
VTK Classes for DICOM Data
Release 0.7.3

David G. Gobbi1,2

January 16, 2016
1Department of Radiology, University of Calgary, Calgary, Canada

2Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, Canada
david.gobbi@gmail.com

Abstract

This document describes a library of C++ classes for using DICOM files with VTK. These classes
provide easy and complete access to the pixel data and to the meta data, and provide correct orienta-
tion and geometrical representation of the images within VTK. Multi-dimensional image volumes are
supported, up to a maximum of five dimensions.

VTK Classes for DICOM Data 2

Contents

1 Introduction 3

2 Meta Data and Pixel Data 3
2.1 Tag . 3
2.2 VR (Value Representation) . 4
2.3 Value . 4
2.4 Accessing meta data . 8
2.5 Iterating over data elements . 9
2.6 Dictionaries . 9
2.7 Private meta data . 10
2.8 Enhanced multi-frame data . 11

3 Reading DICOM Files into VTK 12
3.1 Sorting files into a series . 12
3.2 Reading a series of files as a VTK image . 13
3.3 Enhanced multi-frame and multi-stack files . 14
3.4 DICOM image orientation . 15
3.5 Obtaining per-slice meta data . 16
3.6 Obtaining per-component meta data . 16
3.7 Real-world values and lookup tables . 18

4 Writing DICOM Files 19
4.1 Conforming to the standard . 19
4.2 Writing a VTK image as DICOM . 20
4.3 Customizing the generators . 21
4.4 Writing a raw pixel buffer to a DICOM file . 21

5 Locating DICOM Files 22
5.1 Reading from a DICOM file set . 22
5.2 Searching for files that match a query . 23

6 Future Work 23

Appendix A: Enabling the vtkDICOM module in VTK 24

Appendix B: Building a stand-alone vtkDICOM library 24

VTK Classes for DICOM Data 3

1 Introduction

If you are reading this, then you have some knowledge of what DICOM is, and have a need to use DICOM
with VTK. You might have been unsatisfied with the vtkDICOMImageReader that comes with VTK, since
there are many DICOM files that it cannot read, or you might have the need to write DICOM files, which
VTK by itself cannot do. You might have tried the VTK reader and writer that come with GDCM, but found
that they make it difficult to access the DICOM meta data from within your VTK programs. Read onwards
to see if vtk-dicom might satisfy your needs.

The purpose of vtk-dicom is to provide a set of core classes to enable DICOM data access through VTK. It is
currently limited to DICOM files, and provides no network functionality and cannot directly communicate
with a PACS. Nor does it provide any of its own GUI components. The sole intent of these classes is to read
and write DICOM files with full fidelity and to provide easy access to all of the data contained in the files.

2 Meta Data and Pixel Data

This document makes frequent references to “meta data,” even though this term is not used in the DICOM
standard. The meta data is any information in a data set (for our purposes, a DICOM file) apart from the
pixels themselves. To better support this distinction, the vtkDICOMMetaData class holds only the meta
data, while the pixel values are stored in a vtkImageData object.

All attributes of a DICOM data set are stored as an ordered series of data elements, where each data element
consists of a 32-bit key called a tag along with an attached value consisting of zero or more bytes (always
an even number of bytes). The structure of a data element is shown in Fig. 1. In the vtkDICOMMetaData
class, an efficient mapping of tags to values is provided via a hash table.

If you are familiar with the structure of DICOM data elements, then you can safely skip everything the next
two sections except for the code samples.

2.1 Tag

Each attribute in the DICOM meta data is identified by a 32-bit tag that is written in hexadecimal as a four-
digit group number followed by a four-digit element number. For example, (0008,103E) is the tag for the
DICOM “Series Description” data element. Each tag that uses an even group number has a strict definition
within the DICOM public standard, while tags that use an odd group number are defined within the internal
standards of one of the many medical device manufacturers. The latter are often called private tags because
the manufacturers are not required to reveal their definition to the public. All non-private tags, however, are
described in parts 3 and 6 of the DICOM standard [1].

Group Element
VR VL Array of numbers or characters

Tag Value

Number Number

Figure 1: A DICOM DataElement.

VTK Classes for DICOM Data 4

// Construct a tag with default value (0x0000,0x0000).
vtkDICOMTag tag;

// Two ways to create a tag.
tag = vtkDICOMTag(0x0028 , 0x0030);
tag = vtkDICOMTag(DC::PixelSpacing);

// Get the group or element from a tag.
unsigned short group = tag.GetGroup();
unsigned short element = tag.GetElement();

2.2 VR (Value Representation)

Each DICOM data element has a two-character VR code that specifies the type and format of the associated
value. Table 1 provides a full list of the VRs that exist within the DICOM standard. VRs specify either a
text or binary format, and most text VR formats use backslash as a value separator. For example an element
with VR of CS and contents of “ORIGINAL\PRIMARY” is said to contain two string values, “ORIGINAL” and
“PRIMARY”. Notable exceptions to this backslash-as-separator rule are the ST, LT, and UT VRs; these are
intended to be used to store one or more paragraphs of free-form text in which a backslash is interpreted as
a backslash and not a separator. Within these VRs, line breaks between the paragraphs should be indicated
with CR NL (a carriage return followed by a newline), never by NL on its own. In comparison, the SH and
LO text VRs are meant for short single-line blocks of text and do not allow CR or NL at all. Furthermore,
leading and trailing spaces in single-line text VRs are not significant and should be removed before the value
is used in an application.

// Construct a VR with an invalid initial value.
vtkDICOMVR vr;

// Two ways to create a VR.
vr = vtkDICOMVR("CS");
vr = vtkDICOMVR(vtkDICOMVR::CS);

// Get information about the VR.
const char *name = vr.GetText();
bool isText = (vr.GetType() == VTK_CHAR);

2.3 Value

The value within a DICOM data element can actually be an array of values. The allowed number of items in
the array is called the value multiplicity or VM. For most attribute values defined in the DICOM standard,
the VM is one. As stated in the previous section, text values are separated by backslashes, e.g. “1.000\2.000”
while binary values such as FL (float) and FD (double) are stored as an array of their native type.

The vtkDICOMValue class provides automatic conversion between numeric values stored as text, and the
native C++ numeric types. So if a number is stored in text as 512 you can retrieve it as an int, unsigned
int, or double. And likewise, if a value is stored as short or float, you can retrieve it as a text string. If the
conversion is impossible, then the result will be an empty string (if attempting to convert to a string) or zero
(if attempting to convert to a C++ numerical type).

