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Abstract— Autonomous vehicle navigation in dynamic urban
environments requires localization accuracy exceeding that
available from GPS-based inertial guidance systems. We have
shown previously that GPS, IMU, and LIDAR data can be
used to generate a high-resolution infrared remittance ground
map that can be subsequently used for localization [4]. We
now propose an extension to this approach that yields substan-
tial improvements over previous work in vehicle localization,
including higher precision, the ability to learn and improve
maps over time, and increased robustness to environment
changes and dynamic obstacles. Specifically, we model the
environment, instead of as a spatial grid of fixed infrared
remittance values, as a probabilistic grid whereby every cell
is represented as its own gaussian distribution over remittance Fig. 1. Our autonomous vehicle. Velodyne HD-LIDAR 64-beararser
values. Subsequently, Bayesian inference is able to preferentially s Gircled in red.
weight parts of the map most likely to be stationary and
of consistent angular reflectivity, thereby reducing uncertainy
and catastrophic errors. Furthermore, by using offline SLAM N ) ) ) )
to align multiple passes of the same environment, possibly On specific environments (e.g. highways with obvious lane
separated in time by days or even months, it is possible to markers) [3]. Some positive results have been achieved for

build an increasingly robust understanding of the world that  map-based driving, though significant limitations remdine
can be then exploited for localization. In order for a vehicle to handle a variety of environments,

We validate the effectiveness of our approach by using these . ludi ith d traffic. it t be able to | i
algorithms to localize our vehicle against probabilistic maps Including ones wi ense traflc, 1t must be able 1o localize

in various dynamic environments, achieving RMS accuracy itself in such situations without relying on particular feaihs
in the 10cm-range and thus outperforming previous work. or features. In fact, in order to enable autonomous driving,
Importantly, this approach has enabled us to autonomously |ocalization system should be able to handle situationgevhe

drive our vehicle for hundreds of miles in dense wraffic on e enyvironment has changed since the map was created.
narrow urban roads which were formerly unnavigable with

previous localization methods. In this paper we present a new method of map-based
driving that extends previous work by considering maps as
I. INTRODUCTION probability distributions over environment propertieshex

Interest in autonomous vehicles and advanced driver a$an as fixed representations of the environment at a snapsho
sistance systems continues to increase rapidly. In péaticu in time. As in [4], we build infrared reflectivity maps of the
the DARPA Grand Challenges of 2004 and 2005, in whiclenvironment and align overlapping portions of the same or
vehicles competed to autonomously navigate through desélisparate trajectories with GraphSLAM, using similar offli
terrain, and the DARPA Urban Challenge of 2007, in whictielaxation techniques to recent SLAM methods [2], [1],
vehicles competed to autonomously navigate through a mogk, [6], [8]. However, by extending the format of the map
urban environment amidst other traffic, have generated cot® encapsulate the probabilistic nature of the environment
siderable enthusiasm and research interest in the field we are able to represent the world more accurately and
autonomous driving [15], [16]. localize with fewer errors. In particular, previous metkod

The 2007 Urban Challenge was the first significant demomften use a binary classification for deciding whether or not
stration of vehicles driving themselves through a citelik to incorporate a piece of evidence into a map. That is, a
environment. As important as this result was, many simplisensor reading such as a laser scan is either assumed to be a
fications were made for the purposes of the competitiotggitimate part of the map, or it is assumed to be spurious and
and the course itself, while more difficult in many waystherefore ignored. In [4], exactly this approach was used;
than previous challenges, featured roads wide enough agy scans that were thought to be vertical according to a
accomodate even military-sized vehicles. binary classification were thrown out.

Research into autonomous driving in real environments However, instead of having to explicitly decide whether
has been ongoing for many years, but much of it has focusedch measurement either is or is not part of the static envi-



ronment, we propose as an alternative considering the sum
of all observed data and modeling the variances observed
in each part of the map. This new approach has several
advantages compared to the non-probabilistic alternative
First, while much research incorporating laser remissiata d
has assumed surfaces to be equally reflective at any angle of
incidence, this approximation is often quite poor [10],]j11
[12]. Whereas Lambertian and retroreflective surfaces have
the fortuitous property that remissions are relativelyaiant

to angle of incidence, angular-reflective surfaces such as
shiny objects yield vastly different returns from diffeten
positions. Instead of ignoring these differences, which ca
lead to localization errors, we now implicitly account for
them.

