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Ground GNN with Hyperbolic Geometry

Goal: Supervised learning on entire graphs.

Motivation:
• Graph neural networks can exploit symmetries in graph-structured data, showing promises for the

classification of graphs based on their structural properties.
• Typical properties of complex networks such as heterogeneous degree distributions and strong

clustering can often be explained by assuming an underlying hierarchy, which is well captured in
hyperbolic space (Krioukov et al., 2010).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable
exponential and logarithmic maps.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al.,
2017).

Vanilla GCN:
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2 captures the connectivity of the graph.

We generalize the notion of a graph convolutional network such that the network operates on
Riemannian manifolds and becomes agnostic to the underlying space. Since the tangent space of a
point on Riemannian manifolds always is Euclidean (or a subset of Euclidean space), functions with
trainable parameters are executed there.

HGNN:
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When applying the non-linearity directly on a manifoldM, we need to ensure that its application is
manifold preserving, i.e., that σ :M→M.

Riemannian Manifolds

A Riemannian manifold (M, g) is a real and smooth manifold
equipped with an inner product gx : TxM× TxM → R at each
point x ∈M, which is called a Riemannian metric.

Euclidean Space: The Euclidean manifold is a manifold with zero
curvature.

expx(v) = x + v

logx(y) = y − x
(1)

Poincaré Ball Model: The Poincaré ball model with constant
negative curvature corresponds to the Riemannian manifold (B, gBx ),
where B = {x ∈ Rn : ‖x‖ < 1} is an open unit ball.
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Lorentz Model: The Lorentz model avoids numerical instabilities
that may arise with the Poincare distance (mostly due to the division)
(Nickel et al., 2018).
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Centroid-Based Regression and Classification

We propose an extension of the underlying idea of radial basis function networks (Poggio et al., 1990)
to Riemannian manifolds.

Centroids: A list of centroids C = [c1, c2, ..., c|C|], where each ci ∈M.

Pairwise Distance: ψij = d(ci ,hKj )

Node-level Regression:

ŷ = wT
o (ψ1j , ..., ψ|C|j), (4)

Node-level Classification:

p(yj) = softmax
(
Wo(ψ1j , ..., ψ|C|j)

)
, (5)

Graph-level Prediction: Use average pooling to combine the distances of different nodes,
obtaining (ψ1, ..., ψ|C|), where ψi =

∑|V |
j=1ψij/|V |.

Synthetic Structures

We design a synthetic experiment, aiming to classify synthetically generated graphs according to the
underlying generation algorithm. We choose 3 distinct graph generation algorithms: Erdős-Rényi
(Erdős et al., 1959), Barabási-Albert (Barabási et al., 1999) and Watts-Strogatz (Watts et al., 1998).

Barabási-Albert Watts-Strogatz Erdős-Rényi

Dimensionality

3 5 10 20 256

Euclidean 77.2 ± 0.12 90.0 ± 0.21 90.6 ± 0.17 94.8 ± 0.25 95.3 ± 0.17
Poincare 93.0 ± 0.05 95.6 ± 0.14 95.9 ± 0.14 96.2 ± 0.06 93.7 ± 0.05
Lorentz 94.1 ± 0.03 95.1 ± 0.25 96.4 ± 0.23 96.6 ± 0.22 95.3 ± 0.28

Table 1: F1 (macro) score and standard deviation of classifying synthetically generated graphs according to the underlying
graph generation algorithm (high is good).

Molecular Structures

We use ZINC (Irwin et al., 2012) for molecular property prediction, which has received attention as a
reasonable benchmark for supervised learning on graphs.

logP

3 5 10 20 256

Euclidean 6.7 ± 0.07 4.7 ± 0.03 4.7 ± 0.02 3.6 ± 0.00 3.3 ± 0.00
Poincare 5.7 ± 0.00 4.6 ± 0.03 3.6 ± 0.02 3.2 ± 0.01 3.1 ± 0.01
Lorentz 5.5 ± 0.02 4.5 ± 0.03 3.3 ± 0.03 2.9 ± 0.01 2.4 ± 0.02

QED

3 5 10 20 256

Euclidean 22.4 ± 0.21 15.9 ± 0.14 14.5 ± 0.09 10.2 ± 0.08 6.4 ± 0.06
Poincare 22.1 ± 0.01 14.9 ± 0.13 10.2 ± 0.02 6.9 ± 0.02 6.0 ± 0.04
Lorentz 21.9 ± 0.12 14.3 ± 0.12 8.7 ± 0.04 6.7 ± 0.06 4.7 ± 0.00

SAS

3 5 10 20 256

Euclidean 20.5 ± 0.04 16.8 ± 0.07 14.5 ± 0.11 9.6 ± 0.05 9.2 ± 0.08
Poincare 18.8 ± 0.03 16.1 ± 0.08 12.9 ± 0.04 9.3 ± 0.07 8.6 ± 0.02
Lorentz 18.0 ± 0.15 16.0 ± 0.15 12.5 ± 0.07 9.1 ± 0.08 7.7 ± 0.06

Table 2: Mean absolute error of predicting molecular properties: the water-octanal partition coefficient (logP); qualitative
estimate of drug-likeness (QED); and synthetic accessibility score (SAS). Scaled by 100 for table formatting (low is good).

Molecular Structures

We also compare to three strong baselines on exactly the same data splits of the ZINC dataset:
graph-gated neural networks (GGNN; Li et al., 2016), deep tensor neural networks (DTNN; Schütt
et al., 2017) and message-passing neural networks (MPNN; Gilmer et al., 2017).

logP QED SAS

DTNN (Schütt et al., 2017) 4.0 ± 0.03 8.1 ± 0.04 9.9 ± 0.06
MPNN (Gilmer et al., 2017) 4.1 ± 0.02 8.4 ± 0.05 9.2 ± 0.07
GGNN (Li et al., 2016) 3.2 ± 0.20 6.4 ± 0.20 9.1 ± 0.10

Euclidean 3.3 ± 0.00 6.4 ± 0.06 9.2 ± 0.08
Poincare 3.1 ± 0.01 6.0 ± 0.04 8.6 ± 0.02
Lorentz 2.4 ± 0.02 4.7 ± 0.00 7.7 ± 0.06

Table 3: Mean absolute error of predicting molecular properties logP, QED and SAS, as compared to current
state-of-the-art deep learning methods. Scaled by 100 for table formatting (low is good).

Blockchain Transaction Graphs

We study the problem of predicting price fluctuations for the underlying asset of the Ethereum
blockchain (Wood et al., 2014).

HGNN Bidirectional Extension:
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Dev Test

Node2vec 54.10 ± 1.63 52.44 ± 1.10
ARIMA 54.50 ± 0.16 53.07 ± 0.06

Euclidean 56.15 ± 0.30 53.95 ± 0.20
Poincare 57.03 ± 0.28 54.41 ± 0.24
Lorentz 57.52 ± 0.35 55.51 ± 0.37

“Whale” nodes All nodes

Norm 0.20129 0.33178

Table 4: Accuracy of predicting price fluctations
(up-down) for the Ether/USDT market rate based on graph
dynamics.

Table 5: Average norm of influential “whale” nodes.
Whales are significantly closer to the origin than average,
indicating their importance.

Conclusion

• We proposed a method for generalizing graph neural networks to Riemannian manifolds, making
them agnostic to the underlying space.
• We showed that the proposed architecture successfully made use of its geometrical properties in

order to capture the hierarchical nature of the data.
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