
An Introduction to
Modern GPU Architecture

Ashu Rege
Director of Developer Technology

An Introduction to
Modern GPU Architecture

Ashu Rege
Director of Developer Technology

Agenda

• Evolution of GPUs

• Computing Revolution

• Stream Processing

• Architecture details of modern GPUs

Evolution of GPUs

Evolution of GPUs
(1995-1999)
• 1995 – NV1
• 1997 – Riva 128 (NV3), DX3

• 1998 – Riva TNT (NV4), DX5
• 32 bit color, 24 bit Z, 8 bit stencil
• Dual texture, bilinear filtering
• 2 pixels per clock (ppc)

• 1999 – Riva TNT2 (NV5), DX6
• Faster TNT
• 128b memory interface
• 32 MB memory
• The chip that would not die ☺

VirtuaVirtua Fighter Fighter
(SEGA Corporation)(SEGA Corporation)

NV1NV1
50K triangles/sec50K triangles/sec
1M pixel ops/sec1M pixel ops/sec
1M transistors1M transistors

1616--bit colorbit color
Nearest filteringNearest filtering

19951995

Evolution of GPUs
(Fixed Function)
• GeForce 256 (NV10)
• DirectX 7.0
• Hardware T&L
• Cubemaps
• DOT3 – bump mapping

• Register combiners
• 2x Anisotropic filtering
• Trilinear filtering
• DXT texture compression
• 4 ppc
• Term “GPU” introduced

Deus Ex Deus Ex
((EidosEidos/Ion Storm)/Ion Storm)

NV10NV10
15M triangles/sec15M triangles/sec

480M pixel ops/sec480M pixel ops/sec
23M transistors23M transistors

3232--bit colorbit color
TrilinearTrilinear filteringfiltering

19991999

NV10 – Register Combiners
Input RGB, Alpha

Registers

Input Alpha, Blue
Registers

Input
Mappings

Input
Mappings

A

B

C

D

A op1 B

C op2 D

AB op3 CD

RGB Function

A

B

C

D

AB

CD

AB op4 CD

Alpha
Function

RGB
Scale/Bias

Alpha
Scale/Bias

Next Combiner’s
RGB Registers

Next Combiner’s
Alpha Registers

RGB
Portion

Alpha
Portion

Evolution of GPUs
(Shader Model 1.0)
• GeForce 3 (NV20)

• NV2A – Xbox GPU
• DirectX 8.0
• Vertex and Pixel Shaders
• 3D Textures
• Hardware Shadow Maps
• 8x Anisotropic filtering
• Multisample AA (MSAA)
• 4 ppc

RagnarokRagnarok Online Online
(Atari/Gravity)(Atari/Gravity)

NV20NV20
100M triangles/sec100M triangles/sec
1G pixel ops/sec1G pixel ops/sec
57M transistors57M transistors

Vertex/Pixel shadersVertex/Pixel shaders
MSAAMSAA

20012001

Evolution of GPUs
(Shader Model 2.0)
• GeForce FX Series (NV3x)
• DirectX 9.0
• Floating Point and “Long”

Vertex and Pixel Shaders
• Shader Model 2.0

• 256 vertex ops
• 32 tex + 64 arith pixel ops

• Shader Model 2.0a
• 256 vertex ops
• Up to 512 ops

• Shading Languages
• HLSL, Cg, GLSL

Dawn Demo Dawn Demo
(NVIDIA)(NVIDIA)

NV30NV30
200M triangles/sec200M triangles/sec
2G pixel ops/sec2G pixel ops/sec
125M transistors125M transistors
Shader Model 2.0aShader Model 2.0a

20032003

Evolution of GPUs
(Shader Model 3.0)
• GeForce 6 Series (NV4x)
• DirectX 9.0c
• Shader Model 3.0
• Dynamic Flow Control in

Vertex and Pixel Shaders1

• Branching, Looping, Predication, …
• Vertex Texture Fetch
• High Dynamic Range (HDR)

• 64 bit render target
• FP16x4 Texture Filtering and Blending

1Some flow control first introduced in SM2.0a

Far Cry HDR Far Cry HDR
(Ubisoft/(Ubisoft/CrytekCrytek))

NV40NV40
600M triangles/sec600M triangles/sec
12.8G pixel ops/sec12.8G pixel ops/sec