A further advantage of our proposed method is an in-
creased robustness to dynamic obstacles; by modeling dis-
tributions of reflectivity observations in the map, dynamidig. 2. An infrared refectivity map of a large urban block slraythe
obstacles are automatically discounted in localizatioa yjaverage reflectivity of each 15x15cm cell. Many featuresvisidle in this
their trails in the map. Finally, in addition to capturing rao spectrum-
information about the environment, our approach enables a

remarkably straightforward probabilistic interpretatiof the  must be corrected so that the two sections align properly.
measurement model used in localization. This task has been successfully accomplished in previous
Our vehicle is equipped with an Applanix LV-420 tightly work [4]. Briefly, GraphSLAM is used to optimize an ob-
coupled GPS/IMU system that provides both intertial upslatgective function in which adjacent vehicle poses are linked
and gIObal pOSition estimates at 200 Hz. The environment tﬁ/ inertial and Odometry data, vehicle poses are linked to
sensed by a Velodyne HD-LIDAR laser rangefinder with 64neir estimated global position, and matched sections from
separate beams; the entire unit spins at 10 Hz and providgg |ogfile (e.g. for loop closure) are linked by their comazlit
approximately one million 3-D points and associated irddar alignment offsets.
intensity values per second. This vast quantity of datare@ssu  |n this implementation, alignment offsets between matched
that most map cells are hit multiple times, thereby enablingoses are computed using iterative closest point on a cluste
the computation of intensity variances on a per-cell basis.of 5 adjacent 360-degree laser scans from each of the two
We first present the details of our mapping algorithmsections; the x, y, z, yaw, pitch, and roll are all optimized.
including a novel unsupervised laser calibration routar®  Once a list of matches has been computed, the GraphSLAM

then explain how the localizer uses incoming data and a probjective function is minimized and the vehicle trajectsri
abilistic map to localize the vehicle. Finally, we show #su are updated accordingly.

from several experiments that demonstrate the accuracy and o
robustness of our approach. B. Laser calibration

Before we generate our map, it is important to calibrate
the separate laser beams so that they respond similarly to

Our ultimate goal in building a map is to obtain a grid-cellthe objects with the same brightness. With a well calibrated
representation of the observed environment in which eadéaser, this step can be skipped without effect, but creading
cell stores both the average infrared reflectivity obsemed probabilistic map from a poorly calibrated laser suffernir
that location as well as the variance of those values. Wwo disadvantages: first, the intensity averages for eatth ce
generate such a map in three steps: first, we post-procegl depend heavily on which beams happened to hit it; and
all trajectories so that areas of overlap are brought inteecond, the computed intensity variances will signifigantl
alignment; second, we calibrate the intensity returns ohea overstate the reality. In practice, we find that it is not rsece
laser beam so that the beams have similar response curvgay to recalibrate our laser every time we use it, but using
and finally, we project the calibrated laser returns from ththe factory calibration is unquestionably detrimentalu3im
aligned trajectories into a high-resolution probabitistiap. our implementation the following calibration procedurenca
Each of these steps is described in detail below. be performed only once and the resulting calibration table

] ] can be used for all further mapping and localization.

A. Map alignment using GraphSLAM A single 360-degree scan from the uncalibrated laser can

Given one or more lodfiles containing GPS, inertial, andbe seen in Fig. 3(a). As is readily apparent, some beams
laser data, we wish to refine the trajectories in order tare generally too bright and others are generally too dark.
bring areas of overlap into alignment. Specifically, wherRather than compute a single parameter for each beam
there exist sections of the logfiles that are spatially near b(which would still an improvement over the uncalibrated
temporally separated, the vehicle’s pose in these sectiodata), we instead compute an entire response curve for every

Il. PROBABILISTIC MAPS



(a) Uncalibrated sensor.

beam, so that we have a complete mapping function for
each beam from observed intensity to output intensity. This
more sophisticated approach is superior because, due to the
particularities associated with the hardware of the laszh
beam has its own unique nonlinear response function.

