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Abstract— Autonomous vehicle navigation in dynamic urban
environments requires localization accuracy exceeding that
available from GPS-based inertial guidance systems. We have
shown previously that GPS, IMU, and LIDAR data can be
used to generate a high-resolution infrared remittance ground
map that can be subsequently used for localization [4]. We
now propose an extension to this approach that yields substan-
tial improvements over previous work in vehicle localization,
including higher precision, the ability to learn and improve
maps over time, and increased robustness to environment
changes and dynamic obstacles. Specifically, we model the
environment, instead of as a spatial grid of fixed infrared
remittance values, as a probabilistic grid whereby every cell
is represented as its own gaussian distribution over remittance
values. Subsequently, Bayesian inference is able to preferentially
weight parts of the map most likely to be stationary and
of consistent angular reflectivity, thereby reducing uncertainty
and catastrophic errors. Furthermore, by using offline SLAM
to align multiple passes of the same environment, possibly
separated in time by days or even months, it is possible to
build an increasingly robust understanding of the world that
can be then exploited for localization.

We validate the effectiveness of our approach by using these
algorithms to localize our vehicle against probabilistic maps
in various dynamic environments, achieving RMS accuracy
in the 10cm-range and thus outperforming previous work.
Importantly, this approach has enabled us to autonomously
drive our vehicle for hundreds of miles in dense traffic on
narrow urban roads which were formerly unnavigable with
previous localization methods.

I. INTRODUCTION

Interest in autonomous vehicles and advanced driver as-
sistance systems continues to increase rapidly. In particular,
the DARPA Grand Challenges of 2004 and 2005, in which
vehicles competed to autonomously navigate through desert
terrain, and the DARPA Urban Challenge of 2007, in which
vehicles competed to autonomously navigate through a mock
urban environment amidst other traffic, have generated con-
siderable enthusiasm and research interest in the field of
autonomous driving [15], [16].

The 2007 Urban Challenge was the first significant demon-
stration of vehicles driving themselves through a city-like
environment. As important as this result was, many simpli-
fications were made for the purposes of the competition,
and the course itself, while more difficult in many ways
than previous challenges, featured roads wide enough to
accomodate even military-sized vehicles.

Research into autonomous driving in real environments
has been ongoing for many years, but much of it has focused

Fig. 1. Our autonomous vehicle. Velodyne HD-LIDAR 64-beam scanner
is circled in red.

on specific environments (e.g. highways with obvious lane
markers) [3]. Some positive results have been achieved for
map-based driving, though significant limitations remained.
In order for a vehicle to handle a variety of environments,
including ones with dense traffic, it must be able to localize
itself in such situations without relying on particular patterns
or features. In fact, in order to enable autonomous driving,a
localization system should be able to handle situations where
the environment has changed since the map was created.

In this paper we present a new method of map-based
driving that extends previous work by considering maps as
probability distributions over environment properties rather
than as fixed representations of the environment at a snapshot
in time. As in [4], we build infrared reflectivity maps of the
environment and align overlapping portions of the same or
disparate trajectories with GraphSLAM, using similar offline
relaxation techniques to recent SLAM methods [2], [1],
[5], [6], [8]. However, by extending the format of the map
to encapsulate the probabilistic nature of the environment,
we are able to represent the world more accurately and
localize with fewer errors. In particular, previous methods
often use a binary classification for deciding whether or not
to incorporate a piece of evidence into a map. That is, a
sensor reading such as a laser scan is either assumed to be a
legitimate part of the map, or it is assumed to be spurious and
therefore ignored. In [4], exactly this approach was used;
any scans that were thought to be vertical according to a
binary classification were thrown out.