220M transistors220M transistors
Shader Model 3.0Shader Model 3.0

Rotated Grid MSAARotated Grid MSAA
16x 16x AnisoAniso, SLI, SLI

20042004

Far Cry – No HDR/HDR Comparison

Evolution of GPUs
(Shader Model 4.0)
• GeForce 8 Series (G8x)
• DirectX 10.0

• Shader Model 4.0
• Geometry Shaders
• No “caps bits”
• Unified Shaders

• New Driver Model in Vista
• CUDA based GPU computing
• GPUs become true computing

processors measured in GFLOPS

CrysisCrysis
(EA/(EA/CrytekCrytek))

G80G80
Unified Shader Cores w/ Unified Shader Cores w/

Stream ProcessorsStream Processors
681M transistors681M transistors
Shader Model 4.0Shader Model 4.0
8x MSAA, CSAA8x MSAA, CSAA

20062006

Crysis. Images courtesy of Crytek.

• GeForce GTX 280 (GT200)
• DX10
• 1.4 billion transistors
• 576 mm2 in 65nm CMOS

• 240 stream processors
• 933 GFLOPS peak
• 1.3GHz processor clock

• 1GB DRAM
• 512 pin DRAM interface
• 142 GB/s peak

As Of Today…

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc.

Crysis © 2006 Crytek / Electronic Arts

Lush, Rich WorldsStunning Graphics Realism

Core of the Definitive Gaming PlatformIncredible Physics Effects

What Is Behind This Computing Revolution?

• Unified Scalar Shader Architecture

• Highly Data Parallel Stream Processing

• Next, let’s try to understand what these terms mean…

Unified Scalar Shader Architecture

Graphics Pipelines For Last 20 Years
Processor per function

T&L evolved to vertex shading

Triangle, point, line – setup

Flat shading, texturing, eventually pixel
shading

Blending, Z-buffering, antialiasing

Wider and faster over the years

Vertex

Triangle

Pixel

ROP

Memory

Shaders in Direct3D

• DirectX 9:
Vertex Shader, Pixel Shader

• DirectX 10:
Vertex Shader, Geometry Shader, Pixel Shader

• DirectX 11:
Vertex Shader, Hull Shader, Domain Shader, Geometry Shader, Pixel
Shader, Compute Shader

• Observation: All of these shaders require the same basic
functionality: Texturing (or Data Loads) and Math Ops.

Unified Pipeline

Geometry
(new in DX10) Texture +

Floating
Point

Processor

Vertex

Pixel

ROP

Memory

Future

Physics

Compute
(CUDA, DX11

Compute, OpenCL)

Why Unify?

Heavy Geometry
Workload Perf = 4

Vertex Shader

Pixel Shader

Idle hardware

Heavy Pixel
Workload Perf = 8

Vertex Shader

Pixel Shader

Idle hardware

Unbalanced
and inefficient
utilization in non-
unified architecture

Why Unify?

Heavy Geometry
Workload Perf = 11

Unified Shader

Pixel

Vertex Workload

Heavy Pixel
Workload Perf = 11

Unified Shader

Vertex

Pixel Workload

Optimal utilization
In unified architecture

Why Scalar Instruction Shader (1)
• Vector ALU – efficiency varies
•
• MAD r2.xyzw, r0.xyzw, r1.xyzw – 100% utilization
•
• DP3 r2.w, r0.xyz, r1.xyz – 75%
•
• MUL r2.xy, r0.xy, r1.xy – 50%
•
• ADD r2.w, r0.x, r1.x – 25%

4

3

2

1

Why Scalar Instruction Shader (2)
• Vector ALU with co-issue – better but not perfect
• DP3 r2.x, r0.xyz, r1.xyz
• ADD r2.w, r0.w, r1.w
•
• DP3 r2.w, r0.xyz, r1.xyz
•
• ADD r2.w, r0.w, r2.w

• Vector/VLIW architecture – More compiler work required

• G8x, GT200: scalar – always 100% efficient, simple to compile
• Up to 2x effective throughput advantage relative to vector

4

3

1

} 100%

Cannot co-issue

Complex Shader Performance on Scalar Arch.
Procedural Perlin Noise Fire

Procedural Fire

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

7900GTX 8800GTX

Conclusion

• Build a unified architecture with scalar cores where all shader
operations are done on the same processors

Stream Processing

The Supercomputing Revolution (1)

The Supercomputing Revolution (2)

What Accounts For This Difference?

