hz.

To demonstrate robustness in various traffic light scenar-
ios, and under multiple lighting conditions, we recorded a 20-
minute route through Palo Alto, California at each of three
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Fig. 11. Correct detection rates of individual lights and complete intersec-
tions from night are depicted.
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Fig. 12.  Combined results from noon, sunset and night are depicted.



different times: noon, sunset, and night. All parameters were
fixed across all times of day, indicating that the exact same
algorithm is effective across a wide range of lighting condi-
tions. The route comprised 82 lights across 31 intersections,
some of which were extremely challenging (e.g. Figure 5,
bottom).

Figures 9-11 depict correct detection rates of individual
lights and complete intersections under the three lighting
conditions, as a function of distance to the lights. Figure
12 aggregates all three runs and shows our overall results.
Unsurprisingly, detection accuracy drops off somewhat with
distance, as the sizes of the traffic lights in the image
decrease.

Comparison of individual light detections and intersec-
tion decisions suggests a distinct advantage and improved
robustness with the latter, when multiple traffic lights are
known to display the same color at an intersection. Indeed,
using the Bayesian approach as described previously, we are
frequently able to correctly identify the true state of the
intersection’s color even when confronted with conflicting
individual detections. As Figure 13 shows in two separate
examples, the probabilistic approach often yields the desired
posterior even in extremely difficult scenes where one or
more lights is incorrectly classified.

Mathematically, as long as the sources of error in each
simultaneous detection are not fully dependent, a combined
approach will be superior in expectation. Indeed, in Figure 14
we see that our algorithm’s confidence in its detection label
is strongly correlated with its accuracy, so that two or more
lights which disagree will often be disambiguated correctly
based on the detection(s) which are more confident.

A confusion matrix for individual light detections across
all three times of day is shown in Figure 15. Similarly,
a confusion matrix for intersection decisions is shown in
Figure 16. Again, we see that intersections are meaningfully
more accurate than individual lights. These results also
indicate that we are very accurate at detecting red lights,
and less accurate at detecting green and especially yellow
lights. Fortunately for safety purposes, we are much more
likely to mistakenly label a light as red than as any other
color.

We calculate accuracy based on the fraction of frames
containing a correct intersection state classification, out of
the total number of video frames in our approximately
20-minute test sequence over three sequences for which
intersections’ lights are visible. Of the 76,310 individual light
detections across 82 lights each at three times of day, we
achieve 91.7% percent accuracy. For the associated 35,710
intersection decisions across 31 intersections, again at three
times of day, we achieve 94.0% accuracy.

| Noon | Sunset | Night | Combined
Lights 92.2% | 88.9% | 93.8% 91.7%
Intersections || 95.0% | 92.3% | 95.0% 94.0%

A simple extension to the standard framewise approach
that is useful for practical applications is to only report traffic
light state when several frames of identical color detections

Fig. 13. Considering multiple lights with separate search windows (here,
shown in blue) improves robustness. In the top frame, the window on the
left reports a yellow light with 38% probability and the window on the
right reports a red light with 53% probability. The final state decision of the
intersection, taking into account probabilities for red, yellow and green states
from both windows, yields (correctly) a red state with probability 53%. A
green ellipse surrounds the actual red light that we missed, illustrating how
difficult the problem is. In the bottom frame, probabilities are 80% and
48% for the left and right lights and 87% for the intersection, whose state
is correctly detected as red.
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Fig. 14.  Our belief that a given light has a particular state versus the
accuracy of that belief, using raw output from histogram filters. Although
the filter is generally overconfident, its certainty does correlate strongly with
accuracy, as desired.

Ground Truth

Red Yellow [ Green
Red 44993 402 4103 | 90.90%
°
o
ﬁj Yellow 401 738 936 |[35.57%
A
Green 421 70 24246 | 98.02%
98.21% | 60.99% | 82.79% | 91.70%

Fig. 15. Confusion matrix of light detections. Entries are number of
detections. Each row and column has an associated percent accuracy. Yellow
lights are more easily confused due to their shared hues with red lights and
because it is more difficult to obtain a large training set for relatively rare
yellow lights as compared to red and green lights.



Ground Truth

Red | Yellow | Green
Red [ 21015 178 | 1505 |92.59%
°
2
8 Yellow | 41 341 232 | 55.54%
a
Green | 142 25 | 12231 | 98.65%
99.14% | 62.68% | 87.56% | 94.05%

Fig. 16. Confusion matrix of intersection decisions. Entries are number of
decisions. Each row and column has an associated percent accuracy.

have occurred sequentially. Although this extension adds
a fraction of a second of latency, the response time still
matches or exceeds that of a human, and the results are sev-
eral (absolute) percentage points higher than the framewise
results above. Thus for use in an autonomous vehicle, this
application of hysteresis is preferred.

In addition to these quantitative results, a significant
implication of this work is that Junior is now able to
autonomously drive through intersections governed by traffic
lights. However, a safety driver is always present to ensure
correct behavior, as we have certainly not solved traffic
light detection as well as humans. In addition, if we avoid
autonomous driving at intersections whose lights are espe-
cially difficult to detect, and utilize our localization system
which reduces uncertainty in traffic light location, our actual
performance is significantly better than the preceding results
might suggest.

V. CONCLUSIONS AND FUTURE WORK

We have described a novel pipeline for traffic light state
detection. We take a principled approach to collection of
higher-level information from our camera image, utilizing
strong constraints in template creation and weighting. Ac-
counting for possible sources of error inherent in the traffic
light detection problem, we specifically analyze those errors
which contribute to uncertainty in our pipeline. And, for
the first time, we have shown that the detection of multiple
lights for each intersection improves robustness to noise and
significantly improves performance relative to the single-
light case.

There remains progress to be made on this challenging
topic. Certainly, a higher resolution camera system would im-
prove traffic light clarity at longer distances; currently, at the
longer detection ranges, traffic lights often only occupy one
or two pixels. An interesting extension would be to combine
the camera vision system with 3-dimensional LIDAR data in
order to explicitly detect traffic lights by shape in addition
to color. On the other side of the cost spectrum, cheaper
consumer-grade cameras could be deployed, which would
necessitate additional noise filtering and perhaps explicit

flare detection (see Figure 4). Finally, overall results may
be improved if our traffic light detection algorithms were
probabilistically combined with computer vision algorithms
for holistic scene detection, as false positives may be more
easily suppressed.
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