VTK Classes for DICOM Data 5

Table 1: List of DICOM Value Representations (VRs).
VR VR Name Format Example Type Length
AE Application Entity (see notes 1,2,3) MyLabNode01 char 16 bytes max
AS Age String nnnY (or D,W,M) 038Y char 4 bytes fixed
AT Attribute Tag binary tag 4 bytes fixed
CS Code String (see note 5) ORIGINAL char 16 bytes max
DA Date YYYYMMDD 20130604 char 8 bytes fixed
DS Decimal String +/-, 0-9, E/e and . 10.2 char 16 bytes max
DT Date Time (see note 6) 20130604160259 char 26 bytes max
FL Float binary float 4 bytes fixed
FD Float (Double) binary double 8 bytes fixed
IS Integer String +/-, 0-9 15 char 12 bytes max
LO Long String (see notes 1,2,4) char 64 bytes max
LT Long Text (see note 1) char 10240 bytes max
OB Other Bytes binary unsigned char unlimited
OD Other Doubles binary double 232−8 bytes max
OF Other Floats binary float 232−4 bytes max
OL Other Long binary int 232−4 bytes max
OW Other Words binary short 232−2 bytes max
PN Person Name (see notes 1,2,4) DoeˆJohn char 64 bytes max
SH Short String (see notes 1,2,4) char 16 bytes max
SL Signed Long binary int 4 bytes fixed
SQ Sequence binary item unlimited
SS Signed Short binary short 2 bytes fixed
ST Short Text (see note 1) char 1024 bytes max
TM Time HHMMSS[.FF...] 160259.569834 char 16 bytes max
UC Unlimited Characters (see notes 1,2,4) char 232−2 bytes max
UI Unique Identifier 0-9, . (see note 7) 1.234.2345 char 64 bytes max
UL Unsigned Long binary unsigned int 4 bytes fixed
UN Unknown binary unlimited
UR URI or URL (see note 8) char 232−2 bytes max
US Unsigned Short binary unsigned short 2 bytes fixed
UT Unlimited Text (see note 1) char 232−2 bytes max

1. The default character repertoire for DICOM includes all printing characters in ASCII but no control characters except for
CR, NL, FF, and ESC. A new line should always be indicated by CR NL, rather than NL alone. Other character repertoires
may only be used if the Specific Character Set (0008,0005) attribute is set for the DICOM data set, and even then the use of
the new repertoire is limited to the SH, LO, PN, ST, LT, and UT VRs.

2. Backslash (\) is a value separator, and is not permitted in text VRs that allow multiple data values.

3. This VR does not permit any of the control characters CR, NL, FF, or ESC.

4. This VR does not permit CR, NL, or FF, but it does permit ESC.

5. This VR only permits A-Z, 0-9, underscore, and space. Leading/trailing spaces should be ignored if present.

6. The full DT format is YYYYMMDDHHMMSS.FFFFFF+ZZXX where .FFFFFF optionally gives a fraction of a second
(up to 6 digits), and +ZZXX (or -ZZXX) optionally gives an offset in hours and minutes from UTC.

7. If the number of bytes in an element containing Unique Identifiers would be odd, it will be padded to even with a null byte.

8. This VR is restricted to characters allowed in URLs (see RFC 3986). Trailing space must be ignored if present.

VTK Classes for DICOM Data 6

Table 2: The default DICOM character repertoire.
00–0F 10–1F 20-2F 30–3F 40–4F 50-5F 60–6F 70–7F

SP 0 @ P ‘ p
! 1 A Q a q
" 2 B R b r
3 C S c s
$ 4 D T d t
% 5 E U e u
& 6 F V f v
’ 7 G W g w
(8 H X h x
) 9 I Y i y

NL * : J Z j z
ESC + ; K [k {

FF , < L \ l |
CR - = M] m }

. > N ˆ n ˜
/ ? O _ o

// Create an empty, typeless value.
vtkDICOMValue v;

// Get a value from the meta data.
v = metaData ->GetAttributeValue(DC::PixeSpacing);

// Result is valid only if the attribute was present in the meta data.
if (!v.IsValid())

{
// Attribute not found!
// You can also use metaData->HasAttribute(DC::PixelSpacing).
}

// Verify that the correct number of items are present.
// The NumberOfValues is zero if v is invalid.
if (v.GetNumberOfValues() == 2)

{
// The Get methods use assert() for range checking, so be careful!
// Always check GetNumberOfValues() before calling these methods.
double xs = v.GetDouble(0);
double ys = v.GetDouble(1);
}

// Get an array of values from the meta data.
v = metaData ->GetAttributeValue(DC::ImagePositionPatient);
double position[3] = { 0.0, 0.0, 0.0 };
if (v.GetNumberOfValues() == 3)

{
v.GetValues(position , 3);
}

VTK Classes for DICOM Data 7

// Get values that have a VM of 1 (preferred method).
std::string name = metaData ->GetAttributeValue(DC::Modality).AsString();
int rows = metaData ->GetAttributeValue(DC::Rows).AsInt();

// Get pointer to a native C array (less safe, but very efficient).
// For text VRs, a null-terminated string is always returned. The text
// might be padded with trailing spaces to make an even number of bytes!
// The only exception is UIDs, which are never padded with spaces.
vtkDICOMValue v = metaData ->GetAttributeValue(DC::StudyInstanceUID);
const char *uid = v.GetCharData();
if (uid != 0)

{
// Use the pointer only if the returned value isn’t NULL!
// Also remember that the pointer becomes invalid when the value destructs.
// Maybe you should use the safer v.AsString() method instead!
}

// Get a value that holds a tag pointer to another value.
vtkDICOMTag tag = metaData ->GetAttributeValue(DC::FrameIncrementPointer).AsTag();
if (tag != vtkDICOMTag(0,0)) // make sure tag isn’t zero

{
v = metaData ->GetAttributeValue(tag);
// do something with the referenced value
}

Values also provide powerful matching methods, that allow you to check:

1. if a text value matches a wildcard pattern containing “*” or “?”.

2. if a date or time falls within a range specified with “-”.

3. if a value contains a given code string (VR of CS).

4. if a value is equal to a given numerical value.

5. if a UID is one of a series of specified UIDs.

The vtkDICOMValue Matches() method is better than comparing with “==” because it automatically ignores
any value padding and handles values with multiplicity greater than one. Furthermore, person names will
be compared in a case-insensitive “compatibility mode”.

// Check if a series of code strings contains a value.
v = vtkDICOMValue(vtkDICOMVR::CS, "ORIGINAL\\PRIMARY");
if (v.Matches("PRIMARY")) { /* true! */ }

// Check against a range of dates (inclusive).
v = vtkDICOMValue(vtkDICOMVR::DA, "20050115");
if (v.Matches("200501")) { /* true! */ }
if (v.Matches("20050101 -20050631")) { /* true! */ }

// Check against a wildcard pattern.
v = vtkDICOMValue(vtkDICOMVR::LO, "OAx-T1w-SPGR");
if (v.Matches("*T1*")) { /* true! */ }

VTK Classes for DICOM Data 8

2.4 Accessing meta data

The meta data can be loaded from a DICOM file in two ways: either via the vtkDICOMReader class (which
also reads the image data), or via the vtkDICOMParser class (which reads only the meta data). Both of these
classes are designed to read a full series of DICOM files. To support this, the vtkDICOMMetaData object
stores data for all files in the series, and its GetAttributeValue() method accepts a file index as a parameter.
The index is in the range [0, n−1] for a series of n files.

// Get meta data from a vtkDICOMReader
reader ->UpdateInformation();
vtkDICOMMetaData *meta = reader ->GetMetaData();

// Check if an attribute exists, and get it for the first file.
if (meta ->HasAttribute(DC::EchoTime))

{
int fileIndex = 0;
double t = meta ->GetAttributeValue(fileIndex , DC::EchoTime).AsDouble();
}

// Another way to get an attribute for the first file (here, we assume
// that it will be the same for all files in the series).
std::string str = meta ->GetAttributeValue(DC::SeriesDescription).AsString();

One interesting property of DICOM meta data is that it can be nested, similar to the way that directories on
a file system can have subdirectories. This nesting is used, for example, to store meta data for each frame
in the new enhanced multi-frame DICOM files. In order to make it easy to access nested attributes, the
vtkDICOMTagPath class describes the full path to a nested attribute.