• Need to understand how CPUs and GPUs differ

• Latency Intolerance versus Latency Tolerance

• Task Parallelism versus Data Parallelism

• Multi-threaded Cores versus SIMT (Single Instruction Multiple Thread) Cores

• 10s of Threads versus 10,000s of Threads

Latency and Throughput

• “Latency is a time delay between the moment something is initiated,
and the moment one of its effects begins or becomes detectable”
• For example, the time delay between a request for texture reading and texture

data returns

• Throughput is the amount of work done in a given amount of time
• For example, how many triangles processed per second

• CPUs are low latency low throughput processors

• GPUs are high latency high throughput processors

Latency (1)

• GPUs are designed for tasks that can tolerate latency
• Example: Graphics in a game (simplified scenario):

• To be efficient, GPUs must have high throughput, i.e. processing
millions of pixels in a single frame

CPU Generate
Frame 0

Generate
Frame 1

Generate
Frame 2

GPU Idle Render
Frame 0

Render
Frame 1

Latency between frame generation and rendering (order of milliseconds)

Latency (2)

• CPUs are designed to minimize latency
• Example: Mouse or keyboard input

• Caches are needed to minimize latency

• CPUs are designed to maximize running operations out of cache
• Instruction pre-fetch
• Out-of-order execution, flow control

• Æ CPUs need a large cache, GPUs do not
• GPUs can dedicate more of the transistor area to computation horsepower

CPU versus GPU Transistor Allocation

• GPUs can have more ALUs for the same sized chip and therefore run
many more threads of computation

• Modern GPUs run 10,000s of threads concurrently

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

Managing Threads On A GPU
• How do we:

• Avoid synchronization issues between so many threads?
• Dispatch, schedule, cache, and context switch 10,000s of threads?
• Program 10,000s of threads?

• Design GPUs to run specific types of threads:
• Independent of each other – no synchronization issues
• SIMD (Single Instruction Multiple Data) threads – minimize thread management

• Reduce hardware overhead for scheduling, caching etc.
• Program blocks of threads (e.g. one pixel shader per draw call, or group of pixels)

• Any problems which can be solved with this type of computation?

Data Parallel Problems

• Plenty of problems fall into this category (luckily ☺)
• Graphics, image & video processing, physics, scientific computing, …

• This type of parallelism is called data parallelism

• And GPUs are the perfect solution for them!
• In fact the more the data, the more efficient GPUs become at these algorithms

• Bonus: You can relatively easily add more processing cores to a GPU and
increase the throughput

Parallelism in CPUs v. GPUs

• CPUs use task parallelism
• Multiple tasks map to multiple

threads

• Tasks run different instructions

• 10s of relatively heavyweight threads
run on 10s of cores

• Each thread managed and scheduled
explicitly

• Each thread has to be individually
programmed

• GPUs use data parallelism
• SIMD model (Single Instruction

Multiple Data)
• Same instruction on different data

• 10,000s of lightweight threads on 100s
of cores

• Threads are managed and scheduled
by hardware

• Programming done for batches of
threads (e.g. one pixel shader per
group of pixels, or draw call)

Stream Processing

• What we just described:
• Given a (typically large) set of data (“stream”)
• Run the same series of operations (“kernel” or “shader”) on all of the data (SIMD)

• GPUs use various optimizations to improve throughput:
• Some on-chip memory and local caches to reduce bandwidth to external memory
• Batch groups of threads to minimize incoherent memory access

• Bad access patterns will lead to higher latency and/or thread stalls.
• Eliminate unnecessary operations by exiting or killing threads

• Example: Z-Culling and Early-Z to kill pixels which will not be displayed

To Summarize
• GPUs use stream processing to achieve high throughput

• GPUs designed to solve problems that tolerate high latencies
• High latency tolerance Æ Lower cache requirements
• Less transistor area for cache Æ More area for computing units
• More computing units Æ 10,000s of SIMD threads and high throughput
• GPUs win ☺

• Additionally:
• Threads managed by hardware Æ You are not required to write code for each

thread and manage them yourself
• Easier to increase parallelism by adding more processors

• So, fundamental unit of a modern GPU is a stream processor…

G80 and GT200 Streaming Processor
Architecture

Building a Programmable GPU

• The future of high throughput computing is programmable
stream processing

• So build the architecture around the unified scalar stream
processing cores

• GeForce 8800 GTX (G80) was the first GPU architecture
built with this new paradigm

