
An O(k log n) algorithm for prefix based ranked

autocomplete

Dhruv Matani

September 2, 2011

Abstract

Many search engines such as Google, Bing & Yahoo! show search
suggestions when users enter search phrases on their interfaces. These
suggestions are meant to assist the user in finding what she wants quickly
and also suggesting common searches that may result in finding informa-
tion that is more relevant. It also serves the purpose of helping the user
if she is not sure of what to search for, but has a vague idea of what it
is that she wants. We present an algorithm that takes time proportional
to O(k logn), and O(n) extra space for providing the user with the top k
ranked suggestions out of a corpus of n possible suggestions based on the
prefix of the query that she has entered so far.

1

Contents

1 What is prefix based ranked phrase auto-complete? 3

2 Where is phrase auto-complete used? 3

3 What are the problems that phrase auto-complete solves? 3

4 Why does auto-complete need to be fast (responsive)? 3

5 Problem Statement 4

6 Existing approaches 4
6.1 Naive approach . 4
6.2 Space intensive approach . 4
6.3 Ternary search trees . 5
6.4 The TASTIER approach . 5

7 Proposed algorithm 6

8 Approximate matching for auto-complete 11
8.1 Using exact prefix-match auto-complete for approximate match

auto-complete . 11

9 Implementation & Performance Tests 12

10 Conclusion 12

2

1 What is prefix based ranked phrase auto-complete?

Given a set of n strings, each having a certain weight, the problem of finding
the set of k heaviest strings each of which have the prefix q is the problem of
prefix based ranked phrase auto-complete.

2 Where is phrase auto-complete used?

Many search engines such as Google, Bing & Yahoo! show search suggestions
when users enter search phrases on their interfaces. These suggestions are meant
to assist the user in finding what she wants quickly and also suggesting common
searches that may result in finding information that is more relevant. It also
serves the purpose of helping the user if she is not sure of what to search for,
but has a vague idea of what it is that she wants.

IMDB uses search suggestions to ensure faster search results since movie
titles are mostly unique after the first few characters of typing. Users that find
it difficult to type or users on mobile devices with constrained input methods
can get to their results much faster because of auto-complete.

3 What are the problems that phrase auto-complete
solves?

Many a times, the user can think of many keywords or phrases that can be used
to describe the concept or idea that is being searched for. Such descriptions
generally use similar meaning words. Users don’t know in advance what vocab-
ulary most of the literature or prior work in that field uses. Hence, they have
to painstakingly try each combination of keywords till they fine what they are
looking for.

For example, when a user is searching for auto complete, it could actually be
referred to by articles online as either autocomplete, or auto suggest, or search
suggestions, or find as you type. The user would have to try all of them be-
fore settling on the one that returns the most relevant results. If most of the
alternatives, 3 in this case, have the same prefix, then the user could just start
typing, and the system could suggest possible completions as new characters
are entered. This greatly reduces the trial & error that the user has to perform.
Furthermore, many users aren’t even aware of entering different search terms.
With a high probability, these users will not find what they are looking for.

4 Why does auto-complete need to be fast (re-
sponsive)?

The average typing speed (while composing text) is 19 words per minute[9]. The
average word length in the English language is about 9 characters[8]. Combining

3

the two, we notice that the average time for typing a single character is 351ms.
Accounting for a network round-trip time of 200ms[7, 5], and client processing
time of 100ms, we have only about 50ms left to do the processing at our end.
The auto complete application needs to return a list of suggestions within 50ms
for it to be useful to the user. It needs to do this for potentially every keystroke
typed in by the user (there are optimizations we can do at the user interface
layer, but we won’t discuss them here).

5 Problem Statement

Given a list of n phrases, along with a weight for each phrase and a query prefix
q, determine the k heaviest phrases that have q as their prefix. We assume
the average phrase length to be constant and shall not account for it in the
complexity calculations.

6 Existing approaches

We discuss three existing approaches used by various applications to provide
search suggestion for a find as you type experience on their web pages.

6.1 Naive approach

The naive approach involves pre-processing the input (n phrases) by sorting
them in lexicographical order. Binary Search is then used to locate the beginning
and end of the candidate list of phrases. Each phrase in this candidate list cl
has q as its prefix.