// Get an attribute for frame 3 of a multi-frame file.
int frameIdx = 3;
double echoTime = meta ->GetAttributeValue(
vtkDICOMTagPath(DC::PerFrameFunctionalGroupSequence , frameIdx ,

DC::CardiacSynchronizationSequence , 0,
DC::NominalCardiacTriggerDelayTime)).AsDouble();

This is rather verbose, so a more convenient method for accessing per-frame data is provided for enhanced
multi-frame files. You can give the frame index after the file index, in which case the GetAttributeValue()
method will perform a search for the attribute without requiring a full path.

// Get an attribute for frame 3 of an enhanced multi-frame file.
int fileIdx = 0;
int frameIdx = 3;
vtkDICOMValue vw = meta ->GetAttributeValue(fileIdx , frameIdx , DC::WindowWidth);
vtkDICOMValue vc = meta ->GetAttributeValue(fileIdx , frameIdx , DC::WindowCenter);
if (vw.IsValid() && vc.IsValid())

{
// set the window for the image
}

The vtkDICOMMetaDataAdapter class can also be used to access enhanced multi-frame files as if each
frame was a separate file.

VTK Classes for DICOM Data 9

2.5 Iterating over data elements

The vtkDICOMMetaData object also provides iterator-style access to the data elements. This is useful, for
instance, when you want to iterate through all of the elements in the meta data in sequential order. It is also
useful if you want to check which attributes vary between files in the series.

// Iterate through all data elements in the meta data.
for (vtkDICOMDataElementIterator iter = meta ->Begin(); iter != meta ->End(); ++iter)

{
vtkDICOMTag tag = iter ->GetTag();
std::cout << "tag: " << tag << std::endl;
// Crucial step: check for values that vary across the series.
if (iter ->IsPerInstance())

{
int n = iter ->GetNumberOfInstances();
for (int i = 0; i < n; i++)

{
std::cout << "instance " << i << ": " << iter ->GetValue(i) << std::endl;
}

}
else

{
// Not PerInstance: value is the same for all files in series.
std::cout << "all instances: " << iter ->GetValue() << std::endl;
}

}

// Get the iterator to a specific element (hash table lookup).
vtkDICOMDataElementIterator iter = meta ->Find(DC::ImageOrientationPatient);
if (iter != meta ->End())

{
// do something
}

You might be surprised by the PerInstance check, but it is necessary due to the fact that vtkDICOMMetaData
holds the meta data for an entire series of DICOM files. Most attributes are the same across the series, but a
few attributes vary from one file to the next. These per-file attributes are identified when the file is read by
vtkDICOMReader.

2.6 Dictionaries

When iterating through the data elements in the meta data, as described in the previous section, it can be
useful to get information about the meaning of the data elements that are encountered. Complete information
can only be provided by the DICOM standards documents themselves, but the vtkDICOMDictionary can at
least provide a summary of what kind of data to expect for a given attribute.

// do a dictionary lookup on a tag
vtkDICOMDictEntry entry;
entry = vtkDICOMDictionary::FindDictEntry(vtkDICOMTag(0x0008 ,0x0020));
// check if entry was found in dictionary
if (entry.IsValid())

{
std::cout << entry.GetName() << std::endl; // prints "StudyDate"

VTK Classes for DICOM Data 10

std::cout << entry.GetVR() << std::endl; // prints "DA"
std::cout << entry.GetVM() << std::endl; // prints "1"
}

// do a dictionary lookup by name
entry = vtkDICOMDictionary::FindDictEntry("StudyDate");
if (entry.IsValid())

{
std::cout << entry.GetTag() << std::endl; // prints "0008,0020"
}

The vtkDICOMDictionary class provides information for attributes that are described in the DICOM stan-
dard, as well as information for private attributes defined by medical device manufacturers. Every DICOM
file is likely to have a mix of standard attributes and private attributes. Fortunately, it is easy to tell the
difference between the two: private attributes always use a tag with with an odd group number, while the
DICOM standard only uses even group numbers. The lookup of private tags requires the name of the private
dictionary.

// do a private dictionary lookup in GE dictionary GEMS_ACQU_01
vtkDICOMDictEntry entry;
entry = vtkDICOMDictionary::FindDictEntry("CellSpacing", "GEMS_ACQU_01");
if (entry.IsValid())

{
std::cout << entry.GetTag() << std::endl; // prints "0019,0004"
std::cout << entry.GetName() << std::endl; // prints "CellSpacing"
std::cout << entry.GetVR() << std::endl; // prints "DS"
std::cout << entry.GetVM() << std::endl; // prints "1"
}

2.7 Private meta data

Because private tags are not registered with any central authority, there is no guarantee that they are unique.
Instead, each private group within a DICOM file contains 240 blocks (each with 256 elements) that can be
be individually reserved for elements belonging to a specific private dictionary. The details of how this is
done are described in Part 5, Section 7.8 of the DICOM standard.

The result of this is that private tags are of the form (gggg,xxee) where “xx” is a hexadecimal value between
10 and ff that identifies the block that was used to store the attribute. The tricky thing is that this value can
vary from one DICOM file to the next, though it is usually consistent within a single series. Some people
are surprised by this, because the first block (i.e. 10) is the only block that is used in most files.

To ensure that you are looking for private attributes in the correct location (i.e. within the correct block),
you must resolve each private tag before using it.

// start with the tag in its "dictionary" form, with xx=00
vtkDICOMTag ptag = vtkDICOMTag(0019,0004);
// resolve the private tag (find out what block was reserved)
ptag = meta ->ResolvePrivateTag(ptag , "GEMS_ACQU_01");
if (ptag == vtkDICOMTag(0xffff ,0xffff))

{
// the special tag value ffff,ffff indicates that the tag could not be
// resolved: no private block was reserved for dictionary GEMS_ACQU_01

VTK Classes for DICOM Data 11

}
else

{
// ptag will now be 0019,xx04 where "xx" is usually 10 (first block)
double spacing = meta ->GetAttributeValue(ptag).AsDouble();
}

2.8 Enhanced multi-frame data

DICOM is an evolving standard, and one product of that evolution was the development of enhanced multi-
frame data sets that contain an entire series of images within a single file. Unfortunately, the meta data
for these files is arranged in a very different manner from old-style “legacy” DICOM files. Many of the
attributes of an enhanced file are nested within two sequences: the PerFrameFunctionalGroupsSequence
(5200,9230) holds meta data that varies from frame to frame (e.g. from slice to slice), while the Shared-
FunctionalGroupsSequence (5200,9229) holds meta data that is the same for all frames.