Rather than using a fixed calibration target, we present an
unsupervised calibration method that can be performed by
driving once through an arbitrary environment. To compute
the calibrated response functions for each beam, we project
laser measurements from a logfile as the vehicle proceeds
through a series of poses and, for every map cell, store the
intensity values and associated beam ID for every laser hit
to the cell. Then, for every 8-bit intensity val@eobserved
by each of the beamp the response value for beajwith
observed intensitya is simply the average intensity of all
hits from other beams to cells for which beanreturned
intensity a.

Specifically, letT be the set of observations,...,z,}
wherez is a four-tuple(b;, ri,&,c;) containing the beam ID,
range measurement, intensity measurement, and map cell ID
of the observation, respectively. Then we have:

T = {Z]_,...,Zn} . ) N
Fig. 3. Without calibration (a), each of the 64 beams has aifgigntly

5z = <bi7 ri,ai, Ci> different response to reflectivity values. After caliboati(b), the beams are
= [0 63] much better matched.

[
rn € Ry
a € [0,...,255 a high resolution map.
¢G € [0,...,N-M—-1] In order to create a probabilistic map, we store not only the

whereN andM are the dimensions of the map. Then ihverage laser intensity for each map cell, but also the vari- .
calibrated output(a, j) of beamj with observed intensitg ance of thpse values. Thus, the map has tvyo channels of data:
is computed in a single pass as: an intensity, and a variance. Epr|C|_tIy estlmatlng theuatt
reflectance properties as [13] do with multiple photographs
is not necessary for our approach; simply accounting for the

c(j,a) =FEzerla | ((3k:ci=c,bk=j,ak=4a),bi#])] (1) observed variance of infrared remittance values at each map

That is, the calibrated output when beajnobserves cell is enough for our mapping and localization goals.

intensitya is the conditional expectation of all other beams’ The algorithm for generating a ,prObab'“St'C map 1S
intensity readings for map cells where begmobserved straightforward. As the vehicle transitions through itsiese
intensity a of poses, the laser points are projected into an orthographi

This equation is computed for all 64x256 combination+Y representation in which each map c_eII represents a
of j anda. Thus a calibration file is a 64-by-256 intensity15X15cm patch of ground. Every cell maintains the necessary

mapping function; values which are not observed direcﬂwtermedlate values to update its intensity average anid var

can be interpolated from those which are. These calibrat@fice With each new measurement. Infrared reflectivity is an

response functions need only be computed once and th@ﬁh source of environmental data, as can be seen in Fig. 4(a)

results can be stored compactly in a lookup table. ThlE}nIike camera-based data, this data is immune from shadows
result of calibration can be seen in Fig. 3(b). In contrast tgNd other artifacts caused by passive lighting. Upon close

many calibration algorithms, our unsupervised approach hi!SPection, trails from passing cars can be seen; becaase th
the desirable property that it does not require a particuldP@PS are simply averages over time, observations of dynamic
calibration environment, but instead adapts automayicalPPstacles will taint the map. Rather than attempt to delete
to any environment. Due to the abundance of laser daigese’ which is impossible to do_perfectly, we instead take
and the averaging over many values, even the presenceatsirvantage of the fact that dynamic obstacles tend to leave a

dynamic objects does not significantly reduce the quality ofgnature by causing large intensity variances for thescell
the calibration. which they pass.

) Indeed, Fig. 4(b) shows the standard deviations of each
C. Map creation cell, in which the dynamic trails stand out very visibly.
Given a calibrated laser and one or more logfiles witlidere, the probabilistic map encodes the fact that its iitiens
properly aligned trajectories, it is now possible to getesra estimation for those cells is uncertain, so that when the map



(a) Average |nfraed reflectivity. A. Motion update

Our GPS/IMU system reports both inertial updates and a
global position estimate at 200Hz. By integrating the iiart
updates we maintain a "smooth coordinate” system which is
invariant to jumps in GPS pose but which, necessarily, di-
verges arbitrarily over time. Fortunately, because theamo
coordinate system is updated by integrating velocities, it
offset from the true global coordinate system can be modeled
very accurately by a random walk with Gaussian noise. Of
course, recovering the offset between the two coordinate
frames is equivalent to knowing our true global position,
so it is this offset that we strive to estimate.

As a result, the motion model for our filter is surprisingly
simple; rather than needing to model the uncertainty of the
motion of the vehicle itself as is typically done, we needyonl
model the drift between the smooth and global coordinate
systems. We note that the car's motion model is not actually
being ignored; rather, it is used internally in the tightly-
coupled GPS/IMU system precisely to minimize the rate at
which the smooth and global coordinate systems drift apart.
Vehicle dynamics are discussed in [9].