Now, all the terms in the candidate list cl are sorted in non-increasing order
by weight and the top k are selected for projection.

This requires O(logn) for the binary search and O(cl log cl) for sorting the
candidate list. This approach also requires extra space proportional to O(cl)
for storing the candidate list cl before sorting. The total complexity of this
approach is O(log n) + O(cl log cl).

We can see that if the query prefix q is short or matches many phrases,
then the candidate list cl will be large and the latter factor will dominate the
complexity. We ideally want an algorithm that is not input-sensitive.

A slight variation on the above technique would be to notice that k is gen-
erally quite small (around 16), so fetching the top 16 candidates from the can-
didate list of size cl will cost only O(k.cl) which is faster than what we have
before. This brings our runtime down to O(log n) +O(k.cl). However, it is still
input-sensitive and that is undesirable.

6.2 Space intensive approach

We could maintain a lexicographically sorted list of all possible phrase prefixes,
with all the entries with the same prefix sorted by weight. This implies sorting

4

by two keys, namely prefix, weight. A lookup is as simple as performing a binary
search to locate the first occurrence of the query q and reading off the next k
entries, as long as they have the same value as the query q, since they are already
sorted by weight.

This technique uses extra space that is proportional to O(string length) for
each phrase in the initial set of n phrases. This means that extra space to the
order of O(n.string length/2), which roughly translates to 15n in our case, is
needed. We can not ignore the constant factor here since it is very significant.
For an initial corpus of 5GB (17 million phrases of length 30 characters each),
we would land up using extra space proportional to 75GB in our case.

The runtime complexity for the pre-processing step is O(15n) and the run-
time complexity for querying is O(k log n).

This approach is attractive for small data sets, but starts getting very costly
in terms of memory requirements for larger data sets.

This approach is used by the redis data structure store for providing auto-
complete facilities[2].

6.3 Ternary search trees

We can optimize the previous approach for space by using a trie data structure
instead of duplicating each prefix of a phrase every time we encounter it. This
gives rise to the ternary tree data structure. We need to decide in advance what
the maximum value of k is that we would like to support since this method
involves pre-computing a list of the k heaviest completions for a given prefix
and storing them at that node. Since the actual completions can be stored
elsewhere, we incur a penalty for storing k pointers to phrases at every ternary
tree node, and not a penalty for the k complete phrases. We also incur a penalty
for unused trie-nodes at every step (in the implementation that trades space for
speed).

We can compute the extra space required by assuming that we would need
an average of 10 pointers (and not 16) at every ternary tree node. Since the
ternary tree structure is highly input dependent, we can’t really perform an
estimation here. We abandon this approach since it is highly input dependant
and can degenerate to requiring a lot of space.

6.4 The TASTIER approach

Researchers from Tsinghua University and The University of California, Irvine
have implemented a system for predicting user input and performing an auto-
complete based on partial input from the user[4]. Their technique differs from
other (and the one presented here) in that it treats the query as a set of keywords,
and support prediction of any combination of keywords that may not be close
to each other in the data. Other techniques (and the one presented here) do
prediction using sequential data to construct their model, therefore they can
only predict a word or phrase that matches sequentially with underlying data
(e.g., phrases or sentences).

5

However, their technique relies on:

• Maintaining the previous result set for a past query from the user. This
increases memory costs on the server and leads to increased memory pres-
sure when serving many concurrent users

• Performing a union of potentially many candidate lists (which is time
consuming)

On a corpus of 1 million entries, their system is able to answer 1 query per
20 ms. The result set size here is 10. This means that their system can handle
at best 50 qps, which is too low for search-engine traffic.

7 Proposed algorithm

We present an algorithm that takes time proportional to O(k log n), and O(n)
extra space for providing the user with the top k ranked suggestions out of a
corpus of n possible suggestions based on the prefix of the query that she has
entered so far.

This algorithm requires us to maintain the set of phrases in a sorted array
(Figure 1) so that we can binary search over it using our query prefix q.