// Get position for frame 3 (4th slice) of a multi-frame file.
int frameIdx = 3;
vtkDICOMValue p = meta ->GetAttributeValue(
vtkDICOMTagPath(DC::PerFrameFunctionalGroupSequence , frameIdx ,

DC::PlanePositionSequence , 0,
DC::ImagePositionPatient));

// Get orientation for all slices (if orientation varies between slices,
// this will be in the PerFrameFunctionalGroupsSequence instead!)
vtkDICOMValue o = meta ->GetAttributeValue(
vtkDICOMTagPath(DC::SharedFunctionalGroupSequence , 0,

DC::PlaneOrientationSequence , 0,
DC::ImageOrientationPatient));

// That was messy. Here is a cleaner way of getting per-frame data that
// searches through the Shared and PerFrame sequences so you don’t have to.
int fileIdx = 0; // only one file, but it has multiple frames
p = meta ->GetAttributeValue(fileIdx , frameIdx , DC::ImagePositionPatient);
o = meta ->GetAttributeValue(fileIdx , frameIdx , DC::ImageOrientationPatient);

Even with the “clean” frame-based meta data retrieval, you need to know ahead of time whether you are
dealing with an enhanced file (and need to supply a frame index) or whether you are dealing with a legacy
file (and need to supply a file index). To work around this, you can use the vtkDICOMMetaDataAdapter
class, which makes enhanced files look like legacy files, and offers a simple pass-through for legacy files.

// A third way of dealing with enhanced data is to use the adapter class.
vtkDICOMMetaDataAdapter adapter(meta);
int n = adapter ->GetNumberOfInstances(); // returns the number of frames
int i = 3; // The frame we want info for (better be less than n)
p = adapter ->GetAttributeValue(i, DC::ImagePositionPatient);
o = adapter ->GetAttributeValue(i, DC::ImageOrientationPatient);

Unfortunately, this is not the end of the story. Some tags were renamed and given slightly different meanings
for the enhanced files. For example, if you need to know the echo time for an MR image slice, you should
check for both EchoTime (the legacy tag) and EffectiveEchoTime (the equivalent enhanced tag).

VTK Classes for DICOM Data 12

3 Reading DICOM Files into VTK

3.1 Sorting files into a series

The first difficulty that one often runs into when trying to load DICOM files into VTK is that the files
themselves do not have descriptive names. With a directory full of DICOM images it can be difficult to
know which ones to load. A typical DICOM folder listing looks something like this:

IM -0001-0001.dcm IM -0001-0005.dcm IM -0001-0009.dcm IM -0001-0013.dcm
IM -0001-0002.dcm IM -0001-0006.dcm IM -0001-0010.dcm IM -0001-0014.dcm
IM -0001-0003.dcm IM -0001-0007.dcm IM -0001-0011.dcm IM -0001-0015.dcm
IM -0001-0004.dcm IM -0001-0008.dcm IM -0001-0012.dcm IM -0001-0016.dcm

These files might be 16 slices of a 3D image, or the first three files might be test images while the remaining
13 files are slices of a 3D volume. Or they might be something else entirely. So the first thing to do with a
batch of DICOM files is to find out how they fit together, and the vtkDICOMFileSorter performs this task.
Given a set of DICOM files, it will discover which files belong to the same DICOM series. Each series will
generally be one of the following:

1. A stack of slices.

2. A series of sequential frames.

3. A combination of the above (multi-dimensional).

When we read DICOM images into VTK, we want to load just one series of images (or sometimes just a
portion of a series) as a VTK data set. The vtkDICOMFileSorter makes this easy.

// Instantiate a DICOM sorter.
vtkSmartPointer <vtkDICOMFileSorter> sorter =

vtkSmartPointer <vtkDICOMFileSorter>::New();

// Provide an array containing a list of filenames.
sorter ->SetInputFileNames(filenames);

// Update the sorter (i.e. perform the sort).
sorter ->Update();

// Get the first series.
int i = sorter ->GetNumberOfSeries();
if (i > 0)

{
vtkStringArray *sortedFiles = sorter ->GetFileNamesForSeries (0);
// do something with the files
}

In addition, the sorter can discover which series belong to the same study. That is, it can tell us which series
were collected during the same imaging session. One thing the sorter does not do is sort the images in the
series according to slice location. It only sorts the images according to the Instance Number embedded in
each image, where the Instance Number gives the logical viewing order prescribed by the medical device
that generated the images. It is up to the vtkDICOMReader to check the slice positions for the files and sort
them by location before generating an image volume or time series.

VTK Classes for DICOM Data 13

// Sort the input filenames by series and study.
sorter ->SetInputFileNames(filenames);
sorter ->Update();

// Iterate through all of the studies that are present.
int n = sorter ->GetNumberOfStudies();
for (int i = 0; i < n; i++)

{
// Iterate through all of the series in this study.
int j1 = sorter ->GetFirstSeriesForStudy(i);
int j2 = sorter ->GetLastSeriesForStudy(i);
for (int j = j1; j <= j2; j++)

{
vtkStringArray *sortedFiles = sorter ->GetFileNamesForSeries(j);
// do something with the files
}

}

3.2 Reading a series of files as a VTK image

The design goal for the vtkDICOMReader is to convert a series of DICOM files into a geometrically accurate
vtkImageData object. That is, the pixel spacing and the center-to-center distance between adjacent slices
in the image data is as specified in the DICOM meta data. Furthermore, a 4×4 matrix is provided that can
be used to position and orient the image. In order to achieve this, the reader checks the Image Position
and Image Orientation that are recorded in the meta data for each slice. Then, if and only if the image
positions line up along the normals of the slice planes, the reader sorts the slices according to location. The
vtkImageData z spacing is then set to the average center-to-center distance between adjacent slices.

In the absence of Image Position information in the meta data, or if the slices do not form a rectilinear
volume, then the slices are sorted only according to the Instance Number in the meta data. There is also a
reader method called SortingOff() than can be called to disable sorting entirely, so that the order of the slices
in the vtkImageData will reflect the order of the list of files provided to the reader.

In addition to sorting slices by location, the reader attempts to detect multi-dimensional data sets. It recog-
nizes up to 5 dimensions: x, y, z, t, and a vector dimension. This is best illustrated by example. If an MR
raw-data DICOM series provides real and imaginary pixel data at each slice location, then the vtkImage-
Data produced by the reader will have two components (real and imaginary). We interpret this loosely as an
image with a vector dimension of 2.

When a time dimension is present, things become interesting. The default behavior of the reader is to store
adjacent time points in adjacent vtkImageData slices. This works well when the images are to be displayed
slice-by-slice. It is, however, inappropriate if the vtkImageData is to be displayed as a multi-planar reformat
or as a volume. For this reason, the vtkDICOMReader has a method called TimeAsVectorOn() that will
cause the reader to treat each voxel as a time vector. In other words, if the DICOM data has 10 individual
time slots, then the vtkImageData will have 10 components per voxel (or 30 components in the case of RGB
data). By selecting a specific component or range of components when displaying the data, one can display
a specific point in time.

Five dimensions come into play when the DICOM series has frames that are at the same location and within
the same time slot. Going back to the (real,imaginary) example, if such a series of images is read after
TimeAsVectorOn() is called, then the vtkImageData will have 20 components per voxel if there are 10 time

VTK Classes for DICOM Data 14

slots. The 20 components can be thought of as 10 component blocks with 2 components per block. A
filter like vtkImageExtractComponents can be used to extract a block of components that corresponds to a
particular time slot.

If the behavior described in the preceding paragraphs is not desirable, then one can use the SetDesired-
TimeIndex(int) method to read just one time slot, and use a set of N readers to read the N time slots as N
separate VTK data sets.