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

G80 Replaces The Pipeline Model

128 Unified Streaming
Processors

GT200 Adds More Processing Power

 GPU

Interconnection Network

Host CPU System Memory

Vertex Work
Distribution

Geometry Work
Distribution

Pixel Work
Distribution

Compute Work
Distribution

Input Assemble

Host Interface
Viewport / Clip /
Setup / Raster /

ZCull

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

8800GTX (high-end G80)
16 Stream Multiprocessors

• Each one contains 8 unified streaming processors – 128 in total

GTX280 (high-end GT200)
24 Stream Multiprocessors

• Each one contains 8 unified streaming processors – 240 in total

Inside a Stream Multiprocessor (SM)
• Scalar register-based ISA
• Multithreaded Instruction Unit

• Up to 1024 concurrent threads
• Hardware thread scheduling
• In-order issue

• 8 SP: Thread Processors
• IEEE 754 32-bit floating point
• 32-bit and 64-bit integer
• 16K 32-bit registers

• 2 SFU: Special Function Units
• sin, cos, log, exp

• Double Precision Unit
• IEEE 754 64-bit floating point
• Fused multiply-add

• 16KB Shared Memory

TPC

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Multiprocessor Programming Model
• Workloads are partitioned into blocks of threads among

multiprocessors
• a block runs to completion
• a block doesn’t run until resources are available

• Allocation of hardware resources
• shared memory is partitioned among blocks
• registers are partitioned among threads

• Hardware thread scheduling
• any thread not waiting for something can run
• context switching is free – every cycle

Memory Hierarchy of G80 and GT200

• SM can directly access device memory (video memory)
• Not cached
• Read & write
• GT200: 140 GB/s peak

• SM can access device memory via texture unit
• Cached
• Read-only, for textures and constants
• GT200: 48 GTexels/s peak

• On-chip shared memory shared among threads in an SM
• important for communication amongst threads
• provides low-latency temporary storage
• G80 & GT200: 16KB per SM

Performance Per Millimeter
• For GPU, performance == throughput

• Cache are limited in the memory hierarchy

• Strategy: hide latency with computation, not cache
• Heavy multithreading
• Switch to another group of threads when the current group is waiting for memory

access

• Implication: need large number of threads to hide latency
• Occupancy: typically 128 threads/SM minimum
• Maximum 1024 threads/SM on GT200 (total 1024 * 24 = 24,576 threads)

• Strategy: Single Instruction Multiple Thread (SIMT)

SIMT Thread Execution
• Group 32 threads (vertices, pixels or primitives)

into warps
• Threads in warp execute same instruction at a time
• Shared instruction fetch/dispatch
• Hardware automatically handles divergence

(branches)

• Warps are the primitive unit of scheduling
• Pick 1 of 24 warps for each instruction slot

• SIMT execution is an implementation choice
• Shared control logic leaves more space for ALUs
• Largely invisible to programmer

TPC

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Shader Branching Performance

• G8x/G9x/GT200 branch
efficiency is 32 threads
(1 warp)

• If threads diverge, both
sides of branch will execute
on all 32

• More efficient compared to
architecture with branch
efficiency of 48 threads

PS Branching Efficiency

0% 20% 40% 60% 80% 100% 120%

2

4

6

8

10

12

14

16

nu
m

be
r o

f c
oh

er
en

t 4
x4

 ti
le

s

G80 – 32 pixel coherence
48 pixel coherence

Conclusion:
G80 and GT200 Streaming Processor Architecture
• Execute in blocks can maximally exploits data parallelism

• Minimize incoherent memory access
• Adding more ALU yields better performance

• Performs data processing in SIMT fashion
• Group 32 threads into warps
• Threads in warp execute same instruction at a time

• Thread scheduling is automatically handled by hardware
• Context switching is free (every cycle)
• Transparent scalability. Easy for programming

• Memory latency is covered by large number of in-flight threads
• Cache is mainly used for read-only memory access (texture, constants).