However, instead of having to explicitly decide whether
each measurement either is or is not part of the static envi-



ronment, we propose as an alternative considering the sum
of all observed data and modeling the variances observed
in each part of the map. This new approach has several
advantages compared to the non-probabilistic alternative.
First, while much research incorporating laser remission data
has assumed surfaces to be equally reflective at any angle of
incidence, this approximation is often quite poor [10], [11],
[12]. Whereas Lambertian and retroreflective surfaces have
the fortuitous property that remissions are relatively invariant
to angle of incidence, angular-reflective surfaces such as
shiny objects yield vastly different returns from different
positions. Instead of ignoring these differences, which can
lead to localization errors, we now implicitly account for
them.

A further advantage of our proposed method is an in-
creased robustness to dynamic obstacles; by modeling dis-
tributions of reflectivity observations in the map, dynamic
obstacles are automatically discounted in localization via
their trails in the map. Finally, in addition to capturing more
information about the environment, our approach enables a
remarkably straightforward probabilistic interpretation of the
measurement model used in localization.

Our vehicle is equipped with an Applanix LV-420 tightly
coupled GPS/IMU system that provides both intertial updates
and global position estimates at 200 Hz. The environment is
sensed by a Velodyne HD-LIDAR laser rangefinder with 64
separate beams; the entire unit spins at 10 Hz and provides
approximately one million 3-D points and associated infrared
intensity values per second. This vast quantity of data ensures
that most map cells are hit multiple times, thereby enabling
the computation of intensity variances on a per-cell basis.

We first present the details of our mapping algorithm,
including a novel unsupervised laser calibration routine,and
then explain how the localizer uses incoming data and a prob-
abilistic map to localize the vehicle. Finally, we show results
from several experiments that demonstrate the accuracy and
robustness of our approach.

II. PROBABILISTIC MAPS

Our ultimate goal in building a map is to obtain a grid-cell
representation of the observed environment in which each
cell stores both the average infrared reflectivity observedat
that location as well as the variance of those values. We
generate such a map in three steps: first, we post-process
all trajectories so that areas of overlap are brought into
alignment; second, we calibrate the intensity returns of each
laser beam so that the beams have similar response curves;
and finally, we project the calibrated laser returns from the
aligned trajectories into a high-resolution probabilistic map.
Each of these steps is described in detail below.

A. Map alignment using GraphSLAM

Given one or more logfiles containing GPS, inertial, and
laser data, we wish to refine the trajectories in order to
bring areas of overlap into alignment. Specifically, when
there exist sections of the logfiles that are spatially near but
temporally separated, the vehicle’s pose in these sections

Fig. 2. An infrared refectivity map of a large urban block showing the
average reflectivity of each 15x15cm cell. Many features arevisible in this
spectrum.

must be corrected so that the two sections align properly.
This task has been successfully accomplished in previous
work [4]. Briefly, GraphSLAM is used to optimize an ob-
jective function in which adjacent vehicle poses are linked
by inertial and odometry data, vehicle poses are linked to
their estimated global position, and matched sections from
the logfile (e.g. for loop closure) are linked by their computed
alignment offsets.

In this implementation, alignment offsets between matched
poses are computed using iterative closest point on a cluster
of 5 adjacent 360-degree laser scans from each of the two
sections; the x, y, z, yaw, pitch, and roll are all optimized.
Once a list of matches has been computed, the GraphSLAM
objective function is minimized and the vehicle trajectories
are updated accordingly.

B. Laser calibration

Before we generate our map, it is important to calibrate
the separate laser beams so that they respond similarly to
the objects with the same brightness. With a well calibrated
laser, this step can be skipped without effect, but creatinga
probabilistic map from a poorly calibrated laser suffers from
two disadvantages: first, the intensity averages for each cell
will depend heavily on which beams happened to hit it; and
second, the computed intensity variances will significantly
overstate the reality. In practice, we find that it is not neces-
sary to recalibrate our laser every time we use it, but using
the factory calibration is unquestionably detrimental. Thus in
our implementation the following calibration procedure can
be performed only once and the resulting calibration table
can be used for all further mapping and localization.