// Instantiate the reader
vtkSmartPointer <vtkDICOMReader> reader =

vtkSmartPointer <vtkDICOMReader>::New();

// Provide a vtkStringArray containing a list of filenames.
reader ->SetFileNames(filenames);

// Read the meta data via UpdateInformation()
reader ->UpdateInformation();

int numberOfTimeSlots = reader ->GetTimeDimension();
if (numberOfTimeSlots > 1)

{
// for example, read only the final time slot
reader ->SetDesiredTimeIndex(numberOfTimeSlots -1);
}

// Update the reader
reader ->Update();

3.3 Enhanced multi-frame and multi-stack files

The DICOM standard allows for multiple slices (frames) per file, or even multiple stacks of slices per file.
In the case of multi-frame files, each frame is assigned a position and a time slot and the frames are sorted
according to the slice sorting method described in the previous section.

In multi-stack files there are, as one might expect, more than one rectilinear (or perhaps non-rectilinear)
volume. If sorting has been turned off with the SortingOff() method, then all the frames in the file are read
sequentially into vtkImageData slices. If sorting is on, however, then the reader is only able to read one
stack at a time. The method SetDesiredStackID() allows one of the stacks to be chosen by name.

// Instantiate the reader
vtkSmartPointer <vtkDICOMReader> reader =

vtkSmartPointer <vtkDICOMReader>::New();

// Provide a multi-frame, multi-stack file
reader ->SetFileName(filename);

// Read the meta data, get a list of stacks
reader ->UpdateInformation();
vtkStringArray *stackNames = reader ->GetStackIDs();

// Specify a stack, here we assume we know the name:
reader ->SetDesiredStackID("1");

VTK Classes for DICOM Data 15

Sometimes one will find a DICOM series that contains slices that are implicitly arranged into separate
stacks, even though there is no information in the meta data that explicitly assigns each slice to a stack.
In this situation, the vtkDICOMReader will synthesize the stack information by grouping blocks of slices
together if that form rectilinear volumes, and it will name the blocks with decimal strings “0”, “1”, etc. This
is particularly useful for the localizer series that is present in most MRI studies, since the localizer contains
separate blocks of axial, coronal, and sagittal images.

3.4 DICOM image orientation

When people use the term “image orientation” with respect to medical images, they usually mean one or
more of the items listed below:

1. The order in which the pixels and slices are stored in the computer’s memory.

2. The orientation of the image slices in a real-world coordinate system, for example the patient coordi-
nate system as defined by the medical imaging equipment that generated the images.

3. The orientation of the patient with respect to the viewer when the images are viewed on a workstation.

The first of these, the way the data is stored in memory, should merely be an implementation detail, but un-
fortunately the vtkImageViewer class insists that the pixels must be arranged in memory such that the pixel
at the bottom-left corner of the image is the pixel at the lowest address in memory. This is in conflict with
DICOM, which stores the top-left pixel as the first pixel in the file. To provide compatibility with the vtkIm-
ageViewer, the default behavior of the vtkDICOMReader is to flip the image in memory while it is loading
it from the file. This behavior can be turned off by calling reader->SetMemoryRowOrderToFileNative().

The second and third items in the list can be referred to as the real-world orientation, and the display
orientation, respectively. Neither of these can be considered an implementation detail, as both of them are
crucial to the user experience. Also, it is important not to confuse one with the other. An application can
handle the real-world orientation incorrectly but still display the images to the user in the correct orientation,
but such an application would certainly have a serious flaw.

The real-world orientation is provided by the GetPatientMatrix() method of the vtkDICOMReader. This
method returns a vtkMatrix4x4 object that describes the coordinate transformation from the data coordi-
nates of the vtkImageData that stores the image, to the real-world Patient Coordinate System defined in the
DICOM standard [1]. The matrix is used to correctly place the image in the VTK world coordinate system.

The PatientMatrix is constructed from the ImagePositionPatient and ImageOrientationPatient attributes in
the series of DICOM files that are provided to the reader. Note that unless SetMemoryRowOrderToFileNa-
tive() has been called on the reader, the orientation of the matrix will be flipped with respect to ImageOrien-
tationPatient in order to account for the fact that the image rows were flipped in memory.

reader ->SetMemoryRowOrderToFileNative(); // keep native row order
reader ->Update(); // update the reader
vtkMatrix4x4 *matrix = reader ->GetPatientMatrix();

// Create an image actor and specify the orientation.
vtkSmartPointer <vtkImageActor> actor =

vtkSmartPointer <vtkImageActor>::New();
actor ->GetMapper()->SetInputConnection(reader ->GetOutputPort());
actor ->SetUserMatrix(matrix);

VTK Classes for DICOM Data 16

Setting the actor’s UserMatrix will ensure that the real-world orientation of the image is correctly handled,
as far as the VTK display pipeline is concerned. It does not, however, set the display orientation, which is
the responsibility of the application. The display orientation can be set via manipulation of the VTK camera,
or via certain methods in the vtkInteractorStyleImage class. The details of how this is done are outside of
the scope of this document.

3.5 Obtaining per-slice meta data

A direct consequence of the sorting that is performed by the vtkDICOMReader is that the slices in the
vtkImageData are not guaranteed to be in the same order as the files that were given to the reader’s SetFile-
Names() method. Fortunately, the reader provides a look-up table that can be used to find out which file
provided which slice. Hence, given a VTK slice number, the look-up table can provide the corresponding
file, and then the meta data can be inspected for that particular file. Similarly, for multi-frame DICOM
files, the reader provides a look-up table that gives the DICOM frame that provided each each slice. The
vtkMetaData object provides a GetAttributeValue() method that takes both a file index and a frame index,
along with the tag of the attribute to be inspected.

// Read the files and get the meta data.
reader ->SetFileNames(fileNameArray);
reader ->Update();
vtkDICOMMetaData *meta = reader ->GetMetaData();

// Get the arrays that map slice to file and frame.
vtkIntArray *fileMap = reader ->GetFileIndexArray();
vtkIntArray *frameMap = reader ->GetFrameIndexArray();

// Get the file and frame for a particular slice.
int sliceIndex = 6;
int fileIndex = fileMap ->GetComponent(sliceIndex , 0);
int frameIndex = frameMap ->GetComponent(sliceIndex , 0);

// Get the position for that slice.
vtkDICOMValue pv = meta ->GetAttributeValue(fileIdx , frameIdx ,

DC::ImagePositionPatient);
double position[3] = { 0.0, 0.0, 0.0 };
if (pv.IsValid() && pv.GetNumberOfValues() == 3)

{
pv.GetValue(position , 3);
}

As a caveat, for multi-frame files, the example given above assumes that the meta data contains a per-frame
ImagePositionPatient attribute. This is the case for multi-frame CT and MRI files, but not for multi-frame
nuclear medicine files. Whenever retrieving meta data from a DICOM image, it is wise to consult the
DICOM standard to see how the attributes are defined for the various modality-specific IODs (information
object descriptions).