Stream Processing for Graphics

DX10 Graphics Pipeline (Logical View)

FramebufferFramebuffer

Vertex Vertex
AssemblyAssemblyCPUCPU

GPUGPU

BlendingBlendingRasterizerRasterizer
Vertex Vertex
ShaderShader
Vertex Vertex
ShaderShader
Vertex Vertex
ShaderShader
Vertex Vertex
ShaderShader

Vertex Vertex
ShaderShader
Vertex Vertex
ShaderShader
Vertex Vertex
ShaderShader

GeometryGeometry
ShaderShader

TextureTexture

Vertex Vertex
ShaderShader
Vertex Vertex
ShaderShader
Vertex Vertex
ShaderShader
Pixel Pixel

ShaderShader

DX10 API Mapped To GPU

FB TEXTURE

PS

IA VS

SETUP

RASTERIZER

ROP

SHADERGEOM

SO

Vertex Shading Path
Geometry Shading Path
Pixel Shading Path

Unified Shading Units

GS

FB

A-B
C

I

D, J

G E

F

H H

A. Front End
B. Index and Vertex Input
C. Topology and Viewport Process
D. Z-Cull
E. Texture Fetch

F. Depth Test, Alpha-Blending, AA
G. Shader Cores
H. Frame Buffer Controller
I. Primitive Setup
J. Rasterization

Fixed Function Units

Texturing
• G80

• Every 2 SMs connect to a TMU (Texture Mapping
Unit)

• 8 TMUs in total
• GT200

• Every 3 SMs connect to a TMU
• 10 TMUs in total

• Each TMU contains 4 TA (Texture
Addressing) and 8 TF (Texture Filtering)
• TA:TF = 1:2, allowing full-speed FP16 bilinear

filtering and free 2xAF L2

SP SP

L1

TF

TF

TA TA TA TA

TF TF TF TF

TFTFTF

Decoupled shader & texture pipelines

• G7x Architecture

• G8x and later Architecture

• Cover texture latency with thousands of threads in flight

Math A
Tex

Math A
Tex

Math A
Tex

Math A
Tex
Math A

Tex
Math A

Tex

Texture Filtering Quality
16xAF, 7900GTX vs. 8800GTX

NVIDIA 8800 GTX and afterNVIDIA 7900 GTX

Detail of a single ROP pixel pipeline
Input Shaded

Fragment Data

• INT8, FP16 & FP32 formats Support

• Up to 16x Multisampling

• AA with HDR

• Color & Z Compression (2x)

• Multiple Render Targets (8)

Pixel X-Bar Interconnect

MSAA
CSAA

Z Comp

Z ROP

C Comp

C ROP

Input Shaded
Fragment Data

Frame Buffer
Partition

ROP Unit in GPU: Early Z

• Z-Buffer removes pixels not
visible

• Z-Culling removes regions of
non-visible pixels @ high rate

• Early-Z removes individual
pixel quads (2x2) before they
are processed

Shader
Texture

Memory

Z-Cull
Early-Z

Z-Check
Pixel
Killed

Pixel
Killed

Next Generation Antialiasing
• High Quality AA with incredible performance
• Highest Quality AA
• AA with HDR
• Coverage Sampling AA (CSAA)

3DMark05 – Futuremark

Review: Aliased Rendering

• Only one sample per pixel
• Coverage, Color, Depth and Stencil

• Precisely evaluated, but under-sampled

Anti-Aliasing Fundamentals

• Pixels in an image need to represent finite areas from the scene
description, not just infinitely small sample points

• Ideal anti-aliasing would be a smooth convolution over the
pixel area
• Too expensive for general scenes

• So we approximate by taking many samples

• The more samples the better

Anti-Aliasing

• Anti-aliasing properly accounts for the contribution of all
the primitives that intersect a pixel

Supersampling

• Store a color and depth value for each
sub-sample at every pixel. Calculate unique color and depth
values at every sub-sample for every pixel of every drawn
triangle

• Strengths
• Robust image quality by brute force

• Weaknesses
• Inefficient: Expensive pixel shaders and texture fetches are executed for

every sub-sample; wasteful because color results within a pixel are
nearly identical

Multisampling (SGI, 1993)

• Store a unique color and depth value for each sub-sample for
each pixel, but re-use one calculated color for all color sub-
samples for a polygon

• Strengths
• Only one color value calculated per pixel per triangle
• Z and stencil evaluated precisely; interpenetrations and bulkheads

handled correctly
• Weaknesses

• Memory footprint N times larger than 1x
• Expensive to extend to 8x quality and beyond

Motivation for CSAA

• Multisampling evolved from 1 → 2 → 4 samples
• Beyond 4 sub-samples, storage cost increases faster than the

image quality improves
• Even more true with HDR

• 64b and 128b per color sub-sample!