A single 360-degree scan from the uncalibrated laser can
be seen in Fig. 3(a). As is readily apparent, some beams
are generally too bright and others are generally too dark.
Rather than compute a single parameter for each beam
(which would still an improvement over the uncalibrated
data), we instead compute an entire response curve for every



beam, so that we have a complete mapping function for
each beam from observed intensity to output intensity. This
more sophisticated approach is superior because, due to the
particularities associated with the hardware of the laser,each
beam has its own unique nonlinear response function.

Rather than using a fixed calibration target, we present an
unsupervised calibration method that can be performed by
driving once through an arbitrary environment. To compute
the calibrated response functions for each beam, we project
laser measurements from a logfile as the vehicle proceeds
through a series of poses and, for every map cell, store the
intensity values and associated beam ID for every laser hit
to the cell. Then, for every 8-bit intensity valuea observed
by each of the beamsj, the response value for beamj with
observed intensitya is simply the average intensity of all
hits from other beams to cells for which beamj returned
intensitya.

Specifically, letT be the set of observations{z1, . . . ,zn}
wherezi is a four-tuple〈bi,ri,ai,ci〉 containing the beam ID,
range measurement, intensity measurement, and map cell ID
of the observation, respectively. Then we have:

T = {z1, . . . ,zn}

zi = 〈bi,ri,ai,ci〉

bi ∈ [0, . . . ,63]

ri ∈ R+

ai ∈ [0, . . . ,255]

ci ∈ [0, . . . ,N ·M−1]

whereN andM are the dimensions of the map. Then the
calibrated outputc(a, j) of beam j with observed intensitya
is computed in a single pass as:

c( j,a) := Ezi∈T [ai | ((∃k : ci = ck,bk = j,ak = a),bi 6= j)] (1)

That is, the calibrated output when beamj observes
intensitya is the conditional expectation of all other beams’
intensity readings for map cells where beamj observed
intensitya.

This equation is computed for all 64x256 combinations
of j and a. Thus a calibration file is a 64-by-256 intensity
mapping function; values which are not observed directly
can be interpolated from those which are. These calibrated
response functions need only be computed once and their
results can be stored compactly in a lookup table. The
result of calibration can be seen in Fig. 3(b). In contrast to
many calibration algorithms, our unsupervised approach has
the desirable property that it does not require a particular
calibration environment, but instead adapts automatically
to any environment. Due to the abundance of laser data
and the averaging over many values, even the presence of
dynamic objects does not significantly reduce the quality of
the calibration.

C. Map creation

Given a calibrated laser and one or more logfiles with
properly aligned trajectories, it is now possible to generate

(a) Uncalibrated sensor.

(b) After intensity calibration.

Fig. 3. Without calibration (a), each of the 64 beams has a significantly
different response to reflectivity values. After calibration (b), the beams are
much better matched.

a high resolution map.
In order to create a probabilistic map, we store not only the

average laser intensity for each map cell, but also the vari-
ance of those values. Thus, the map has two channels of data:
an intensity, and a variance. Explicitly estimating the actual
reflectance properties as [13] do with multiple photographs
is not necessary for our approach; simply accounting for the
observed variance of infrared remittance values at each map
cell is enough for our mapping and localization goals.

The algorithm for generating a probabilistic map is
straightforward. As the vehicle transitions through its series
of poses, the laser points are projected into an orthographic
x,y representation in which each map cell represents a
15x15cm patch of ground. Every cell maintains the necessary
intermediate values to update its intensity average and vari-
ance with each new measurement. Infrared reflectivity is an
rich source of environmental data, as can be seen in Fig. 4(a).
Unlike camera-based data, this data is immune from shadows
and other artifacts caused by passive lighting. Upon close
inspection, trails from passing cars can be seen; because the
maps are simply averages over time, observations of dynamic
obstacles will taint the map. Rather than attempt to delete
these, which is impossible to do perfectly, we instead take
advantage of the fact that dynamic obstacles tend to leave a
signature by causing large intensity variances for the cells in
which they pass.