Figure 1: The sorted array of all completion phrases

We additionally also maintain a Segment Tree[6] (Figure 2) (which is nothing
but an Interval Tree) that stores the maximum weight of the interval at every
node. In the referenced figure, each leaf node shows the word that the node
represents, though the word is actually not stored at that node. Instead, the
number in parenthesis is stored in the node, and it denotes the weight of the
phrase that the node is associated with. Each internal node shows a range
(in square brackets) denoting the lower and upper indexes (both inclusive) in
the sorted word array that this internal node represents. Each internal node
stores the maximum weight of the nodes in the range. This weight is shown in
parenthesis in the diagram.

While querying, we maintain an ephemeral max-heap (or max-priority queue)
of ranges that contain the maximum weighted candidate phrases. The nodes of
this max-heap are keyed by the maximum weight of phrases stored by the range
of indexes that the node represents. For example, if the node represents range
[0–20] and its key is 45, it means that the heaviest phrase in the range [0–20] has
a weight of 45. We always start by entering a single element representing the
entire range of interest into the max-heap and then spliting the range containing
the heaviest phrase at every step.

For the example shown in Figure 3, we show the first step in the series of
operations performed on the Segment Tree while searching for the top 4 phrases

6

Figure 2: The Segment Tree keyed by phrase frequency, shown in parenthesis
after each word. The internal nodes are of the format [range](maximum key in
subtree)

that begin with the string b in the set shown in Figure 1. The search starts
by inserting the entire range of indices that contain the candidate words ([0-9]
in this case) into the max-heap. The top of the max-heap is then popped and
the index of the highest phrase in that range is selected. We see that the word
bacon with the weight 18 is selected and a split at the index 8 gives rise to 2
ranges, [0-7] & [9-9]. These are inserted into the max-heap and the procedure
is repeated. Figures 4, 5, & 6 show the action of the algorithm on the sample
data set.

Figure 3: Search for the maximum weighted phrase in the range [0–9]. The
green arrows show the paths taken and the red arrows show the paths not taken

7

Figure 4: Search for the maximum weighted phrase in the range [0–7]. The
green arrows show the paths taken and the red arrows show the paths not taken

Figure 5: Search for the maximum weighted phrase in the range [0–6]. The blue
arrows show the paths and branches taken. With the help of the blue arrows,
we are able to trace the complete path of the query to the leaf nodes. The blue
boses indicate the nodes where the query for the maximum weighted node will
be restarted.

8

Figure 6: Search for the maximum weighted phrase in the range [0–3]. The green
arrows show the paths taken and the red arrows show the paths not taken.

9

Figure 7 shows the contents of the max-heap at every step of the process of
extracting the top 4 phrases having the prefix b. The left column indicates the
state of the priority queue (a max heap) at every stage and the right column
indicates the output produced (phrase) at every stage along with the index and
weight (score) of that phrase. The output is generated in non-increasing order
of weight.

Figure 7:

10

8 Approximate matching for auto-complete

Researchers from Tsinghua University and The University of California, Irvine
have implemented a system for performing a fuzzy keyword match between the
user input and the indexed corpus[3]. Their technique relies on creating multiple
keyword candidate lists per keyword entered and intersecting them to produce
the output. They optimize this process by maintaining cached result sets for
previous input by the same user so that they can just trim these lists when a
new character is added.

On a data set with 1 million entries, their technique takes up to 5ms for
finding up to 10 results having prefixes of length 3 (3 characters in length).
This case is sure to be hit because users start off by typing at least 2 − 3
characters of their query before hoping for relevant suggestions. In the worst
case, this system can handle a load of 200 qps. For longer prefixes (i.e. upwards
of 6 characters in length), the query time drops shapply to below 0.1ms, which
enables them to answer about 10, 000 qps. The responsiveness of our technique
on the other hand is independent of the number of characters entered by the
user and depends only on the corpus size. Hence, it’s responsiveness is much
more predictable, which is desirable in a production environment.

8.1 Using exact prefix-match auto-complete for approxi-
mate match auto-complete

If we pre-process the data and queries in some specific manner, we can use
the exact-match auto-complete implementation to perform approximate match
auto-complete1. This can be accomplished by performing one or more of the
following transformations on the phrases in the corpus as well as the query
string. The transformations must be performed in the same order as given
below:

• Remove all stop-words such as a, the, have, has, of, etc . . .