• For the vast majority of edge pixels, 2 colors
are enough
• What matters is more detailed coverage information

Coverage Sampled Antialiasing

• Compute and store boolean coverage at
16 sub-samples

• Compress the redundant color and depth/stencil information
into the memory footprint and bandwidth of 4 or 8 multisamples

• Performance of 4xMSAA with 16x quality

CSAA Quality Levels

Quality Level: 4x 8x 8xQ 16x 16xQ

Texture/Shader
Samples 1 1 1 1 1

Stored Color/Z
Samples 4 4 8 4 8

Coverage Samples 4 8 8 16 16

Half Life 2

NVIDIA 4x NVIDIA 16xQ Half Life 2 – Valve Software

Shadow Edges in FEAR

FEAR - Monolith

FEAR 4x

FEAR - Monolith

FEAR 16x

Higher Quality Object Edges
FEAR - Monolith

Summary of CSAA Advantages

• Only need to traverse the scene once
• Small, fixed video memory footprint
• Handles inter-penetrating objects
• Pixel shaders are only run where color detail is needed
• 16x stored positional coverage

• 16x quality for ~4x performance

GPU beyond Graphics

© NVIDIA Corporation 2008

A scalable parallel programming model and software
environment for parallel computing

Minimal extensions to familiar C/C++ environment

Heterogeneous serial-parallel programming model

© NVIDIA Corporation 2008

The Democratization of Parallel Computing

GPUs and CUDA bring parallel computing to the masses
Over 100M CUDA-capable GPUs sold to date
60K CUDA developers
A “developer kit” (i.e. GPU) costs ~$200 (for 500 GFLOPS)

Data-parallel supercomputers are everywhere!
CUDA makes this power accessible
We’re already seeing innovations in data-parallel computing

Massively parallel computing has become a commodity technology!

More about CUDA at Seminar
“Parallel Computing with CUDA”

Questions?

	An Introduction to�Modern GPU Architecture�Ashu Rege�Director of Developer Technology
	Agenda
	Evolution of GPUs
	Evolution of GPUs�(1995-1999)
	Evolution of GPUs�(Fixed Function)
	NV10 – Register Combiners
	Evolution of GPUs�(Shader Model 1.0)
	Evolution of GPUs�(Shader Model 2.0)
	Evolution of GPUs�(Shader Model 3.0)
	Far Cry – No HDR/HDR Comparison
	Evolution of GPUs�(Shader Model 4.0)
	What Is Behind This Computing Revolution?
	Unified Scalar Shader Architecture
	Graphics Pipelines For Last 20 Years�Processor per function
	Shaders in Direct3D
	Unified Pipeline
	Why Unify?
	Why Unify?
	Why Scalar Instruction Shader (1)
	Why Scalar Instruction Shader (2)
	Complex Shader Performance on Scalar Arch.�Procedural Perlin Noise Fire
	Conclusion
	Stream Processing
	The Supercomputing Revolution (1)
	The Supercomputing Revolution (2)
	What Accounts For This Difference?
	Latency and Throughput
	Latency (1)
	Latency (2)
	CPU versus GPU Transistor Allocation
	Managing Threads On A GPU
	Data Parallel Problems
	Parallelism in CPUs v. GPUs
	Stream Processing
	To Summarize
	G80 and GT200 Streaming Processor Architecture
	Building a Programmable GPU
	Inside a Stream Multiprocessor (SM)
	Multiprocessor Programming Model
	Memory Hierarchy of G80 and GT200
	Performance Per Millimeter
	SIMT Thread Execution
	Shader Branching Performance
	Conclusion:�G80 and GT200 Streaming Processor Architecture
	Stream Processing for Graphics
	DX10 Graphics Pipeline (Logical View)
	DX10 API Mapped To GPU
	Texturing
	Decoupled shader & texture pipelines
	Texture Filtering Quality�16xAF, 7900GTX vs. 8800GTX
	Detail of a single ROP pixel pipeline
	ROP Unit in GPU: Early Z
	Next Generation Antialiasing
	Review: Aliased Rendering
	Anti-Aliasing Fundamentals
	Anti-Aliasing
	Supersampling
	Multisampling (SGI, 1993)
	Motivation for CSAA
	Coverage Sampled Antialiasing
	CSAA Quality Levels
	Half Life 2
	Shadow Edges in FEAR
	FEAR 4x
	FEAR 16x
	Summary of CSAA Advantages
	GPU beyond Graphics
	The Democratization of Parallel Computing
	More about CUDA at Seminar�“Parallel Computing with CUDA”
	Questions?