Indeed, Fig. 4(b) shows the standard deviations of each
cell, in which the dynamic trails stand out very visibly.
Here, the probabilistic map encodes the fact that its intensity
estimation for those cells is uncertain, so that when the map



(a) Average infrared reflectivity.

(b) Standard deviation of infrared reflectivity values.

Fig. 4. The two channels of our probabilistic maps. In (a) we see the
average infrared reflectivity, of brightness, of each cell.The innovation of
this paper is to also consider (b), the extent to which the brightness of
each cell varies. Note that the trails of the passing vehicles are much more
prominent in (b).

is later used for localization, intensity values from incoming
sensor data that do not match those in the map will not be
overly punished. It is also interesting to note that, while it
appears at first glance that the lane markings also have high
variances, upon closer inspection it is clear that it is actually
the edges of the markings which have high variance. This
observation is easily explained by the fact that slight sensor
miscalibrations and pose errors will cause the cells near a
large gradient to have larger range of intensity returns.

III. O NLINE LOCALIZATION

Once we have built a map of the environment, we can
use it to localize the vehicle in real time. We represent
the likelihood distribution of possiblex and y offsets with
a 2-dimensional histogram filter.1 As usual, the filter is
comprised of two parts: the motion update, to reduce confi-
dence in our estimate based on motion, and the measurement
update, to increase confidence in our estimate based on
sensor data.

1Although particle filters are a popular alternative method, having GPS
available allows us to constrain our search space to within several meters
of the GPS estimate and thus to calculate directly the probability of all
possible offsets at a 15-cm cell size. This method confers thesignificant
advantage of not having to worry that a particle is missing near the correct
location. Further, the possibility of achieving accuracy much better than the
size of one grid cell would afford us no additional advantagegiven the other
sources of error in our system (e.g. sensor miscalibration, controller error,
etc.)

A. Motion update

Our GPS/IMU system reports both inertial updates and a
global position estimate at 200Hz. By integrating the inertial
updates we maintain a ”smooth coordinate” system which is
invariant to jumps in GPS pose but which, necessarily, di-
verges arbitrarily over time. Fortunately, because the smooth
coordinate system is updated by integrating velocities, its
offset from the true global coordinate system can be modeled
very accurately by a random walk with Gaussian noise. Of
course, recovering the offset between the two coordinate
frames is equivalent to knowing our true global position,
so it is this offset that we strive to estimate.

As a result, the motion model for our filter is surprisingly
simple; rather than needing to model the uncertainty of the
motion of the vehicle itself as is typically done, we need only
model the drift between the smooth and global coordinate
systems. We note that the car’s motion model is not actually
being ignored; rather, it is used internally in the tightly-
coupled GPS/IMU system precisely to minimize the rate at
which the smooth and global coordinate systems drift apart.
Vehicle dynamics are discussed in [9].

Because the smooth coordinate system’s drift is modeled
as a Gaussian noise variable with zero-mean, the motion
model updates the probability of each cell as follows:

P(x,y) = η ·∑
i, j

P(i, j) ·exp

(

−
1
2
(i− x)2( j− y)2/σ2

)

(2)

whereP(x,y) is the posterior probability, after the motion
update, that the vehicle is in cell(x,y), η is the normalizing
constant, andσ is the parameter describing the rate of drift
of the smooth coordinate system.

Although this update is theoretically quadratic in the
number of cells, and thus quartic in the search radius, because
the drift rate is relatively low and the update frequency can
be arbitrarily high, it is in practice perfectly acceptableto
only consider consider neighboring cells with a distance of
two or three from the cell to be updated. For instance, the
probability that the smooth coordinate frame drifts more than
45cm in .1 seconds is vanishingly small, even though such
jumps are relatively common for the global GPS estimate.
We process the motion update at a rate proportional to the
speed of the vehicle, as the expected drift in the smooth
coordinate system is roughly proportional to the magnitude
of the vehicle’s velocity.