• Remove all punctuation marks, vowels, and white-spaces from the phrase

• (optionally) Convert all consonants to their numeric equivalents according
to the transformations mentioned in the Soundex Algorithm2

• Collapse all repetitive runs of characters (or numbers) into a single char-
acter (or number). e.g. rttjdddl becomes rtjdl

Now, these transformations are stored as the phrase in the auto-complete
index. The original (untransformed) phrase is stored against the transformed
phrase so that once the lookup is done, the original phrase may be returned.

1This need not be an approximate prefix-match auto-complete depending on how we pre-
process the data

2US patent 1261167, R. C. Russell, issued 1918-04-02 & US patent 1435663, R. C. Russell,
issued 1922-11-14

11

When we query the auto-complete index, we perform the same transform on
the query string and find those strings that share a prefix with the query string.

In practice, we can index phrases at every stage of the transformations and
take the union of the result set after querying each index for the corresponding
query string.

9 Implementation & Performance Tests

The idea mentioned above has been implemented in an application called lib-
face3. lib-face is written in the C++ programming language and uses the mon-
goose web-server4 to serve requests. Once you load the corpus into lib-face, you
can query the highest weighted phrase that has a certain prefix by sending an
HTTP request to it.

Here are the results of a test run on an Amazon EC2 instance:

Operating System Ubuntu 10.04
Data Set Size (number of entries) 14,000,000
Data Set Size (bytes) 312MiB
Result set size 32
Queries Per Second 6,800
Memory (Resident Size) 1,540MiB

Notes:

1. Not all of the 1,540MiB of resident memory is used since C++’s std::vector
uses a doubling strategy to grow, which results in half the memory being
actually unused.

2. There are CPU and network overheads when running an application on a
virtual machine v/s on real hardware. We think it’s best to benchmark
on a VM rather than real hardware since that seems to be a very common
deployment paradigm these days. Comparing with benchmarks running
on real-hardware would be unfair

3. All our benchmarks are done assuming a result set size of 32 whereas other
groups have assumed a result set size of 10. This will invariably reduce
the number of queries per second that we can answer.

10 Conclusion

The Segment Tree method we described above is used essentially for perform-
ing a range-max query over a certain set of phrase weights. There is another

3Available for download at https://code.google.com/p/lib-face/
4mongoose is an in-process HTTP web-server available for download at http://code.

google.com/p/mongoose/

12

method[1] of performing range-max queries which has a runtime cost of O(1)
rather than O(log n) per query. If this method is used, we can reduce the run-
time cost of our method further from O(k log n) to O(k log k).

If we use a suffix array to represent all the phrases in our corpus, we can
perform a match of the query with a prefix of every suffix of each phrase in
the corpus. This makes our searches even more robus without significantly
increasing our pre-processing or query time. However, we would now need to
store an entry for every starting position of a string in the suffix array in in
our RQM data structure. This would increase the size of the Segment Tree to
O(nk), where k is the average length of a phrase in our corpus. This will also
have an effect on the query time, taking it up to O(log nk) from O(log n).

13

References

[1] Michael A.Bender and Martin Farach-Colton, The lca problem revisited,
Springer-Verlag (2000), 88–94.

[2] Antirez, Redis autocomplete, http://antirez.com/post/autocomplete-with-redis.html.

[3] Shengyue Ji, Shengyue Ji, Chen Li, and Jianhua Feng, Efficient interactive
fuzzy keyword search, ACM (2009).

[4] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng, Efficient type-ahead
search on relational data: a tastier approach, SIGMOD (2009).

[5] W. Naylor and H. Opderbeck, Rfc619, 1974,
http://www.faqs.org/rfcs/rfc619.html.

[6] Segment tree, http://en.wikipedia.org/wiki/Segment tree.

[7] Phillipa Sessini and Anirban Mahanti, Observations on round-trip times of
tcp connections.

[8] Petr Sojka, Notes on compound word hyphenation in tex, TUGboat 16
(1995), no. 3, 290–296.

[9] Words per minute, http://en.wikipedia.org/wiki/Words per minute#Alphanumeric entry.

14