Because the smooth coordinate system’s drift is modeled
as a Gaussian noise variable with zero-mean, the motion
model updates the probability of each cell as follows:

Fig. 4. The two channels of our probabilistic maps. In (a) we ge
average infrared reflectivity, of brightness, of each cElie innovation of  _ L 1. .
this paper is to also consider (b), the extent to which thghriess of P(X,y) =1 - z P(i, j)~eXp(—2(I —x)%(j —y)2/02> 2
each cell varies. Note that the trails of the passing vebiate much more 1]
prominent in (b). .
whereP(x,y) is the posterior probability, after the motion
update, that the vehicle is in c€l,y), n is the normalizing
is later used for localization, intensity values from indogn  constant, ands is the parameter describing the rate of drift
sensor data that do not match those in the map will not bef the smooth coordinate system.
overly punished. It is also interesting to note that, while i Although this update is theoretically quadratic in the
appears at first glance that the lane markings also have highmber of cells, and thus quartic in the search radius, tsecau
variances, upon closer inspection it is clear that it isalbtu the drift rate is relatively low and the update frequency can
the edges of the markings which have high variance. Thize arbitrarily high, it is in practice perfectly acceptalbte
observation is easily explained by the fact that slight sensonly consider consider neighboring cells with a distance of
miscalibrations and pose errors will cause the cells neartao or three from the cell to be updated. For instance, the
large gradient to have larger range of intensity returns.  probability that the smooth coordinate frame drifts mosnth
45cm in .1 seconds is vanishingly small, even though such
[11. ONLINE LOCALIZATION jumps are relatively common for the global GPS estimate.

Once we have built a map of the environment, we CaMVe process the motion update at a rate proportional to the

use it to localize the vehicle in real time. We represen?peeq of the vehlqle, as the expect_ed drift in the S”.‘OO”‘
the likelihood distribution of possibla andy offsets with coordmate_ system |s_roughly proportional to the magnitude
a 2-dimensional histogram filtet As usual, the filter is of the vehicle’s velocity.

comprised of two parts: the motion update, to reduce confly neasurement update

dence in our estimate based on motion, and the measurement ) ] )
update, to increase confidence in our estimate based on'N€ Second component of the histogram filter is the
sensor data. measurement update, in which incoming laser scans are used
to refine the vehicle’s position estimate.
1Although particle filters are a popular alternative methoalihg GPS The way in which we process incoming laser scans is

available allows us to constrain our search space to witeieral meters  jdentical to the mappin rocess described in the previous
of the GPS estimate and thus to calculate directly the prételoif all bping p P

possible offsets at a 15-cm cell size. This method conferssifpeificant _SeCt'On- That is, _rather than treatmg every _Iaser _return as
advantage of not having to worry that a particle is missing tlea correct  itS own observation, we instead build a rolling grid from
Io_catlon. Further, the possibility of achlevmg_accuracydmbetter than the gccumlated sensor data in the exact same form as our map.
size of one grid cell would afford us no additional advantgiyen the other Thi hod bl di | s f

sources of error in our system (e.g. sensor miscalibrationtraller error, Is method enables us to directly compare cells from our

etc.) sensor data to cells from the map, and avoids overweighting



. . a) GPS localization induces>1 meter of error.
cells which have a high number of returns (e.g. trees and @ —

large dynamic obstacles).
If zis our sensor data and is our map, anck andy are
possible offsets from the GPS pose, then Bayes’ Rule gives:

P(X7 y‘Z, m) =n- P(Z|Xv Y, m) . P(X> y) 3)

We may approximate the uncertainty of the GPS/IMU pose
estimate by a Gaussian with variancgps, so we may
estimateP(x,y) simply as a product of the GPS Gaussian
and the posterior belief after the motion update:

Ry \
P(xy)=n -eX|0<2 5 ) -P(xy) (4)
GPS

To calculate the probability of sensor datgiven an offset
(x,y) and mapm, we take the product over all cells of
the probability of observing the sensor data cell’s average
intensity given the map cell’'s average intensity and both of
their variances. This value is then raised to an expoaentl
to account for the fact that the data are likely not entirely
independent, for example due to systemic calibration srror
or minor structural changes in the environment which are
measured in multiple frames. [7]