B. Measurement update

The second component of the histogram filter is the
measurement update, in which incoming laser scans are used
to refine the vehicle’s position estimate.

The way in which we process incoming laser scans is
identical to the mapping process described in the previous
section. That is, rather than treating every laser return as
its own observation, we instead build a rolling grid from
accumlated sensor data in the exact same form as our map.
This method enables us to directly compare cells from our
sensor data to cells from the map, and avoids overweighting



cells which have a high number of returns (e.g. trees and
large dynamic obstacles).

If z is our sensor data andm is our map, andx andy are
possible offsets from the GPS pose, then Bayes’ Rule gives:

P(x,y|z,m) = η ·P(z|x,y,m) ·P(x,y) (3)

We may approximate the uncertainty of the GPS/IMU pose
estimate by a Gaussian with varianceσ2

GPS, so we may
estimateP(x,y) simply as a product of the GPS Gaussian
and the posterior belief after the motion update:

P(x,y) = η ·exp

(

x2 + y2

−2σ2
GPS

)

·P(x,y) (4)

To calculate the probability of sensor dataz given an offset
(x,y) and mapm, we take the product over all cells of
the probability of observing the sensor data cell’s average
intensity given the map cell’s average intensity and both of
their variances. This value is then raised to an exponentα < 1
to account for the fact that the data are likely not entirely
independent, for example due to systemic calibration errors
or minor structural changes in the environment which are
measured in multiple frames. [7]

Let us call the two-dimensional arrays of the standard
deviations of the intensity values in the map and sensor data
mσ and zσ , respectively. Then, for example, the standard
deviation of the intensity values in the map cell .45m east
and 1.2m north of the GPS estimate would be expressed as
mσ(.45,1.2)

.
We will use the same notation for the average intensity

value, with r denoting the average intensity (reflectivity)
of the cell. Again, to use the same example, the average
intensity seen in the map at the cell .45m east and 1.2 north
of the GPS estimate would be expressed asmr(.45,1.2)

.
Thus, we have:

P(z|x,y,m) = ∏
i, j

exp

(

−(mr(i−x, j−y)
− zr(i, j)

)2

2(mσ(i−x, j−y)
+ zσ(i, j)

)2

)α

(5)

Putting it all together, we obtain:

P(x,y|z,m) = η ·∏
i, j

exp

(

−(mr(i−x, j−y)
− zr(i, j)

)2

2(mσ(i−x, j−y)
+ zσ(i, j)

)2

)α

·exp

(

x2 + y2

−2σ2
GPS

)

·P(x,y) (6)

Towards the end of achieving robustness to partially out-
dated maps, we further impose a minimum on the combined
standard deviation for the intensity values of the map and
sensor data. This implicitly accounts for the not-unlikely
phenomenon that an environment change since the map
acquisition simultaneously enabled a low variance in both
the map and the sensor data, yet with the two showing
significantly different intensity values.

For computational reasons we restrict the computation of
P(x,y|z,m) to cells within several meters of the GPS esti-
mate; however, this search radius could easily be increased
if a less accurate GPS system were used.

(a) GPS localization induces≥1 meter of error.

(b) No noticeable error after localization.

Fig. 5. Incoming laser scans (grayscale) superimposed on map (gold). (a)
GPS localization is prone to error, even (as shown here) witha high-end
integrated inertial system and differential GPS using a nearby stationary
antenna. (b) With localization there is no noticeable error, even in the
presence of large dynamic obstacles such as this passing bus.