3.6 Obtaining per-component meta data

In the example in the previous section, the GetComponent() method was called with two arguments, but the
second argument was set to zero. If the vtkDICOMReader assigned a vector dimension to the data, then the

VTK Classes for DICOM Data 17

the vtkImageData will have multiple scalar values in each voxel. For instance, the first component in each
voxel may have come from a file that provided the real component of a complex-valued image, while the
second component came from a file that provided the imaginary component. In this case, one would do the
following to retrieve the meta data from the “imaginary” file:

// Read the files and get the meta data.
reader ->SetFileNames(fileNameArray);
reader ->Update();
vtkDICOMMetaData *metaData = reader ->GetMetaData();

// Get the arrays that map slice to file and frame.
vtkIntArray *fileMap = reader ->GetFileIndexArray();
vtkIntArray *frameMap = reader ->GetFrameIndexArray();

// Get the file and frame for a particular slice and component.
int sliceIndex = 6;
int vectorIndex = 1; // 2nd component is the imaginary component
int fileIndex = fileMap ->GetComponent(sliceIndex , vectorIndex);
int frameIndex = frameMap ->GetComponent(sliceIndex , vectorIndex);

// Get an attribute from the meta data.
vtkDICOMValue v = metaData ->GetAttributeValue(fileIdx , frameIdx , tag);

If the data has a time dimension and the reader’s TimeAsVectorOn() method was called, then the components
of each voxel can correspond both to a specific time slot, and to a specific vector component. To make the
situation even more complicated, each pixel in the DICOM files might be an RGB pixel and therefore have
three components as given by the SamplesPerPixel attribute in the meta data.

The number of components in the FileIndexArray and FrameIndexArray is equal to the vector dimension,
and if TimeAsVectorOn() was called, then the vector dimension will include the time dimension. The
FileIndexArray and FrameIndexArray do not have components that correspond to the individual R,G,B
components in RGB images, since the R, G, and B components will always have the same meta data because
they always come from the same file and frame.

The following strategy is recommended for accessing per-component meta data in multi-dimensional im-
ages:

// Get the arrays that map slice to file and frame.
vtkIntArray *fileMap = reader ->GetFileIndexArray();
vtkIntArray *frameMap = reader ->GetFrameIndexArray();

// Get the image data and meta data.
vtkImageData *image = reader ->GetOutput();
vtkDICOMMetaData *meta = reader ->GetMetaData();

// Get the number of components in the data.
int numComponents = image ->GetNumberOfScalarComponents();

// Get the full vector dimension for the DICOM data.
int vectorDimension = fileMap ->GetNumberOfComponents();

// Compute the samples per pixel in original files.
int samplesPerPixel = numComponents/vectorDimension;

VTK Classes for DICOM Data 18

// Check for time dimension
int timeDimension = reader ->GetTimeDimension();
if (timeDimension == 0)

{
timeDimension = 1;
}

// Get all attributes for a specific time.
int vectorIndex = timeIndex*vectorDimension/timeDimension;
int vectorEndIndex = (timeIndex + 1)*vectorDimension/timeDimension;

for (int i = vectorIndex; i < vectorEndIndex; i++)
{
int fileIndex = fileMap ->GetComponent(sliceIndex , i);
int frameIndex = frameMap ->GetComponent(sliceIndex , i);
vtkDICOMValue v = meta ->GetAttributeValue(fileIdx , frameIdx , tag);
// print or display the value
}

// Extract an image at the desired time slot (e.g. for display).
int componentIndex = timeIndex*vectorDimension/timeDimension*samplesPerPixel;
vtkSmartPointer <vtkImageExtractComponents> extractor =

vtkSmartPointer <vtkImageExtractComponents>::New();
extractor ->SetInputConnection(reader ->GetOutputPort());
if (samplesPerPixel == 1)

{
extractor ->SetComponents(componentIndex);
}

else if (samplesPerPixel == 2) // rare/nonexistent in DICOM images
{
extractor ->SetComponents(componentIndex , componentIndex + 1);
}

else
{
extractor ->SetComponents(componentIndex , componentIndex + 1, componentIndex + 2);
}

extractor ->Update();

3.7 Real-world values and lookup tables

The vtkDICOMReader always provides the stored value of each pixel in the image, that is, it provides the
pixel value that was stored in the file. In some circumstances, these stored pixel values can be displayed
directly on the screen (for 8-bit greyscale ultrasound data, for example) or can be displayed via a user-defined
window-level operation (as is common for MRI). In the general case, however, the DICOM standard defines
mappings of these stored values to either real-world values that have real physical units, or presentation
values that are intended for radiographic display.

For computing real-world values, the vtkDICOMReader provides RescaleSlope and RescaleIntercept pa-
rameters that, for some image volumes, provide the desired linear mapping values to convert the stored
values into real-world values. However, these parameters cannot always be used because (1) they are not
available for MRI, and (2) the mapping is not guaranteed to the be same for all slices in a volume, in fact
PET images almost always use a different mapping for each slice.

For these reasons, the vtkDICOMApplyRescale filter is the recommended method for computing the real-
world values. This filter will use the RealWorldValueMapping attributes that are stored in the meta data for

VTK Classes for DICOM Data 19

each file, or if these attributes are not present, it will apply the RescaleSlope and RescaleIntercept for each
individual slice. The output image volume will use floating-point (double or float) to store the new pixel
values. If no mapping information is present in the data set, then an identity mapping is used.

Presentation values for are usually achieved by first applying the RescaleSlope and RescaleIntercept, and
the applying WindowCenter and WindowWidth. This is, for example, the way that CT images should be
displayed under most circumstances. In some cases, however, the DICOM file will provide a palette lookup
table for mapping the values to the display. The use of the palette can either be manditory, in the case of
PALETTE COLOR images, or can be optional, in the case of the supplemental palettes that are used for
quantitative MR and CT imaging. The vtkDICOMApplyPalette filter will extract the palette from the meta
data and apply it to the image. If there is no palette in the meta data, then the image data will pass through
the filter unchanged.

4 Writing DICOM Files

4.1 Conforming to the standard

The DICOM standard is expansive, with approximately 1500 pages dedicated to how to put together DICOM
data sets and write them as DICOM files. Some parts of conformance are simple, for example making sure
that all values stored in the file match with the value representations described in Table 1. Other parts are
are more complex, such as ensuring that a DICOM file that contains an MR image also contains all of the
meta data that is required for an MR image.

A crucial facet of conformance is that every DICOM image must have a unique identifier or UID. No two
images anywhere in the world are permitted by the standard to have the same UID, unless they are in fact the
same image from the same source. The default method that the vtkDICOMWriter uses to generate unique
IDs is to append a special 128-bit random number called a UUID to the special UID prefix “2.25.” Through
the use of such a large random number, the probability that exactly the same number will be generated twice
is vanishingly small. For example, 2.25.1267999611695479980069765583325507254 is such a UID.

If you have registered a UID prefix for your organization, then you can use it in the vtkDICOM library as
shown in the following example. If your prefix is too long to allow for a 128-bit suffix, then a 96-bit suffix
will be used instead.

// Set the UID prefix for all generated DICOM files (default 2.25.)
vtkDICOMUtilities::SetUIDPrefix("1.2.XXX.YYYYY.");

// Set a UID that identifies your software to the world.
vtkDICOMUtilities::SetImplementationClassUID("1.2.XXX.YYYYY.ZZZZZZZZZZZZZZZZZZZZ");

// Set the name and version number of your software.
vtkDICOMUtilities::SetImplementationVersionName("SOFTWARE VER X_Y_Z");

In addition to having a unique ID, every DICOM data set must conform to one of the classes identified
in the DICOM standard. A DICOM “class” is described in the standard by an IOD (Information Object
Description) that states which attributes are to be present for that class. A CT image, for example, must
belong to one of the CT classes, and must contain information such as the energy of the X-rays that were
used to make the image.