Let us call the two-dimensional arrays of the standard
deviations of the intensity values in the map and sensor data
mg and z;, respectively. Then, for example, the standard
deviation of the intensity values in the map cell .45m eastig. 5. Incoming laser scans (grayscale) superimposed on nodgh).(¢a)

and 1.2m north of the GPS estimate would be expressed @RS localization is prone to error, even (as shown here) witfigh-end
integrated inertial system and differential GPS using arlmeatationary

mU 4512)" antenna. (b) With localization there is no noticeable erewen in the
We WI|| use the same notation for the average intensityresence of large dynamic obstacles such as this passing bus.

value, with r denoting the average intensity (reflectivity)
of the cell. Again, to use the same example, the average
intensity seen in the map at the cell .45m east and 1.2 nor€h Most likely estimate

of the GPS estimate would be expressedmas; , , - Given the final posterior distribution, the last step is
Thus, we have: to select a singlex and y offset that best represents our
u estimation. Taking the offset to be mg®R(x,y) is, by
ixiy) ~ &, ]))2 5 definition, probabilistically optimal at any given instant
+ 2o, ) ®)  but such an approach could add unnecessary danger as
part of the pipeline in an autonomous vehicle. Because

P(z]x,y,m I_| exp( 2o,

IX]y

Putting it all together, we obtain: the maximum of a multimodal distribution can easily jump
around discontinuously, using that approach may cause the
—(my - )2 o vehicle to oscillate under unfortuitous circumstancegnev
POcylzm) = n-[]exp B if the vehicle's navigation pl formed et
| Z(mo, o y>+20.,>) gation planner performed some variety

5 of smoothing. An alternative approach would be to choose
-exp( X“+y ) Px,y) (6) the center of mass of the posterior distribution; this would
—208ps improve consistency, but would tend to cause the chosen
Towards the end of achieving robustness to partially oueffset to be biased too much towards the center. As a
dated maps, we further impose a minimum on the combinggPmpromise, we use the center of mass with the variation
standard deviation for the intensity values of the map ari#at we raiseP(x,y) to some exponentr > 1, as follows:
sensor data. This implicitly accounts for the not-unlikely

phenomenon that an environment change since the map TxyPXY)% X YxyPXY) -y

acquisition simultaneously enabled a low variance in both X= W = W (7)
the map and the sensor data, yet with the two showing Y Xy

significantly different intensity values. This (x,y) offset is the final value which is sent to the

For computational reasons we restrict the computation @khicle’s navigation planner. While an advanced planning
P(x,y|z,m) to cells within several meters of the GPS esti-and decision-making algorithm could take advantage of the
mate; however, this search radius could easily be increasedtire posterior distribution over poses rather than mxgia
if a less accurate GPS system were used. single, unimodal pose estimate, our vehicle’s planner espe



a single pose estimate and thus this equation has proven Lateral position error, before and after correction
useful as it constitutes a practical compromize between the T boealization offset Residual error
high bias of mean-filtering and the high variance of the mode.
In our vehicle this offset is computed and sent at 10 Hz.
Subsequently, the vehicle is able to plan paths in global
coordinates using the best possible estimate of its global
position. An example of the localizer’s effect is shown in
Fig. 5.

Distance (meters)

IV. EXPERIMENTAL RESULTS e

Time (seconds)

The above algorithms were implemented in C such that

; ; : ; ; ig. 6. Comparing the lateral offset applied by our algoritfmed) to
they are capable of running in real time in a single Corgwe residual error after localization (blue) as measured fliin®@ SLAM

of a modern laptop CPU. Map data requires roughly 1Qignment. During these ten minutes of driving, RMS laterabehas been
megabytes of data per mile of road, which enables extremelgduced from 66cm to 9cm.

large maps to be stored on disk. Maps are stored in a tiled
format so that data grows linearly with terrain covered, and LagitusIng] pEsitian Sod, [NeToss ARMAREr Somecton
RAM usage is constant regardless of map size. , ocelietion offset T Residuateror

We conducted extensive experiments, both manually and
autonomously, with the vehicle shown in Fig. 1. We now
present both quantatative results demonstrating the high
accuracy of our localizer and discuss autonomous results we
were unable to achieve without the present techniques.