C. Most likely estimate

Given the final posterior distribution, the last step is
to select a singlex and y offset that best represents our
estimation. Taking the offset to be maxx,yP(x,y) is, by
definition, probabilistically optimal at any given instant,
but such an approach could add unnecessary danger as
part of the pipeline in an autonomous vehicle. Because
the maximum of a multimodal distribution can easily jump
around discontinuously, using that approach may cause the
vehicle to oscillate under unfortuitous circumstances, even
if the vehicle’s navigation planner performed some variety
of smoothing. An alternative approach would be to choose
the center of mass of the posterior distribution; this would
improve consistency, but would tend to cause the chosen
offset to be biased too much towards the center. As a
compromise, we use the center of mass with the variation
that we raiseP(x,y) to some exponentα > 1, as follows:

x =
∑x,y P(x,y)α · x

∑x,y P(x,y)α y =
∑x,y P(x,y)α · y

∑x,y P(x,y)α (7)

This (x,y) offset is the final value which is sent to the
vehicle’s navigation planner. While an advanced planning
and decision-making algorithm could take advantage of the
entire posterior distribution over poses rather than requiring a
single, unimodal pose estimate, our vehicle’s planner expects



a single pose estimate and thus this equation has proven
useful as it constitutes a practical compromize between the
high bias of mean-filtering and the high variance of the mode.

In our vehicle this offset is computed and sent at 10 Hz.
Subsequently, the vehicle is able to plan paths in global
coordinates using the best possible estimate of its global
position. An example of the localizer’s effect is shown in
Fig. 5.

IV. EXPERIMENTAL RESULTS

The above algorithms were implemented in C such that
they are capable of running in real time in a single core
of a modern laptop CPU. Map data requires roughly 10
megabytes of data per mile of road, which enables extremely
large maps to be stored on disk. Maps are stored in a tiled
format so that data grows linearly with terrain covered, and
RAM usage is constant regardless of map size.

We conducted extensive experiments, both manually and
autonomously, with the vehicle shown in Fig. 1. We now
present both quantatative results demonstrating the high
accuracy of our localizer and discuss autonomous results we
were unable to achieve without the present techniques.

A. Quantatative Results

In order to quantatatively evaluate the performance of
our methods in the absense of known ”ground truth,” we
employ the same offline GraphSLAM alignment described
in the mapping section to align a recorded logfile against an
existing map; we then compare the offsets generated in this
alignment to the offsets reported by the localizer. Ideally,
the offline and online methods should yield similar results,
though the offline SLAM approach would likely have higher
accuracy as it uses more than 100 times the amount of
data. In fact, our probabilistic maps can be thought of as
an efficient reduction of the entire set of laser data that,
by virtue of storing the intensity variances, loses much less
information than does a typical map.

For our first test, we drove around a very large urban block
several times in July and used our mapping method to create
a probabilistic map. We then collected a separate logfile
in September of the vehicle driving the same block three
times; this was approximately ten minutes of driving in dense
traffic. At this point, the online localizer was used to align
the September route against the July map. Separately, offline
GraphSLAM was also used to align the two trajectories using
all available data.

The map is shown in Fig. 2. Fig. 6 shows the lateral offsets
applied by the localizer during the ten-minute September
drive compared against the difference in the localizer align-
ment and the offline SLAM alignment. During this drive,
an RMS lateral correction of 66cm was necessary, and the
localizer corrected large errors of up to 1.5 meters. As the
graph illustrates, the resulting error after localizationwas
extremely low, with an RMS value of 9cm. It should be
noted that this value is quite a bit less than the grid cell size
of 15cm, and also that the GraphSLAM alignment itself is

Fig. 6. Comparing the lateral offset applied by our algorithm(red) to
the residual error after localization (blue) as measured by offline SLAM
alignment. During these ten minutes of driving, RMS lateral error has been
reduced from 66cm to 9cm.

Fig. 7. Comparing the longitudinal offset applied by our algorithm (red)
to the residual error after localization (blue) as measured by offline SLAM
alignment. During these ten minutes of driving, RMS longitudinal error
has been reduced from 87cm to 12cm. Note also the systematic bias in
longitudinal error which is removed after localization.

likely to have minor errors; thus, this result is about as good
as we could hope to achieve with this method of evaluation.