VTK Classes for DICOM Data 20

4.2 Writing a VTK image as DICOM

The vtkDICOMWriter takes a vtkImageData object as input, and writes a series of DICOM image files to
disk. Since the required meta data for an image varies from one modality to another, the writer delegates
the creation of the meta data to another class called a vtkDICOMGenerator. A short example of how this is
done is as follows:

// Create a generator for MR images.
vtkSmartPointer <vtkDICOMMRGenerator> generator =

vtkSmartPointer <vtkDICOMMRGenerator>::New();

// Create a meta data object with some desired attributes.
vtkSmartPointer <vtkDICOMMetaData> meta =

vtkSmartPointer <vtkDICOMMetaData>::New();
meta ->SetAttributeValue(DC::PatientName , "DoeˆJohn");
meta ->SetAttributeValue(DC::ScanningSequence , "GR"); // Gradient Recalled
meta ->SetAttributeValue(DC::SequenceVatiant , "SP"); // Spoiled
meta ->SetAttributeValue(DC::ScanOptions , "");
meta ->SetAttributeValue(DC::MRAcquisitionType , "2D");

// Plug the generator and meta data into the writer.
vtkSmartPointer <vtkDICOMWriter> writer =

vtkSmartPointer <vtkDICOMWriter>::New();
writer ->SetInputConnection(lastFilter ->GetOutputPort());
writer ->SetMetaData(meta);
writer ->SetGenerator(generator);

// Set the output filename format as a printf-style string.
writer ->SetFilePattern("%s/IM -0001-%04.4d.dcm");

// Set the directory to write the files into.
writer ->SetFilePrefix("/the/output/directory");

// Write the file.
writer ->Write();

The vtkDICOMMRGenerator assists with conformance by generating all the data set attributes that are
required by the MR IOD. It will also scan through the vtkMetaData object that is provided to the writer, and
use any of its attributes as long as 1) they are defined in the MR IOD, and 2) they are deemed to be valid for
the image that is being written. A partial list of attributes that are never taken from the input meta data is as
follows:

1. SOPInstanceUID (this is always re-generated to ensure its uniqueness)

2. SeriesInstanceUID (ditto)

3. ImageType (this is set to DERIVED\SECONDARY\OTHER by default)

4. PixelSpacing (this is set from the VTK image information)

5. Rows and Columns (ditto)

6. ImagePositionPatient and ImageOrientationPatient (these are set from the PatientMatrix)

VTK Classes for DICOM Data 21

The generator always creates a new SOPInstanceUID for each file and a new SeriesInstanceUID for each
series. There is no way to set these UIDs manually. The ImageType is set to DERIVED by default, because
an image cannot be considered to be ORIGINAL if it was modifed in any way after its original acquisition.
Finally, all information related to the pixel values or the slice geometry is generated from the vtkImageData
information and from the PatientMatrix.

The vtkDICOMWriter allows several parameters, including ImageType, to be set when writing the file.
These are demonstrated in the following example.

// Plug the generator and meta data into the writer.
vtkSmartPointer <vtkDICOMWriter> writer =

vtkSmartPointer <vtkDICOMWriter>::New();
writer ->SetInputConnection(lastFilter ->GetOutputPort());
writer ->SetMetaData(meta);
writer ->SetGenerator(generator);

// Set the output filename format as a printf-style string.
writer ->SetFilePattern("%s/IM -0001-%04.4d.dcm");
// Set the directory to write the files into
writer ->SetFilePrefix("/the/output/directory");

// Set the image type to Multi-planar Reformat.
// (forward slashes will be converted to backward slashes)
writer ->SetImageType("DERIVED/SECONDARY/MPR");
writer ->SetSeriesDescription("Sagittal Multi -planar Reformat");

// Set the 4x4 matrix that gives the position and orientation.
writer ->SetPatientMatrix(patientMatrix);

4.3 Customizing the generators

At the present time, the vtkDICOMWriter has only three generators available: the vtkDICOMMRGenerator
(for MR), the vtkDICOMCTGenerator (for CT), and the vtkDICOMSCGenerator (for Secondary Capture,
e.g. screenshots). Writing a new generator class is the recommended method for adding support for a new
modality to the vtkDICOM library, though that is beyond the scope of this document.

4.4 Writing a raw pixel buffer to a DICOM file

In addition to the vtkDICOMWriter, there is a class called the vtkDICOMCompiler that can write meta data
and image data directly to a file without it being processed by a vtkDICOMGenerator. It can be used to
efficiently perform such actions as changing the transfer syntax of the data or tweaking the meta data. By
design, the vtkDICOMCompiler will take, as input, a meta data object that describes a series of images, and
it will then write the files in the series one-by-one.

vtkSmartPointer <vtkDICOMCompiler> compiler =
vtkSmartPointer <vtkDICOMCompiler>::New();

compiler ->SetMetaData(meta);

int n = meta ->GetNumberOfInstances();
for (int i = 0; i < n; i++)

{

VTK Classes for DICOM Data 22

char outputFile [256];
sprintf(outputFile , "IM -0001-%04.4d.dcm", i+1);
compiler ->SetFileName(outputFile);
compiler ->SetIndex(i);
compiler ->WriteHeader();
compiler ->WritePixelData(rawPixelBufferForFile);
}

5 Locating DICOM Files

5.1 Reading from a DICOM file set

When DICOM files are stored on a CD (still a common practice in many hospitals), they are stored as a file
set that consists of the images files with obscure capitalized file names like IMG00345 plus an index file that
is always named DICOMDIR. A file set consists of one or more image series from one or more patients, and
the filenames usually give no indication of how the files are meant to fit together.

The vtkDICOMDirectory class solves this problem by reading the DICOMDIR index file and telling you
which files belong to which patient or which study and series. It has an interface that is very similar to the
previously-introduced vtkDICOMFileSorter class, but it can sort the files using only the DICOMDIR file,
without having to read the individual DICOM files. This is very important if the files are stored on a slow
media such as a CD.

vtkSmartPointer <vtkDICOMDirectory> dicomdir =
vtkSmartPointer <vtkDICOMDirectory>::New();

dicomdir ->SetDirectoryName("E:");
dicomdir ->Update();

// Iterate through all of the studies that are present.
int n = dicomdir ->GetNumberOfStudies();
for (int i = 0; i < n; i++)

{
// Get information related to the patient study
vtkDICOMItem patient = dicomdir ->GetPatientRecordForStudy(i);
vtkDICOMItem study = dicomdir ->GetStudyRecord(i);
// Iterate through all of the series in this study.
int j1 = dicomdir ->GetFirstSeriesForStudy(i);
int j2 = dicomdir ->GetLastSeriesForStudy(i);
for (int j = j1; j <= j2; j++)

{
vtkDICOMItem series = dicomdir ->GetSeriesRecord(j);
vtkStringArray *sortedFiles = dicomdir ->GetFileNamesForSeries(j);
// do something with the files
reader ->SetFileNames(sortedFiles);
reader ->Update();
}

}

The PatientRecord, StudyRecord, and SeriesRecord in the above example contain attributes for the images
that were stored in the DICOMDIR index file. At the bare minimum, these will provide the PatientName,
PatientID, StudyDate, StudyTime, StudyUID, and SeriesUID.