Distance (meters)

A. Quantatative Results

In order to quantatatively evaluate the performance of Time (seconds)
our methods in the absense of known "ground truth,” we

; ; : ig. 7. Comparing the longitudinal offset applied by our aithon (red)
employ the same offline GraphSLAM allgnment descnbe@o the residual error after localization (blue) as measuredffiine SLAM

in the mapping section to align a recorded logfile against afignment. During these ten minutes of driving, RMS longinadi error
existing map; we then compare the offsets generated in tHigs been reduced from 87cm to 12cm. Note also the systemasicirbia

alignment to the offsets reported by the localizer. |dea”)}ongitudinal error which is removed after localization.
the offline and online methods should yield similar results,

though the offline SLAM approach would likely have highefji ey 15 have minor errors; thus, this result is about asdjoo

accuracy as it uses more than 100 times the amount 9k \ye could hope to achieve with this method of evaluation.
data. In fact, our probabilistic maps can be thought of as p"companion graph for longitudinal corrections of the
an efficient reduction of the entire set of laser data thaf,me grive is shown in Fig. 7: here, the localizer corrected
py wrtug of storing the |nter)3|ty variances, loses mucls Ies.an RMS longitudinal error of 87cm and agreed with the
information than does a typical map. GraphSLAM alignment to within 12cm RMS. Interestingly,
For our first test, we drove around a very large urban blocthereas the lateral corrections had roughly a zero mean,
several times in July and used our mapping method to cregjgy; js not the case for the longitudinal corrects. The fact
a probabilistic map. We then collected a separate logfilga the average longitudinal correction was about 75cm
in September of the vehicle driving the same block thregyyards suggest that there was a systematic bias somewhere
times; this was approximately ten minutes of driving in @nSperhans the wheel encoder or GPS signal was systematically

traffic. At this point, the inine localizer was used to aIigrbﬁ during the mapping or localization run. In any case, the
the September route against the July map. Separatelyeofflicajizer was clearly able to correct for both the systemati
GraphSLAM was also used to align the two trajectories using,q non-systematic effects with great success.

all available data.
The map is shown in Fig. 2. Fig. 6 shows the lateral offset8- Autonomous Success

applied by the localizer during the ten-minute September In addition to evaluating our performance quantatatively,
drive compared against the difference in the localizernalig we also ran several autonomous experiments in which the
ment and the offline SLAM alignment. During this drive,vehicle navigated autonomously in real urban environments
an RMS lateral correction of 66cm was necessary, and thésing previously published localization methods, we were
localizer corrected large errors of up to 1.5 meters. As thable to drive autonomously on moderately wide roads and
graph illustrates, the resulting error after localizatiwas only in low traffic, because turns could not be made with
extremely low, with an RMS value of 9cm. It should besufficient accuracy and narrow roads posed too great a risk.
noted that this value is quite a bit less than the grid ce# siz However, using the methods presented here, we are now
of 15cm, and also that the GraphSLAM alignment itself isable to drive autonomously in several urban environments



that were previously too challenging. In one example, our
vehicle participated in an autonomous vehicle demonstrati

in downtown Manhattan in which several blocks of 11th
Avenue were closed to regular traffic. Our vehicle operated
fully autonomously with other autonomous and human-
driven vehicles and succesfully stayed in the center of its
lane, never hitting a curb or other obstacle, despite that th
environment configuration had changed considerably since
the map had been acquired.

In another example, we mapped a four-mile loop around a
local campus that includes roads as narrow as 10 feet, tight
intersections, and speed limits up to 40 MPH. We were ab . : . .

. . . ; . ig. 8. A four-mile loop around which our vehicle nagivatedanomously
on the first attempt to drive the entire loop with the vehiclg, traic with no localization failures.
completely controlling its own steering; an interventioasy
never necessary even amidst heavy rush-hour traffic. This
route is depicted in Fig. 8. is surely useful; while infrared reflectivity is abundantigh

Since performing these localization-specific experiment# information, a more complex approach could also reason
the algorithms presented in this paper have already enablédthe space of map elevation. For example, ray tracing
our vehicle to drive several hundred miles autonomously igould be used in both the map-making and localization

traffic on urban roads without a single localization-retate Phases to explicitly process and remove dynamic obstacles,
failure. and vertical static obstacles could be incorporated in& th
measurement model.
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