A companion graph for longitudinal corrections of the
same drive is shown in Fig. 7; here, the localizer corrected
an RMS longitudinal error of 87cm and agreed with the
GraphSLAM alignment to within 12cm RMS. Interestingly,
whereas the lateral corrections had roughly a zero mean,
that is not the case for the longitudinal corrects. The fact
that the average longitudinal correction was about 75cm
forwards suggest that there was a systematic bias somewhere;
perhaps the wheel encoder or GPS signal was systematically
off during the mapping or localization run. In any case, the
localizer was clearly able to correct for both the systematic
and non-systematic effects with great success.

B. Autonomous Success

In addition to evaluating our performance quantatatively,
we also ran several autonomous experiments in which the
vehicle navigated autonomously in real urban environments.
Using previously published localization methods, we were
able to drive autonomously on moderately wide roads and
only in low traffic, because turns could not be made with
sufficient accuracy and narrow roads posed too great a risk.

However, using the methods presented here, we are now
able to drive autonomously in several urban environments



that were previously too challenging. In one example, our
vehicle participated in an autonomous vehicle demonstration
in downtown Manhattan in which several blocks of 11th
Avenue were closed to regular traffic. Our vehicle operated
fully autonomously with other autonomous and human-
driven vehicles and succesfully stayed in the center of its
lane, never hitting a curb or other obstacle, despite that the
environment configuration had changed considerably since
the map had been acquired.

In another example, we mapped a four-mile loop around a
local campus that includes roads as narrow as 10 feet, tight
intersections, and speed limits up to 40 MPH. We were able
on the first attempt to drive the entire loop with the vehicle
completely controlling its own steering; an intervention was
never necessary even amidst heavy rush-hour traffic. This
route is depicted in Fig. 8.

Since performing these localization-specific experiments,
the algorithms presented in this paper have already enabled
our vehicle to drive several hundred miles autonomously in
traffic on urban roads without a single localization-related
failure.

V. CONCLUSION

Localization is a critical enabling component of au-
tonomous vehicle navigation. Although vehicle localization
has been researched extensively, no system to our knowledge
has yet proven itself able to reliably localize a vehicle
in dense and dynamic urban environments with sufficient
accuracy to enable truly autonomous operation. Previous
attempts have successfully improved upon GPS/IMU systems
by taking environment into account, but suffered from an in-
ability to handle changing environments. While our approach
is not infinitely adaptable and can be hindered by sufficiently
severe changes in weather or environmental configuration,
we believe it is a significant step forward towards allowing
vehicles to navigate themselves in even the trickiest of real
life situations.

By storing maps as probability models and not just ex-
pected values, we are able to much better describe any
environment. Consequently, localizing becomes more robust
and more accurate; compared with previous work we suffer
far fewer complete localization failures and our typical
localization error is significantly reduced, especially inthe
more challenging longitudinal direction. The fact that we
were able for the first time to autonomously nagivate our
vehicle in our most difficult local streets (with lanes as
narrow as 10 feet), amidst rush-hour traffic, is a testament
to the precision and robustness of our approach. Indeed,
extensive experiments suggest that we are able to reduce
the error of the best GPS/IMU systems available by an
order of magnitude, both laterally and longitudinally, thus
enabling decimeter-level accuracy; as we have shown, this
performance is more than sufficient for autonomous driving
in real urban settings.

There remain promising areas for further research on this
topic. In the interest of efficiency and robustness we project
points to thexy plane in our maps, but height information

Fig. 8. A four-mile loop around which our vehicle nagivated autonomously
in traffic with no localization failures.

is surely useful; while infrared reflectivity is abundantlyrich
in information, a more complex approach could also reason
in the space of map elevation. For example, ray tracing
could be used in both the map-making and localization
phases to explicitly process and remove dynamic obstacles,
and vertical static obstacles could be incorporated into the
measurement model.
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