VTK Classes for DICOM Data 23

Note that the vtkDICOMDirectory will work even if provided with a directory that does not contain a
DICOMDIR file. In the absence of a DICOMDIR, it will recursively scan the directory for all DICOM files
that it contains. Also, in addition to the SetDirectoryName() method, there is also a SetInputFileNames()
method that allows a specific list of files to be provided.

5.2 Searching for files that match a query

The vtkDICOMDirectory class has another trick up its sleeve. It can search for files that have certain
attributes, for example it can search a filesystem for all scans of a specific patient. This is similar in purpose
to querying a PACS system, except that you are instead providing one or more disk directories where the
files might exist. These directories are searched recursively for all files that match the query.

// Make a list of the directories to search.
vtkSmartPointer <vtkStringArray> dicompath =

vtkSmartPointer <vtkStringArray>::New();
dicompath ->InsertNextValue("/Volumes/Images1");
dicompath ->InsertNextValue("/Volumes/Images2");

// Make a list of attributes to match, using the utf-8 character set.
vtkDICOMItem query;
query.SetAttributeValue(DC::SpecificCharacterSet , "ISO_IR 192");
query.SetAttributeValue(DC::PatientName , "DoeˆJohn");
query.SetAttributeValue(DC::StudyDate , 2012-2015");
query.SetAttributeValue(DC::Modality , "MR");
query.SetAttributeValue(DC::ImageType , "PRIMARY");
query.SetAttributeValue(DC::SeriesDescription , "*T1w*");

vtkSmartPointer <vtkDICOMDirectory > dicomdir =
vtkSmartPointer <vtkDICOMDirectory >::New();

// The SetInputFileNames method takes directories , too!
dicomdir ->SetInputFileNames(dicompath);
// Optionally restrict the search to files ending with ".dcm"
dicomdir ->SetFilePattern("*.dcm");
dicomdir ->SetFindQuery(query);
dicomdir ->Update();

All text attributes except for dates accept the wildcards ‘*’ and ‘?’. For dates, you can use a hyphen to
specify a range of dates. Matching of all text is done by first converting the text to utf-8 for compability,
and for patient names the matching is case insensitive. The query “PRIMARY” will match the multi-valued
attribute value “ORIGINAL\PRIMARY”, since only one value has to match.

If the query contains any non-ASCII text, you must set the SpecificCharacterSet attribute to whichever
character set your program uses internally. This does not have to be the same as the character set used in the
files you are searching for, because all matching is done only after converting the text to utf-8.

6 Future Work

One major feature that will be added to the vtkDICOMWriter is the ability to write additional kinds of
DICOM images, in particular enhanced multi-frame images and parametric maps with floating-point pixel

VTK Classes for DICOM Data 24

data. Additional readers will also be added for various non-image data sets, such as spatial transformations
and segmentation objects.

It is also worth noting two features that are not scheduled at this time: support for the DICOM networking
protocol, and inclusion of DICOM-specific image display classes for VTK. The former is something that
might be added in the future, while the latter is beyond the scope of this project and, if released, will be part
of a separate project.

References

[1] Medical Imaging & Technology Alliance. DICOM Base Standard – 2015c. Published by the Association
of Electrical and Medical Imaging Equipment Manufacturers (NEMA), 2015.

Appendix A: Enabling the vtkDICOM module in VTK

Starting with VTK 7.0, vtkDICOM is provided as a remote module for VTK. This means that, if you are
building VTK from source, you can have cmake automatically download and build vtkDICOM for you. This
is done by setting the Module vtkDICOM option for the cmake cache:

$ cmake -D Module_vtkDICOM:BOOL=ON ../vtk-source
$ make

When the “make” is complete, the vtkDICOM library will be present with all of the other VTK libraries. In
addition, if you have enabled wrapping, then all of the vtkDICOM classes will be wrapped.

For versions of VTK prior to 7.0, vtkDICOM must be built as a stand-alone library according to the instruc-
tions in Appendix B.

Appendix B: Building a stand-alone vtkDICOM library

The vtk-dicom project is on github, at the following url:

http://github.com/dgobbi/vtk-dicom

For people who are not familiar with git, the easiest way to access the source code is to click on the “Down-
load ZIP” link on the right side of the web page. The following procedure can be used to build the vtkDI-
COM library, assuming that you have already built VTK with CMake. This example is for building the
package on Linux or OS X in the bash shell.

$ # specify the directory where you built VTK, this is an example
$ export VTK_DIR=/Volumes/HD2/vtk-release -build/
$ unzip vtk-dicom -master.zip
$ mkdir vtk-dicom -master -build
$ cd vtk-dicom -master -build
$ cmake -D CMAKE_BUILD_TYPE:STRING=Release ../vtk-dicom -master
$ make

VTK Classes for DICOM Data 25

Optionally, the following cmake variables can be set with ccmake or cmake-gui:

BUILD_EXAMPLES ON
BUILD_PROGRAMS ON
BUILD_SHARED_LIBS OFF
BUILD_TESTING ON
USE_DCMTK OFF
USE_GDCM OFF
VTK_DIR /Volumes/HD2/vtk-release -build/

The USE DCMTK and USE GDCM variables allow you to add the image decompression capabilities of either of
these packages (do not specify both!) to the vtkDICOMReader. If you do not specify one of these packages,
then the vtkDICOMReader will only be able to read uncompressed files.

If you want to use DCMTK, then download dcmtk-3.6.1 from http://www.dcmtk.org/ and build it using the
the instructions provided on the website. If possible, use the same compiler that you use for vtkDICOM.

If you want to use GDCM, it can be found at http://sourceforge.net/projects/gdcm/. Pay particular at-
tention to the GDCM build instructions, especially the “make install” step, or the vtkDICOM library
will not be able to link to the GDCM libraries. Additional information on GDCM can be found at
http://gdcm.sourceforge.net/wiki/index.php/Main Page.

The easiest way to use the vtkDICOM library in your own project is to add the following command block
to the main CMakeLists.txt file in your project:

find_package(DICOM QUIET)
if(DICOM_FOUND)

include(${DICOM_USE_FILE})
endif()
set(VTK_DICOM_LIBRARIES vtkDICOM)

It is not recommended to try to use vtkDICOM (or VTK itself) within projects that are not built with
cmake.

	Introduction
	Meta Data and Pixel Data
	Tag
	VR (Value Representation)
	Value
	Accessing meta data
	Iterating over data elements
	Dictionaries
	Private meta data
	Enhanced multi-frame data

	Reading DICOM Files into VTK
	Sorting files into a series
	Reading a series of files as a VTK image
	Enhanced multi-frame and multi-stack files
	DICOM image orientation
	Obtaining per-slice meta data
	Obtaining per-component meta data
	Real-world values and lookup tables

	Writing DICOM Files
	Conforming to the standard
	Writing a VTK image as DICOM
	Customizing the generators
	Writing a raw pixel buffer to a DICOM file

	Locating DICOM Files
	Reading from a DICOM file set
	Searching for files that match a query

	Future Work
	Appendix A: Enabling the vtkDICOM module in VTK
	Appendix B: Building a stand-alone vtkDICOM library

